Dependable Design in Nanoscale CMOS Technologies: Challenges and Solutions

> Vikas Chandra ARM R&D

WDSN 2009: Vikas Chandra

Reliability challenges

Source: M. Bohr. Intel. IRPS 2003

Reasons of unreliable transistors

- Random manufacturing defects
- Significant increase in variability
- Increasing electric field
- Thin gate oxides
- Voltage, Temperature variations

Atomistic scale devices

Types of variability

- Spatial
 - Variations due to the manufacturing process
 - Systematic, process and apparatus induced variations
 - Random variations

Temporal

- Mainly due to aging and wearout
- NBTI
- Gate oxide degradation

Dynamic

- Workload dependent
- Voltage fluctuation
- Temperature variation

Spatial variations

Simplified Manufacturing Process Steps

The Lithography Challenge: Reducing Feature Size

- Wavelength scaling has stopped!
 - Glass does not transmit
 - Source not bright enough
 - Reticle/mask too expensive to manufacture
- Deep sub-wavelength lithography

Lithography Variability

- Several sources of variation in lithography
 - Defocus variation
 - Exposure dose (intensity) variation
 - Mask errors
 - Overlay/mask alignment variation

Etch Variability

- Etching process has randomness
 - Poisson process for ions hitting the resist
 - Plasma gas flow can have turbulence
- Etch chuck temperature profile is radial etch rate profile is radial
- Typically CD (linewidth) droops near wafer edge

CMP Variability

- Material removal depends on wire density and width
- Surface topography changes across the die with Copper density
- Wire resistance and capacitance variation
- Focus error for upper metal layers wire width errors

Random Dopant Fluctuation

- Doping/implant is a random process
- Number of dopants in channel ~100
- Dopant count is not repeatable
- Dopant position is not repeatable

Large variations in threshold voltage

$$\sigma_{V_t} = \left(\frac{\sqrt[4]{4q^3 \varepsilon_{Si} \phi_B}}{2}\right) \cdot \frac{T_{ox}}{\varepsilon_{ox}} \cdot \frac{\sqrt[4]{N}}{\sqrt{W_{eff} L_{eff}}} \propto \frac{1}{\sqrt{W_{eff} L_{eff}}}$$

- ~10-15% $\sigma(V_t)$ at 45 nm and increasing
 - Typical ±3σ tolerance range >= ±30%!

M. Hane, et. al., SISPAD 2003

Variability Challenges For Design: ITRS 2007

Lots of RED ahead

- Economics of purely process solution are infeasible
 - Mask cost today up to \$100,000
 - Litho tool cost today ~\$50,000,000

Year of Production	2007	2008	2009	2010	2011	2012	2013	2014	2015
Normalized mask cost from public and IDM data	1.0	1.3	1.7	2.3	3.0	3.9	5.1	6.6	8.7
% V _{dd} variability: % variability seen in on-chip circuits	10%	10%	10%	10%	10%	10%	10%	10%	10%
% V _{th} variability: doping variability impact on V _{th} , (minimum size devices, memory)	31%	35%	40%	40%	40%	58%	58%	81%	81%
% Vth variability: includes all sources	33%	37%	42%	42%	42%	58%	58%	81%	81%
% Vth variability: typical size logic devices, all sources	16%	18%	20%	20%	20%	26%	26%	36%	36%
% CD variability	12%	12%	12%	12%	12%	12%	12%	12%	12%
% circuit performance variability circuit comprising gates and wires	46%	48%	49%	51%	60%	63%	63%	63%	63%
% circuit total power variability circuit comprising gates and wires	56%	57%	63%	68%	72%	76%	80%	84%	88%
% circuit leakage power variability circuit comprising gates and wires	124%	143%	186%	229%	255%	281%	287%	294%	331%

Table DESN9a Design for Manufacturability Technology Requirements—Near-term Years

Need more process and variability-aware design

Temporal variations

- Infant mortality: Increasing manufacturing defects
- Normal lifetime: Increasing transient errors
- Wearout: Acceleration of aging phenomena

Temporal unreliability

Infant mortality

- Marginal parts due to random manufacturing defects
- Gate-to-source shorts
- Small opens, poor vias & contacts
- Mitigated by Burn-in

Normal Lifetime

- Soft errors in memory and logic
- Mitigated by design, architecture and ECC

Wearout

- Transistor degradation (NBTI)
- Gate oxide breakdown (GBD)
- Mitigated by circuit, architecture techniques and overdesign

