

The 39th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

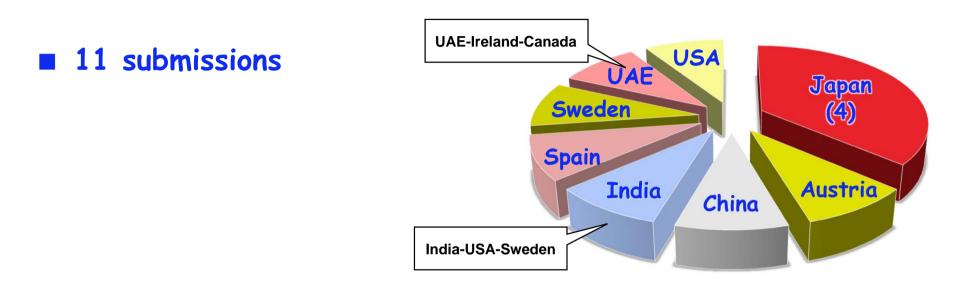
June 29-July 2, 2009 — Estoril, Lisbon, Portugal

Third Workshop on Dependable and Secure Nanocomputing

Organizers:

- Jean Arlat, LAAS-CNRS
 - Cristian Constantinescu, AMD
 - Ravishankar K. Iyer, UIUC
 - Johan Karlsson, Chalmers Univ.
 - Michael Nicolaïdis, TIMA

Monday June 29, 2009


Program Committee

Jacob A Abraham Lorena Anghel Davide Appello Vikas Chandra **Yves** Crouzet Giorgio Di Natale Babak Falsafi Richard E. Harper Shubhendu S. Mukherjee Takashi Nanya Jean-Jacques Quisquater Juan Carlos Ruiz García Allan Silburt Arun Somani Janusz Sosnowski Andreas Steininger Alan Wood **Yervant** Zorian

University of Texas, Austin, USA TIMA, Université de Grenoble, France STMicroelectronics, Agrate Brianza, Italy ARM R&D, San Jose, CA, USA LAAS-CNRS, Toulouse, France LIRMM, Montpellier, France EPFL, Lausanne, Switzerland IBM Research, Yorktown Heights, NY, USA Intel Corp., Hudson, MA, USA University of Tokyo, Japan Univ. Cath. Louvain, Belgium Univ. Politécnica de Valencia, Spain Cisco Systems, Ottawa, ON, Canada Iowa State University, Ames, USA Warsaw University of Technology, Poland Vienna University of Technology, Austria Sun Microsystems, Santa Clara, CA, USA Virage Logic, Fremont, CA, USA

Third Workshop on Dependable and Secure Nanocomputing The 39th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Program Set up

- Each submission reviewed by 4+ PC members
- Selection —> 8 presentations from submitted contributions
- 2 invited talks

Program-at-a-Glance

Moderator

L U	nd Invited Talks Jean Arlat
	Workshop Introduction Vikas Chandra, Cecilia Metra
10-10:30 Coffee	
2- Reliability	Issues and AssessmentJohan Karlsson
10:30-11:50	Eishi Ibe, Valeriu Beiu, David de Andres, Scott Bingham
11:50-12	Additional Discussion
12-13:30 Lunch	
3- Resilience	Enhancement TechniquesMichael Nicolaïdis
13:30-14:50	Tomohiro Yoneda, Daniel Skarin, Pramod Subramanyan, Andreas Steininger
14:50-15	Additional Discussion
15-15:30 Coffee	break
4- Panel and	ClosingCristian Constantinescu
Scaling Tow	ards Nanometer Size Devices: Issues and Solutions
15:50-10:20	Presentations by the panelists Jacob Abraham, Valeriu Beiu, Helia Naeimi, Arun Somani, Seongmoon Wang
16:20-17	Panel discussion and Workshop Wrap up
17 Worksho	p Adjourn

Third Workshop on Dependable and Secure Nanocomputing The 39th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

About Nanocomputing

- Nanocomputing describes computing that uses extremely small — or nanoscale — devices (1 nm = 10⁻⁹ m).
 - Top Down: MOS device downscaling "More Moore"
 - Bottom Up: (Self-)assemblies of nanoelectronics devices "Beyond Moore"
- NanoComputing: The End Not Here Yet, But Coming Soon, Science, Vol. 293. no. 5531, August 2001, p. 787
- The Future of Nanocomputing, George Bourianoff, Intel Corp., Computer, Aug. 2003, pp. 44-53
- Computer Architectures for Nanotechnology: Towards Nanocomputing, Christian Gamrat, CEA/LIST, in Nanoscience, (C. Dupas, P. Houdy, M. Lahmani, Eds), Springer, 2007
- Towards Achieving Reliable and High-performance Nanocomputing via Dynamic Redundancy Allocation, Shuo Wang, Lei Wang, Faquir Jain, ACM J. on Emerging Technologies in Computing systems, Vol.5, no.1, Jan. 2009

5

ITRS* Crosscutting Challenge 5: Reliability

Relaxing the requirement of 100% correctness for devices and interconnects may dramatically reduce costs of manufacturing, verification, and test. Such a paradigm shift is likely forced in any case by technology scaling, which leads to more transient and permanent failures of signals, logic values, devices, and interconnects.

Several example issues are as follows. 1) Below 65nm, single-event upsets (soft errors) impact field-level product reliability, not only for embedded memories, but for logic and latches as well. 2) Methods for accelerated lifetime testing (burn-in) become infeasible as supply voltages decrease (resulting in exponentially longer burn-in times); even power demands of burn-in ovens become overwhelming. 3) Atomic-scale effects can demand new "soft" defect criteria, such as for non-catastrophic gate oxide breakdown. In general, automatic insertion of robustness into the design will become a priority as systems become too large to be functionally tested at manufacturing exit.

Potential solutions include automatic introduction of redundant logic and onchip reconfigurability for fault tolerance, development of adaptive and selfcorrecting or self-healing circuits, and software-based fault-tolerance.

* International Technology Roadmap for Semiconductors — 2008 Update (www.itrs.net)

Third Workshop on Dependable and Secure Nanocomputing The 39th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

