Now Silicon is Cheap, but Testing is expensive

Seongmoon Wang NEC labs., America

Impact on Dependability

- What nanometer size devices mean to dependability?
 - Sorting out all defective chips is extremely difficult
 - Even high fault coverage means very large no. of uncovered faults
 - 99% stuck-at coverage for 10M gate design means 2b00,000 uncovered faults
 - More unmodeled defects that are not covered by traditional fault models (stuck-at, delay, etc)

Impact on Dependability

- What nanometer size devices mean to dependability? (continued)
 - Premature failures due to latent defects may be even more serious problem
 - To maintain reliability, every single transistor on billion transistor chip should function correctly for a promised period

Impact on Dependability

Probability that no transistors fail in X years

Latent Defects

- □ Traditional latent defect screening methods are less effective in nanometer devices
 - Increase in leakage current -> IDDq testing
 - Low Vdd voltage -> accelerating burn-in time by applying higher voltage not work
 - Other reliability screening methods (outlier screening using minVdd, Fmax etc) are used or under development to improve screening
 - Significant cost increase is inevitable

Latent Defects

- Applications that require very high reliability are increasing
 - Automotive (x-by-wire), remote patient monitoring, etc.
 - Less than perfect screenings will be serious problems in these applications

Cheap Silicon

- Good news: while test is expensive, silicon is cheap
 - Relentless scaling drastically reduced manufacturing cost
 - Using some chip area to reduce other costs is very natural (economically)
 - E.g., DFT circuit is widely used to improve fault coverage and lower test cost
 - What about design-for-reliability?
 - Field-repair capability

Cheap Silicon

- Many applications cannot use traditional nMR fault tolerance techniques
 - High cost, n-1 additional cores
 - High power
 - Larger heat dissipation can be a serious problem in automotive application
 - Common-mode-failure

Built-in Self-repair

- Built-in self-repair is widely used in memory industry
 - But, it targets yield improvement rather than reliability
 - Repairs are done at manufacturing step and cannot be used for field repair
 - IBM eFuse targets field-repair of embedded memory
 - Why not field-repair of random logic?

Built-in Self-repair

- Spare based field-repair
 - Achieves high reliability with low test cost
 - Has cost advantage over nMR
 - -TMR needs 3 cores, but spare needs 2 cores
 - Consumes little additional power
 - There are many technical challenges to be solved before wide adoption
 - Quick and accurate diagnosis, self-repair mechanism (functional and timing correctness), spare cost, short repair time, etc.