

Trading Off Dependability and Cost for Nanoscale Nanoscale High Performance High Performance Microprocessors: Microprocessors: The Clock Distribution Problem The Clock Distribution Problem

> *Cecilia MetraARCES - DEIS – University of Bologna cecilia.metra@unibo.it*

Scaling of Microelectronic Technology Scaling of microelectronic technology: ¾ ↑ **IC complexity and** ↑ **IC performance.**

Scaling and Clock Due Dependability Risks

But scaling comes together with:

- **▶ ↑ IC complexity → ↑ # of switching elements →** ↑ **power supply noise**
- ¾ ↑ **operation frequency** Æ **time margins** ↓
- ¾↑ **likelihood of fabrication defects**
- ¾ ↑ **entity of on-die process variations**

↑ *difficulties in ensuring limited skew, jitter and correct duty cycle for all clock signals of a synchronous system*

Clock Distribution Clock Distribution

 Complex network, spreading out throughout the whole chip (horizontally and vertically).

S. Tam, S. Rusu, U.N. Desai, R. Kim, J. Zhang, I. Young, "Clock Generation and Distribution for the First IA-64 Microprocessor", IEEE J. of Solid-State Circuits, Vol. 35, No 11, pp. 1545 - 1552 , 2000.

Clock Compensation Clock Compensation

ODCS (On Die Clock Shrink):

¾ **intended to compensate duty cycle variations (mainly due to parameter variations) at the PLL output**

DSK (DeSKew buffers):

¾ **intended to compensate skew (mainly due to parameter variations) at the global clock level**

DSK Example Example: Pentium : Pentium *®***4**

N.A. Kurd, J.S. Barkatullah, R.O. Dizon, T.D. Fletcher, P.D. Madland, "A Multigigahertz Clocking Scheme for the Pentium® 4 *Microprocessor", IEEE J. of Solid State Circuits, Vol. 36, No. 11, Nov. 2001, pp. 1647-1653.*

Programmable Delay Buffer:

N.A. Kurd, J.S. Barkatullah, R.O. Dizon, T.D. Fletcher, P.D. Madland, "A Multigigahertz Clocking Scheme for the Pentium® 4 *Microprocessor", IEEE J. of Solid State Circuits, Vol. 36, No. 11, Nov. 2001, pp. 1647-1653.*

DSK Example Example: Itanium Itanium *®* **-1st gen**

DSK architecture:

DSK local controller:

S. Tam, S. Rusu, U.N. Desai, R. Kim, J. Zhang, I. Young, "Clock Generation and Distribution for the First IA-64 Microprocessor", IEEE J. of Solid-State Circuits, Vol. 35, Nov. 2000, pp. 1545-1552.

DSK Example Example: Itanium Itanium *®* **- 1st gen (cnt 'd)**

Variable Delay Circuit:

S. Tam, S. Rusu, U.N. Desai, R. Kim, J. Zhang, I. Young, "Clock Generation and Distribution for the First IA-64 Microprocessor", IEEE J. of Solid-State Circuits, Vol. 35, Nov. 2000, pp. 1545-1552.

Variable Delay Circuit:

F. E. Anderson, J. S. Wells, E. Z. Berta, "The Core Clock System on the Next-Generation ItaniumTM Microprocessor", in Proc. of IEEE Int. Solid-State Circuits Conference, Digest of Technical Papers (ISSCC 2002), Vol. 2, 2002, pp. 110 – 424.

DSK Example Example: Itanium Itanium *®* **-3rd gen**

Variable Delay Circuit (for fine delay adjustment):

S. Tam, R. Limaye, U. Desai, "Clock Generation and Distribution for the 130-nm Itanium 2 Processor® with 6-MB On-Die L3 Cache", IEEE J. of Solid-State Circuits, Vol. 39, No. 4, April 2004, pp. 636-642.

Attempts at Clock Correctness Attempts at Clock Correctness

DeSKew strategies intended to compensate skew (mainly due to parameter variations) at the global clock level

But are parameter variations the only attempt at clock signal correctness ?

Or can clock signals get also (directly/indirectly) involved by faults occurring during fabrication, or in the field ?

