
Achieving degradation tolerance in a hardware accelerator with parallel
functional units

Tomohiro Yoneda
National Institute of Informatics

Masashi Imai
University of Tokyo

Hiroshi Saito
University of Aizu

Atsushi Matsumoto
Tohoku University

Abstract

Recent advances in semiconductor process technologies
cause new types of faults, which should be carefully con-
sidered for developing large and dependable VLSI systems.
This paper focuses on a type of fault that degrades perfor-
mance of circuit components. Conventional synchronous
circuits need large margins to tolerate it. Our approach
is based on asynchronous circuit technology with detection
and data flow control mechanism to send less data to de-
graded units. The proposed idea is implemented in a linear
equation solver. The simulation results show that the pro-
posed method effectively tolerates the degradation of sev-
eral functional units.
Key Words: Degradation, NBTI, asynchronous circuits,
linear equation solver

1 Introduction

As semiconductor process technology scales and device
dimensions shrink, new types of faults become a key re-
liability concern. One of such new faults is performance
degradation of circuit components, which can be caused by
effects like PMOS transistor negative bias temperature in-
stability (NBTI)[1, 2, 3], hot carrier degradation (HCI)[4],
VDD drop, temperature increase, and so on. In order to
tolerate such a fault, the conventional synchronous circuits
need to have enough design margin, but it gives undesirable
influence on system performance.

This paper focuses on those degradation faults, and pro-
poses a mechanism to tolerate them without severe perfor-
mance penalty. A well-known way for it may be the dy-
namic voltage and frequency scaling (DVFS) technique for
synchronous circuits. In this approach, the degraded area
or core is detected, and then, the supply voltage for the
core is increased, or its clock frequency is decreased. The
drawback of this approach is that the additional circuitry
for degradation detection and the change of the supply volt-
age and/or the clock frequency is complicated, and the con-
trol for them is not simple. Instead, our approach proposed
here is based on asynchronous circuit technology where no
global clocks are used. Since an asynchronous circuit de-

tects the completion of the computation in a functional unit,
and the results of the functional unit are latched in the out-
put register using the completion signal, the results latched
are always correct, even if some degradation fault occurs in
the functional unit. Thus, timing margins that are needed
for synchronous circuits are no longer necessary.

It, however, does not mean that the degradation fault
tolerance is achieved by asynchronous circuit technology
alone. That is, the results produced from the degraded unit
are correct, but it takes more time to produce them, which
causes the completion of the whole computation to be de-
layed. For avoiding it, some mechanism to detect degraded
parts and send less data to them is necessary. Such mech-
anism can be considered in several design levels. In the
most coarse design level, asynchronous multi-core system
can perform tasks or threads depending on their loads un-
der the control of an operating system. On the other hand,
a hardware accelerator with several functional units may be
in one of the fine-grained design levels. In this level, care
should be taken in order to minimize the overhead for the
detection and the data flow control. In this paper, a mecha-
nism for the latter case is discussed.

2 Targeted Architecture

In our approach, some of the processing power in a de-
graded unit should be compensated by normal functional
units. Thus, our framework assumes that the original archi-
tecture has several or many units with the same function-
ality. One example is shown in Fig.1. In order to show the
proposed idea as concretely as possible, one example is cho-
sen and used as a running example throughout this paper.
The proposed idea is, however, not limited to this particular
example. For instance, it is easily applied to SIMD(Single
Instruction Multiple Data) type architecture.

Suppose that Ax = b is a linear system of equation,
where x= (x0, x1, · · · , xn−1)T is a vector of n variables,
b= (b0, b1, · · · , bn−1)T is a constant vector, and A is n-by-
n coefficient matrix with non-zero diagonals. Linear equa-
tion solving is to compute x for given A and b. If A is
diagonally dominant, that is, |aii| >

∑
j �=i aij holds for ev-

ery i, then the Gauss-Seidel method is one of simple and
efficient methods for the hardware implementation of the

data
gen.

data
gen.

data
gen.

data
gen.

