Multi-Level Resiliency Techniques for Nanoscale Technology

Helia Naeimi Intel Labs

Sources of Unreliability

Variation on Vt

Aging Effect on Vt

Soft Error Rate

Incremental Change or Big Change?

- High reliability requirement
 - Space program
 - Scientific Computation applications
 - Financial application
- Future Technology
 - Resiliency is essential
 - Cost is the limiting

How to design inexpensive resiliency techniques for commercial systems?

An already proved approach!

Multi-level Resiliency for Memory System

System Design Trends

ITRS 2007-- SOC

2-core: 2007

4-core: 2008

8-core: 2009?

(intel)

"Processors are new NAND gates."

Multi-Level Resiliency Techniques

- How to design inexpensive resiliency techniques for commercial systems?
- Expanding resiliency techniques to the system level
 - Benefits
 - More efficient
 - Adaptive (resilient)
 - Flexible
 - Challenges
 - New Programming paradigm
 - This is not only a technical problem to solve
 - Cross-layer resiliency \rightarrow cross-industry solution

