
C-1-1

An Intrusion-Tolerant Authorization Scheme for Internet Applications

Yves Deswarte, Noreddine Abghour, Vincent Nicomette, David Powell
LAAS-CNRS

7, Avenue du Colonel Roche
31077 Toulouse cedex 4 — France

{Yves.Deswarte, Noreddine.Abghour, Vincent.Nicomette, David.PowelL}@laas.fr

Abstract

This paper presents an authorization scheme for
applications distributed on the Internet with two levels of
access control: a global level, implemented through a fault-
and intrusion-tolerant authorization server, and a local level
implemented as a reference monitor located on both the local
host Java Virtual Machine (JVM) and on a Java Card
connected to this host.

1. Introduction

Today, most Internet applications are based on the client-
server model. In this model, typically, the server distrusts
clients, and grants each client access rights according to the
client’s identity. This enables the server to record a lot of
personal information about clients: identity, usual IP address,
postal address, credit card number, purchase habits, etc. Such a
model is thus necessarily privacy intrusive.

Moreover, the client-server model is not rich enough to
cope with complex transactions involving more than two
participants. For example, an electronic commerce transaction
requires usually the cooperation of a customer, a merchant, a
credit card company, a bank, a delivery company, etc. Each of
these participants has different interests, and thus distrusts the
other participants.

Within the MAFTIA1 project, we are developing
authorization schemes that can grant fair rights to each
participant, while distributing to each one only the information
strictly needed to execute its own task, i.e., a proof that the task

1 MAFTIA (Malicious- and Accidental-Fault Tolerance for Internet

Applications) is a project of the European IST Program (project IST-1999-
11583). MAFTIA partners are the University of Newcastle upon Tyne
(GB), prime contractor, DSTL (GB), IBM Zurich Research Lab. (CH),
LAAS-CNRS (F), QinetiQ (GB), University of Lisbon (P) and University
of Saarland (D). See <http://www.maftia.org/>.

has to be executed and the parameters needed for this
execution, without unnecessary information such as participant
identities. These schemes are based on two levels of
protection:
• An authorization server is in charge of granting or denying

rights for composite operations involving several
participants; if a composite operation is authorized, the
authorization server distributes capabilities for all the
elementary operations that are needed to carry it out.

• On each participating host, a reference monitor is
responsible for fine-grain authorization, i.e., for controlling
the access to all local resources and objects according to the
capabilities that accompany each request. To enforce hack-
proofing of such reference monitors on off-the-shelf
computers connected to the Internet, critical parts of the
reference monitor are implemented within a Java Card.
In the following sections, the general authorization

architecture and the reference monitor are described, and
finally, our approach is compared to related work.

2. General authorization architecture

In [1], we proposed a generic authorization scheme for
distributed object systems. In this scheme, an application can
be viewed at two levels of abstraction: composite operations
and method executions. A composite operation corresponds to
the coordinated execution of several object methods towards a
common goal. For instance, printing file F3 on printer P4 is a
composite operation involving the execution of a printfile
method of the spooler object attached to P4, which itself has to
request the execution of the readfile method of the file server
object managing F3, etc.

A request to run a composite operation is authorized or
denied by an authorization server, according to symbolic rights
stored in an access control matrix managed by the
authorization server. More details on how the authorization
server checks if a composite operation is to be granted or

C-1-2

denied are given in [2] and [3]. If the request is authorized,
capabilities are created by the authorization server for all the
method executions needed to perform the composite operation.
These capabilities are simple method capabilities if they are
used directly by the object requesting the execution of the
composite operation, i.e., used by this object to directly call
another object’s methods. Alternatively, the capabilities may
be indirect capabilities or vouchers, if they cannot be used by
the calling object but must be delegated to another object that
will invoke other object methods to participate in the
composite operation. In fact, the notion of composite operation
is recursive, and a voucher can contain either a method
capability or the right to execute a composite operation.