And how this will change with technology scaling ?

Can Clock Signals Get Directly Involved by Faults ? Directly Involved by Faults ?

 Inductive Fault Analysis (IFA) performed on the *Intel® Itanium ®* **microprocessor proved [1] that:**

¾**after the most likely Vcc-Vss bridging fault (BF),**

BFs directly involving a *CK* **signal and Vcc (or Vss) are the most likely !**

[1] C. Metra, S. Di Francescantonio, TM Mak, "Implications of Clock Distribution Faults and Issues with Screening Them during Manufacturing Testing," IEEE Trans. on Computers, Vol. 53, No. 5, May 2004, pp. 531-546.

Can Clock Signals Get Directly Involved by Faults ? (Directly Involved by Faults ? (cnt 'd)

C. Metra, S. Di Francescantonio, TM Mak, "Implications of Clock Distribution Faults and Issues with Screening Them during Manufacturing Testing," IEEE Trans. on Computers, Vol. 53, No. 5, May 2004, pp. 531-546.

Can Clock Signals Get Directly Involved by Faults ? (Directly Involved by Faults ? (cnt 'd)

 Electrical level simulations of the *Itanium***® clock distribution network, with BFs emulated by resistances in the [0-10k** Ω**] range, proved [1] that:**

¾**the most likely effects of clock faults are the occurrence of** *duty cycle variations* **which can occur also at the** *local clock level*

[1] C. Metra, S. Di Francescantonio, TM Mak, "Implications of Clock Distribution Faults and Issues with Screening Them during Manufacturing Testing," IEEE Trans. on Computers, Vol. 53, No. 5, May 2004, pp. 531-546.

Can Clock Signals Get Directly Involved by Faults ? (Directly Involved by Faults ? (cnt 'd)

 \Box **Clock signals can also get directly involved by faults [1] Such clock faults:**

¾**are orders of magnitude more likely than other faults [1]**

¾**may produce effects observable only at a local level [1]**

¾**are likely to result in duty-cycle variations [1]**

¾**will be increasingly more likely with technology scaling**

 If not screened out or compensated, such faults might compromise the correct operation of the microprocessor in the field

Dependability Risks !

WDSN'09, Cascais (Portugal), June 29th, 2009 Cecilia Metra [1] C. Metra, S. Di Francescantonio, TM Mak, "Implications of Clock Distribution Faults and Issues with Screening Them during Manufacturing Testing," IEEE Trans. on Computers, Vol. 53, No. 5, May 2004, pp. 531-546.

Can Clock Signals Get Indirectly Involved by Faults ? Indirectly Involved by Faults ? Electrical level simulations of the *Pentium 4®* **microprocessor adjustable delay clock buffers [2] with injected:** ¾ **transistor stuck-ons (SONs),** ¾ **transistor stuck-opens (SOPs),** ¾ **node stuck-ats (SAs),** ¾ **BFs (R in the [0-6k** Ω**] range) proved that:** ¾**such faults are very likely to result in output clocks with incorrect duty-cycle [2].**

[2] C. Metra, D. Rossi, TM Mak, "Won't On-Chip Clock Calibration Guarantee Performance Boost and Product Quality?", IEEE Trans. on Computers, Vol. 56, No. 3, March, 2007, pp. 415-428.

Effects of Faults Affecting Clock Buffers Affecting Clock Buffers

WDSN'09, Cascais (Portugal), June 29th, 2009 Cecilia Metra C. Metra, D. Rossi, TM Mak, "Won't On-Chip Clock Calibration Guarantee Performance Boost and Product Quality?", IEEE Trans. on Computers, Vol. 56, No. 3, March, 2007, pp. 415-428.

Effects of Faults Affecting Clock Buffers (Affecting Clock Buffers (cnt 'd)

% BF affecting the CKout duty-cycle

WDSN'09, Cascais (Portugal), June 29th, 2009 Cecilia Metra C. Metra, D. Rossi, TM Mak, "Won't On-Chip Clock Calibration Guarantee Performance Boost and Product Quality?", IEEE Trans. on Computers, Vol. 56, No. 3, March, 2007, pp. 415-428.

