
Software Mechanisms for Tolerating Soft Errors in an Automotive
Brake-Controller

Daniel Skarin and Johan Karlsson
Department of Computer Science and Engineering

Chalmers University of Technology
SE-412 96 Göteborg, Sweden
{skarin, johan}@chalmers.se

Abstract

This paper describes the design and evaluation of
two software implemented error detection and system
recovery mechanisms that protect a prototype brake-
by-wire controller from soft errors. We used an eval-
uation driven design process to develop the software
mechanisms, which are specifically designed to prevent
soft errors from causing critical failures in the brake
controller. The design process involves 1) identifying
vulnerable parts of the brake controller, 2) designing
and verifying software mechanisms for error detection
and recovery, and 3) performing an extensive evalua-
tion of the proposed mechanisms. Results from error
injection experiments in the last step show that our
simple software mechanisms, combined with hardware
exceptions for error detection, can effectively reduce
the number of critical failures caused by soft errors in
the brake controller.

1. Introduction

It is well known that soft errors caused by ionizing
particles, such as cosmic high energy neutrons and
alpha particles, pose an important reliability problem in
modern microprocessors. They are in fact considered to
be a dominating source of physical failures in modern
commercial circuits used in ground-based applications
[1]. Current high-end microprocessors manufactured in
45 nm and 65 nm technologies are therefore provided
with extensive circuit-level and microarchitectural-
level mechanisms that mitigate the effects of soft
errors.

While these mechanisms can mask and recover
from a vast majority of the soft errors, they rarely
achieve 100% error coverage. For example, proton
radiation tests of the IBM Power6 processor show that
it achieves a soft error rate (SER) derating factor of 500

times [2], which means that in average one soft error
in five hundred reaches registers in the processor’s
instruction set architecture (ISA).

Future microprocessors may achieve even higher
SER derating factors, but it is unlikely that they will
provide 100% error coverage, since this would be very
costly both in terms of design effort and area overhead.
Moreover, the soft error rate per chip is expected to
increase significantly for each new technology genera-
tion [3], mainly because there will be more transistors
on each chip.

For these reasons, we can expect that soft errors
will remain an important reliability problem for a wide
range of future computer applications. They have for
a long time been a major reliability concern in space
and aeronautical applications due to the high flux of
ionizing particles present in these environments. In
ground-based applications, soft errors are today mostly
a concern for applications that use high-end micropro-
cessor manufactured in technologies with feature sizes
of 90 nm and below. However, since processors and
microcontrollers targeting the embedded systems mar-
ket are likely to be manufactured in such technologies
in the future, we believe that soft errors will become
an important concern also for ground-based embedded
safety-critical applications.

One way to deal with soft errors that propagate
to ISA-registers is to use a classical TMR (triple
modular redundancy) system, i.e., to run programs in
three processors and vote on the results produced by
each processor. This is obviously a costly solution in
terms of hardware and can therefore only be used
in applications that require extreme levels of data
integrity, availability, or safety. Another possibility is to
run the programs in two processors (or two processor
cores) and compare the results to detect errors, and
then use software implemented recovery to restore
correct operation. This solution may be an interesting



alternative for some applications, but would still be too
expensive for many other. A third less costly alternative
is to rely on hardware exceptions for error detection,
and combine these with software implemented error
detection and recovery techniques. This is an attractive
solution for highly cost-sensitive applications, such as
electronic systems in cars and other road vehicles.
However, a drawback of this approach is that it must
be very carefully validated since its effectiveness (error
coverage) may vary strongly depending on the nature
of the program and its activation patterns.

In this paper, we describe results from an experi-
mental evaluation of a prototype brake controller pro-
gram that uses the above mentioned low-cost approach
to handle soft errors. The brake controller has been
specifically designed to be included in a future brake-
by-wire system with no hydro-mechanical backup. As
the brake controller is the only unit that can send brake
commands to the brake actuator in such a system, it
must be more reliable and thereby achieve a higher
degree of error tolerance than conventional ABS-
controllers, which can be shut down without serious
consequences.

We have conducted error injection experiments with
two versions of the brake controller, one with soft-
ware implemented error handling mechanisms and one
without such mechanisms. These mechanisms were
designed and constructed using an evaluation driven
design process which we describe in Section 2. The
error handling mechanisms are described in Section 3,
while Section 4 presents the results of the error injec-
tion experiments. Section 5 concludes the paper.

