Multi-OrBAC: a New Access Control Model for
Distributed, Heterogeneous and Collaborative
Systems

Anas Abou El Kalam (LIFO / ENSIB), Yves Deswarte (LAAS—CNRS / Université de Toulouse)

anas.abouelkalam@ensi-bourges.fr, yves.deswarte@laas.fr

Abstract—This paper presents a new access control model for
collaborative, heterogeneous and distributed systems: the
MultiOrganization-Based Access Control (Multi-OrBAC). Multi-
OrBAC layers heterogeneity and collaboration access control
concepts on top of the OrBAC model. Moreover, Multi-OrBAC is
represented by UML diagrams and associated to a formal system
based on Logical Programming by Constraint. Finally, we specify
a Multi-OrBAC driven architecture and we present a use case to
describe how the relevant steps related to security (e.g.,
authorization, credentials and proofs generation and verification)
are implemented.

Index Terms—Access control, security policies and models,
heterogeneous and collaborative system security, conflict
detection and resolution, XACML.

L. INTRODUCTION

Doing business (e.g. by building a “community of interest”)
in today’s world of distributed systems usually requires
collaboration between different organizations. Consequently,
developing access control policies and models for such cross-
border co-operations is an important issue.

Before studying this issue, let us explain some basic
concepts. The security policy is defined by the Common
Criteria such as the set of laws and rules regulate how an
organization manages, protects, and distributes sensitive
information [1]. Nevertheless, the security policy can be badly
designed and intentionally or accidentally violated. A security
model is intended to: abstract the policy and handle its
complexity; represent the secure states of a system as well as
the way in which the system may evolve, verify the
consistency of the security policy and detect possible conflicts.

OrBAC Model helps organizations in defining their policies
[2]. However, OrBAC have several weaknesses and is not
really adapted to collaborative systems. In this work we extend
OrBAC to the Multi-OrBAC model. Our major aim is to
overcome the weaknesses of OrBAC and to address access
control and authorization problems in large-scale,
decentralized systems. Such problems arise, for example, when
independent organizations enter into co-operations.

While sharing resources, each organization keep authority

over the resources it controlled prior to entering the co-
operation. Such systems are called multicentric collaborative
systems, since they have no single central authority [3].

We particularly emphasis on the following points:

- use the Unified Modeling Language [4] to represent the
basic concepts of the Multi-OrBAC policy;

- use the logical programming by constraints to model
the operational rules of the system and to formalize the
security policy;

- provide resolution and inheritance deduction engines;

- present a global architecture and an implementation
(logic, Java, XACML).

The remainder of this paper is organized as follows: Section
2 and 3 discuss the traditional security models and OrBAC.
Then, Section 4 describes the concepts of MultiOrganization-
Based Access Control. Section 5 specifies the Multi-OrBAC
formal system as well as the conflict resolution mechanism.
Afterwards, through a case study, Section 6 gives details of the
authorization phase and presents a Multi-OrBAC driven
architecture. Section 7 compares Multi-OrBAC with Role-
Based Trust Management (RBTM) and integrates Multi-
OrBAC in a XACML implementation. Finally, in Section 8 we
present our main conclusions and discuss future works.

Note that due to space shortage, neither the administration
model nor the negotiation process will be presented in this
contribution.

II. TRADITIONAL SECURITY MODELS

Classical access control policies and models (discretionary
“DAC” and mandatory access control “MAC” [5]) are not
really adapted to distributed and heterogeneous systems. For
instance, HRU represents the relationships between the
subjects, the objects and the actions by a matrix M [6]. M(s, 0)
represents the actions a that a subject s is allowed to carry out
on o. It is thus necessary to enumerate all the triples (s, o, a)
that correspond to permissions defined by the security policy.
Moreover, when new subjects, objects or actions are added or
removed in the system, it is necessary to update the policy.

Role Based-Access Control (RBAC) is more flexible. Roles
are assigned to users, permissions are assigned to roles and
users acquire permissions by playing roles [7, 8]. Hierarchical
RBAC [9] adds a requirement for supporting the role

hierarchies, while constrained RBAC [10] enforces the
separation of duties. RBAC is unquestionably suitable for a
large range of organizations. Indeed, if users are added to the
system, only the instances of the relationship between the users
and the roles are updated. Besides, RBAC is deliberately
policy neutral. In applying RBAC to a system, the
interpretation of permissions is an important step to perform.

The OrBAC (Organization-based Access Control) model is
an extension of RBAC that details permissions while
remaining implementation independent. The main idea is to
express the security policy with abstract entities only, and thus
to completely separate the representation of the security policy
from its implementation. Indeed, OrBAC is based on roles,
views, activities (introduced in RBAC, VBAC, TBAC [11,
12]) to structure the subject, the objects and the activities.

In the next Section, we first summarize OrBAC and we
discuss the limits of this model. Afterwards, in Section 4, we
extend OrBAC to overcome these limits and to cover the
particularities of collaborative and multicentric systems.