ACCIn
te

rf
ac

es
 fr

om
/to

 o
ut

si
de

MEM

MEM

MEM

MEM

Figure 1. Example of a targeted architecture.

linear equation solver. It computes x
(k+1)
i , the value of xi

in the (k + 1)-th iteration, as follows.

x
(k+1)
i =

1
aii

(bi −
∑

j<i

aijx
(k+1)
j −

∑

j>i

aijx
k
j)

The iteration stops, if the difference between xk
i and x

(k+1)
i

becomes smaller than some threshold value for every i.
If each of n/m columns of A′= (A′

0, A
′
1, · · · , A′

n−1)
T

with

A′
i = (

−ai0

aii
, · · · , −ai(i−1)

aii
,

1
aii

,
−ai(i+1)

aii
, · · · −ai(n−1)

aii
)

is stored in a different memory unit with copies of x and b,
and m multipliers are prepared as shown in Fig. 1 (m = 4
in this figure), then the above computation for x

(k+1)
i can

be done in an m-multiplex manner with respect to j. This
is our example.

Our idea for degradation tolerance is to use only these
multiplex functional units that are prepared for the perfor-
mance improvement. No redundancy for improving relia-
bility is necessary. This is the difference from a conven-
tional approach using spare units.

3 Asynchronous Circuits

In asynchronous circuits, instead of using global clocks,
request and acknowledgment signals perform local hand-
shaking. Our work uses both bundled data and dual-rail
encoding methods for sending and receiving data.

In the bundled data method (Fig.2), a request signal is
used to show that the data is valid in the sender side. When it
is asserted, the receiver starts to use the data. When the data
processing is completed, an acknowledgment signal is as-
serted by the receiver, which allows the sender to destroy the
current data and put the next data. For asserting the request
and acknowledgment, our work uses so-called two-phase
signaling, where both the rising and falling edges are used
as shown in the above figure. In this bundled data method,
a delay element is used to decide the timing when the ac-
knowledgment signal is asserted, which should be matched

Data from sender

Request signal

Acknowledgment
signal

Figure 2. Bundled data method.

(a)

Acknowl-
edgment

a0
a1

b0
b1

c0
c1

a’0
a’1

b’0
b’1

c’0
c’1

(b) (c) (d) (e)

Figure 3. Dual-rail encoding method.

to the data transfer and processing time. The data-path cir-
cuits themselves are the same as those used in synchronous
circuits.

In the dual-rail encoding method, a request signal is not
used explicitly. Instead, the data is encoded by a dual-rail
code, which allows the receiver to detect the completion of
the data transfer and processing. The dual-rail code uses
two signals for representing one data bit, i.e., (01) and (10)
represent the data bit “0” and “1”, respectively. (00), which
is called spacer, is used for separating a sequence of data.
This method works as follows. Initially, every data-path sig-
nal is reset to 0 (Fig. 3 (a)). When the sender sends a data,
each data-path signal changes to 0 or 1 gradually. Similarly,
the receiver gradually sees the change from (00) to either
(01) or (10) for each data bit (Fig. 3 (b)). Note that this
change should be monotonic, i.e., the change such as (00)
→ (10) → (01) should not happen. This is an important
requirement for the data-path circuit used for this method,
because it is needed to make the completion detection pos-
sible. The circuit implementation with monotonic property
is not difficult. When the receiver detects that the signal
pair for every data bit has either (01) or (10), it raises an
acknowledgment signal (Fig. 3 (c)). Here, a level signaling
(or 4 phase signaling) is used for the acknowledgment sig-
nal. Then, the sender resets every data-path signal to 0. This
change is again propagated to the receiver gradually (Fig. 3
(d)), and when it is detected that the signal pair for every
data bit has (00), the acknowledgment signal is lowered by

data
gen.

data
gen.

data
gen.

data
gen.

ACC

D
is

pa
tc

he
r

D
is

pa
tc

he
r

D
is

pa
tc

he
r

D
is

pa
tc

he
r

ACC

ACC

ACC

In
te

rf
ac

es
 fr

om
/to

 o
ut

si
de

MEM

MEM

MEM

MEM

Figure 4. Proposed architecture.

the receiver, where every signal is in the initial state and the
next data processing is ready (Fig. 3 (e)).

The dual-rail encoding method requires a special data-
path circuit which is 1.5 to 2 times larger than the one used
for synchronous design. However, it can exactly detect the
completion of data processing. Thus, even in the case that
the data-path circuit is degraded, when the results are pro-
duced, they are detected and latched correctly. On the other
hand, in the bundled data method, delay elements are used
to indicate the completion of data processing. It is unlike
that both the data-path circuits and the delay elements suf-
fer from the degradation similarly. Thus, if only a data-path
circuit is degraded and the output of the result is delayed,
an incorrect data may be latched.

