

Dependability Issues Due to Scaling Towards Nanometer Size Devices:

Aggressive and Adaptive Mitigation Techniques Maybe Key for Solution

Arun K. Somani

Dependable Computing and Networking Laboratory Department of Electrical and Computer Engineering Iowa State University, Ames, IA, 50011

arun@iastate.edu

Technology Scaling

- Every 30% downscaling of technology node
	- **Transistor density doubles**
	- \mathbb{R}^2 Gate delay reduces 30%
	- F. Operating frequency improves 43%
	- Active power consumption halves
	- 65% energy savings
- **Fianding Frequency scaling inhibited with recent generations**
	- **Low power requirements**
	- n. Process variations
	- F. Reliability concerns
- **High speed, low leakage requirements**
	- **Determines the choice of supply and threshold voltages**

How the Progress is Holding Up?

- **Drives semiconductor performance**
- H **Enables newer technologies**

Transistors Per Die EXAMPLE 26 M S12M 1G 2G 4G

E4M 128M

EM Pentium® 4 1010 ◆ 1965 Actual Data $10⁹$ MOS Arrays A MOS Logic 1975 Actual Data $10^{8} -$ ● 1975 Projection 4M 16M **E** Memory $10⁷$ Pentium[®] III ▲ Microprocessor Pentium[®] II $1M$ Pentium $10⁶$ 256K **1486™** 80286^{1386™} **64K** $10⁵$ $10⁴$ 8086 8080 $10³$ 4004 $10²$ $10¹$ $10⁰$ 1975 2000 2005 1960 1965 1980 1990 1995 2010 1970 1985

Source: Intel **IOWA STATE UNIVERSITY**

A Few Things Are Here to Stay

Leakage Power in MOSFETs

- Sufficient overdrive required for high speed switching
- **-** Lower V $_{\mathsf{T}}$ leads to more leakage
- F. Gate Leakage
	- **Tunneling current through gate dielectric**
	- П High-k dielectrics used in 45nm technology
		- **Arrest gate leakage**

- Process variations increase with scaling
	- П Random and systematic variations in delay, power, yield
	- E $\mathsf{V}_\mathsf{t}\downarrow\,\!\rightarrow\, \mathsf{Delay}\downarrow$, $\mathsf{L}_\mathsf{eff}\uparrow\,\rightarrow\, \mathsf{Delay}\uparrow$, $\mathsf{V}_\mathsf{dd}\downarrow\,\rightarrow\, \mathsf{Delay}\uparrow$, T $\uparrow\,\rightarrow\,$ Delay ↑
- L. Thermal Variation

IOWA STATE UNIVERSITY

Temperature Variations

IOWA STATE UNIVERSITY

 $\overline{\mathcal{C}}$

Original Source: Anirudh Devgan, IBM Research

Challenges for Future Manufacturing

- Ultimate limit 0.3 nm (Silicon atoms distance)
	- **Narious barriers seen over time**
	- **Dimetable Overcome with changes in material and process technology**
- F Degradation of performance with downscaling
	- П Interconnect delay increases with increase in resistance and capacitance of narrow and dense metal lines
- **Higher power consumption will continue as a problem**
- b. Unaffordable manufacturing cost for smaller sizes
	- Semiconductor companies moving towards fab-lite model
	- **Pand 20 Fm** Yield and the time-to-market with newer technologies is becoming longer

What to Look Forward For?

- Error tolerance rather than avoidance
- Built in fault tolerance for all designs
- Selective replication instead of full scale redundancy
- $\mathcal{L}(\mathcal{A})$ Design adaptability
	- Key for low overhead solutions
- F Design optimizations
	- **Dynamic schemes**
	- $\mathcal{L}_{\mathcal{A}}$ Possible through speculation

 \subset

Reliable Overclocking (Aggressive Designs)

- F. **Typically clock period is determined by the maximum** delay from A to B which depends physical implementation, operating environment, and temperature and supply voltage variations
- L. Traditionally, worst case delays assumed
	- **Result overly conservative clock period**
- **Pipelined processor**

IOWA STATE UNIVERSITY

F. Longest/slowest stage limits the period of the entire pipeline

Reliable Overclocking (Aggressive Designs) – Contd.

