Enhanced Fault Coverage Analysis Using ABVFI

Scott Bingham and John Lach Department of Electrical and Computer Engineering University of Virginia

June 29, 2009

Motivation

- Trends in integrated circuit (IC) manufacturing
 - Transistor sizes are decreasing
 - Transistor counts per die are increasing
- Trends in system design
 - ICs are playing a more central role in systems
 - ICs are being used in safety-critical systems
- ICs are becoming more susceptible to transient faults
- Need for dependable designs
 - For quality products
 - Required by safety-critical systems

Random Failures Affect Dependability

Determining Dependability through Fault Injection

Fault Injection (continued)

State-of-the-practice for ICs

- Simulation-based Fault Injection
 - Performed at the register transfer level (RTL)
 - Alter the design to include logic that mimics the behavior of faults when activated
 - Saboteurs Modify the value of a design signal
 - Mutants Change the behavior of a component
 - Benefits
 - High observability and controllability
 - Can model many types of faults

Simulation-based Fault Injection (cont'd)

- Limitations
 - Only a subset of the fault and input space is tested
 - Simulation is time and computationally expensive
 - Extensive design changes may be required
 - Additional logic
 - Control signals
 - Interface modification
 - Requiring changes to other components
 - It then becomes difficult to justify that the modifications haven't altered the behavior of the design

Research Objective

- Develop a fault injection methodology that
 - Includes a more rigorous and complete analysis method than simulation
 - Is able to model relevant faults
 - And be able to model new faults as manufacturing technologies change
 - Provides high observability and controllability
 - Includes a less-invasive design modification
 - Is accessible to designers and verifiers

Outline

- Overview of model checking and ABV
- The ABVFI methodology
- ABVFI implementation
 - Fault Injection Mechanism
 - Design instrumentation
 - The Flexible Fault Framework
- Case Study The PHFT processor
- Conclusion

Overview of Model Checking and ABV

The Assertions

- Assertions are directives that define a property that should be checked
- Properties are propositional statements about the behavior of the design
 - e.g. "signal read and signal write should never be asserted at the same time"
 - Either true or false
- Defined by temporal logics
 - Unambiguous

Outline

- Overview of model checking and ABV
- The ABVFI methodology
- ABVFI implementation
 - Fault Injection Mechanism
 - Design instrumentation
 - The Flexible Fault Framework
- Case Study The PHFT processor
- Conclusion

ABVFI = ABV + Fault Injection

Fault Injection with ABV

An "Exhaustive" Proof

- During verification
 - Define an operational profile
 - Identify the design to be verified
 - Define fault models

Same as simulation

- The model is compiled into a mathematical representation
- The mathematical proof is a search of this representation for property violations
 - Essentially an exhaustive simulation!
- "Exhaustive"ness is constrained by:
 - The design
 - The environmental model (the operational profile)
 - Fault models
 - The properties defined

Outline

- Overview of model checking and ABV
- The ABVFI methodology
- ABVFI implementation
 - Fault Injection Mechanism
 - Design instrumentation
 - The Flexible Fault Framework
- Case Study The PHFT processor
- Conclusion

Fault Injection Mechanism

- Minor changes are made to the DUT
- Saboteurs are included in the environmental model

Design Instrumentation

- For combinational logic:
 - Saboteurs intercept design signals
 - 1 Identify fault location
 - ② Split signal into two pieces
 - 3 The saboteur overrides the original signal value
 - Only requires minimal design changes
 - Easier to justify that design behavior has not changed

The Flexible Fault Framework

Outline

- Overview of model checking and ABV
- The ABVFI methodology
- ABVFI implementation
 - Fault Injection Mechanism
 - Design instrumentation
 - The Flexible Fault Framework
- Case Study The PHFT processor
- Conclusion

Case Study – PHFT Processor

- Requirements
 - Develop a 32-bit, 5 stage, pipelined processor
 - The processor should be capable of handling an SEU
- The design is based on the RISC-style processors developed by Patterson & Hennessy
 - It includes hazard detection and data forwarding
 - Study does not include register file or main memory
- Used IBM's Rulebase ABV toolset

The PHFT Processor

- Fault tolerance in the PHFT processor is:
 - Inter-stage registers error correcting registers
 - Capable of detecting and correcting an SEU
 - Pipeline stages DMR
 - Capable of detecting an SEU
 - Detected faults in the DMR stages stalls the pipe while the fault propagates out of the logic

Experimental Setup

- The modularity and fault tolerance mechanisms included provided a natural decomposition
 - Demonstrates how ABVFI can be used on large, complex designs
- Analysis took place in three stages
 - 1 Inter-stage registers
 - 2 DMR stages
 - ③ Fault recovery

PHFT Results

The ABVFI analysis showed that the PHFT processor provides total fault coverage

Processor Stage	Number of Assertions	Fault Locations (bits)	Total Analysis Time (minutes)
Fetch	3	192	1.97
Decode	8	48	2.92
Execute	7	230	3.12
Memory	2	64	7.23
Write back	1	64	0.4
PCDMR register (8 bit)	2	18	0.43
Fault recovery	6	30	4.50
Total	29	646	20.57

Case Study Summary

- The analysis results show
 - For all faults locations and under the SEU fault model, the PHFT processor covers all faults
 - ABVFI is feasible for real-world systems
 - A piecewise approach can be taken for large, complex designs
 - ~20 minutes total computation time for analysis
 - Took much less time than simulation would take for an exhaustive test (days, weeks, months?)

Other case studies

- Two other case studies revealed partial fault coverage
 - The distance kernel
 - demonstrated ABVFI in an assessment/verification role
 - The RGL design
 - demonstrated ABVFI is an enhanced design process for a safety-critical system

Outline

- Overview of model checking and ABV
- The ABVFI methodology
- ABVFI implementation
 - Fault Injection Mechanism
 - Design instrumentation
 - The Flexible Fault Framework
- Case Study The PHFT processor
- Conclusion

Summary

- Manufacturing trends indicate that IC designs are going to become less reliable
- In order to deal with faults, designers need to address dependability during the development process
- Current practices in IC fault injection either rely on statistical methods or provide results that are incomplete
- ABVFI is a methodology that aims to address these issues
- Through ABVFI, IC designers can assess the fault coverage of a design using an exhaustive and accurate fault injection technique

Contributions of ABVFI

- Uses formal verification for an exhaustive analysis
- The Flexible Fault Framework provides the flexibility to model applicable faults
- An analysis considers faults in both sequential and combinational logic for a more accurate analysis of error propagation
- Includes a toolset that
 - Eases the adoption into existing practices
 - Provides objectivity
- Can be applied in multiple ways
 - Coverage-aware design, safety assessment, enhanced design