In this work, the dual-rail encoding method is used for
functional units that perform complicated data manipula-
tion such as addition or multiplication, where the influence
of the degradation is considered to be large. For the por-
tions that handle data transfer without manipulation, such
as dispatchers (see Fig. 4) and memories, the bundled data
method is used, which means that the degradation of those
portions is not assumed.

4 Proposed Method

4.1 Basic Idea

Thanks to the dual-rail encoding method, even degraded
functional units can always produce correct results. How-
ever, in the architecture shown in Fig.1, the degradation in
one functional unit can cause the delay of the completion
of the whole computation. This is because each data is as-
signed to particular functional units in the architecture, i.e.,
the degraded functional unit is used as often as the other
normal (non-degraded) units. Hence, we first releases the
connection between data to be processed and the functional
units.

Fig.4 shows the proposed architecture obtained by apply-
ing the above idea to the one shown in Fig.1. The dispatcher
receives data from either of two directions, and sends it to

either direction. Since the adder tree shown in Fig.1 always
needs data from the both directions, the influence of the de-
graded functional unit cannot be separated. Thus, the adder
is included in each functional unit in the proposed architec-
ture, and the adder tree is used once when the final results
are obtained.

The requirements to achieve the degradation tolerance of
the functional units in this architecture are as follows.

1. The dispatcher should send less data to the direction
where the degraded functional unit is located. How-
ever, sending data only to the normal functional units
may not be appropriate. If the degraded unit can per-
form some computation, it should be used. The data
load balancing is important in order to reduce the de-
lay of the whole computation.

2. Functional units need to know the end of data in order
to send the accumulated data to the adder tree. This is
because the number of data to be processed is not fixed
due to the load balancing.

4.2 Dispatcher design

The data-path circuit of the dispatcher is shown in Fig.5.
It has two input ports and two output ports. A data that
arrives at one input port is latched by either one of the two
resisters that are tied to the output ports, and the latched
data is sent out from the corresponding output port. Note
that the bundled data method is used here. Thus, when data
is sent out, the request signal from the selected output port
is asserted, and the data is kept valid until the corresponding
acknowledgment signal is asserted by the receiver. We say
that an output port is busy, when the request is asserted but
the acknowledgment is not yet asserted. A busy input port
is defined similarly.

In order to satisfy the above requirement 1, the idea used
in our dispatcher is very simple; it is to send the received
data to one of non-busy output ports. This achieves the
above requirement 1 naturally. Note that it is so simple
thanks to the local handshaking of asynchronous circuits.

input
port0

input
port1

M
ul

tip
le

xe
r R

eg
0

R
eg

1

output
port0

output
port1

c0_sel g0

c1_sel g1

Figure 5. Data-path of dispatcher.

ME
in0

in1

out0

out1

in0

in1

out0

out1

(a)

(b)

Figure 6. Mutual exclusion element.

If both output ports are busy at the time point when a new
data arrives, the new data cannot be latched by any register.
Thus, the input data should be kept by the sender. This is
also simply done by not asserting the acknowledgment sig-
nal to the sender. Latching this new data and asserting the
acknowledgment signal to the sender happen immediately
when either output port becomes non-busy.

It is possible that two output ports become non-busy al-
most at the same time, or both are non-busy when an input
data arrives. In order to choose one asynchronously, a mu-
tual exclusion (ME) element is needed. An ME element is
needed also for the input data selection. That is, when both
input ports receive data, one of the data is selected for han-
dling, and the other waits until the former data is latched.
The ME element (Fig.6 (a)) has two input signals and two
output signals. If in0 (in1) becomes high, out0 (out1) be-
comes high. If both in0 and in1 become high almost at the
same time, either out0 or out1 becomes high. Both outputs
never go high in the ME element. It is usually implemented
using a RS latch with a metastability absorber (Fig.6(b)).

From the above discussion, the dispatcher should behave
as follows.

1. It waits until either input port becomes busy, and either
output port becomes non-busy.

2. One busy input port is selected by an input ME ele-
ment, and one non-busy output port is selected by an
output ME element.

3. The data-multiplexer shown in Fig.5 is controlled by
the result of the input ME element.

4. The request signal for the selected non-busy output
port is asserted. This output port becomes busy, and
the data through the data-multiplexer is locked in the
register for the output port. This also releases the out-
put ME element.

5. The acknowledgment signal of the selected input port
is asserted. This input port becomes non-busy, and the
input ME element is released.