This delegation scheme is more flexible than the usual
“proxy” scheme, by which an object transmits to another
object some of its access rights for this delegated object to
execute operations on behalf of the delegating object. Our
scheme is also closer to the “least privilege principle”, since it
helps to reduce the privilege needed to perform delegated
operations. For instance, if an object O is authorized to print a
file, it has to delegate a read-right to the spooler object, for the
latter to be able to read the file to be printed. To delegate this
read-right, with the proxy scheme, O must possess this read-
right; and thus O could misuse this right by making copies of
the file and distributing them. In this case, the read-right is a

privilege much higher than a simple print-right. In our scheme,
if O is authorized to print a file, O will receive a voucher for
the spooler to read the file, and a capability to call the spooler.
The voucher, by itself, cannot be used by O. With the
capability, O can invoke the spooler and transmit the voucher
to the spooler. The spooler can then use the voucher as a
capability to read the file.

Since only composite operations are managed by the
authorization server, the system security is relatively easy to
manage: the users and the security administrators have just to
assign the rights to execute composite operations, they do not
have to consider all the elementary rights to invoke object
methods. Moreover, since only one request has to be checked
for each composite operation, the communication overhead
can be reduced.

The authorization server is a trusted third party (TTP),
which could be a single point of failure, both in case of
accidental failure, or in case of successful intrusion (including
by a malicious administrator). To prevent this, with the
MAFTIA authorization architecture [3], the authorization
server will be made fault- and intrusion-tolerant: an
authorization server is made of diverse security sites, operated
by independent persons, so that faults and intrusions can be
tolerated without degrading the service, as long as only few
security sites are affected.

Figure 1. Authorization architecture

u fs2 ps1

Reference
Monitor Java

Card

Reference
Monitor

Reference
Monitor

P4
F3

Security
Site

Security
Site

Security
Site

Authorization Server

C-1-3

Figure 2. Protocol between a MAFTIA object and the authorization server.

In order to tolerate the failure of one or a small number of
the sites composing the authorization server, several protocols
are used:
• Mutual agreement: all non-faulty sites agree on the decision

to grant or deny the authorization corresponding to a given
request. This guarantees a correct decision as long as there is
only a minority of faulty sites2.

• Threshold signature: the capabilities and vouchers are
globally signed by the authorization server, using a threshold
signature scheme. Each of the sites composing the
authorization server generates a signature share (depending
on its own private key share) so that if at least t valid
signature shares are available (t being the threshold), it is
possible to combine these shares to generate a unique
signature that can be verified with a global public key. This
guarantees that if a capability (or a voucher) has a correct
signature, the corresponding operation is indeed authorized
(the signed capability cannot be forged, even by a
cooperation of f faulty sites, as long as f is strictly less than
the threshold t).
All these protocols are developed in other parts of the

MAFTIA project [4, 5].
The global architecture is given by Figure 1. The dialogue

between a MAFTIA object and the authorization server is
typically as follows (see Figure 2.):

Object O asks the authorization server for the authorization
to carry out an operation in the system. This operation may be
the simple invocation of a particular method of a particular
object O’ or may be a “composite operation” that requires the
collaboration between several objects in the system.

2 In practice, the number f of faulty sites may have to be much less than half

the total number n of sites, depending on the fault assumptions. For
instance, (n > 3f) must be guaranteed if Byzantine faults are to be taken
into account.

In the first case, if object O is authorized to carry out the
operation, it receives a capability, ciphered by the public key
of the host where O’ is located, and then signed using the
threshold scheme described above. This capability will be
presented and checked by the reference monitor located on the
site of the invoked object O’.

In the second case, the user may receive several capabilities
and vouchers. Capabilities are directly used by object O to
invoke particular methods of particular objects, and are
ciphered and signed as in the first case. Vouchers are not used
by object O but are forwarded by object O to other objects that
are involved in the execution of the composite operation (e.g.,
a capability for O’ to invoke a method m of an object O”, as a
part of the composite operation). These vouchers will thus be
transferred by object O to other objects, which will then
execute their part of the composite operation thanks to these
vouchers. A voucher may be a capability (in which case they
are ciphered and signed as above), or the right to execute
another composite operation (in which case the voucher is just
signed).