III. ORBAC (ORGANIZATION-BASED ACCESS CONTROL)

In OrBAC, the entity Role is used to structure the link
between the subjects and the organizations (Fig.1). The
relationship Employ(org, r, s) of the means that org employs
subject s in role r. In the same way, the objects that satisfy a
common property are specified through views (Fig. 2), and
activities are used to abstract actions (Fig. 3).

Subject - | Role

Figl. Abstracting subjects.

Object — use 5 ' View

Fig2. Abstracting objects.

Activity

onsider\ 0

Action

Fig. 3: Abstracting actions.

Security rules have the following form Permission(org; r; v,
a, ¢): in the context c, organization org grants role r the
permission to perform activity a on view v.

OrBAC improves the management of the security policy and
reduce considerably its complexity. However, it is partly
limited.

Firstly, OrBAC is only represented with an entity-relation
diagram. This kind of representation is not rich enough; in

particular, it does not capture some of the conceptual (e.g.,
aggregation, dependence, hierarchy) and dynamical aspects of
access control.

Secondly, the translation of the security policy to access
control mechanisms is not treated in OrBAC. It seems
necessary to describe the architecture and the implementation
(e.g., credential’s generation).

Thirdly, the multiplicity used in the OrBAC relationships
(Fig. 1, 2, 3) is incorrect. In Fig. 2, for example, the 0,n
multiplicity at the object side means that some views can be
empty (no object is belonging to the view); the 0,n multiplicity
at the view side means that some objects do not belong to any
view; and the 0,n multiplicity at the organization side means
that some organizations do not contain any object.

Fourthly, OrBAC is not adapted to heterogeneous,
distributed and interoperable systems. Let us examine the
following questions:

- is OrBAC able to represent security rules that involve
several organizations? In particular, is it possible to
grant or deny access to users belonging to other
external organizations?

- in a particular organization, it is possible to have
several views with heterogeneous implementations?

Concerning the first question, as security rules have the
Permission(org; r; v; a, ¢) form, it is not possible to represent
rules that involve several organizations. Indeed, a single
organization is specified in each rule. OrBAC is only adapted
to centralized structures.

Concerning the second question, as the actions depend only
on the organizations and the activities (Fig. 3), and do not take
the “view” into account, it is not possible to have objects on
which we can carry out different actions. In fact, if we assume
that an organization has the views medical record, financial
records and printers, the action that we can carry out on the
three views must be the same; this restriction implies that all
the objects of a particular organization have the same format!

To overcome these limits, we extend OrBAC. We first
describe the main concepts of Multi-OrBAC. Then, in Section
5, we suggest a Multi-OrBAC formal model. In Section 6, we
derive a Multi-OrBAC driven architecture, as well as a case
study and we describe our implementation.

IV. MULTI-ORBAC

A. Role in organization

In some cases, even if a user is allowed to play several roles,
it does not necessarily have the right to play them in any
organization. For example, David may be authorized to play
the “interventional radiologist at hospital,” and “radiologist at
hospital,” roles, but he may not be allowed to play the
interventional radiologist at hospital,, nor the radiologist at
hospital,.

As it is not sufficient to associate users to roles, Multi-
OrBAC adds the new “Role in Organization” (RiO) entity, and
associates subjects to RiO (Fig. 4). Obviously, a particular

user can play several roles in the same organization.

1 1
rte |

L.n .

R O
GetldOrg()
P'L Getld_Role()
l.n 1.n

Fig. 4: Role in Organization.

The RiO has the characteristics of a class and an
association; it is modelled by a class-association. This means
that when an instance of a role is associated with an instance of
an organization, there will also be an instance of a RiO.

A RiO is composed of one (and only one) role and one (and
only one) organization; a role (or organization) can participate
to one or several RiO; a subject can play one or several RiO;
and conversely, one or several subjects can play a RiO.

B. View in organization

As views characterize the way objects are used in
organizations, the class-association “View in Organization”
(ViO) is thus introduced (Fig. 5). With ViO, it is possible to
express that different organizations could implement the same
view; for example, if hospital, uses XML files and if hospital,
uses a database system, the medical record view corresponds
to XML files in hospital,, whereas in hospital,, it corresponds
to a table.

A ViO contains at least one object, and each object belongs
to one or several ViO.

v R |
[view }——{organizaton

1.n

Vi O

Object Belong 10| GetldOrg()
Ln Ln

GetldView()

Fig. 5: View in Organization.

C. Activity in organization

Different organizations may decide that the same action
corresponds to distinct activities, and similarly, the same
activity could be implemented differently in accordance to
organizations (Fig. 6). For example, the consulting activity
corresponds, in Orgy, to an open-Xml-File() action whereas it
corresponds to select action in Orgp.

L.

| Ao |
‘ o Lo
Vi O

Fig. 6: Activity in Organization.

D. Context in Organization

Several definitions were given to the security context. The
first one was “a software that adapts according to its location
of use, the collection of nearby people and objects, as well as
the changes to those objects over time” [13]. Covington et al.
[14] expands the RBAC model by incorporating environment
roles to capture environmental attributes; Bertino et al. [15]
have examined temporal authorization in databases; etc.
OrBAC states that the context should be taken into account;
however, it does not give more details. In Multi-OrBAC we
define the context as “any constraint or information (location,
time, physical or computational object, etc.) that helps to
specify the concrete circumstances of the access request”. This
definition is a little similar to the XACML context definition
(in XACML, the context is an attribute of a resource, an object
or an action).

