

Impact of Manufacturing Defects on Carbon Nanotube Logic Circuits

D. Gil, **D. de Andrés**, J.-C. Ruiz, P. Gil

ddandres@disca.upv.es

3rd Workshop on Dependable and Secure Nanocomputing June 29 2009, Portugal

CNTs: Structure

CNTs: Properties & challenges

- Properties:
 - Mechanical properties: strength, thermal conductivity
 - Electrical: ballistic transport, excellent conduction properties
 - Size: diameter ~ few nm, length up to several mm
- Challenges of manufacturing at large scale
 - Control of electrical properties (semic. /metallic)
 - Alignment and placement
 - Electrical contact between CNTs and electrodes

Electronic devices with CNTs

- Electric wires \rightarrow excellent conductors
- CNT-FET \rightarrow size, gate control, speed

CNT-based RAMs

3rd Workshop on Dependable and Secure Nanocomputing, June 29 2009, Portugal

Fault models at logic level Example: NOT gate

Manufacturing defect	Metallic CNT	Open CNT	Gate metallic Gate oxide (Al or Ti) CNT SiQ ₂ Source (Ti) Crain (Ti)	Gate open Gate oxide (Al or Ti) CNT SiQ ₂ Source (TI)
Causes and mechanisms	Bad chirality/diameter control	Mechanical stress, bending	p⇔Si	p [≁] Si
Effects on CNT FETs	Resistive D-S short Excessive leakage Degraded noise margins Delay variations	D-S open	D-S shorted -1.5 V ∠	D-S open -1.5 V
Fault model at device level	Stuck-on	Stuck-off	$V_{out} \approx 0 V \approx 0$	0' V _{out} ≈ -1.5 V ≈ '1
Fault model at logic level	Stuck-at-0	Stuck-at-1	V _{in} - CNTFET stuck-on	

7

-V_{out}

-1.5 V

 $\frac{1}{2}$

Fault models at logic level Example: NOT gate

Manufacturing defect	Misaligned / Miss-positioned	
Causes and mechanisms	CNT under incorrect gate CNT outside gate	
Effects on CNT FETs	D-S open, connection with other transistors D-S short	
Fault model at device level	Stuck-on	
Fault model at logic level	Stuck-at-0	

Vout

-1.5 V

≸

Fault models at logic level Example: AND-OR-INVERTED gate

Manufacturing defect	Misaligned / Miss-positioned	
Causes and mechanisms	CNT under incorrect gate CNT outside gate	
Effects on CNT FETs	D-S open, connection with other transistors D-S short	
Fault model at device level	CNT under incorrect gate	
Fault model at logic level	Change of logic function	

Fault models at logic level Example: Intramolecular NOT gate

Manufacturing defect	Erroneous doping	PMMA CNT back gate
Causes and mechanisms	Misaligned PMMA mask	$-V$ V_{out} V_{in} $+V$ SIO ₂
Effects on CNT FETs	Channel cannot be N-doped	
Fault model at device level	2 P-CNTFET	V_{in} V_{out} V_{in} V_{out}
Fault model at logic level	Incorrect logic behaviour	-V

Fault models at logic level Example: NVRAM

Manufacturing defect	Open	Short
Causes and mechanisms	Imperfect contact	Imperfect separation
Effects on CNT FETs	Non- programmable crosspoint	Shorted crosspoint
Fault model at device level	Non- programmable	Shorted
Fault model at logic level	Stuck-at-0	Stuck-at-1

Manufacturing defects and fault models

	Defect	Causes and mechanisms	Effects on CNT FET	Fault Models at CNT FET level	Fault Models at logic level
CNT defects	Metallic	Bad chirality control Bad diameter control	Resistive D-S short Excessive leakage Degraded noise margins Delay variations	Stuck-on Delay	Stuck-at (0,1), indetermination Delay
	Misaligned / Miss- positioned	CNT under incorrect gate CNT outside gate	D-S open, connection with other transistors D-S short	Stuck-off Stuck-on	Stuck-at (0,1) Change of logic function Loss of memory behaviour
	Open	Mechanical stress, bending	D-S open	Stuck-off	Stuck-at (0,1) High-impedance Loss of memory behaviour
	Poor contacts Crystallographic defects	Defect CNT-metal contacts Atomic vacancies	Increase of the channel resistance	Delay	Delay
	Parametric variation	Diameter, length, gate oxide thickness	Threshold voltage (V _T) variation Channel resistance variation	Delay	Delay
	Erroneous doping	PMMA mask misalignment	Channel cannot be N-doped	N-type \rightarrow P-type	Incorrect logic behaviour
Crosspoint defects	Open	Imperfect contact	Non-programmable crosspoint	Non- programmable	Stuck-at 0
	Short	Imperfect separation	Shorted crosspoint	Shorted	Stuck-at 1

Conclusions

Manufacturing defects

- Similar to SiNWs: Open, poor contacts, erroneous doping, and open/short crosspoints
- More specific, frequent and troublesome: Conducting (metallic), misaligned/miss-positioned, and parametric variation of the CNTFET channel

Fault models at transistor level

- Structural similarity to MOSFET transistors, Electronic charge-based devices → Well-known stuck-on, stuck-off and delay
- Fault models at logic level
 - CNT-based logic circuits present NMOS- or CMOS-like structures → Traditional stuck-at (0/1), delay, high-impedance and indetermination:
 - Some unusual fault models: Change of logic function, Inverter with 2 P-CNTFETs, Loss of memory behaviour in SRAM cells

Thank you for paying attention!

3rd Workshop on Dependable and Secure Nanocomputing, June 29 2009, Portugal

Impact of Manufacturing Defects on Carbon Nanotube Logic Circuits

D. Gil, D. de Andrés, J.-C. Ruiz, P. Gil

ddandres@disca.upv.es

Third Workshop on Dependable and Secure Nanocomputing June 29 2009, Portugal

