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Abstract

Fault injection is an effective way to determine the fault
coverage of an integrated circuit design and is usually ac-
complished through simulation. Simulation is time inten-
sive, making it impossible to simulate all possible input
and fault combinations in a complex circuit under a re-
alistic fault model. ABVFI is a fault injection methodol-
ogy that uses assertion-based verification (ABV), a vari-
ant of model checking analysis, to perform fault injection.
Like simulation-based fault injection, ABVFI has high ob-
servability and controllability, but is advantageous over
simulation because it can prove properties about the de-
sign through an exhaustive analysis without prohibitive time
and computational requirements. In this paper, we present
ABVFI and two major advantages that ABVFI provides over
related techniques – the inclusion of fault locations in com-
binational logic, and the use of multiple fault models during
analysis.

1. Introduction

As manufacturing technologies advance to smaller tran-
sistor sizes, hardware components become more and more
susceptible to single event upsets (SEUs) and other types of
failures [7, 17]. This is especially disconcerting for safety-
and mission-critical systems, but even consumer electron-
ics and high performance computing systems that have not
had to worry about transient faults in the past are now faced
with similar concerns.

Traditionally, systems have been hardened against the
effects of faults by protecting memory structures through
redundancy or data protection techniques. However, with
smaller transistor sizes, decreased propagation delays, and
higher clock frequencies, the likelihood of an SEU causing

an erroneous value to be latched has risen. Studies have
shown that the soft error rate (SER) in combinational logic
will be nearly equal to that of SRAM at the 50nm technol-
ogy generation [2, 16]. Furthermore, it is expected that with
future technology generations, neutron- and alpha-induced
multiple bit upsets will increase [14]. Therefore, attention
needs to be given to combinational logic as well as sequen-
tial logic during design and verification.

Systems must be analyzed to validate that the fault miti-
gation techniques are sufficient to achieve a desired depend-
ability. A common method for determining the resiliency of
a design against faults is fault injection. Through fault injec-
tion, the system is subjected to a series of tests in which per-
turbations in the system are induced that mimic the behav-
ior of faults. The main way way that fault injection is per-
formed on integrated circuits (ICs) is through simulation-
based techniques.

In simulation-based fault injection, signals or elements
within the design are altered during the simulation to rep-
resent the occurrence of a fault. This provides good con-
trollability and observability of the design, and many fault
models can be used, as opposed to post-manufacturing tech-
niques. Furthermore, simulation-based fault injection can
be performed earlier in the design process, making design
modifications much cheaper.

However, a major drawback of simulation in general is
that due to the amount of time it takes to simulate a large
design, it is impossible to cover all possible combinations
of inputs, and therefore only a subset is tested. This is espe-
cially true with simulation-based fault injection due to the
increase in state-space [5]. The simulation-based fault cov-
erage analysis is therefore incomplete and must rely on es-
timates from statistical analysis.

Emerging techniques involve the use of formal methods
in the analysis of a design’s fault coverage. These tech-
niques replace simulation with formal verification engines,
such as model checking, in a fault injection campaign. Like
simulation-based fault injection, formal verification-based



fault injection provides high controllability and observabil-
ity, and can model many types of faults. However, the ad-
vantages of using formal methods are that the analysis per-
forms an exhaustive search of the input and fault space, en-
suring that no corner case fault goes uncovered, and in less
time than an exhaustive analysis with simulation.

This paper presents a methodology we are developing,
called ABVFI, that allows fault injection to be performed
at the register transfer level (RTL) of a design. ABVFI ex-
tends an emerging technique called assertion based verifica-
tion (ABV), a variant of model checking, to mathematically
analyze design behavior in the presence of faults. Given a
defined fault model, this method considers all possible com-
binations of faults across both time (when the fault occurs)
and space (where the fault occurs), for a complete analysis
of fault coverage.

The following section provides background information
on fault injection and model checking techniques. ABVFI is
presented in section 3. We describe a case study used to test
ABVFI concepts in section 4. Related work is presented
in section 5. Major contributions of the ABVFI approach
are described in section 6, followed by future work and the
conclusion.

2. Background

2.1. Simulation-based Fault Injection

Simulation-based fault injection is performed while run-
ning a set of test vectors. At some point during the simu-
lation, the execution is paused, a design signal is overrid-
den with a new value, simulation proceeds, and the design’s
response is monitored. Generating fault injection tests con-
sists of identifying four parameters: the location of the fault,
the time the fault occurs, the duration of the fault, and the
design’s input stimulus. It should be apparent that the in-
put space for a fault injection campaign is extremely large
and accentuates the impossibility of testing all possible fault
scenarios with simulation.