- **Problem to address in nanometer design space**
	- **Provide high performance by exploiting PVT variations**
	- П Enhance system dependability with low cost solutions
- F. Clock beyond worst case delay, relying on data dependent delays
- Timing errors may occur at overclocked speeds
- F. Aggressive, but reliable, design methodologies employ relevant timing error detection and recovery schemes
	- Razor-Micro'03, Sprite-DSN'07
- **Performance 15-20%, Error rate below 1%**
	- Safety critical systems, real-time constraints supported

Why Past Solutions are not Acceptable

- $\mathcal{L}_{\mathrm{eff}}$ Traditional techniques
	- П TMR solutions incur high cost and performance penalty
	- П Dual latching dynamic optimization uses less area
	- П False positives and high penalty for error recovery are concerns
	- Static power Vs Dynamic power
		- П Both are comparable for today's technology
		- П Thus logic replication is not a viable alternative

Offering More Design Features with Added Redundancy

- $\mathcal{L}^{\mathcal{L}}$ Soft Error Mitigation, SEM [DSN'09]
	- \blacksquare Circuit level speculation, local recovery, no false positives, high fault coverage (like TMR tolerates both SEU and SET)
	- No performance overhead, operating frequency $f_{sys} \leq 1/t_{pd}$
- $\mathcal{L}_{\rm{max}}$ Soft and Timing Error Mitigation, STEM [DSN'09]
	- Like SEM, but detects and correct timing errors
	- Ē. Can be deployed in aggressive system designs
	- Timing speculation, like overclocking [DSN'07] and DVS [MICRO'03]

Dynamic Frequency Scaling

- Clock frequency is scaled while satisfying the error rate constraint
- F Limits of DFS

Iowa State UNIVERSITY

- **•** F_{MAX} (Minimum possible frequency) $D_2 D_1 \ge T_{\text{PW}}$ (10)
	- Set by worst-case design settings
- T_{CD} \geq D **2 (9)**
-

$$
T_{MIN} + D_1 \geq T_{PD} \tag{11}
$$

- F $_{\rm MIN}$ (Maximum possible frequency)
	- **As shown in equation (11)**

T_{CD} = Contamination delay of the logic circuit T_{PD} = Propagation delay of the logic circuit T_{PW} = Expected soft error/noise pulse width D_1 = Phase shift between CLK₁ and CLK₂ D_2 = Phase shift between CLK₂ and CLK₃

Pipeline Design

- Using STEM
	- ▉ Input clocks are constrained to provide fault tolerance
	- ▉ Extra buffer stage to ensure only "gold" data to memory
- b. Stage error signal: Generated from error signal in that stage
- p. Global error signal is generated from all stages
- Error rates are monitored and used by clock unit

Performance Analysis

- Limiting factor for frequency scaling
	- With frequency scaling, no. of input combinations resulting in greater delays than the new clock period increases

$$
N \times t_{ov} + n \times N \times k \times t_{ov} < N \times t_{wc}
$$

 $k < (t_{wc}-t_{ov}) / (n \times t_{ov})$

Notation:

 t_{wc} : worst case clock period t_{ov} : overclocked clock period n : no of cycles to recover N : total cycles required k : error rate

■ For STEM cells

- 15% increase in frequency, error rate needs to be > 5.76% to yield no performance improvement
- For error rates < 1%, a 2.6% increase in frequency is required to compensate the penalty paid for error correction

Three Interdependent Concerns

- **Performance**
	- П Device scaling
	- П Architectural innovations
	- **Better-than-worst-case designs**
- **Dependability**
	- **Soft errors, silicon defects**
	- П Fault mitigation techniques
- Power Consumption
	- П Low power design
	- **Adaptive control mechanisms**
- **All managed through aggressive design methodology**