2. Design Process

The software implemented error handling mech-
anisms were developed using an evaluation driven
design process that involved three major steps. First,
we conducted error injection experiments with a basic
version of the brake controller that was not provided
with any software error handling mechanisms. Second,
based on an analysis of the results from the first
step, a set of software implemented error detection
and recovery mechanisms were designed with the
aim of enhancing the error coverage of the brake-
controller system. Third, we implemented a new ver-
sion of the controller program containing the software
mechanisms developed in the previous step, and then
conducted an extensive error injection campaign to
evaluate the effectiveness of these mechanisms. Both
versions of the brake controller programs implement
a PI-controller that optimizes the tire slip to achieve
maximum brake performance.

Database

GOOFI

Error injection system

Brake system emulator

Environment 
simulation node Brake node

CAN
MPC565 MPC565

RS232

Nexus

Figure 1. Experimental set-up.

For the error injection experiments, we used a set-
up consisting of a brake system emulator and an error
injection system, see Figure 1. The brake system emu-
lator consists of two computer nodes, which are based
on Freescale’s MPC565 microcontroller. One node
executes the brake controller program and the other
node executes an environment simulator that simulates
the dynamics of a wheel. We used an extended version
of GOOFI [4], a generic fault/error injection tool
developed in our research group, to randomly inject
single bit-flip errors into CPU-registers and memory
locations used by the brake controller program.

GOOFI injects errors into the brake node via the
processor’s debug port, which is also used to observe
and log program variables and the state of the brake
node. Values sent and received by the environment
simulation node are logged by GOOFI via a serial
connection. The set-up allows us to inject errors with
full controllability and repeatability. To ensure that
errors only were injected into “live” data, GOOFI was
configured to inject them immediately before the target
register or the target memory location was read by a
machine instruction. This procedure avoided injection
of errors into data that were not used by the brake
controller program.

The experiments conducted in the first step of the
design process had three major objectives: i) to iden-
tify errors that were not detected by the processor’s
hardware exceptions, ii) to identify those undetected
errors that led to catastrophic control failures, and iii)
to determine in what program variables these errors
had been injected. To achieve these objectives, we
had to observe and log a large number of program
variables, which caused a significant time overhead in
conducting the experiments. It took about 15 minutes
to inject one error and monitor the behavior of the
brake system. From these experiments, we noted that



a large proportion of the critical failures were caused
by errors in either the stack pointer or the integrator
state of the brake controller [5].

As already mentioned, the aim of the second step
was to design software implemented error detection
and system recovery mechanisms that could enhance
the error coverage of the brake-controller system.
More specifically, the aim of these mechanisms was
to minimize the occurrence of critical control failures.
Thus, for the purpose of this work, we define the
error coverage as the probability that a single bit error
affecting live data in a CPU-register or a memory
location does not cause a critical control failure.

It is well known that closed-loop control systems,
such as a brake controller, often compensate for in-
correct outputs caused by soft errors even if no error
detection and recovery mechanisms are activated [6].
Thus, for closed-loop control systems it makes sense
to distinguish between benign failures and critical
failures. Benign failures have none or only a minor
impact on the controlled object, and hence there is no
need for the control system to detect or compensate for
errors that cause such failures. Critical failures, on the
other hand, result in a functional failure of the control
system. A control system that exhibits only benign
failures is known to be fail-bounded [7]. Depending
on the application, a fail-stop or fail silent behavior
may be considered either as a benign failure or as a
critical failure. According to Papadopoulos et. al [8]
critical failures for a wheel braking function can be
classified into three major categories: loss of braking,
unintended braking, and permanently locked wheel.

In general, software mechanisms for error detection
can be designed using application independent tech-
niques such as duplication and comparison, or by using
application-specific techniques that rely on knowledge
about the application. For the brake controller, we
designed two simple software checks, one for the stack
pointer and one for the controller’s integrator state
[9]. The stack pointer check relies on duplication and
comparison, while the check of the integrator state
relies on knowledge of the maximum change of the
integrator state between two samples. In addition, we
implemented two methods for system recovery. For
errors affecting the integrator state, we rollback the
integrator state to a previous state (fast recovery).
For errors in the stack pointer, we need to restart
the program (slow recovery). These mechanisms are
further described in Section 3.

The second step of the design process also involved
the use of model checking to verify that the software
error handling mechanisms worked as intended. A
model checker such as SPIN [10] can verify or provide

counterexamples of safety and liveness properties of
formal models of concurrent processes, which makes it
suitable for verification of error handling mechanisms.
We created models of the error handling mechanisms
which were verified by SPIN. This allowed us to ver-
ify the correctness of the error handling mechanisms
before we implemented them in the brake controller
program.