While approaches that make use of simulator commands
to control fault injection have been proposed [12], the more
common approach is through code modification [8, 3]. The
design is modified such that faults are injected into the de-
sign by intercepting signals or by altering the behavior of a
component through modified logic. These actions are per-
formed by saboteurs and mutants [1]. When activated, a
saboteur intercepts and alters the value or timing character-
istics of a signal. Components are replaced by mutants that
behave normally while inactive and abnormally when acti-
vated. The flexibility of saboteurs and mutants allows many
types of faults to be modeled. The main drawback is that
many control signals must be added to the design to control
the saboteurs and mutants.

2.2. Model Checking

With model checking, properties the design should ad-
here to are described in a formal language [9]. These prop-
erties describe states and sequences of events that the de-
sign “should always” or “should never” reach. For exam-
ple, a property could state that “signal a and signal b should
never be asserted at the same time.” Using mathematical
proofs these properties are then verified against a model of
the design that describes all the possible states the design
can reach. If a property is found to be true, it is an exhaus-
tive proof that a design will always adhere to the property
[6].

ABV is a model checking methodology tailored to hard-
ware design verification. With ABV, the HDL code, e.g.
Verilog or VHDL, at the register transfer level (RTL) serves
as the modeling language. Properties, called assertions, are
embedded into the hardware design giving them access to
all the signals and variables of interest, providing excep-
tional observability and controllability.

In addition to the design under test (DUT) and proper-
ties, ABV requires an environmental model to be defined
for analysis. The environmental model is a definition of
the operating environment for the component. For example,
when using ABV to analyze a processor, the environmental
model would provide a definition of valid instructions for
the processor. The assertions are verified against the DUT
under these constraints.

3. The ABVFI Methodology

The ABVFI methodology takes ABV and extends it to
include fault injection. Essentially, the input space is ex-
panded to include scenarios outside normal operating con-
ditions. The analysis then determines if the design’s proper-
ties still hold in the presence of faults. Given the fault model
defined, this method considers all possible combinations of
faults across both space and time, for a complete analysis of
fault coverage.

Figure 1 shows the typical steps followed during ABV
with the ABVFI augmentation. The HDL design and an
operational profile define the DUT and its environmental
model, respectively. Properties the design should adhere to
are obtained from the specification and converted to prop-
erty specification language (PSL) assertions. These include
properties that define fault coverage. Design extension is
the process of making modifications to the test environment
such that it is possible to mimic the behavior of faults in
the design. Saboteurs are contained in the environmental
model that describe the behavior of faults. Modest changes
are made to the DUT to enable the saboteurs do inject faults
into its logic.



Figure 1. ABV process augmented with the
design extension step (shown in the dashed
box) for fault injection analysis.

Design extension involves minor modifications to the de-
sign HDL (as shown in figures 2 and 3), and fault injection
logic is added to the environmental model. In the HDL, sig-
nals coming from a component that will be targeted for fault
injection are split into two signals, e.g. data and data t (see
figure 2(b)).

In the environmental model, saboteurs, which are logic
modules representing a fault model, are instantiated for each
fault location in the design (shown in figure 2(c)) and are
responsible for overriding the target signal when a fault is
injected.

For sequential components that may hold their value for
longer than one clock cycle, a saboteur is used that includes
sequential behaviors. In this case the saboteur in the envi-
ronmental model simply overrides the signal value, and thus
does not require any HDL modifications, as shown in figure
3.

We are developing a toolset that automatically instru-
ments VHDL design code and generates the necessary dec-
larations required in the environmental model for the se-
lected fault locations.

After the design and environmental model have been ex-
tended to include fault injection logic, the design is then
verified against the specified functional and safety proper-
ties. The result is either 1) verification that a design will
function as specified not only under ideal operating condi-
tions but also under a comprehensive set of faults and fault
combinations that could occur, or 2) identification of how a
design is susceptible to faults. This is in contrast to tradi-
tionally fault coverage that yields a statistical probability.

(a) Components A and B connected by signal data.

(b) To inject faults on component A, the connection be-
tween components A and B in the HDL is broken.

(c) The saboteur (contained in the environmental model)
drives the input to component B.

Figure 2. HDL modifications required for de-
sign extension.

Figure 3. The saboteur overrides the sequen-
tial component.