Infant mortality

- Also known as Early Life Failures (ELF)
 - Do not affect the circuit initially, but they get worse over time
- Due to manufacturing defects that are random in nature
 - Particles in interlevel oxide creating shorts between metal layers
 - Insulator cracks
 - Thin oxide defects
 - Metallization problems
 - Via defects
 - • •
- ELFs follow log-normal failure distribution
 - Short mean lifetime and high sigma
 - Failure rate decreases over time

Burn-in testing

- Burn-in is stress testing for weeding out ELF defects
 - "Age" the circuits just beyond the infant mortality period
 - Weak (defective) parts break due to accelerated aging
 - Employs voltage and temperature to accelerate device aging

- Stress conditions
 - Voltage stress: Typically 30-40% over nominal Vdd
 - Temperature stress: Typically >120° C
 - Stress time: Typically 10's of hours
 - Decreases as failure rate decreases

Temperature and Voltage stress

• Temperature acceleration factor $TAF = e^{\frac{E_a}{K} \left(\frac{1}{T_{stress}} - \frac{1}{T_{use}}\right)}$

Voltage acceleration factor

$$VAF = He^{\gamma (V_{stress} - V_{use})}$$

 TAF targets: electromigration, metallization problems, contact/ via defects etc

VAF targets: gate oxide defects

VAF and TAF trends

- Supply voltage is saturated
- $\Delta V = V_{stress} V_{use}$
 - 40% of 3.3V → 1.32V
 - 40% of $1V \rightarrow 0.4V$
- VAF goes down exponentially

- On chip temperature is going up
- TAF goes down exponentially

Burn-in testing running out of steam?

Normal lifetime unreliability (Soft errors)

Mechanism of soft errors due to high energy particles

Particle strike creates hole electron pairs

lon_track

Diffusion collection

Source: P. Roche, ST, IRPS 2006

Source: Ziegler, et al., IBM J. of R&D, 1996 Source R. Baumann, *IEEE TDMR*, 2001

WDSN 2009: Vikas Chandra

Impact on storage logic

6T bit cell

- Particle strike flips the stored value
- The flipped value stays due to regenerative feedback
- Corrupts the state of the system

Impact on combinational logic

- Causes glitch at gate outputs
- Can be latched if transition happens during latching window
 - Can result in timing failure
 - Errors can be masked by electrical and logical masking
- Decreasing cycle time exacerbates this problem

Soft error trends

SRAM Trends

Latch Trends

Substantial increase in soft error susceptibility with technology scaling!

Source: R. Baumann, TI, SemaTech 2004

Wearout - NBTI basics

- NBTI stands for Negative Bias Temperature Instability
 - Degradation in PMOS performance over device lifetime
 - Due to traps at Si-SiO₂ interface
 - Instability refers to gradual shift in transistor parameters with time
- Impact on transistor performance
 - I_{ds}, g_m, I_{off}

Temporal behavior of NBTI induced aging

 \mathbf{V}_{t}

NBTI : Degradation – Recovery

WDSN 2009: Vikas Chandra

Impact on logic circuits

- Temporal V_t shift in PMOS affects critical performance metrics
- Combinational circuits
 - F_{max} decreases ↓
 - Timing failure as circuits age
- Storage cells (SRAM, latch)
 - Static Noise Margin \downarrow
 - Read and write stability \downarrow
 - Parametric yield loss

Circuit degradation

Source: K. Kang, IRPS, 2007

- Average degradation of ~8% in 3 years
- Degradation more dominant for PMOS dominated designs
- Complex circuits seem to degrade less

Gate oxide scaling trend

Source: Nature, June 1999

To reduce power, Vdd is scaled

- tox is reduced to reduce Vt
- Performance increases, as well as leakage
- tox scaling has hit a plateau
 - Leakage, reliability...

