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Introduction

Soft errors are becoming an increasingly important source of
computer failures, also in embedded systems.

» The dominant cause of soft errors are terrestrial cosmic rays.

» Circuit- and architectural level mechanisms in microprocessors
may not provide perfect error coverage.
= Soft errors can reach the architected state.

Goal: Investigate the possibility of building a brake controller
program, which is fail-bounded with respect to soft errors.



Fail-bounded control systems

Control systems can produce incorrect outputs and still
provide acceptable performance.

A fail-bounded system is allowed to produce incorrect outputs,
which have a benign effect on the controlled object.

Error detection mechanisms must enforce an upper bound on
the difference between an incorrect output and the
corresponding fault-free output.

The concept of fail-bounded systems was introduced by Silva
et al. in 1998.



Example brake-by-wire system




Research questions

General question

» Can we make a non-redundant control ECU fail-bounded with
respect to soft errors?

Question addressed by this work

» Can we make a non-redundant control ECU fail-bounded with
respect to single bit-flip errors in ISA registers and the data
segment of the main memory?



Contributions

Extensive evaluation of two simple software mechanisms aimed at
achieving a fail-bounded brake controller.

» The error coverage of the mechanisms have been determined
for single bit-flips in ISA registers and the data segment of the
main memory.

» Exhaustive evaluation for three control loops: All possible
single bit-flips injected.

» All ISA registers including the program counter tested.



Limitations of the single bit-flip fault model

» We emulate soft errors in the architected state as single
bit-flip errors in registers and memory.

» Single bit-flips are injected via the debug port of the target
microcontroller.

Uncertainties
» Soft errors may not manifest themselves as single bit-flips.

» Out-of-specification behaviors of the processor are not
considered.




Prototype brake controller

» Actuator commands are produced by a Pl-controller

» We distinguish between benign failures and critical failures.
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Low-cost error detection and recovery

Software mechanisms

» Error detection:
» Run-time check for invalid transitions of the controller’s
integral state.
» Stack pointer protected by duplication and comparison check.
» Error recovery:

» Rollback to previous controller state
» Soft reset

Hardware exceptions for error detection

» Machine check exception, Alignment exception, Floating point
assist exception, ...




Experimental evaluation

We evaluated two versions of the brake controller:
» Basic version — Hardware exceptions for error detection.

» Robust version — Hardware exceptions and software
implemented error detection and recovery.

Extensive fault injection experiments conducted for each version.

» For three control loops, we injected all possible single bit-flips
in “live" ISA registers and the data segment of the memory.

» About 30000 errors were injected for each program version
and control loop iteration.



Important observations

» Qur software mechanisms combined with hardware exceptions
reduced the proportion of critical failures significantly.

» Only 0.04% of the injected errors resulted in critical failures,
compared to 1.2% for the basic version.

» A dominant cause of critical failures was control-flow errors.

» In total, about 56% of the injected errors caused incorrect
outputs in the robust version.

» These errors had no significant impact on the brake
performance.



Conclusions

» Our results show that simple mechanisms for error detection
and recovery can effectively enforce fail-bounded semantics for
the brake controller with respect to single bit errors.

» Open issues
» How valid is the single bit-flip assumption?
» How do we model multiple bit-flips?
» What is the impact of out-of-specification behaviors of the

microprocessor?
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