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Introduction

Motivation

Introduction

The Reliability Problem

“Future designs will consist of 100 billion transistors, 20 billion of
which are unusable due to manufacturing defects; 10 billion will
fail over time due to wear-out, and regular intermittent errors will
be observed.”

[Borkar, 2005]

A system of 2048 HP AlphaServer ES45s was affected by an
average of 24.0 parity errors every week determined to be caused
by radiation strikes.

[Michalak et al., 2005]
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Motivation

The Reliability Problem

Moore’s law is expected to apply for the next 10 years giving us
smaller and faster devices with reduced power. But, there is a
downside:

Smaller devices make ICs more susceptible to transient faults

Wearout and drift effects more prominent

- e.g., negative bias temperature instability (NBTI),
electromigration (EM), gate oxide integrity (GOI)

Increased process variations also causing faults

The upshot of decreased reliability is the need for architectural
mechanisms for fault tolerance.
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Motivation

Requirements of a Hardware Reliability Solution

Reliability mechanisms need to have low cost

- small area overhead
- low performance overhead
- small additional power consumption

Mechanism must be configurable at runtime

- Switched off for users who do not require reliability
- Switched off for applications that are inherently redundant

Transparent to software

- i.e., must work with existing software
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The Power Problem

Power and peak temperature are key performance limiters in
CMPs [Isci et al., 2006]

- Since power budget for a chip is fixed, decreasing the power
for a single core increases available power for, and hence
performance of, other cores

Decreasing operating temperatures leads to a significant
increase in device reliability [Parulkar et al., 2008]

- Decreasing temperature from 105 ◦C to 66 ◦C increased GOI
time-to-breakdown by a factor of 9; average failure rate
reduced by a factor 17

- NBTI degradation decreased by 29%, equivalent to an
eight-fold increase in lifetime

Moral Methods for decreasing the power overhead of fault tolerance
mechanisms are required
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Introduction

Related Work

Fault Tolerance Based on RMT

Several approaches based on Redundant Multithreading (RMT);

Examples: AR-SMT, SRT, CRT1

Redundancy by running two copies of the same program

Performance overhead is between 20− 30%
But base assumption is a SMT processor:

Lee and Brooks [2005] study efficency of SMT

- Efficient SMT requires wide and deep pipeline
- Leads to higher area, power requirement

Comparison with CMPs shows that [Li et al., 2005]:

- CMPs better for CPU bound workloads
- SMT better for memory bound workloads

Interference between threads [Mathis et al., 2005]

1[Mukherjee et al., 2002; Reinhardt and Mukherjee, 2000; Rotenberg, 1999]
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Related Work

Fault Tolerance Based on CMPs: Fingerprinting

Question: When to do output comparison?

Chip external pins comparison increases error detection latency

Comparing cache/register updates requires large bandwidth

Idea: Compress hash of register updates, load/store addresses,
store values using CRC codes to obtain a fingerprint and compare
fingerprints instead.

Comparison bandwidth is minimal

Error detection latency is also very small

[Smolens et al., 2004]
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Summary of Related Work

Existing Solutions Have Some Drawbacks:

RMT has low power/performance costs, but based on SMT
which might not be desirable for all applications

Fault tolerant architectures based on CMPs like
Fingerprinting, Reunion and others all have a power overhead
that is nearly 100%

Therefore, this paper investigates the design of a fault tolerant
architecture based on CMPs which has a low power and
performance overhead.
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Detailed Description

Base Architecture

Overview

P-core R-coreinterconnect

L2 $$$ L2 $$$

Two cores execute the same instruction stream

Dedicated interconnect between each pair of cores

One core designated as primary (P-core) and another as
redundant (R-core)
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Detailed Description

Base Architecture

Overview (contd.)

P and R cores execute the same instruction stream, and appear as
a single logical processor to the application.
Input Replication:

- P-core accesses memory hierarchy, R-core does not

- P-core transfers load values to R-core over interconnect

- R-core stores values in load value queue (LVQ)2

- R-cores accesses LVQ instead of data cache

Output comparison:

- Register updates, branch targets, load and store addresses
store values hashed using CRC code to generate fingerprint3

- Cores compute and exchange fingerprints to detect errors

2Introduced by Reinhardt and Mukherjee [2000]
3Introduced by Smolens et al. [2004]
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Base Architecture

Block Diagram

FetchBPred BOQ

Decode

Issue Queue LSQROB

Reg File FUs D-cache LVQ

WB

Retire

Fingerprint To Interconnect

From Interconnect

Newly added structures are shaded and not used when redundant execution is not performed.

