Software Mechanisms for Tolerating Soft Errors
in an Automotive Brake-Controller

Daniel Skarin Johan Karlsson

Department of Computer Science and Engineering
Chalmers University of Technology
Goteborg, Sweden

June 29, 2009

Introduction

Soft errors are becoming an increasingly important source of
computer failures, also in embedded systems.

» The dominant cause of soft errors are terrestrial cosmic rays.

» Circuit- and architectural level mechanisms in microprocessors
may not provide perfect error coverage.
= Soft errors can reach the architected state.

Goal: Investigate the possibility of building a brake controller
program, which is fail-bounded with respect to soft errors.

Fail-bounded control systems

Control systems can produce incorrect outputs and still
provide acceptable performance.

A fail-bounded system is allowed to produce incorrect outputs,
which have a benign effect on the controlled object.

Error detection mechanisms must enforce an upper bound on
the difference between an incorrect output and the
corresponding fault-free output.

The concept of fail-bounded systems was introduced by Silva
et al. in 1998.

Example brake-by-wire system

Research questions

General question

» Can we make a non-redundant control ECU fail-bounded with
respect to soft errors?

Question addressed by this work

» Can we make a non-redundant control ECU fail-bounded with
respect to single bit-flip errors in ISA registers and the data
segment of the main memory?

Contributions

Extensive evaluation of two simple software mechanisms aimed at
achieving a fail-bounded brake controller.

» The error coverage of the mechanisms have been determined
for single bit-flips in ISA registers and the data segment of the
main memory.

» Exhaustive evaluation for three control loops: All possible
single bit-flips injected.

» All ISA registers including the program counter tested.

Limitations of the single bit-flip fault model

» We emulate soft errors in the architected state as single
bit-flip errors in registers and memory.

» Single bit-flips are injected via the debug port of the target
microcontroller.

Uncertainties
» Soft errors may not manifest themselves as single bit-flips.

» Out-of-specification behaviors of the processor are not
considered.

Prototype brake controller

» Actuator commands are produced by a Pl-controller

» We distinguish between benign failures and critical failures.

Speeg [s)

Low-cost error detection and recovery

Software mechanisms

» Error detection:
» Run-time check for invalid transitions of the controller’s
integral state.
» Stack pointer protected by duplication and comparison check.
» Error recovery:

» Rollback to previous controller state
» Soft reset

Hardware exceptions for error detection

» Machine check exception, Alignment exception, Floating point
assist exception, ...

Experimental evaluation

We evaluated two versions of the brake controller:
» Basic version — Hardware exceptions for error detection.

» Robust version — Hardware exceptions and software
implemented error detection and recovery.

Extensive fault injection experiments conducted for each version.

» For three control loops, we injected all possible single bit-flips
in “live" ISA registers and the data segment of the memory.

» About 30000 errors were injected for each program version
and control loop iteration.

Important observations

» Qur software mechanisms combined with hardware exceptions
reduced the proportion of critical failures significantly.

» Only 0.04% of the injected errors resulted in critical failures,
compared to 1.2% for the basic version.

» A dominant cause of critical failures was control-flow errors.

» In total, about 56% of the injected errors caused incorrect
outputs in the robust version.

» These errors had no significant impact on the brake
performance.

Conclusions

» Our results show that simple mechanisms for error detection
and recovery can effectively enforce fail-bounded semantics for
the brake controller with respect to single bit errors.

» Open issues
» How valid is the single bit-flip assumption?
» How do we model multiple bit-flips?
» What is the impact of out-of-specification behaviors of the

microprocessor?

» FIRST THINGS FIRST
» SUBMIT STUDY
» MY STUDIES

edit account tech suppart

Explore Study Submit Study

EXPLORE STUDY

SOFTWARE MECHANISMS FOR
TOLERATING SOFT ERRORS IN A
AUTOMOTIVE BRAKE-
CONTROLLER

Study Description

Raw Data & Documents

OLAP

Data Mining

sQL

Information Retrieval

This study consists on the desizn and evalution of
two software implemented error detection and system
recovery mechanisms that protect a prototype brake-
by-wire cont roller Trom soft errors, Results from error
injection experiments show that our simple software
mechanisms, combined with hardware exceptions far
error detection, can effectively reduce the number of
critical falures caused by soft errors in the brake
cantraler,

Author(s): Daniel Skarin and Johan Karlsson

Fault injection data available on-line

http://www.amber-project.eu

Seach

Peopiz
52 |

OTHER COORDIMATION
ACTIONS

> 1T Forward

» Think-Trust