Produced Duty Produced Duty -Cycle Variations Cycle Variations Can be Significant Can be Significant

 Example of a BF between Vcc and the buffer output.

 High duty-cycle variations for values of connecting resistance ≤ 4kΩ!

C. Metra, D. Rossi, TM Mak, "Won't On-Chip Clock Calibration Guarantee Performance Boost and Product Quality?", IEEE Trans. on Computers, Vol. 56, No. 3, March, 2007, pp. 415-428.

Can Clock Signals Get

Indirectly Involved by Faults ? (Indirectly Involved by Faults ? (cnt 'd)

 Clock signals can also get indirectly involved by faults (which directly affect clock buffers) [2]

Such clock faults:

¾**are likely to result in duty-cycle variations, which can be very significant [2]**

¾**will be increasingly more likely with technology scaling**

 If not screened out or compensated, such faults might compromise the correct operation of the microprocessor in the field

Dependability Risks !

WDSN'09, Cascais (Portugal), June 29th, 2009 Cecilia Metra [2] C. Metra, D. Rossi, TM Mak, "Won't On-Chip Clock Calibration Guarantee Performance Boost and Product Quality?", IEEE Trans. on Computers, Vol. 56, No. 3, March, 2007, pp. 415-428.

Clock Faults Clock Faults <u>' Due Dependability Risks:</u> **Solutions ? Solutions ?**

Can clock faults be screened out through manufacturing (structural or functional) testing ?

Or can their effect be compensated?

Can Clock Faults Be Tested Out ? Can Clock Faults Be Tested Out ?

- **Generally, no specific testing procedure is adopted for clock faults adopted for clock faults**
- **However, can clock faults be indirectly detected during manufacturing testing (***e.g.,* **structural or functional testing) ?**
	- **► It has been verified that clock fault indirect detection through detection through**

structural testing is not likely [1] functional testing is not likely [3] functional testing is not likely [3]

- *[1] C. Metra, S. Di Francescantonio, TM Mak, "Implications of Clock Distribution Faults and Issues with Screening Them during Manufacturing Testing," IEEE Trans. on Computers, Vol. 53, No. 5, May 2004, pp. 531-546.*
- *WDSN'09, Cascais (Portugal), June 29th, 2009 Cecilia Metra [3] C. Metra, D. Rossi, M. Omaña, J.M. Cazeaux, TM Mak, "Can Clock Faults Be Detected Through Functional Test ?", Proc. of IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS'06), pp. 168—173, 2006.*

Can Clock Faults Be Tested Out ? (Can Clock Faults Be Tested Out ? (cnt 'd)

 \Box **Detecting clock faults through structural testing is not likely [1]: is not likely [1]:**

¾**depending on the structural test technique, anywhere between 59% and up to 88% of possible clock faulty conditions may be not detected.**

Inability of Structural Testing to Guarantee Clock Faults' Detection

[1] C. Metra, S. Di Francescantonio, TM Mak, "Implications of Clock Distribution Faults and Issues with Screening Them during Manufacturing Testing," IEEE Trans. on Computers, Vol. 53, No. 5, May 2004, pp. 531-546.

Can Clock Faults Be Tested Out ? (Can Clock Faults Be Tested Out ? (cnt 'd)

- \Box **Detecting clock faults through functional testing is not likely [3]: likely [3]:**
	- ¾ **Results for all long/short paths of 10 considered ISCAS'85 benchmarks**

$$
AVP_{\text{det}} = \sum \frac{P_{\text{det}}(i)}{n}
$$
 $i = 1, 2, ..., n = 10$

Inability of Functional Testing to Guarantee Clock Faults' Detection

[3] C. Metra, D. Rossi, M. Omaña, J.M. Cazeaux, TM Mak, "Can Clock Faults Be Detected Through Functional Test ?", Proc. of IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS'06), pp. 168—173, 2006.

Clock Faults Clock Faults <u>' Due Dependability Risks:</u> **Solutions ? Solutions ?**

Can clock faults be screened out through manufacturing (structural or functional) testing ? No guarantee

Or can their effect be compensated?