Gate 1.2nm SiO₂ Silicon substrate

Gate oxide degradation

Oxygen is released

WDSN 2009: Vikas Chandra

 Silicon Filament is formed from Gate to Substrate (Hard Breakdown) Heat leads to thermal damage

Thermal Damage leads to Traps

Temporal oxide degradation

Gate leakage fluctuates as the gate oxide degrades

WDSN 2009: Vikas Chandra

Design Characteristic – Digital logic

CMOS logic inherently acts as noise rejecter

Design Characteristic – Digital logic

Ring oscillators

- 41 stage ring oscillator
 - Leakage current goes up after successive breakdowns
 - Still functional after multiple breakdowns
 - Oscillation frequency slows down

Dynamic variations: Temperature

Thermal map – 1.5 GHz Itanium map

[Source: Intel Corporation and Prof. V. Oklobdzija]

Dynamic variations: Voltage, Power

Voltage variations

Source: D. Hathaway, SLIP 2005

Power variations

Source: Naffziger et al, JSSC 2006

WDSN 2009: Vikas Chandra

Design with margins

Variability leads to margins

Uncertainly leads to overheads in performance and power

- Increasing intra- and inter-chip variation with process scaling
- Sources: lithography, manufacturing (dopant fluctuation, pattern density effects), crosstalk noise, temperature variation, aging...
- Worst-case scenarios are highly improbable
 - Significant gain for circuits optimized for the common case

Adaptive designs

- Reduce guardbands due to variations
 - Spatial, temporal and dynamic
- Respond to variations by dynamic adaptation
- Three components required for adaptability
 - Failure prediction
 - Failure detection
 - Failure recovery

Failure prediction

- Predict the errors before they affect design functionality
 - More applicable to slow changing variations
- Adapt by changing frequency and/or voltage
- Possible ways to detects errors
 - Canary circuits: These circuits fail before the actual design fails
 - Pre-sampling: Sample the same data at different points in time
 - Aging monitor: Detect a transition in a guardband period

Failure prediction: Canary circuits

SRAM example for choosing minimum Data Retention Voltage (DRV)

- Use replica bitcells (canary bitcells) inspired by canary birds
- Use Canary bitcells in closed-loop VDD scaling

Source: J. Wang et al, CICC 2007

Failure prediction: Pre-sampling

Key features of AVERA cell

- Scan circuit re-used for error checking and analysis
- Circuit timing degradation detected by pre-sampling LA-LB
- C-element for error correction

Source: M. Zhang, IOLTS '07

Failure prediction: Aging detector

WDSN 2009: Vikas Chandra

Failure detection

- Detect errors which affect functionality
 - Fast changing errors
 - Soft errors, transient errors due to voltage glitch etc.
 - Slow changing errors
 - Aging induce timing errors
 - Temperature induce timing errors
- Faliure detection methods
 - Software
 - Redundancy
 - Coding
 - Path-level delay fault detection
 - • •

Failure detection

Error detection by double sampling

Source: D. Ernst et al, Micro, 2003

Error-detection techniques for transient fault detection

- Transient faults such as SEU manifest themselves as voltage pulses
- Temporal redundancy (sampling at 2 points in time) detects such an event
 - Error is flagged when the delayed sample does not agree with the first sample
- The error signal can be used for recovery

Source: Anghel & Nicolaidis '01

Transient error mitigation

Add redundancy to detect and correct transient errors (e.g. BISER FF)

A B	00	11	01	10
C-element (A, B)	1	0	Previous value retained	Previous value retained

Source: S. Mitra, Stanford

Failure recovery

Circuit Complexity

Software Complexity

Fast

Local recovery

- Inject correct value into pipeline
- Stall for one cycle and continue
- Instruction replay
 - Invalidate instructions in pipeline
 - Re-execute from failing instruction
- Checkpointing with roll-back
 - Periodically, save system state in memory
 - On error, roll back to last saved state

Slow

Failure recovery

- Razor: Local error detection and correction on the fly
 - Upon failure: Overwrite main flip-flop with correct data from the shadow latch
 - Ensure that the shadow latch is always correct by conventional design

Source: S. Das et al, JSSC 2006

Failure recovery

Error correction by instruction replay

Source: K. Bowman, ISSCC 2008

Energy-error tradeoff

- Adaptive designs have much lower V_{opt} than worse case designs
- Or alternatively, adaptive designs can run much faster at the same voltage

Conclusions

- Variations are becoming dominant with technology scaling
 - Spatial variations
 - Temporal variations
 - Dynamic variations
- Designing with margins is not a sustainable proposition
 - Too much power, performance overhead

Resilient designs are needed which can adapt to variations

- Three components required for adaptability
 - Failure prediction
 - Failure detection
 - Failure recovery

WDSN 2009: Vikas Chandra