In this work, we suggest proceeding in two steps:

Firstly, the context is specified by first-order or temporal
predicates that identify the conditions when this context is true
or not. For example:

- The context “Local Access” is true if and only if
“{@_Request in 192.192.1.* 0O @ Request =
126.15.1.3}.

- The context “Night Access” is true if and only if
{time_request U [6h pm, 7h am]}.

- The context “Attending Physician(o, s)” is true
between subject s and object o, if and only if Name(o)
0 Patient (s).

Secondly, in order to provide a fine-grained access control,
the context should figure in each rule; e.g., without using
contexts, we can state that “physicians can access medical
records”; however if we use the context, this security rule can
be converted to “physicians can access medical records only if
the context Attending Physician is true”.

In Multi-OrBAC, the “Context in Organization” (CiO) can
be defined as a class association.

E. Security rules

Two levels can be distinguished in Multi-OrBAC: abstract
and concrete levels (Fig. 7).

Abstract level: the security administrator defines security
rules through abstract entities without worrying about how
each organization implements these entities. A security rule is
specified as follows: Permission (RiO, AiO, ViO, CiO).
Recommendations, prohibitions and obligations are defined
similarly.

Concrete level: when a user u;, requests an access, the
concerned rules are instantiated, the parameters are evaluated
and concrete authorizations are granted (or not) to u;.

Basically, it is sufficient to express security rules in the
Permission (RiO, AiO, view, context) form, because the
organization of the view, the activity and the context are
similar. Thus, a security rule could be Permission(Physician-
in- Org,, Reading-in- Orgp, MedicalRecord, disaster); this
means: Org,’s physicians are allowed to consult (in Orgg)
Orgp’s medical records in case of a disaster (in Orgg).

‘ :Security Rule
Permission: Boolean
prohibition: Boolean
Obligation: Boolean
Recommandation: Boolean

A N

A

)i
Pierre:
Subject

lay Belong_to
Read:

Action

Correspond_to

File2.xml:
View

Is_permitted:
Access Modalit:

Disaster:
Context

Fig. 7: Instantiating security rules in Multi-OrBAC

Fig. 8 presents the Multi-OrBAC model.

In this UML class diagram, each organization can be seen as
a composition of several roles, activities and views on this
organization (RiO, AiO and ViO). Furthermore, each
organisation can contain several sub-organizations.

For more expressiveness and less complexity, we introduce
role hierarchy: a role not only has its assigned permissions but
also all the permissions of its sub-roles; likewise, the
permissions defined for an organization are spread to its sub-
organizations. The inheritance mechanism will be presented in
Section 5.3.

RoleHierarchy

Besides, subjects, activities and views have recursive
structures. Let us take the example of the Subject entity: a user
is a subject; a group of users (e.g., a team) is a subject; and a
group is a set of subjects; e.g., the subject “employees of
Org;” can contain Team;, Team, and the supervisor Bob.

In the same way, an atomic activity is an activity, a
composite activity is an activity, and an activity can contain
one or several atomic activities and/or one or several
composite activities.

Finally, it is important to remind that, unlike OrBAC that
consider a central organization, Multi-OrBAC concerns large-
scale, decentralized systems. Hence, each organization can
define its own rules (for its own users and sub-organizations),
but it also can negotiate foreign access with other
organizations. Multi-OrBAC can thus be seen as a
homogenous federation of several OrBAC’s instantiations. The
following hypothesis should be taken into account:
organizations associate users to RiO, objects to ViO
and actions to AiO; in this way, each organization has
some functioning flexibility (e.g., its own services, file
system, ...) and can differently implement and
instantiate views, activities and contexts;

a prior mutual negotiation of rules that imply several
organizations.

OrganizationRecursivity

‘

ViewComposition

Role

RiO
Get_IdOrg()
tGet_IdRole()

* SubjectAssignment *
| Sub;'ect I

ﬁ l.n
0..

Atomic_Activity

d
| Composite_Activity |

e

Security Rule
Permission: Boolean
Interdiction: Boolean
Obligation: Boolean
Recommendation: Boolean

I\A Activit

ctivity
/I<T__I
/

Or,

. . *
ganization
' b 1

Vio
Get_IdOrg()
Get_IdView()

AiO
Get_IdOrg()
Get_IdAct()

SEE—

1

*

-

* *

Fig. 8: The Multi-OrBAC model (UML class diagram).

V.MULTI-ORBAC FORMAL SYSTEM

A. The language choice

In this section, we suggest a model that is able to formally
express Multi-OrBAC security policies, as well as operational
rules, but also to manipulate the specification by using logical
proofs, e.g, to:

- detect and resolve conflicting rules,

- derive permissions (e.g., by inheritance) and query a
given security policy

- verify that properties (e.g., consistency
completeness) are enforced by the policy,

- verify that a given state (i.e., a situation) does not
violate the security policy,

- investigate interoperability problems between several
security policies, etc.