3. Reference monitor

There is a reference monitor on each host participating in a
MAFTIA-compliant application. The reference monitor is
responsible for granting or denying local object method
invocations, according to capabilities and vouchers distributed
by the authorization server. In the context of wide-area
networks (such as the Internet), the implementation of such a
reference monitor is complicated since, due to the
heterogeneity of connected hosts, it would be necessary to
develop one version of the reference monitor for each kind of
host. Moreover, since the hosts are not under the control of a
global authority, there is no way to ensure that each host is
running a genuine reference monitor, or the same version

o Authorization
Server

1. O requests authorization to invoke method m of O’

3. O receives a capability for m of O’

Cap(O, O’.m)

2. The authorization server
 checks if the invocation
 is authorized

a) Simple method
invocation

o Authorization
Server

1. O requests authorization to carry out a composite operation

3. O receives capabilities and vouchers necessary for
 the composite operation execution

2. The authorization server
 checks if the composite
 operation is authorized

b) Composite operation
invocation

Cap(O, O’.m), vouch(co)(O’)…

C-1-4

thereof. This is why we have chosen to implement them by
using Java Cards.

The reference monitor has the responsibility of deciding
whether or not to authorize the invocation of particular
methods on particular objects on the local host by checking
that the corresponding capabilities are presented. These checks
represent the central part of the authorization scheme, and thus
have to be protected as strongly as possible. We have chosen
to implement them on a Java Card, which we consider as
sufficiently tamperproof. In particular, any software, even that

within an operating system or a JVM, can be copied and
modified by a malicious user who possesses all privileges on a
local host. In particular, on Internet, any hacker can easily have
these privileges on his own computer! With capability checks
run on the Java Card, we can be sure that any remote request to
execute a MAFTIA-application is genuine (if the capability is
correct), and that a genuine MAFTIA request can only be
executed on the host for which the capability is valid. The
hacker’s privileges on his host gives him no privilege outside
that host.

Figure 3. Example of a voucher corresponding to a capability

The capability checks carried out by the Java Card are
based on strong cryptographic functions. Several
cryptographic keys must be included in the Java Card:
• PKm, the MAFTIA public key. This key is associated to the

MAFTIA private key SKm, which is not stored in the Java
Card. The Java object classes are signed off-line by this key
SKm, and this signature is checked at load time by the local
JVM of the host3, using PKm stored in the Java Card.

• SKj, PKj, a private/public key pair specific to the Java Card,
thus specific to the host.

• PKas, the authorization server public key. This key is
associated to all the private key shares of all the sites
composing the authorization server.
Each capability is ciphered by the authorization server,

using the public key PKj of the site where the invoked object is
located. Then the capability is signed by the authorization
server (with the threshold signature protocol presented in
Section 2). Consequently, the capability signature must first be
verified using the authorization server’s public key PKas, and

3 Since version 1.2, the Java Development Kit includes software that allows

classes to be signed and the signatures to be checked at load time.

then deciphered (by the cryptographic functions of the Java
Card) using the private key SKj, which is stored only in the
Java Card. Each access to a method of an object on a MAFTIA
host is thus controlled by its local Java Card. This verification
corresponds to step 2 of Figure 3.

Other information can be stored in the Java Card, for
instance for the authentication of the user, owner of the Java
Card if the host is a personal workstation, or for the
authentication of the administrator who has been assigned this
Java Card if the host is a server. In the latter case, it may be
possible to have several administrators for the same server,
each administrator having his personal Java Card for this
server, and all the server administrator Java Cards sharing the
same pair SKj, PKj. More details on the Java Card
implementation of the reference monitor can be found in [6].

4. Related work

The basic authorization scheme was developed in [7]. This
work was the first attempt to introduce the voucher delegation
scheme, and to demonstrate its ability to implement closely the
least privilege principle.

