

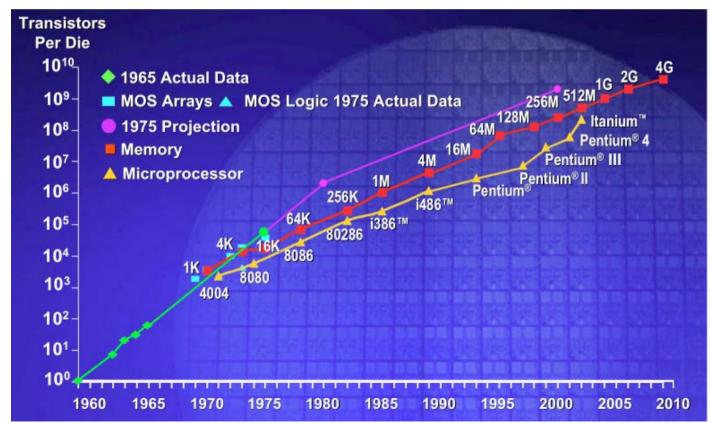
Dependability Issues Due to Scaling Towards Nanometer Size Devices:

Aggressive and Adaptive Mitigation Techniques Maybe Key for Solution

Arun K. Somani

Dependable Computing and Networking Laboratory Department of Electrical and Computer Engineering Iowa State University, Ames, IA, 50011

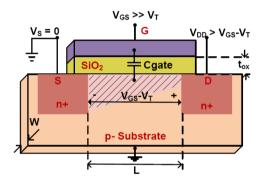
arun@iastate.edu


Technology Scaling

- Every 30% downscaling of technology node
 - Transistor density doubles
 - Gate delay reduces 30%
 - Operating frequency improves 43%
 - Active power consumption halves
 - 65% energy savings
- Frequency scaling inhibited with recent generations
 - Low power requirements
 - Process variations
 - Reliability concerns
- High speed, low leakage requirements
 - Determines the choice of supply and threshold voltages

How the Progress is Holding Up?

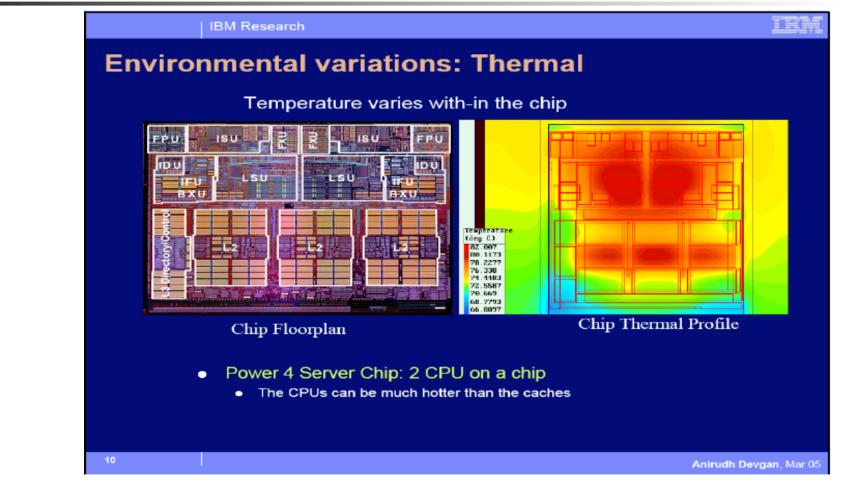
- Drives semiconductor performance
- Enables newer technologies



Source: Intel IOWA STATE UNIVERSITY

A Few Things Are Here to Stay

Leakage Power in MOSFETs


- Sufficient overdrive required for high speed switching
- Lower V_T leads to more leakage
- Gate Leakage
 - Tunneling current through gate dielectric
 - High-k dielectrics used in 45nm technology
 - Arrest gate leakage

- Process variations increase with scaling
 - Random and systematic variations in delay, power, yield
 - $V_t \downarrow \rightarrow \text{Delay} \downarrow, L_{eff} \uparrow \rightarrow \text{Delay} \uparrow, V_{dd} \downarrow \rightarrow \text{Delay} \uparrow, T \uparrow \rightarrow \text{Delay} \uparrow$
- Thermal Variation

Temperature Variations

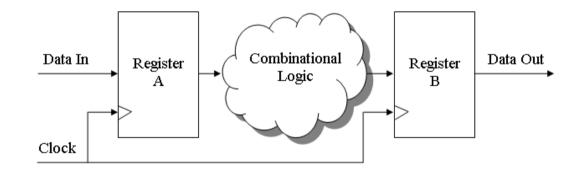
IOWA STATE UNIVERSITY

C

Original Source: Anirudh Devgan, IBM Research

Challenges for Future Manufacturing

- Ultimate limit 0.3 nm (Silicon atoms distance)
 - Various barriers seen over time
 - Overcome with changes in material and process technology
- Degradation of performance with downscaling
 - Interconnect delay increases with increase in resistance and capacitance of narrow and dense metal lines
- Higher power consumption will continue as a problem
- Unaffordable manufacturing cost for smaller sizes
 - Semiconductor companies moving towards fab-lite model
 - Yield and the time-to-market with newer technologies is becoming longer



What to Look Forward For?