To deal with this kind of issues, we suggest using Logical
Programming by Constraint (LPC). LPC is an extension of
Logical Programming (LP) [18, 19].

LP is a programming paradigm based on a sub-set of the
first-order logic, while LPC is particularly useful for detecting
and resolving conflicts.

PL has several features that can be interesting for this study:
its declarative presentation clarifies the description of the
studied problem; its power (by using unification and resolution
process) allows to easily infer the solution from the problem
description; its flexibility makes it possible to use the same
procedure to solve different problems (by changing the
parameters of the procedure).

We used The Prolog language in our implementation of the
conflicting detection and resolution engine. The latter is based
on PL: it allows a declarative presentation of the problem and
provides a resolution mechanism. Basically, a Prolog program
is a set of clauses; a clause is an affirmation about logical
atoms; an atom represents a relationship between terms; and
terms are objects of the system [20].

and

B. Specification of a Multi-OrBAC policy

First, we define axioms related to permissions, obligations
and recommendations. For example: Obligation(RiO;, AiO,, V,
() - Recommendation(RiO;, AiO,, V, C) “every obligation is
a recommendation”; and Recommendation(RiO;, AiO,, V, C)
— Permission(RiO;, AiO,, V, C). These axioms will be useful
in the conflict resolution process.

Secondly, the relationships of the Multi-OrBAC model (Fig.
7 and 8) are transformed into logical predicates. Indeed, we
define predicates such as sub_role(Role_junior, Role senior),
Play(subject, RiO), etc. An instance of the first predicate could
be sub_role(surgeon, physician) “a surgeon is_a physician”,
while an instance of the second predicate could be Play(David,
Physician in Org,) “David plays the RiO Physician in Org,”.

Thirdly, to derive permissions, we can use axioms of first
order classical logic, but also axioms specific to Multi-
OrBAC. For example, the derivation of permissions (described

in Fig. 7 and 8) can be formally expressed as follows (Fig. 9):

Permission(RiO,, AiO,, V, C) O
Play (s, RiO;) U
Correspond_to(o, ViO,) U
Belong to (a,4i0;) O
Is_true(CiO,)

- Is_permitted (s, , o).

Fig. 9: A Multi-OrBAC security rule.

An instance of this axiom could be
Permission(Physician-in-Orgy,

Reading-in-Orgg, MedicalRecord, disaster) [

Play(Bob, Physician-in-Org,) [

Correspond_to(f;.xml, MedicalRecord-in-Orgg) U

Belong to (Read-xml(), Reading-in-Orgp) U

Is_true(disaster-in-Orgg)

— Is_permitted (Bob, Read-Xml-File(), fi.xml).

Basically, this axiom contains three elements:

- (The_security rule) if within the context disaster-in-
Orgg, Physician-in- Org, has the permission to perform
Reading-in-Orgg on MedicalRecord-in-Orgg,

- (The_conditions) if David plays Physician-in-Orgy, if
fi.xml corresponds to MedicalRecord-in-Orgp, if Read-
XML-file() belongs to the Reading-in-Orgy AiO and if
the context disaster-in-Orgp is true,

- (The_effect) then David has permission to carry out
Read-XML-file() on fi.xml.

C. Inheritance rules specification

This section describes how we derive permissions by
inheritance. Indeed, to minimize the complexity of the security
policy, we consider inheritance relationships on roles,
organizations, and activities. Let us present a few examples:

1. Role hierarchy: the security rule is as follows:
Permission(Role,,,-in-Org,, AiO, V, C) O
sub_role(Rolej o, ROlesep;o)

— Permission(Role;,,,,-in-Org,, AiO, V, C).

For instance,
Permission(Physician-in-Org,, AiO, V, C) O
sub_role(Surgeon, Physician).

— Permission(Surgeon-in-Orgy,, AiO, V, C).

If a subject plays Surgeon-in-Org,, it has the permissions
associated to Surgeon-in-Org, but also the permissions
assigned to Physician-in-Org,.

2. We can also take advantage of the organization’s
composition. For example, the rule
Permission(Role-in-Org,, AiO, V, C) U
sub_organization(Org,, Org;)
— Permission (Role in Org,, AiO, V, C).

Basically, if some permissions are granted to the
“physicians at hospital,” RiO then we can infer that these
permissions are granted to the physicians of all the sub-
organizations of hospital,;, e.g., the radiology department and
the emergency department of the hospital; (in this example,
Role=physician, Org;=" hospital,” and Org,= “Radiology
department, ...).

3. Intuitively, we can also assume that if a role has
permissions on objects of an organization Org;, then he has
these permissions on objects of the sub-organizations of Org;.
For example

Permission(Physician-in- Org,,
Reading-in- Orgg, MedicalRecord, disaster) [
sub_organization(Department;, Orgp)
— Permission(Physician-in-Org,, Reading-in-
Department,;, MedicalRecord, disaster).
The inheritance rule is thus:
Permission(RiO, Activity in Orggeior, View in OrZgenior,
Context in Orgge,ior) U
sub_role(Orgjuiors, Oryenior)
— Permission(RiO, Activity in Orgjumior,
View in Orgjupior, Context in Orgjuior).-

D. Conflicting resolution

Several definitions of the “policy conflict” have been given.
The RFC3198 [21] states that a policy conflict Occurs when
the actions of two rules contradict each other. Moffett [22]
and Lupu [23] categorise conflicts into modality conflicts
(contradiction between types of rules) and application-specific
conflicts (due to model-specific inconsistencies or limitations).
Strembeck has studied the problem of “conflict detection” in
RBAC [24], Bertino et al. in databases [25], etc.