JavaCardJavaCard

message

1

2

3

D

O O’

Reference
Monitor

PKm, PKas

SKj, PKj

1. A message carrying capabilities and vouchers is received by the local
dispatcher (D).

2. A method of O is invoked once the capability authorizing this access
has been verified by the Java Card crypto functions.

3. The message holds a voucher that is the capability for O to invoke a
method of O’. This capability is checked by the reference monitor of
the site of O’.

C-1-5

Other schemes have been recently introduced to provide
more flexibility and more efficiency than the client-server
model. In particular, [8] proposes to carry out access control in
a distributed system by means of “communal laws”. This
paper addresses also the problem of revocation, which is not
directly addressed in our scheme, even if an expiry time can be
included in our capabilities and vouchers. However, it seems
that the scheme presented in [8] may be difficult to implement.

The notion of “authorization server” is now relatively
common when consistent access control has to be
implemented in distributed systems. Even some public key
infrastructure (PKI) implementations, such as SPKI [9], can be
seen as a kind of authorization service. In the same way, the
Kerberos V5 Ticket Granting Server [10] and SESAME
Privilege Attribute Services [11], manage some authorization,
but only at a coarse-grain level, for client-server interactions.
Delta-4 [12] proposed also an authorization service, which has
been implemented to control access to a persistent file storage
service. Delta-4 was also the first attempt to implement fault-
and intrusion-tolerant security services. Other recent
authorization server implementations are the HP Praesidium
[13] and Adage [14].

In the COCA project [15], a distributed intrusion-tolerant
Certification Authority is developed, using dedicated multicast
communication primitives based on different assumptions than
those of MAFTIA. On most aspects, COCA’s Certification
Authority is similar to the generic CA developed within
MAFTIA, but the authorization server is of course quite
different in its functionality.

Concerning the use of smart cards for authorization, Au et
al. [16] propose to use smart cards as portable, tamperproof
storage for authorization tokens delivered by an authorization
server and checked by an “authorization manager” (the
equivalent of our reference monitor) on each application
server. In their approach, the smart card is not used to
implement the authorization manager of the application server,
it is just used to store the authorization token. JCCap [17]
proposed the use of capabilities to manage access controls
between applications located on Java Cards, but their
capabilities are defined statically by means of “views” during
program development, rather than created dynamically by an
authorization server. We consider that our approach is more
flexible and closer to the least privilege principle.

5. Conclusion

The authorization scheme presented in this paper is flexible,
easily managed (at the coarse-grain level of “composite
operations”) and efficient (fine grain access control at the
object method invocation level, tamperproof reference
monitors implemented with Java Cards). Moreover, it is not

privacy intrusive, since personal information is disclosed to
participants only on a “need-to-know” basis.

Since the implementation has just begun, no performance
measurements are currently available. But since the
authorization server is accessed only once for each composite
operation, we hope that the induced overhead will be
acceptable with respect to the gained security and privacy.

6. References

[1] V. Nicomette and Y. Deswarte, "An Authorization Scheme
for Distributed Object Systems," Proc. Int. Symposium on
Security and Privacy, Oakland, CA, USA, 1997, IEEE
Computer Society Press, pp. 21-30.

[2] V. Nicomette and Y. Deswarte, "Symbolic Rights and
Vouchers for Access Control in Distributed Object
Systems," Proc. 2nd Asian Computing Science Conference
(ASIAN’96) , Singapour, 1996, "Concurrency and
Parallelism, Progamming, Networking, and Security", J.
Jaffar and R. H. C. Yap, Eds., Springer-Verlag, LNCS
n°1179, pp. 193-203.

[3] N. Abghour, Y. Deswarte, V. Nicomette, and D. Powell,
Specification of Authorisation Services, LAAS-CNRS,
Toulouse, MAFTIA Project IST 1999-11583 Deliverable
D27, LAAS Report 01001, 33 pp., 23 January 2001,
available at:
<http://www.research.ec.org/maftia/deliverables>.