Can CKF Effect Be Compensated ?

- \Box **Compensation schemes are intended to compensate skew mainly due to parameter variations at the global clock level**
- **CKFs' most likely effect is to produce duty cycle variations, which:**
	- ¾ **can be very significant**
	- ¾ **can occur also at the local level only**
- ப **Compensation schemes could be modified to deal with CK faults, but**

their cost would be very high

Clock Faults Clock Faults <u>' Due Dependability Risks:</u> **Solutions ? Solutions ?**

Can clock faults be screened out through manufacturing (structural or functional) testing ? No guarantee NO (unless high cost) Or can their effect be compensated? Need for Testing Approaches and/or Correction Schemes to Increase Dependability at Affordable Costs

Example of

Low Cost Testing Approach for Clock Faults Low Cost Testing Approach for Clock Faults

It has been proposed [4]:

- ¾**to make CFs' most likely effects (i.e., dutycycle variations) result in clock stuck-at** faults (S@) →
- **≽ catastrophic effects →**
- ¾ **easy detection through conventional manufacturing test**

[4] C. Metra, M. Omaña, TM. Mak, S. Tam, "Novel Approach to Clock Fault Testing for High Performance Microprocessors", in IEEE Proc. VLSI Test Symposium, 2007, pp. 441-446.

Possible Hardware Implementation Possible Hardware Implementation

 Insertion of Duty-Cycle Error Detect and Latch blocks (DCEDLi) among physically adjacent (local and global) CK buffers. Each DCEDLi :

Possible Hardware Implementation (Possible Hardware Implementation (cnt 'd)

 Duty-Cycle Error Detect and Latch blocks (DCEDLi) between adjacent clock buffers.

¾**if CKiB**[≠]**CK(i+1)B** Æ en_(i+1)=0 → buffer B_{i+1} **disabled** Æ **CK(i+1)B S@0** \rightarrow easy detection; **DCEDLi enabled (Ei=1) during** µ**P testing:**

^¾**if CKiB=CK(i+1)B** en_(i+1)=1→ buffer B_{i+1} enabled \rightarrow no effect.

Application to Local Buffers: Pentium Pentium®4 Example 4 Example

 Approach synergetic with local CK distribution Æ **no routing problems.**

 When TE=1 Æ **eni generated in a ripple fashion** Æ **S@0 on all CKs physically located among the faulty one and the last one.** \square TE connected to E_i of each DCEDL_i →

> *CF* **easy detection through conventional manufacturing test.**

Application to Global Buffers: Pentium Pentium ®4 Example 4 Example

 Approach synergetic with global CK distribution \rightarrow no routing problems.

CK_{1R} \Box Scheme activated after **calibration (ECP=1)** Æ **detection of** *CFs***, after parameter variation compensation.**

> **Signal TE* =AND(TE, ECP) connected to the enable terminals (Ei) of the DCEDLs.**

Application to Global Buffers: Pentium Pentium ®4 Example (4 Example (cnt 'd)

 Approach synergetic with global CK distribution \rightarrow no routing problems.

Example of

Low Cost Correction Scheme for Clock Faults Low Cost Correction Scheme for Clock Faults

Proposal of a scheme [5] capable of:

¾**detecting mismatches between couples of physically adjacent local CKs and giving:**

> **i. a high impedance state output, in case of mismatch;**

ii. the logic value present on one of the two input clock signals, in case of matching.

[5] C. Metra, M. Omaña, TM. Mak, S. Tam, "Novel Compensation Scheme for Local Clocks of High Performance Microprocessors", in IEEE Proc. of the IEEE Int. Test Conference, 2007, pp. 1-9.