In this paper, we only deal with modality conflicts. In fact,
we consider a conflicting situation when a user simultaneously
has the:

- prohibition and the obligation to carry out the same
action on a specific object, or

- prohibition and the permission to carry out the same
action on a specific object, or

- prohibition and the recommendation to execute the
same action on a specific object

Such a situation is possible as, at a given time, we could
have several rules (permissions, prohibitions, obligations,
recommendations) for the same (RiO, AiO, v, c¢). The conflict
can occur:

- between existing security rules;

- between existing rules and a temporary intervention of
the administrator, e.g., to add or modify a rule or an
entity;

- between existing rules and a rule resulting from the
application of the inheritance mechanism (spreading by
inheritance).

To prevent conflicting situations, we should first verify the
coherence of the security policy (off-line verification). In other

words, we need to verify that the system is in a secure state.
We should also make sure that every intervention of the
security administrator keeps the system in a secure state
(online verification).

In this paper, we suggest using Logical Programming by
Constraints (LPC). LPC is a combination of the /logical
deduction process and a set of constraint resolving algorithms
[17,18].

Basically, we affect priorities (an integer) to each security
rule, e.g., Permission(RiO;, AiO,, V, C, P): in the context c,
RiOhas the permission to perform 4i0, on ViO, with the “P”
priority.

The access decision is deduced according to axiom of Fig.
10 (that replaces Fig. 9).

Permission(RiO;, AiO,, V, C, Priority)
Play (s, RiO;) O
Correspond_to(o, ViO,) U
Belong to (a,4i0,) O
Is_true(CiO,)
- Is permitted (s, a, o, Priority).

Fig. 10: Multi-OrBAC security axiom with priorities.

As for a particular (RiO;, 4iO,, V, C) we can have different
security rules (permissions, interdictions, ...) with different
priorities, it is possible to have conflicting decisions (with
different priorities) for the same (s, o, a). To resolve these
situations, we first assume that the system is in a secure state.
Every intervention (e.g. to add a rule) of the administrator
activates the following actions:

1. The new rule (e.g. Permission(RiO; ViO, A, C,

Priority,)) is first kept in a temporary base;

2. The authorization server invokes the process that
extracts the relevant rules; this is achieved by
extracting the rules that have the same attributes RiO,,
ViO,, A, C, for example Interdiction(RiO,, ViO,, 4, C,
Priority)

3. If a conflict is detected (e.g., a permission and a
prohibition), the system identifies, extracts and
displays the rules responsible for this situation;

4. Foran (s, a, 0), we consider (among all the is_permited
(s, a, o, P)), the one that has the greatest priority. We
do the same for all the is prohibited(s, a, o, P),
is_recommanded (s,a, o, P) and is, _obliged(s, a, o, P).
Then, among these four predicates (decisions), we
recuperate the one that has the greatest priority. If there
is equality, we consider that is prohibited is more

critical than is obliged, more critical than
is_recommanded, more critical than is_permited.
5. The system suggests relaxations (corrections,

alternatives) by inviting the user to accept the decision
calculated in the previous step, or to reformulate or to
change the priority of one or several rules involved in
the conflict.

6. The system takes into account these corrections, re-
checks the coherence of the security policy and —if the

problem is solved— saves the new rule in the base that
contain the security rules.
Fig. 11 gives examples of rules implemented with the
Prolog language).

/% Examples of rules describing the system*/
org(hospital).
user(jean).

/% Examples of general relationships */
subject(X):-org(X).
subject(X):-person(X)

/* Examples of rules Multi-OrBAC relationships*/
Play(David, Physician-in-Org,).

Consulting Physician(Jean,David).
age(Jean,2).

/* Examples of inheritance rules */
Play_inheritance(A,X-in-Z) :- sub_role(Y,Z),Play(A,X-in-Y)
Play_inheritance(A,X-in-Y) :- sub_org(B,A),Play(B,X,Y).
/* Adding an entity or a predicate */
Add(org(A)) :- \+torg(A),asserta(org(A)),!.
Add(org(A)) :-
org(A),nl,write('No:"),nl,write('org("),write(A),write(')"),tab(1),write('a
Iready'),tab(1),write('exist.").

Fig. 11: Examples from our implementation.

VI. ACASESTUDY

In the last sections, we have identified the static, conceptual
as well as the logical aspects of the Multi-OrBAC model. In
this section, we give the dynamic and architectural views. In
particular, we explain the authorization’s steps and we derive a
secure architecture based on Multi-OrBAC security policy.
Fig. 12 presents the scenario that we have implemented using

the Java language.
: Authorization : RM of the invoked
Server (AS) object

Sending request with
parameters and
context values

- User

: Reference monitor (RM)
of the user host

Extract the
concerned security
rules

with parameters

valuate rules with
parameters

——— Resolution of
<— conflicting
rules
<~ Generate
authorization
: proofs
Proofs signature

Sending signed proofs

Sending object to invok Verification of the AS signature

Method invocation
Sending encrypted and signed proofs

Signature verification (with the remote RM public key)

Proofs decryption (with its private key))

P—|

OK or not OK

Permission or forbidden LJ

I

Fig. 12: the authorization phase description.