In the third step of the design process, we made
an extensive evaluation of the error coverage of both
versions of the brake-controller system in order to as-
sess the effectiveness of the software mechanisms. To
this end, we injected single bit-flip errors exhaustively
in all bits in all CPU-registers as well as in all bits
in the data area of the main memory, which were
used by the program during one control loop iteration.
We injected errors in this manner for three carefully
selected control loops for each program version, see
[11].

In these experiments, we only needed to observe and
log variables in the brake controller program when an
error was injected and at the end of each run. Thus,
these experiments were far less time-consuming than
those conducted during the first step of the design
process, where we logged a large number of program
variables for every iteration of the control loop. The
error injection experiments conducted in the third step
were about 60 times faster than the ones conducted
during the first step.

3. Software Mechanisms for Error Detec-
tion and Recovery

This section describes the software error handling
mechanisms in more detail. The development of the
mechanisms involved i) finding suitable techniques
for error detection and recovery and ii) verifying the
correctness of the proposed mechanisms.

Results from our initial error injection experiments
showed that a large number of the critical failures
were caused by errors affecting either the stack pointer
or the integrator state of the controller. As previously
mentioned, the brake controller is designed to control
the tire slip, i.e., the difference between a wheel’s
linear velocity and the vehicle’s velocity, using a PI-
controller.

The output from such a controller is the sum of two
terms, one proportional to the current control error,
the P-part, and one proportional to the control error
integrated over time, the I-part. Soft errors affecting
the P and the I-part can, as mentioned earlier, automat-
ically be compensated for by the controller. However,
errors that cause large deviations in the integrator state



from its correct value may not be compensated for by
the brake controller fast enough. In our experiments,
we saw that the actuator command could be saturated
for several seconds, which resulted in a critical brake
controller failure.

To cope with such errors, we designed a rate limit
to detect errors affecting the integrator. The update of
the integrator state can be described as:

I (k + 1) = I (k) + h × input(k),

where I(k) denotes the integrator state, h the sample
time, and input(k) the integrator input (k denotes the
current sampling point.) The inputs to the brake con-
troller are bounded by factors such as the operational
range of A/D-converters and physical limits, and the
sampling time is constant. Therefore, we could calcu-
late the maximum amount that the integrator state can
change during a control loop iteration, and use that
upper bound as a rate limit for error detection. We also
designed a check to detect specific floating point values
that were not handled correctly by the integrator. These
values, which include infinity and not a number [12],
are detected using a simple bit test on the integrator
state.

The integrator state is rolled back to a previous state
when an error is detected. This recovery is non-perfect
and can therefore cause the integrator state to deviate
from that of a fault-free integrator. Such a deviation is
however compensated for by the control algorithm in
subsequent samples.

Errors in the stack pointer are detected using du-
plication and comparison. A copy of the stack pointer
is stored in a CPU-register immediately before each
function call. When the execution returns from the
called function, the values of the stack pointer and the
copy are compared. If the two values should differ,
we reinitialize the MPC565 microcontroller and all
program variables, and restart the brake controller
program.

The correctness of the error detection and recovery
mechanisms was verified using model checking. We
used SPIN to verify the following property expressed
in Linear Temporal Logic (LTL) [10]:

2(error⇒ 3correct recovery).

The LTL formula states that whenever an error occurs,
the system should eventually recover from the error.
For errors affecting the integrator, we defined correct
recovery as having an integrator state which contains a
non-faulty value. For errors affecting the stack pointer,
we assumed that errors will be recovered by the restart
of the brake controller program, and only required that
a faulty stack pointer was detected.

Model checking helped us to identify a flaw in
an early design of the error detection and recov-
ery mechanisms for the integrator, where an error
was not recovered correctly. The mechanisms for the
stack pointer and the integrator state were modeled
separately, along with an error injector that changed
program variables to faulty values. For errors affecting
the integrator, SPIN found a counterexample where the
mechanisms failed to recover the integrator state to a
non-faulty value. It should be noted that the models
define abstractions of the software mechanisms, and
the above mentioned property may not hold for the
implementation of the mechanisms.

4. Results

Results from the extensive evaluation conducted
during the third step of the design process show that
the software implemented mechanisms reduced the
number of critical failures from 1.2% to less than
0.05%. For the basic version of the brake controller
(the one without software error handling mechanisms)
we observed approx. 1000 errors (of 88.000) that led
to a critical behavior of the brake controller, such as
locking the brake or not applying brake force for an
extensive time. For the extended version of the brake
controller we observed only 39 errors (of 93.000) that
led to a critical failure. Almost all of these critical
failures were caused by errors that were injected into
the program counter (36 out of 39 errors.)