Correction Scheme: Component Blocks

Scheme composed of 3 blocks:

CK1,2 CKin,1 CK2,3 CKin,2 Detection Block Detection Block CK3,4 CKin,3 CK4,5 CKin,4 CK5,6 CKin,5 CK(n-1),n CKin,n

It receives *n* **input local clocks (***CKin,i, i=1,…, n***) to be compensated in case of phase mismatch (i.e., duty cycle variation -** ∆**DC). It consist of** *(n-1)* **sub-blocks, each:** ¾**detecting phase mismatches 1. Detection Block**

between two physical adjacent input clocks (*CKin,I - CKin,(i+1)***)**

¾**giving a high impedance state (Z) if the input CKs present** ∆**DC.**

[5] C. Metra, M. Omaña, TM. Mak, S. Tam, "Novel Compensation Scheme for Local Clocks of High Performance Microprocessors", in IEEE Proc. of the IEEE Int. Test Conference, 2007, pp. 1-9.

Correction Scheme: Component Blocks orrection Scheme: Component Blocks (cnt 'd)

Scheme composed of 3 blocks:

2. Compensation Block

 It receives the *(n-1)* **outputs of the Detection block** $(CK_{i,(i+1)}, i=1,..., n-1)$ **provides** *n* **compensated clock signals (***CK*i, i=1,…, n***).**

Compensation Block: Possible Implementation Compensation Block: Possible Implementatio n

■ We can simply short **together the** *(n-1)* **outputs of the Detection Block.**

 Æ **the high-Z state outputs of the Detection Block are forced to assume the correct logic value imposed by the non high-Z state outputs.**

 No electrical conflict arises Æ *minimal power consumption and compensation time !*

Correction Scheme: Component Blocks (Correction Scheme: Component Blocks (cnt 'd)

Scheme composed of 3 blocks:

Cost Comparison Cost Comparison

Costs evaluated in terms of:¾**compensation error;** ¾**power consumption;** ¾**area overhead.** ■Scheme in [5] compared with: *[5] C. Metra, M. Omaña, TM. Mak, S. Tam, "Novel Compensation Scheme for Local Clocks of High Performance* ^¾**the clock compensation scheme in** *[6] (Solution 1) ;* ^¾**the strategy that simply shorts together the outputs of the local clock buffers** *(Solution 2).*

WDSN'09, Cascais (Portugal), June 29th, 2009 Cecilia Metra Microprocessors", in IEEE Proc. of the IEEE Int. Test Conference, 2007, pp. 1-9. [6] M. Omaña, D. Rossi, C. Metra, "Low Cost Scheme for On-Line Clock Skew Compensation", in Proc. of IEEE VLSI Test Symposium, pp. 90-95, 2005.

Cost Comparison: Compensation Error Cost Comparison: Compensation Error Case 1: for all schemes it has been considered that 1 out of 16 input CKs presents a ∆DC between 0% and 100% of its nominal value (50% of T_{CK}).

 \Box **The scheme in [5] & solution 2 present a considerable low compensation error (0.2% and 0.4%, respectively) that does not change with the magnitude of ∆DC.**

Cost Comparison: Compensation Error (Cost Comparison: Compensation Error (cntd)

 \Box

 Case 2: compensation error as a function of the # of incorrect input CKs (= among them and with a ∆DC of 40% of its nominal value).

 The scheme in [5] presents the lowest compensation error, with a reduction >69% compared to solution 1 and >40% compared to solution 2.

Cost Comparison: Power Consumption Cost Comparison: Power Consumption

 Power consumed by the 3 considered solutions as a function of ∆DC.

Cost Comparison: Area Overhead Cost Comparison: Area Overhead

Area (expressed in squares) of the 3 considered solutions as a function of the # of input clocks to be compensated.

The area of the scheme in [5] slightly increases with respect to that of the solution 2. However, such an increase can be considerednegligible when the total chip area is accounted.

Conclusions Conclusions

Faults affecting clock signals are likely and their likelihood will increase with technology scaling

They may be not screened out during manufacturing testing

They can not be compensated at low costs by current schemes

They may compromise the microprocessor correct operation in the field, with consequent decrease in dependability

New Testing Approaches and/or Correction Schemes are (should be) searched for increased Dependability at Affordable Costs

Trading Off Dependability and Cost for Nanoscale Nanoscale High Performance High Performance Microprocessors: The Clock Distribution Problem The Clock Distribution Problem

> *Cecilia MetraDEIS – University of Bologna cecilia.metra@unibo.it*