In this UML sequence diagram, we identify two basic
components:

- The authorization server (AS): consults the security
policy, extracts the relevant security rules, evaluates
these rules with the current access parameters, invokes
the conflict resolution process (cf. section 5.4), and
generates the corresponding credentials.

- The reference monitor (RM, initially introduced in the
Orange Book [27]): checks the authentication
parameters and verifies whether each access request is
accompanied by a valid authorization proof (e.g., a
credential delivered by the authorization server).

When starting the application, the user chooses the RiO that
he wants to play (e.g., radiologist in Org,). Once authenticated
(by the RM), he sends to the AS a request that contains
parameters such as his RiO and the organization he wants to
communicate with (suppose that this organization is Orggu).
The AS interrogates the database that contains the security
rules. Actually, the table “policy” has the following scheme
“Access_Modality; RiO; AiO; View, Context”. A security rule
could thus be (Permission, Physician-in-Org,, Reading-in-
Orgp, MedicalRecord, disaster). Afterwards, the AS:

- Generates a ticket; the latter is a collection of
permissions, e.g., {R 0y, (Permission, AgOrgqe,
view., context;); (Permission, AgiOrgues, Vviewy,
context,)}; this ticket is deduced from the two rules
{Permission, (R,iOp, AgdOrgu., View., context);
Permission, (R0, AgiOrges,, view,, context,)}.

- Encrypts it with the public key of the RM of Orgg. (so
that only the allowed addressee “i.e., the organization
possessing the object” can decrypt the message with his
private key), and

- Signs it with its private key (to prove that the ticket has
been delivered by the AS).

When the user receives the ticket, he sends it to Orgg,. The
RM of Orgu, verifies the AS signature, decrypts the ticket,
and allows or forbids access. If the user wants to access
objects belonging to other organizations, he asks the AS for
other tickets.

Fig. 13 describes the global architecture while Fig. 14
presents the UML deployment diagram. The latter gives more
details about the physical components: files, databases,
interfaces, etc.

Basically, we have used a simplified architecture with two
hospitals Org; and Org, (Fig. 13).

Org, uses a database system while Org, uses XML files.
The global security policy is contained in an XML database
and consulted by an AS. Remember that this policy contains
Org, specific rules, Org, specific rules and coalition rules that
ware negotiated between Org; and Org,. The coalition rules
could essentially concern the resources to share, e.g.,
emergency data (of Org,’s patients) that could be consulted by
Org,’s clinicians in case of disaster, strike, etc.

The next section compares Multi-OrBAC with other
important works. We first take an interest in Role-Based Trust
Management (RBTM), and then we implement Multi-OrBAC
using XACML.

Authorization
server org2
e d
< XML

Security
rules

RM

RM, RM, RM,

Fig. 13: System architecture.

: Authorization Server

: Data base

+ Organization

|
P A— !
\
: Orgl Server | M
\
: Data base 4 : XML files
Authorization —
[: Administrative proofs L. XML 4R
L7 records (4R verification |\ =
. Muthentication L . XML MedRec
[:Medical records - Cliont n =
3 (MedRec) e Y
:Reference Monitor
y - —@/ Update
e e il Comtaion

Fig. 14: The deployment diagram.

VII. DISCUSSION

A. Multi-ORBAC vs RBTM

Even if our implementation concerns a simplified scenario,
we can imagine other applications where Multi-ORBAC could
be useful. Globally, Multi-OrBAC is adapted to multicentric
collaboration systems. In these systems users belonging to an
organization need to access resources controlled by other
organizations. For example, organizations participating to a
particular project could grant access to their resources to users
belonging to other organizations participating in the project,
according to their roles.

Works on RBTM (Role-Based Trust Management, [2] has
modelled this type of scenario by using role delegations and
role-mapping across multiple collaborating organizations.
Typically, each organization can delegate local roles to users
belonging to other organizations. However, neither the role-
mapping nor the delegation process is intuitive in
heterogeneous and dynamic systems. Moreover, RBTM only
abstract subject (by roles), while Multi-OrBAC expresses the
whole security policy with abstract entities only. In this way,
unlike RBTM, Multi-OrBAC: completely separates the
representation of the security policy from its implementation;
provides a global and homogeneous view of the security
policy; improves the management of the security policy and
reduce considerably its complexity.