[4] J. Algesheimer, C. Cachin, K. Kursawe, F. Petzold, J. A.
Poritz, V. Schoup, and M. Waidner, MAFTIA: Specification
of Dependable Trusted Third Parties, IBM Research, Zurich
Research Laboratory, Zurich (CH), MAFTIA Project IST
1999-11583 Deliverable D26, 98 pp., 22 January 2001,
available at:
<http://www.research.ec.org/maftia/deliverables>.

[5] C. Cachin, M. Correia, T. McCutcheon, N. F. Neves, B.
Pfitzmann, B. Randell, M. Schunter, W. Simmonds, R.
Stroud, P. Veríssimo, M. Waidner, and I. Welch, Service
and Protocol Architecture for the MAFTIA Middleware,
MAFTIA Project IST 1999-11583 Deliverable D23, 92 pp.,
25 January 2001, available at:
<http://www.research.ec.org/maftia/deliverables>.

[6] Y. Deswarte, N. Abghour, V. Nicomette, and D. Powell,
"An Internet Authorization Scheme using Smartcard-based
Security Kernels," International Conference on Research in
Smart Cards (e-Smart 2001), Cannes (France), 2001, "Smart
Card Programming and Security", I. Attali and T. Jensen,
Eds., Springer-Verlag, LNCS 2140, pp. 71-82.

[7] V. Nicomette, Protection in Distributed Object Systems,
Thèse de Doctorat de l'Institut National Polytechnique,
Toulouse, 1996, LAAS Report 96496, 177 pp. (in French).

[8] X. Ao, N. H. Minsky, and V. Ungureanu, "Formal
Treatment of Certificate Revocation Under Communal

C-1-6

Access Control," IEEE Symposium on Security and Privacy,
Oakland, CA, 2001, IEEE Computer Society Press, pp. 116-
127.

[9] C. Ellison, SPKI Requirements, IETF RFC 2692, September
1999.

[10] B. C. Neuman and T. Tso, "Kerberos: an Authentication
Service for Computer Networks," in IEEE Communications,
vol. 32, 1994, pp. 33-38.

 [11] T. Parker, "A Secure European System for Applications in a
Multi-vendor Environment (The SESAME project)," 14th
National Computer Security Conference, Washington (DC,
USA), 1991, NCSC and NIST, pp. 505-513.

[12] L. Blain and Y. Deswarte, "Intrusion-Tolerant Security
Server for Delta-4," ESPRIT 90 Conference, Brussels
(Belgium), 1990, CEC-DG-XIII, Ed., Kluwer Academic
Publishers, pp. 355-370.

[13] HP, HP Praesidium Authorization Server 3.1: Increasing
Security Requirements in the Extended Enterprise, pp.,
November 2 1998.

 [14] M.-E. Zurko, R. Simon, and T. Sanfilipo, "A User-Centered,
Modular Authorization Service Built on an RBAC
Foundation," IEEE Symposium on Security and Privacy,
Berkeley (CA, USA), 1999, pp. 57-71.

[15] L. Zhou, F. B. Schneider, and R. v. Renesse, COCA: A
Secure Distributed On-line Certification Authority,
Computer Science Department of Cornell University, Ithaca,
NY (USA), Report ncstrl.cornell/TR2000-1828, 54 pp., 8
December 2000.

[16] R. Au, M. Looi, and P. Ashley, "Cross-Domain One-Shot
Authorization using Smart Cards," 7th ACM Conference on
Computer and Communications Security (CCS-2000),
Athens, Greece, 2000, S. Jajodia and P. Samarati, Eds.,
ACM Press, pp. 220-226.

[17] D. Hagimont and J.-J. Vandewalle, "JCCap: Capability-
Based Access Control for Java Card," 4th IFIP WG8.8
Working Conference on Smart Card Research and
Advanced Applications (CARDIS-2000), Bristol, UK, 2000,
J. Domingo-Ferrer, D. Chan, and A. Watson, Eds., Kluwer
Academic Publishers, pp. 365-388.

