
On the Stability and Robustness of
Non-Synchronous Circuits with Timing Loops

Matthias Függer, Gottfried Fuchs, Ulrich Schmid and Andreas Steininger

Vienna University of Technology
Embedded Computing Systems Group

{fuegger, fuchs, schmid, steininger}@ecs.tuwien.ac.at

2

The main messages

¾ sketch DARTS clocking scheme for SoC

¾ study systematic timing variations in asynchronous
circuits

¾ influence of k-of-n voting (fault tolerance) on

− tractability of analysis

− stability

− robustness

3

Clocking in SoCs

9 global synchrony
(< 1 tick)

synchronous SoC

0single point
of failure

☺ very powerful abstraction
efficient metastability-free communication

/ nanoscale requires fault tolerance
for clocks as well [Seifert et al.]

4

Clocking in SoCs

9 global synchrony
(< 1 tick)

synchronous SoC GALSDARTS

0single point
of failure

9 global synchrony
(> 1 tick)

9 no single point
of failure

9 no single point
of failure

0 NO (inherent)
global synchrony

DARTS Principle & Implementation

...

...

(1) Initially:
(2) send tick(0) to all; clock:= 0;
(3) If received tick(m) from at least f+1 remote nodes and m > clock:
(4) send tick(clock+1),…, tick(m) to all; clock:= m;
(5) If received tick(m) from at least 2f+1 remote nodes and m >= clock:
(6) send tick(m+1) to all; clock:= m+1;

5

Distributed Algorithms for Robust Tick Synchronization

− asynchronous HW-
implementation

− two concurrent rules

− k-of-n- thresholds
for fault tolerance

Properties of the DARTS Clock
9 precision of a few clock cycles & bounded accuracy

– can be guaranteed by formal proof [EDCC06, PODC09]
– on condition of some (weak) routing constraints

9 a system of 3f+2 nodes can tolerate f Byzantine faults
(nodes and interconnect)
– guaranteed by the same formal proof

? stability of clock frequency
– important for many applications
– BUT: adaptive systems cannot be completely stable

? robustness of clock frequency
– important for nanotechnology
– variations (tolerances, environment,memb-ship) affect frequency

6

0 2 4 6 8 10
7

7.5

8

8.5

9

9.5

x 10-9

tick number

ro
un

d
tim

es
 [s

]

An Interesting Observation

0 permanent „oscillation“ of round time
0 systematic, not random effect!
0 strong dependence on wire delays

70 2 4 6 8 10
7

7.5

8

8.5

9

9.5

x 10-9

tick number

Setup: - 5 node DARTS system
- pronounced wire delays

7

A Closer Look…
¾ theoretical model

− min/max/+ algebra difference equation

¾ simplify problem
− simplify algorithm − simplify model topology
9wait-for-all instead of k-of-n 9 3 nodes only
9no concurrency (one rule)

can use max/+ algebra diff equ
from − nonlinear control theory

− game theory
− asynchronous logic

8

An Example

101

1

8

4

1

1 2 3 4

4

5

6

7

8

9

10

tick number
ro

un
d

tim
es

 [s
]

9

longest paths of length k ending in node P
determine P‘s round times

tick number k
ro

un
d

tim
e

Another Example

101

1

8

1

5

characteristics:
− length of initial transient phase:

depends on delays & initial phase alignment
− mean rate („cycle vector“) during periodic phase:

determined by cycle with maximum mean cycle weight
− peak-to-peak variation (inluding/excluding transient phase)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

tick number
ro

un
d

tim
es

 [s
]

10

ro
un

d
tim

e
tick number k

Is this Relevant for HW Designers?

¾ timing oscillations in all asynchronous architectures
− with reasonable complexity
− under some conditions that may not always apply
− usually not an issue in asynchronous designs
− still should be known and considered
− theory largely available (max/+ algebra)

¾ the specific problems when fault tolerance is required
− concurrent execution of two (or more) rules
− use of k-of-n thresholds instead of wait-for-all
− same principle but requires complex min/max/+ algebra

11

Our Current Status wrt Stability
9 identified appropriate formalism

9 developed simulation environment

9 derived conditions for oscillation for simplified case
(max/+)

9 applying „Duality Conjecture“ to explore complex case
(min/max/+)

12

min (cycle vectors)
…

≈ stabilizing

Our Current Status wrt Robustness
9 good robustness against delay variations
9wait-for-all causes saturation (masks „faster than slowest“)

9 k-of-n causes 2nd saturation („also masks slower than kth“)

13

f+1

2f+11
1

1

1

1
p

„wait for all“

DARTS DARTS
(different
setting)

p p p

Still a Far Way to Go
¾ need efficient algorithms for min/max/+ algebra to

characterize
− mean rate
− maximum swing
− transient phase length

¾ explore more complicated cases

¾ consider real worls effects
− noise and jitter
− rise/fall asymmetry, …

14

Conclusion
¾ nanoelectronics needs ¾ adaptive timing

¾ fault tolerance
¾ robustness

¾ round times in asyn loops can show systematic variance

¾ characterization possible for wait-for-all architectures
(max/+ algebra)

¾ FT solutions need k-of-n architectures

¾ this severely complicates the analysis (min/max/+ alg.)

¾ k-of-n improves asynchronous designs‘ robustness

15

Thank you!

The DARTS Architecture

FU1

FU2

FU3

data bus

Clock tree

TG algs

TG network

Distributed clock

• modules FUi augmented with
simple local clock unit (TG
alg)

• TG algs communicate over
dedicated bus (TG network)
to generate local clocks

• need 3f+1 modules to
tolerate f arbitrary clock faults

Synchronous solution

What we want…

FU1

TG alg p

p

q

tick(3) tick(4)

FU2

TG alg q

The DARTS clock-generation node

...

...
...

...
......

...

clock
inputs

clock
output

threshold function
and tick generationcounter

modules