B. Multi-ORBAC vs XACML

Multi-OrBAC could be integrated perfectly into a XACML
architecture (Fig. 15) [28, 29], as the RM (Fig. 12) is quite
similar to the Policy Enforcement Point (PEP), and the AS
plays the roles of Policy Decision Point (PDP) and Policy
Access Point (PAP). In this architecture, an access request
arrives at the PEP with the parameters (RiO, AiOrgg, V, C).
The PEP creates an XACML request and sends it to the Policy
Decision Point (PDP), which evaluates the request and sends
back a response. The response can be either access permitted

or denied, with the appropriate obligations or
recommendations.
1. Access Request
- PEP o+ [— 8 Obiligations—-| Obligati i
Policy Enforcement Point gations igation service

2 Request 7. Response

- 4. Attribute query - PIP

PDP
Paolicy Decision Point Paolicy Information Paint

=— §. Attribute ——

5a. Subject | 5c. Environment
attributes attributes

3. Policy 5b. Resource
attributes
PAP .)
Policy Access Peint Subject Resource Environment

Fig. 15: The XACML Architecture.

The PDP arrives at a decision after evaluating the relevant
policies (i.e., the policies concerning RiO, AiOrg e, ViOrZes:)
and the rules within them.

To get the policies, the PDP uses the PAP to extract the
security rules (e.g., Permission(RiO, ViO, A, C)). The PDP
may also invoke the Policy Information Point (PIP) service to
retrieve the attribute values related to the subject, the resource,
or the environment (the context). This corresponds to evaluate
the associations Belong to (a,AiQO,), Correspond_to(o, ViOy,),
Is_true(CiO,), etc.

The authorization decision arrived at by the PDP is sent to
the PEP. The PEP:

- fulfils the obligations and/or inform the subject about
the recommendations, and,

- based on the authorization decision sent by PDP, either
permits or denies access.

Fig. 16 describes the components of a Multi-OrBAC
implementation based on XACML. The differences from a
traditional XACML implementation are:

- In some cases, the PDP can associate recommendations

to its decision.

- The conditions have the form Play (s, RiO;) 0O
Correspond_to(o, ViO,) 0O Belong to (a,4iO;) [
Is_true(CiO,);

- The rules combining algorithms combine the effects of
all the rules in a policy to arrive at a final authorization
decision. XACML defines the following algorithms:
deny-overrides, permit-overrides, ordered-permit-
overrides and first-applicable. In our implementation,
we add the algorithms defined in Sections 5.3 and 5.4.

- A target' contains the instances of the triplet (RiO, A4iO,
ViO).

Obligations and/or

Multi-OrBAC Policy recommendations

Rules-combining algorithm
(conflicting resolution and
inheritance deduction

processes)
Conditions, e.g., -
Play (s, RiO,) O Multi-OrBAC Rule Effect, e.g.,
y e.g., Permission(RiO,, ,
Correspond_to(o, ViO,) 0 —— AO. ViO2. . CiO2 Is_permitted
Belong_to (a,AiO,) O 2 Priorii ’) ’ (s, a,0)
Is_true(CiO,)) Y

Fig. 16: The components of a Multi-OrBAC implementation based on
XACML.

VIII.CONCLUSIONS AND PERSPECTIVES

Multi-OrBAC is an extension of OrBAC that enables a
better access control for collaborative organizations in
distributed and heterogeneous contexts. In Multi-OrBAC,
security rules are specified only through abstract entities. It
can thus improves the management of the security policy and
reduce considerably its complexity. Moreover, Multi-OrBAC
is well-adapted to multicentric collaboration systems where
external users access to shared resources.

A logical model (based on a Logical Programming by
Constraints) was associated to Multi-OrBAC. The latter is used
to specify the policy, derive permissions, detect and solve
conflicting situations.

Besides, the Multi-OrBAC UML modelling helps to
overcome the lack of expressiveness of OrBAC: Multi-OrBAC
takes advantage of object-oriented facilities such as
aggregation, inheritance, composition, etc. Moreover, the
UML modelling of the authorization and deployment steps was
very useful for deriving a Multi-OrBAC driven architecture.

We have used Java to implement the interfaces as well as
the authentication and authorization steps, while the
administration and conflicting detection (and resolution) steps
were delegated to an engine based on the Prolog language.

Finally, we have shown how Multi-OrBAC could be
incorporated in a XACML implementation.

Now, we are looking for other issues such as:

- Implementing a Multi-OrBAC security policy in a real
large-scale system and calculating its complexity;

! A target helps in determining whether the policy is to be evaluated for the
current access request.

- automatically converting the UML conception into a
logical (i.e., formal) one;

- defining an administration model associated to Multi-
OrBAC; and finally,

- studying the federation process. Fig. 17 addresses a
global view of the most relevant steps to perform.

‘ Translation to Multi-OrBAC rules : Permission (RiO, AiO, ViO, CiO) ‘ """ T
Business
. . . model at
‘ Federation / Negotiation of rules between organizations ‘ the
federation
. . - . - ’s level
‘ Play(user, RiO) H Belong_to(action, AiO) H Correspond_to(view, ViO) ‘
Business
model at
Implementation in each organization the
organizat
[sers | [actions | [views | [contens |
Users actions Views contexts level

Fig. 17: The federation scheme.

AKNOWLEDGMENT

This work is partially supported by the French SATIN ACI
and by the European project CRUTIAL.

REFERENCES

[1] Common Criteria for Information Technology Security
Evaluation, v3, Part 1: Introduction and general model,
79 p., ISO/IEC 15408-1, July 2005.