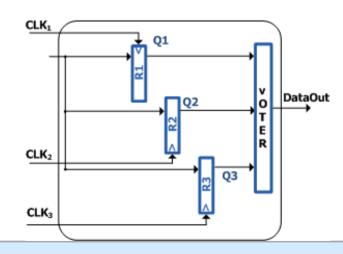
- Error tolerance rather than avoidance
- Built in fault tolerance for all designs
- Selective replication instead of full scale redundancy
- Design adaptability
 - Key for low overhead solutions
- Design optimizations
 - Dynamic schemes
 - Possible through speculation

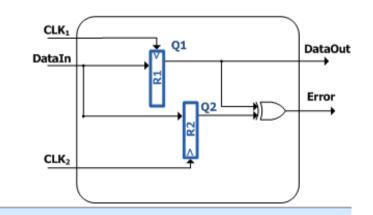
Reliable Overclocking (Aggressive Designs)

- Typically clock period is determined by the maximum delay from A to B which depends physical implementation, operating environment, and temperature and supply voltage variations
- Traditionally, worst case delays assumed
 - Result overly conservative clock period
- Pipelined processor

IOWA STATE

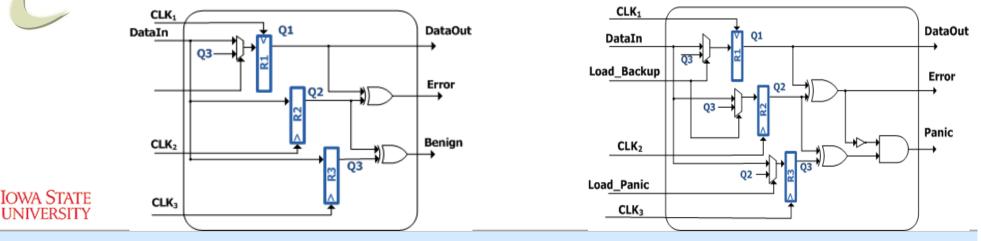
Longest/slowest stage limits the period of the entire pipeline

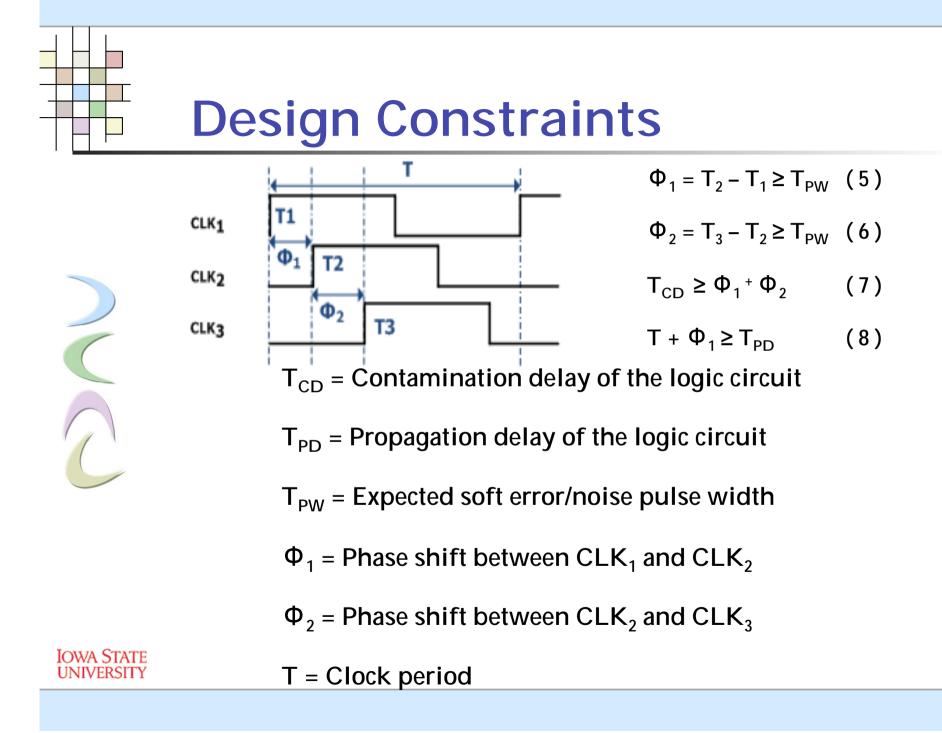

Reliable Overclocking (Aggressive Designs) – Contd.


