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The main messages

¾ sketch DARTS clocking scheme for SoC

¾ study systematic timing variations in asynchronous 
circuits

¾ influence of k-of-n voting (fault tolerance) on

− tractability of analysis

− stability

− robustness
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Clocking in SoCs

9 global synchrony 
(< 1 tick)

synchronous SoC

0single point 
of failure

☺ very powerful abstraction
efficient metastability-free communication

/ nanoscale requires fault tolerance
for clocks as well [Seifert et al.]
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Clocking in SoCs

9 global synchrony 
(< 1 tick)

synchronous SoC GALSDARTS

0single point 
of failure

9 global synchrony 
(> 1 tick)

9 no single point
of failure

9 no single point
of failure

0 NO (inherent)
global synchrony 



DARTS Principle & Implementation

...

...

(1) Initially:
(2) send tick(0) to all; clock:= 0;
(3) If received tick(m) from at least f+1 remote nodes and m > clock:
(4) send tick(clock+1),…, tick(m) to all; clock:= m;
(5) If received tick(m) from at least 2f+1 remote nodes and m >= clock:
(6) send tick(m+1) to all; clock:= m+1;
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Distributed Algorithms for Robust Tick Synchronization

− asynchronous HW-
implementation

− two concurrent rules

− k-of-n- thresholds
for fault tolerance



Properties of the DARTS Clock
9 precision of a few clock cycles & bounded accuracy

– can be guaranteed by formal proof [EDCC06, PODC09]
– on condition of some (weak) routing constraints

9 a system of 3f+2 nodes can tolerate f Byzantine faults
(nodes and interconnect)
– guaranteed by the same formal proof

? stability of clock frequency
– important for many applications
– BUT: adaptive systems cannot be completely stable

? robustness of clock frequency
– important for nanotechnology
– variations (tolerances, environment,memb-ship) affect frequency
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An Interesting Observation

0 permanent „oscillation“ of round time
0 systematic, not random effect!
0 strong dependence on wire delays
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A Closer Look…
¾ theoretical model

− min/max/+ algebra difference equation

¾ simplify problem
− simplify algorithm − simplify model topology
9wait-for-all instead of k-of-n 9 3 nodes only
9no concurrency (one rule)

can use max/+ algebra diff equ
from − nonlinear control theory

− game theory
− asynchronous logic
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An Example
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longest paths of length k ending in node P 
determine P‘s round times
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Another Example
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characteristics:
− length of initial transient phase: 

depends on delays & initial phase alignment
− mean rate („cycle vector“) during periodic phase: 

determined by cycle with maximum mean cycle weight
− peak-to-peak variation (inluding/excluding transient phase)
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Is this Relevant for HW Designers?

¾ timing oscillations in all asynchronous architectures
− with reasonable complexity
− under some conditions that may not always apply
− usually not an issue in asynchronous designs
− still should be known and considered
− theory largely available (max/+ algebra)

¾ the specific problems when fault tolerance is required
− concurrent execution of two (or more) rules
− use of k-of-n thresholds instead of wait-for-all
− same principle but requires complex min/max/+ algebra
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Our Current Status wrt Stability
9 identified appropriate formalism

9 developed simulation environment

9 derived conditions for oscillation for simplified case
(max/+)

9 applying „Duality Conjecture“ to explore complex case
(min/max/+)
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min (cycle vectors)
…

≈ stabilizing



Our Current Status wrt Robustness
9 good robustness against delay variations
9wait-for-all causes saturation (masks „faster than slowest“)

9 k-of-n causes 2nd saturation („also masks slower than kth“)
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Still a Far Way to Go
¾ need efficient algorithms for min/max/+ algebra to 

characterize
− mean rate
− maximum swing
− transient phase length

¾ explore more complicated cases

¾ consider real worls effects
− noise and jitter
− rise/fall asymmetry, …
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Conclusion
¾ nanoelectronics needs ¾ adaptive timing

¾ fault tolerance
¾ robustness

¾ round times in asyn loops can show systematic variance

¾ characterization possible for wait-for-all architectures
(max/+ algebra)

¾ FT solutions need k-of-n architectures

¾ this severely complicates the analysis (min/max/+ alg.)

¾ k-of-n improves asynchronous designs‘ robustness
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Thank you!



The DARTS Architecture

FU1

FU2

FU3

data bus

Clock tree

TG algs

TG network

Distributed clock

• modules FUi augmented with
simple local clock unit (TG 
alg)

• TG algs communicate over
dedicated bus (TG network) 
to generate local clocks

• need 3f+1 modules to 
tolerate f arbitrary clock faults

Synchronous solution



What we want…

FU1

TG alg p

p

q

tick(3) tick(4)

FU2

TG alg q



The DARTS clock-generation node

...

...
...

...
......

...

clock
inputs

clock
output

threshold function
and tick generationcounter

modules