[2] A. Abou El Kalam, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, C. Saurel, “OrBAC”, IEEE 4" International
Workshop on Policies for Distributed Systems and
Networks, Como, Italy, 4-6 June 20, IEEE Comp Society
Press, pp. 120-131.

[3] N. Li, J.C. Mitchell, W.H. Winsborough, Design of A
Role-based Trust-management Framework, [EEE
Symposium on Security and Privacy, pp. 114-130. IEEE
Computer Society Press, May 2002.

[4] G. Booch, J. Rumbaugh and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, ISBN
0-201-57168-4, USA, 1999.

[5] D.E. Bell, L.J. LaPadula, Secure Computer Systems, MTR
2997, MITRE corp., USA, 1976.

[6] M.A. Harrison, W.L. Ruzzo and J.D. Ullman, “Protection
in Operating Systems”, Communication of the ACM,
19(8), pp. 461-471, august 1976.

[7] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. Role-based access control models. [EEE
Computer, 29(2) :38-47, 1996.
[8] D. Ferraiolo, R. Sandhu, S. Gavrila, D.Kuhn, R.

Chandramouli “A Proposed Standard for Role-Based
Access Control”, ACM Transactions on Information and
System Security, v 4,1n° 3, 2001.

[9] R.S. Sandhu, “Role Hierarchies and Constraints for
Lattice-Bases Access Controls”, in 4th FEuropean
Symposium on Research in Computer Security, Rome,

Italy, September 25-27, pp. 65-79, ISBN 3-540-61770-1,
Springer-Verlag, 1996.

[10]G. Ahn and R. Sandhu, “Role-Based Authorization
Constraints ~ Specification”, ACM Transactions on
Information and System Security, vol. 3, n° 4, November
2000, pp. 207-226.

[11]7J. Vitek, C. Jensen A View-Based Access Control Model
for CORBA, Secure Internet Programming, LNCS 1603,
Springer 1999.

[12]R. Thomas and R. Sandhu. Task-based Authorization
Controls (TBAC), 11" IFIP Working Conference on
Database Security, Lake Tahoe, California, USA, 1997.

[13]B.N Schilit, M. Theimer, Disseminating Active Map
Information to Mobile Hosts. IEEE Network, 8(5), 94, p.
22-32.

[14]M. Covington, W. Long, S. Srinivasan, A.K. Dey, M.
Ahamad, G.D. Abowd, “Securing Context-Aware
Applications Using Environment Roles”, ACM
Symposium on Access Control Models and Technologies,
Chantilly, USA. May 3-4, 2001.

[15]E. Bertino, C. Bettini, E. Ferrari, P. Samarati, “A
Temporal access control mechanism for database
systems”, [EEE Transactions on Knowledge and Data
Engineering, V8, 1996.

[16]).B. Warmer and A. Kleppe, The Object Constraint
Language, Addison-Wesley, ISBN 321179366, USA,
2003.

[17]Jaffar and J.L. Lassez, “Constraint Logic Programming”,
Communication of the ACM, vol. 33, N° 7, pp. 52 — 68,
July1990.

[18]P.V. Hentrayck, “Constraint Satisfaction in Logic
Programming”, MIT Press 1989.
[19]R. Kowalski, “Predicate Logic as Programming

Language”, in Proc. IFIP Congress, 569-574 pp., North
Holland, Amsterdam, 1974.

[20] A. Colmerauer, “An introduction to Prolog III”’, Comm.
of the ACM, v. 33, N° 7 pp. 70-90, 90.

[21]1fc3198, Terminology for Policy-Based Management,
November 2001, available at:
http://www.faqs.org/rfcs/rfc3198.html

[22]]. D. Moffett and M. S. Sloman, "Policy Conflict Analysis
in Distributed System Management," Organizational
Computing, 1993.

[23]E. C. Lupu and M. Sloman, "Conflicts in policy-based
distributed systems management" Soft. Eng., vol. 25,
1999.

[24]M. Strembeck, “Conflict Checking of Separation of Duty
Constraints in RBAC” Conference on Software
Engineering, 17-19 february 2004, Innsbruck, Austria.

[25]E. Bertino, S. Jajodia et P. Samarati, “Supporting Multiple
Access Control Policies in Database Systems” [EEE
Symp. on Security and Privacy, Oakland, 1996.

[26]Y. Deswarte, N. Abghour, V. Nicomette, D.Powell, “An
Intrusion-Tolerant Authorization Scheme for Internet
Applications”, Workshop on Intrusion Tolerant Systems,
Washington (USA), 23-26 june 2002, pp. C1.1-C1.6.

[271TCSEC, Trusted Computer System Evaluation Criteria,
122 pp., Department of Defense (DoD), DoD Standard,
DoD 5200.28-STD, 1985.

[28] A; Matheus. "How to Declare Access Control Policies for
XML Structured Information Objects using OASIS" kicss,
v.7, no.7, pp. 168a, 2005.

[29]1OASIS, XACML Specification V1.1, OASIS: www.oasis-
open.org/committees/xacml/repository/cs-xacml-
specification-1.1.pdf, 24 July 2003.