- Branch outcomes from P-core stored in BOQ of R-core

- Used instead of branch predictor, BTB in R-core

- Fetching stalls if BOQ empty
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Detailed Description

Motivating DVFS through Interval Analysis

Interval Analysis: Introduction

Interval Analysis

Performance of superscalar processors can be analyzed by dividing
time into intervals between miss events.

[Eyerman et al., 2006]
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Interval Analysis: Introduction
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Assumption: Superscalar processors are designed to stream
instructions through pipeline at a rate equal to issue width

This smooth flow of instructions is interrupted by miss events

Examples of miss events: branch mispredictions, I-cache,
D-cache misses, TLB misses, long latency instructions
Effect of miss events:

1 A decrease in the number of useful instructions issued per cycle
2 A period of no useful work
3 Miss event is resolved and smooth flow of instructions resumes
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Motivating DVFS through Interval Analysis

Miss Events in the R-Core

What are the possible miss events in the R-core?

No branch mispredictions, D-cache misses

Only I-cache misses, TLB misses and a few others

New types of miss events:

BOQ stall: BOQ empty, waiting for branch outcome

LVQ miss: Load value not yet available

Experiments indicate that above two dominate execution time

Observation: Resolution time of BOQ stalls and LVQ misses
depends on P-core execution, not on R-core
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DVFS in R-Core
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P-core performance

R-core performance

Effect of scaling down frequency in R-core:

Decreasing frequency of R-core increases interval length

But miss event resolution times are unaffected

Overall execution time need not increase if size of interval does
not grow beyond the resolution time of the next miss event
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Detailed Description

DVFS Algorithm for Redundant Execution

Frequency Scaling

Idea

Run R-core at a lower frequency as compared to P-core; since miss
event resolution times are controlled by P-core, we get a power
benefit with only a small performance penalty.

Queue sizes can track program phase changes:

Number of elements in LVQ and BOQ are a measure of how
far “behind” the R-core execution is compared to P-core

Growing queue size indicates R-core is slower than P-core

Shrinking queue size indicates R-core is faster than necessary
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Detailed Description

DVFS Algorithm for Redundant Execution

DVFS Algorithm

This suggests a simple algorithm that uses queue sizes to adjust
R-core frequency.

Algorithm

After every Ts seconds:

1 If size(LV Q) > Th or size(BOQ) > Th:

- Increase frequency and voltage

2 Else If size(LV Q) < Tl or size(BOQ) < Tl:

- Decrease frequency and voltage

3 Else do nothing

Th is the high threshold and Tl is the low threshold. The algorithm
tries to keep the queue sizes in between Tl and Th.
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Methodology

Modified SESC cycle accurate simulator

Two phase simulation approach:

- Run P-core first, collect trace of interconnect events
- Run R-core next using generated trace

Simple first order power model

Assumption: voltage scales linearly with frequency
Estimatation of energy consumed by R-core assuming activity
is the same as P-core at reduced voltage/frequency

Workload

- crafty, mcf and vpr SPECint 2000 benchmarks with
MinneSPEC reduced inputs [KleinOsowski and Lilja, 2002]

- ammp, mgrid and swim SPECfp 2000 benchmarks and
simulated Early SimPoints [Perelman et al., 2003]
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Power and Performance Results

Performance Overhead

Normalized execution time = Exec. time of proposed architecture / Exec. time of non-fault tolerant execution
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Marginal improvement in performance with increased queue sizes

Performance overhead is limited to a few percent in all cases
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Energy Consumed By R-core

Normalized Energy = Energy of R-core / Energy of non-fault tolerant execution
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Energy overhead of redundant exection is less than 25%

Queue sizes don’t seem to have a significant effect.
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ED2 Product

NormalizedED2 = NormalizedEnergy2 ×NormalizedExecutionTime
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ED2 savings similar to the energy savings; mean value of about 76%.
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Conclusion

Conclusion

An architecture for redundant execution with the following
characteristics:

Requires only minor modifications to existing CMPs

Works with existing software

Low performance overhead (∼ 1%)

Significant reduction of energy overhead (∼ 77%)
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Conclusion

Thank You!
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