As much as 56% of the errors caused the extended
version of the brake controller to produce incorrect
outputs that had a negligible (non-critical) impact on
the braking performance. That is, for these errors the
controller exhibited a fail-bounded behavior. Despite
that we injected all errors into registers holding “live”
data (i.e., data used by the program), as much as 36%
of the errors were masked by the program and did not
in any way affect the produced brake commands.

5. Conclusions

This paper describes the design of two simple
software implemented mechanisms that have been de-
signed specifically to prevent soft errors from causing
critical failures in a prototype brake controller. Using
error injection experiments, we have demonstrated that
the software implemented error detection and recovery
mechanisms, combined with hardware exceptions for
error detection, effectively can enforce fail-bounded
semantics for a brake controller with respect to soft
errors that manifest as single bit-flip errors in CPU-
registers and the data area of the main memory.



While these results provide strong evidence that sim-
ple software implemented error detection and system
recovery mechanisms can help to achieve a very high
error coverage with respect to soft errors in control
applications, they are not fully conclusive. First of
all, it is well known that error coverage achieved
by simple checking mechanisms is very sensitive to
implementation details. Hence, small changes in the
program or its activation patterns may change the error
coverage significantly.

Also, our evaluation methodology has two obvious
drawbacks. One is that we use single bit-flips errors
evenly distributed over all “live” data in memory and
CPU-registers to assess the error coverage; in reality
many soft errors will manifest as multi-bit errors in
CPU-registers, and they may not be evenly distributed.
The second drawback is that our methodology does
not consider out-of-specification behaviors of the mi-
crocontroller as we cannot inject errors in internal
registers of the microarchitecture. Such behaviors can
arise when soft errors affect the processor’s internal
control logic. Assessing the accuracy of our error injec-
tion methodology is a topic of future research, which
would require the use of accurate microarchitectural
simulations or particle radiation experiments.

References

[1] R. Baumann, “Radiation-induced soft errors in ad-
vanced semiconductor technologies,” IEEE Transac-
tions on Device and Materials Reliability, vol. 5, no. 3,
pp. 305–316, Sep. 2005.

[2] J. Kellington, R. McBeth, P. Sanda, and R. Kalla,
“IBM R©POWER6TMProcessor Soft Error Tolerance
Analysis Using Proton Irradiation,” IEEE Workshop on
Silicon Errors in Logic (SELSE 3), Apr. 2007.

[3] S. Borkar, “Designing reliable systems from unreliable
components: The challenges of transistor variability and
degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16,
2005.

[4] J. Aidemark, J. Vinter, P. Folkesson, and J. Karls-
son, “GOOFI: Generic Object-Oriented Fault Injection
Tool,” in Proc. International Conference on Depend-
able Systems and Networks (DSN 2001), Jun. 2001, pp.
83–88.

[5] D. Skarin, M. Sanfridson, and J. Karlsson, “Impact
of soft errors in a brake-by-wire system,” in IEEE
Workshop on Silicon Errors in Logic – System Effects
(SELSE 3), 2007.

[6] J. Cunha, R. Maia, M. Rela, and J. Silva, “A Study of
failure models in feedback control systems,” in Proc.
International Conference on Dependable Systems and
Networks (DSN 2001), Jul. 2001, pp. 314–323.

[7] J. G. Silva, P. Prata, M. Rela, and H. Madeira, “Practical
issues in the use of abft and a new failure model,” in
FTCS ’98: Proceedings of the The Twenty-Eighth An-
nual International Symposium on Fault-Tolerant Com-
puting, 1998, pp. 26–35.

[8] Y. Papadopoulos, J. McDermid, R. Sasse, and
G. Heiner, “Analysis and synthesis of the behaviour
of complex programmable electronic systems in con-
ditions of failure,” Reliability Engineering and System
Safety, vol. 71, no. 3, pp. 229–247, 2001.

[9] D. Skarin and J. Karlsson, “Software Implemented
Detection and Recovery of Soft Errors in a Brake-
by-Wire System,” in Seventh European Dependable
Computing Conference (EDCC-7), 2008, pp. 145–154.

[10] G. J. Holzmann, “The model checker SPIN,” IEEE
Transactions on Software Engineering, vol. 23, no. 5,
pp. 279–295, 1997.

[11] D. Skarin and J. Karlsson, “Evaluation of low-cost
detection and recovery of soft errors in an ABS con-
troller,” in IEEE Workshop on Silicon Errors in Logic
– System Effects (SELSE 5), 2009.

[12] “IEEE standard for floating-point arithmetic,” IEEE Std
754-2008, pp. 1–58, 29 2008.