3.1. Verification and Assessment

ABVFI is an assessment tool for fault coverage. During
verification and validation, ABVFI can be used to ensure
that the DUT meets its specification, particularly depend-
ability requirements regarding fault coverage.

One benefit of model checking is that when a property
is violated, a counter example is produced describing a sce-
nario that led to the property’s failure. The counter example
can then be used as an aid in determining the vulnerabilities
of the design.

ABVFI counter-example results can also be helpful at
other stages of system verification. A compilation of un-
covered faults and their error behaviors can be used to feed
a fault injection analysis at the system level, as shown in
figure 4. The benefit of this is that the system level fault list
generation can be limited to the known failure scenarios of
the low-level components.



Figure 4. ABVFI within a system-level fault in-
jection analysis.

4. Case Study

We have demonstrated the use of ABVFI on a proces-
sor we developed called the PHFT processor. The PHFT
processor is a 32-bit, 5 stage, RISC-style, pipelined proces-
sor with hazard detection and data forwarding. It is based
on the pipelined processor described in [13], but has been
modified to include fault tolerant mechanisms designed to
mitigate SEUs.

The PHFT processor components can be classified into
two categories: 1) the combinational logic elements, which
includes the pipeline stages that are responsible for accom-
plishing work, and 2) the storage elements, which includes
the inter-stage latches necessary for storing instruction data
between stages.

The storage elements are protected by a redundant reg-
ister, called the PCDMR register (later described in section
6.2), capable of detecting and correcting an SEU. The com-
binational elements are dual modular redundant (DMR), but
are only capable of SEU detection, and not correction. The
detection of a fault in a pipeline stage causes the processor
to stall while the fault propagates out of the combinational
logic, after which correct execution can resume.

Analysis of the PHFT processor was performed using
IBM’s Rulebase PE, a commercially available ABV toolset.
Each stage of the processor was independently verified us-
ing the SEU fault model and fault locations included all
combinational and sequential components in the design.
The only exception to this is that faults on known single-
point-of-failure components, such as voters, were not con-

Table 1. PHFT analysis results.
Processor Number of Total Analysis Time
Stage Assertions (minutes)
Fetch 3 1.97
Decode 8 2.92
Execute 7 3.12
Memory 2 7.23
Write back 1 0.4
Inter-stage latch 1 6.27
Total 22 21.91

sidered. Assertions were defined for each stage that specify
the correct progression of instructions through the pipeline
and that faults are detected by the redundant logic.

Table 1 shows the results of our analysis. Shown are the
number of assertions and analysis times for all five pipeline
stages and one 32-bit inter-stage latch.

Although somewhat expected due to the extensive use
of redundancy, our analyses showed that all the faults con-
sidered are covered correctly. This proves that all possi-
ble faults that are represented by the SEU fault model and
that occur in the fault locations we considered are properly
covered by the PHFT processor. Furthermore, the analysis
times were not prohibitive (about 22 minutes), thus ensur-
ing that ABVFI could be adopted into practice.

5. Related Work

The use of formal methods for fault coverage analysis
has been proposed previously and such work can be com-
pared by three metrics: the formal model used to represent
the DUT, fault models considered, and the locations of in-
jected faults.

The FSAP/NuSMV-SA tool requires that a formal model
be manually created that describes the behavior of the sys-
tem [4]. Because formal models are typically abstract rep-
resentations, it is difficult to know just how accurately the
model describes the dynamics of the real system. Further-
more, developing formal models is challenging due the na-
ture of the formal languages.

[10, 11, 15], and ABVFI all present methodologies that
work from the design’s HDL, either directly or indirectly.
The benefit of this is that there is no need to translate the
design into an abstract formal model.

The fault models for the approaches presented in [10,
11, 15] all focus on SEUs. However, ABVFI allows for
the possibility to consider multiple types of faults during
an analysis. Our approach goes even further by creating a
flexible fault model framework, as discussed in section 6.2.

A typical approach to selecting fault locations is to only
inject faults on sequential components. [10, 11, 15] follow



this approach, ignoring errors that result from faults that oc-
cur in combinational logic. ABVFI considers fault locations
in both sequential and combinational logic, as discussed in
section 6.1, providing a more accurate analysis.

6. ABVFI Advantages

6.1. Improved Fault Location Analysis

Many fault injection approaches assume that faults oc-
curring in combinational components are unlikely enough
that they can be ignored [18]. However, it has been shown
that SERs in combinational logic are becoming more sig-
nificant [2, 16]. Fault tolerance in memory structures will
no longer be sufficient, but will also need to be employed in
logic blocks as well to mitigate these effects.

