
Software Mechanisms for Tolerating Soft Errors
in an Automotive Brake-Controller

Daniel Skarin Johan Karlsson

Department of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden

June 29, 2009



Introduction

I Soft errors are becoming an increasingly important source of
computer failures, also in embedded systems.

I The dominant cause of soft errors are terrestrial cosmic rays.

I Circuit- and architectural level mechanisms in microprocessors
may not provide perfect error coverage.
⇒ Soft errors can reach the architected state.

I Goal: Investigate the possibility of building a brake controller
program, which is fail-bounded with respect to soft errors.



Fail-bounded control systems

I Control systems can produce incorrect outputs and still
provide acceptable performance.

I A fail-bounded system is allowed to produce incorrect outputs,
which have a benign effect on the controlled object.

I Error detection mechanisms must enforce an upper bound on
the difference between an incorrect output and the
corresponding fault-free output.

I The concept of fail-bounded systems was introduced by Silva
et al. in 1998.



Example brake-by-wire system

Wheel 

ECU

Wheel 

ECU

Pedal 

ECU

Wheel 

ECU

Wheel 

ECU



Research questions

General question

I Can we make a non-redundant control ECU fail-bounded with
respect to soft errors?

Question addressed by this work

I Can we make a non-redundant control ECU fail-bounded with
respect to single bit-flip errors in ISA registers and the data
segment of the main memory?



Contributions

Extensive evaluation of two simple software mechanisms aimed at
achieving a fail-bounded brake controller.

I The error coverage of the mechanisms have been determined
for single bit-flips in ISA registers and the data segment of the
main memory.

I Exhaustive evaluation for three control loops: All possible
single bit-flips injected.

I All ISA registers including the program counter tested.



Limitations of the single bit-flip fault model

I We emulate soft errors in the architected state as single
bit-flip errors in registers and memory.

I Single bit-flips are injected via the debug port of the target
microcontroller.

Uncertainties
I Soft errors may not manifest themselves as single bit-flips.

I Out-of-specification behaviors of the processor are not
considered.



Prototype brake controller

I Actuator commands are produced by a PI-controller

I We distinguish between benign failures and critical failures.

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Brake actuator command

 

 

Incorrect output

Fault-free output

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

S
p
e
e
d
 [

m
/s

]

Time [s]

Wheel speed

0 0.5 1 1.5 2 2.5 3 3.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Brake actuator command

Time [s]

 

 

Incorrect output

Fault-free output

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

S
p
e
e
d
 [

m
/s

]
Time [s]

Wheel speed



Low-cost error detection and recovery

Software mechanisms
I Error detection:

I Run-time check for invalid transitions of the controller’s
integral state.

I Stack pointer protected by duplication and comparison check.

I Error recovery:
I Rollback to previous controller state
I Soft reset

Hardware exceptions for error detection

I Machine check exception, Alignment exception, Floating point
assist exception, . . .



Experimental evaluation

We evaluated two versions of the brake controller:

I Basic version – Hardware exceptions for error detection.

I Robust version – Hardware exceptions and software
implemented error detection and recovery.

Extensive fault injection experiments conducted for each version.

I For three control loops, we injected all possible single bit-flips
in “live” ISA registers and the data segment of the memory.

I About 30 000 errors were injected for each program version
and control loop iteration.



Important observations

I Our software mechanisms combined with hardware exceptions
reduced the proportion of critical failures significantly.

I Only 0.04% of the injected errors resulted in critical failures,
compared to 1.2% for the basic version.

I A dominant cause of critical failures was control-flow errors.

I In total, about 56% of the injected errors caused incorrect
outputs in the robust version.

I These errors had no significant impact on the brake
performance.



Conclusions

I Our results show that simple mechanisms for error detection
and recovery can effectively enforce fail-bounded semantics for
the brake controller with respect to single bit errors.

I Open issues
I How valid is the single bit-flip assumption?
I How do we model multiple bit-flips?
I What is the impact of out-of-specification behaviors of the

microprocessor?



Fault injection data available on-line
http://www.amber-project.eu