A little detailed (but not final) design of the control
circuit of the dispatcher is shown in Fig.7. in0 req
and in1 req are the request signals for the input ports,
and in0 ack and in1 ack are their acknowledgment sig-
nals. Similarly, the output ports have the request sig-
nals (out0 req and out1 req) and acknowledgment signals
(out0 ack and out1 ack). In order to detect the transitions
of those signals, exclusive ORs and exclusive NORs are
used, i.e., if c0 is high, then the input port0 is busy, and
if g0 is high, then the output port0 is non-busy. Thus, those
signals are connected to an input ME element and an out-
put ME element, respectively. The outputs of those ME el-
ements are connected to an OR-AND circuit to implement
the above behavior 1 and 2. The delay element connected to
the OR-AND circuit is for delaying the latch signal (c clk)
until the data through the multiplexer becomes valid. Al-
though c clk is given to the FFs for the both output ports,
only one of them with g0 sel = 1 or g1 sel = 1 actually
toggles. Note that toggling the request signal means its as-
sertion in the two phase signaling. This makes the selected
output port busy, and the data is locked in the correspond-
ing output register (shown in Fig.5), which is a transparent
latch, by lowering g0 or g1. The c clk is also used to as-
sert the acknowledgment signal of the selected input port
by giving a rising edge in tog0 or tog1 to either toggle FF.

4.3 Detecting end of data

In order to inform the functional units that data are no
longer sent to them, we use a delimiter that is a special data
indicating the end of data. Since raw data (instead of data
packets) are used in our design, the MSB of data bits is used
for distinguishing delimiters from normal data.

When a functional unit receives a delimiter, it simply
needs to send the accumulated data to the adder tree. The
behavior required for the dispatchers is, however, a little bit
complicated. Even if a delimiter arrives at one input port,
the other input port may receive more normal data, which
should be handled in a normal way. Thus, the dispatcher
should wait until another delimiter arrives at the other input
port. If both the input ports receive delimiters, then the dis-
patcher should send delimiters through both output ports, in
order to indicate that no more data are sent from this dis-
patcher. Thus, the dispatcher should behave as follows for
handling delimiters.

TFF
Q

CLK

in0_ack

in0_req

tog0

c0

TFF
Q

CLK

in1_ack

in1_req

tog1

c1

input
ME

D Q

CLK

g0_sel

out0_req

out0_ack

g0

c_clk

D Q

CLK

out1_req

out1_ack

g1

output
MEg1_sel

c_clk

c0_sel

c1_sel

c_clk

c_clk

c_clk

Figure 7. Dispatcher controller design.

1. When a delimiter arrives at one input port, its fact is
recorded, and the acknowledgment signal for the input
port is asserted.

2. When both input ports receive delimiters, the dis-
patcher waits until both output ports become non-busy.

3. Then, delimiters are sent out through both output ports.

The control circuit shown in Fig.7 is modified to handle
the above behavior. The details are, however, omitted here.

4.4 Functional Units

A functional unit uses the dual-rail encoding method,
while the outside of the functional unit uses the bundled
data method. Thus, conversion circuits are needed in both
the borders. Fig.8 shows the data-path circuit of our func-
tional unit with its conversion circuits. This functional unit
includes a multiplier and an adder that are connected in a
pipeline style.

The single-rail encoded data sent from the input side is
first converted to the dual-rail encoded data by combining
the normal data bit and the inverted data bit to form a dual-
rail encoded signal pair. A pair of a normal AND gate and
an AND gate with an inverted input is used for each data
bit to generate the dual-encoded signal pair as shown in the
left dashed box of Fig.8. spacer cnt signal of the converter
is used to give the spacer to each signal pair. A dual-rail
arithmetic circuit, such as a dual-rail multiplier and a dual-
rail adder, is implemented using dual-rail AND, OR, NOT
gates, which guarantee the monotonicity of the circuit. The
completion detector produces a compl signal by a circuit
shown in the right dashed box, where it goes high when
all signal pair is either (01) or (10), and goes low when all
signal pair is (00). Finally, the single-rail encoded data for
the result is obtained simply by taking the normal data bit
from the dual-encoded signal pair.

Fig.8 also shows the control signals of the functional unit
with the circuits producing some of those control signals.

The control circuits use the idea of MOUSETRAP pipeline
style[5]. The controller of the multiplier part behaves as
follows. Note that transparent latches are used for registers.

1. When in req is asserted, the controller waits until the
multiplier becomes idle (i.e., EN in = 1). Then, it
asserts in ack through a transparent latch.