It is also important to include fault models for combina-
tional logic because of the degree to which errors can prop-
agate to many locations in the design. Though an SEU may
occur in a single location in a design, if the fault occurs in
combination logic it can propagate and be latched into mul-
tiple bits in registers. Therefore, any analysis that only con-
siders faults in sequential components are inaccurate and
most likely optimistic. For these reasons, ABVFI supports
fault injection into both combinational and sequential com-
ponents.

One potential issue that arises with respect to fault injec-
tion into combinational logic at the RTL is due to synthe-
sis. During design synthesis, tools convert a design from an
HDL into logic components that can be mapped onto a pro-
grammable logic device (PLD) or processed further for use
in an ASIC. While the overall functionality of the design
will not have changed during synthesis, the structure may
have. The fault locations identified by ABVFI are made
based on the structure defined by the RTL code. Therefore,
synthesis can in some ways invalidate the results of combi-
national logic fault injection analysis. However, this issue
can largely be mitigated by the use of structural RTL code,
which is much more prescriptive of the actual logic struc-
ture than behavioral RTL.

Another consideration is that including combinational
logic faults in an ABVFI analysis has the potential to greatly
increase the input state-space, and thus have a negative im-
pact on analysis execution times. In order for ABVFI to
be adopted into a development process, the analysis times
can’t be prohibitive. In order to evaluate the additional ex-
ecution time of fault injection into combinational logic, we
ran several experiments on the PHFT Processor.

During our tests of the PHFT Processor’s execute stage,
which included 230 fault locations, the analysis times in-
creased by 65.5%, from approximately 2 minutes to just
over 3 minutes, over the analysis that did not include fault

Figure 5. The PCDMR register.

injection. Though the increase was large, the overall anal-
ysis time shows that it is feasible to perform an exhaustive
analysis of an input space that includes a large number of
combinational fault locations.

6.2. Flexible Fault Model Structure

Another advantage of ABVFI over related work is the
development of a flexible fault model framework for inte-
grating fault models into an ABV analysis. The framework
allows us to have a library of fault models that are specific
to the manufacturing technology and application environ-
ment of the system. It also allows for custom designed fault
models to be easily integrated into an ABVFI analysis.

To emphasize the importance of being able to use mul-
tiple fault models in an analysis, consider the design of
a protected register we developed for the PHFT Proces-
sor termed the parity controlled dual modular redundant
(PCDMR) register, shown in figure 5. The PCDMR reg-
ister includes a redundant pair of registers, one of which
is protected by a parity bit. A multiplexer, controlled by
the parity check logic, selects the final output signal. The
PCDMR register is designed to be able to detect and correct
one transient SEU.

For this design, fault locations included all the register
bits, the parity bit, and the control line for the multiplexor.
When this design was tested with ABVFI using the SEU
fault model, the functional assertions where shown to hold.
However, when extending the fault model to include the
possibility of a recurring transient, the analysis failed. The
violation occurred when recurring transients occur during a
period of time when a new value is not loaded into the reg-
ister (i.e. the en signal is not asserted). It took 99 seconds
for the Rulebase tool to verify the assertions under the first
fault model, and 36 seconds to find a violation in the second
fault model.



7. Current and Future Work

Currently we are in the process of using ABVFI on sev-
eral case studies. Our case study using the PHFT Proces-
sor, mentioned earlier, is nearly complete. We will also be
applying ABVFI to an IC design that employs temporal re-
dundancy redundancy and a safety system design used in
nuclear power plants to control fuel rod movement. These
case studies will provide a broad range of designs to test
ABVFI’s merits.

Another ongoing task is the development of the auto-
mated toolset that implements ABVFI. This is an important
objective of this research to make the ABVFI methodology
accessible to design engineers, such that it can become a
natural part of the development process.

8. Conclusion

Fault injection is an important technique for evaluating a
design’s fault coverage. Unfortunately, traditional methods
involving simulation are unable to fully simulate a complex
system.

ABVFI is a methodology that provides a formal analysis
of a design’s fault coverage. ABVFI improves upon previ-
ous work by expanding the fault locations considered during
analysis to combinational logic and providing a fault model
framework that is flexible enough to include many types of
fault models simultaneously. This is important given the
new fault models that are emerging with technology scaling.
Using ABVFI, designers will have the ability to make im-
portant design decisions based on fault coverage data, and
verification engineers will be given more accurate error be-
havior data.
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