- Problem to address in nanometer design space
 - Provide high performance by exploiting PVT variations
 - Enhance system dependability with low cost solutions
- Clock beyond worst case delay, relying on data dependent delays
- Timing errors may occur at overclocked speeds
- Aggressive, but reliable, design methodologies employ relevant timing error detection and recovery schemes
 - Razor-Micro'03, Sprite-DSN'07
- Performance 15-20%, Error rate below 1%
 - Safety critical systems, real-time constraints supported

Why Past Solutions are not Acceptable

- Traditional techniques
 - TMR solutions incur high cost and performance penalty
 - Dual latching dynamic optimization uses less area
 - False positives and high penalty for error recovery are concerns
 - Static power Vs Dynamic power
 - Both are comparable for today's technology
 - Thus logic replication is not a viable alternative





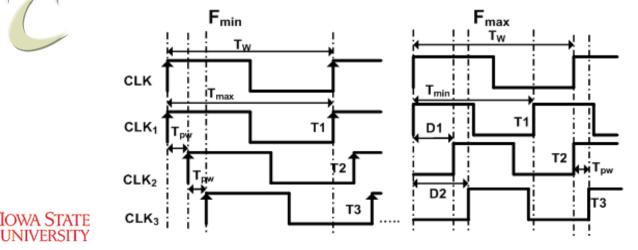
Offering More Design Features with Added Redundancy

- Soft Error Mitigation, SEM [DSN'09]
 - Circuit level speculation, local recovery, no false positives, high fault coverage (like TMR tolerates both SEU and SET)
 - No performance overhead, operating frequency $f_{sys} \leq 1/t_{pd}$
- Soft and Timing Error Mitigation, STEM [DSN'09]
 - Like SEM, but detects and correct timing errors
 - Can be deployed in aggressive system designs
 - Timing speculation, like overclocking [DSN'07] and DVS [MICRO'03]

Dynamic Frequency Scaling

- Clock frequency is scaled while satisfying the error rate constraint
- Limits of DFS

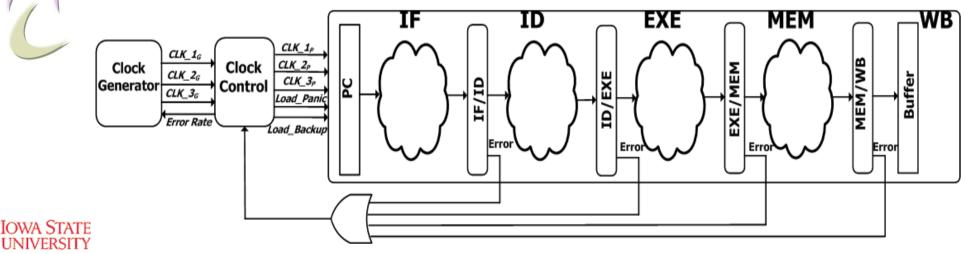
UNIVERSITY


- F_{MAX} (Minimum possible frequency) $D_2 D_1 \ge T_{PW}$
 - Set by worst-case design settings

$$T_{CD} \ge D_2 \qquad (9)$$

(10)

$$T_{MIN} + D_1 \ge T_{PD}$$
 (11)


- F_{MIN} (Maximum possible frequency)
 - As shown in equation (11)

 T_{CD} = Contamination delay of the logic circuit T_{PD} = Propagation delay of the logic circuit T_{PW} = Expected soft error/noise pulse width D_1 = Phase shift between CLK₁ and CLK₂ D_2 = Phase shift between CLK₂ and CLK₃

Pipeline Design

- Using STEM
 - Input clocks are constrained to provide fault tolerance
 - Extra buffer stage to ensure only "gold" data to memory
- Stage error signal: Generated from error signal in that stage
- Global error signal is generated from all stages
- Error rates are monitored and used by clock unit

Performance Analysis

- Limiting factor for frequency scaling
 - With frequency scaling, no. of input combinations resulting in greater delays than the new clock period increases

$$N \times t_{ov} + n \times N \times k \times t_{ov} < N \times t_{wc}$$

 $k < (t_{wc} - t_{ov}) / (n \times t_{ov})$

t_{wc} : worst case clock period t_{ov} : overclocked clock period n : no of cycles to recover N : total cycles required k : error rate

• For STEM cells

- 15% increase in frequency, error rate needs to be > 5.76% to yield no performance improvement
- For error rates < 1%, a 2.6% increase in frequency is required to compensate the penalty paid for error correction

Three Interdependent Concerns

- Performance
 - Device scaling
 - Architectural innovations
 - Better-than-worst-case designs
- Dependability
 - Soft errors, silicon defects
 - Fault mitigation techniques
- Power Consumption
 - Low power design
 - Adaptive control mechanisms
- All managed through aggressive design methodology