2. This makes EN in go down, and the received data is
locked in the register. At the same time, spacer cnt1
is raised in order to start the computation.

3. When compl1 goes high, meaning the multiplication
completes, mul req is asserted by giving a pulse to
mul tog.

4. mul ack is asserted, and the lowered EN mul locks
the multiplication result in the input register for the
ACC. It means that the multiplication result can be de-
stroyed. Thus, spacer cnt1 is lowered to initialize the
multiplier.

5. When compl1 becomes low, every dual-rail signal has
(00) now. Thus, a pulse is given to in tog, and EN in
goes high.

The controller of the ACC part is similar except that its re-
quest signal (not shown in Fig.8) is asserted only when a
delimiter is detected. For normal data, the adder result is
just stored into the ACC output register when compl2 goes
up, and a pulse is given to acc tog when compl2 goes down,
in order to request the next data from the multiplier.

5 Experimental Results

A linear equation solver with 32 16-bit-variables and
m = 4 is implemented using the proposed idea. A 0.13um
process technology is used for the design, and the evaluation
is done using the simulation results for the place-and-routed
design. In order to simulate the degradation of functional

Single
to

Dual
rail

Conv.

R
eg

Dual
rail

Single
to

Dual
rail

Conv.

R
eg Dual

rail

R
eg

Completion
Detector

Completion
Detector

data_in0

data_in1

EN_in EN_mul EN_accspacer_cnt1 spacer_cnt2

compl1 compl2

...
...si

ng
le

-r
ai

le
d

da
ta

du
al

-r
ai

le
d

da
ta

spacer_cnt1

compl

du
al

-r
ai

le
d

da
ta

Delimiter
Detector

delimiter

acc_out

TFF
Q

CLKEN

QDin_req

in_ack

in_tog

EN_in

TFF
Q

CLKEN

QD
mul_req

mul_ack

acc_tog

EN_mul

TFF
Q

CLKmul_tog

Figure 8. Data-path circuit for of a functional unit.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

no delay el. 1 delay el. 2 delay el.

proposed w.o. dispatcher

Figure 9. Experimental results.

units, delay elements are inserted in the acknowledgment
signals of the functional units. Shortcuts to directly connect
the data generators to the functional units are also prepared,
which are used for estimating the performance without dis-
patchers. Those delay elements and shortcuts are activated
through the control signals given from the outside.

Fig.9 shows the normalized performance where the per-
formance of the proposed design without any delay ele-
ments is 1. It shows the performance degradation of the pro-
posed design and the design without dispatchers (by short-
cut), when delay elements are inserted to one or two func-
tional units. As shown in the figure, the proposed method
has high ability to tolerate degradation.

6 Conclusion

This paper proposes a method to give degradation tol-
erance to a hardware accelerator with parallel functional
units. It is based on asynchronous circuit technology and
data flow mechanism controlled by the acknowledgment

signals to the output ports. A linear equation solver is
implemented using the proposed idea, and according to
the simulation results for the place-and-routed design, the
proposed method shows much better degradation tolerance
than a simple asynchronous implementation. Our future
work includes the application of the proposed method to
other and larger design examples.

Acknowledgment

This work is supported by CREST (Core Research for
Evolutional Science and Technology) of JST(Japan Science
and Technology Agency). This work is also supported par-
tially by VLSI Design and Education Center (VDEC), the
University of Tokyo in collaboration with Synopsys, Inc and
Cadence Design Systems, Inc.

References

[1] J. W. McPherson. Reliability trends with advanced
CMOS scaling and the implications for design. Proc.
CICC2007, pages 405–412, 2007.

[2] S. Basu et al. Process variation and NBTI tolerant stan-
dard cells to improve parametric yield and lifetime of
ICs. Proc. ISVLSI2007, pages 291–298, 2007.

[3] K. Kang et al. Characterization of NBTI induced tem-
poral performance degradation in nano-scale SRAM ar-
ray using Iddq. Proc. ITC2007, pages 1–10, 2007.

[4] T. H. Ning. Hot-carrier emmission currents in n-
channel IGFET’s. Int. Election device Meet. Tech, Dig.,
pages 144–147, 1977.

[5] Montek Singh and Steven M. Nowick. MOUSE-
TRAP: Ultra-high-speed transition-signaling asyn-
chronous pipelines. In Proc. International Conf. Com-
puter Design (ICCD), pages 9–17, November 2001.

