

Abstract—This paper proposes an application-specific
framework for detecting transient faults in processors, based on
the observation that soft errors in some scenarios manifest
themselves as aberrations in a program’s control flow before
resulting in an erroneous output or a system crash. The
proposed architecture therefore consists of a hardware based
application-specific checker that monitors a program’s control
flow during its execution, and compares against pre-determined
control flow signatures.

I. EXTENDED SUMMARY
Transient faults or soft errors are a major concern in many

systems and system-on-chips (SoCs) [1-4]. Conventional solutions
for this problem include use of error correcting codes (ECC) in
memories and triple modular redundancy (TMR) in logic [5].

With processor based SoCs being used in many embedded
systems today, recent work have focused on the development of
techniques that can improve resilience of processors to soft errors
that may occur during the course of program execution. For
example, DIVA [8] uses the concept of redundancy by implementing
a low-overhead checker that replicates the computations in the
processor pipeline and dynamically verifies that the results of the
computations are unaffected by various factors including soft errors.
Many existing solutions are general-purpose in the sense, that the
mechanisms provide a generic way to protect the system and all
applications that run on it. From a design standpoint, these solutions
require intrusive changes to the processor architecture, cause
constant performance overheads even for an application that does
not warrant this protection, and so on. In this work, we examine the
question: "Can we develop application-specific protection
mechanisms that are less intrusive to the processor architecture,
and comparatively lightweight (in overheads)?"

In order to develop application-specific measures, we need to
understand ways in which soft errors affect program execution.
Various analyses [6,7] have shown that soft errors manifest
themselves as aberrations in a program’s control flow and/or errors
in intermediate data variables. In our work, we restrict our attention
to the scenario wherein soft errors manifest themselves as
aberrations in program behavior (control flow) before potentially
resulting in erroneous output. We argue that if we can identify data-
independent invariants of correct program execution, we can
potentially design a checker that can monitor the program during the
course of execution, "compare" against the invariants, and signal if a
deviation from correct behavior is seen. Towards this objective, we
identify a program's functional call graph, intra-function control flow
graph, and basic block level signatures as potential invariants of the
control flow associated with correct program execution. These
program properties are invariants that can be identified easily
through static program analysis, and can be easily modeled as a part
of a hardware checker.

Figure 1 shows a high-level description of the proposed
framework. On the hardware front, the architecture consists of a
checker that monitors selected signals of the processor, compares
against its programmed signatures, and signals if any deviations
from expected values are seen. The programmed signatures are
extracted from the application through static analysis of the
program. The program’s function call graph and intra-function basic
block control flow graph are modeled as finite state automata (FSA).
For each basic block, we also compute the hash or message digest of
data-invariant fields of the instruction (such as the instruction
opcode).

Figure 1. Proposed Framework

The operation of the checker is as follows. At the function level,
the checker uses the FSA corresponding to the function call graph in
order to enforce caller-callee relationships, and the callee returns.
Within a function, the checker enforces the control flow across basic
blocks. Thus, any inadvertent jump can be detected. Finally, basic
block level signatures catch any changes to the instruction invariants
within a basic block. Each level of monitoring provides an
opportunity to trade-off between faster detection latencies and better
coverage of soft error incidence.

Control flow monitoring is a well-known technique that has been
used in the context of security [9], wherein malevolent program
behavior triggered in the event of an attack can be detected by
monitoring the application’s control flow. In our work, we wish to
examine the potential and limitations of using this concept for
detecting soft errors.

References
[1] J. Ziegler et al, “IBM experiments in soft fails in computer electronics

(1978-1994)”, IBM J. R & D pp. 3 -18, Vol. 40, No. 1, 1998.
[2] R. Baumann, “Radiation-induced soft errors in advanced semiconductor

technologies”, IEEE Trans. Device and Materials Reliability, pp: 305-
316, Vol.5, Iss.3, Sept. 2005.

[3] S. Mitra et al,“ Logic soft errors in sub-65nm technologies design and
CAD challenges,” Proc. DAC, pp. 2-4, June 2005.

[4] S. S. Mukherjee et al, “The Soft Error Problem: An Architectural
Perspective.” Proc. HPCA, Feb. 2005.

[5] M. Nicolaidis, “Design for soft error mitigation”, IEEE Trans. on Device
and Materials Reliability, Vol.5, Iss.3, pp. Pages: 405- 418, Sept. 2005.

[6] S. S. Mukherjee et al, “A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance
Microprocessor,” Proc. MICRO, Dec. 2003.

[7] C. Weaver et al, “Techniques to Reduce the Soft Errors Rate in a High-
Performance Microprocessor,” Proc. ISCA, June 2004.

[8] T. Austin, "DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design," Proc. Micro, Nov. 1999.

[9] D. Arora et al, “Hardware-Assisted Run-Time Monitoring for Secure
Program Execution on Embedded Processors,” IEEE TVLSI, pp:1295-
1308, Vol.14, Iss.12, Dec. 2006.

Srivaths Ravi, Texas Instruments, India
 [Email:srivaths.ravi@ti.com]

An Application-Specific Framework for Detecting
Transient Faults in Processors

Processor
Application

Specific
Checker

Monitored
Signals

PR
O

G
R

A
M

M
IN

G
IN

TE
R

FA
C

E
Interrupts.

Stall

BB1

BB2 BB3

Function
call graph

…….
add r1, r2, r3
sub r1, r1, r5
nop
mul r2, r3, r4

Control
flow graph

Basic
block

APPLICATIONAPPLICATION

f0

f1

call

f2

call
ret

ret

Extract Application Specific Signatures

HW

SW

Processor
Application

Specific
Checker

Monitored
Signals

PR
O

G
R

A
M

M
IN

G
IN

TE
R

FA
C

E
Interrupts.

Stall

BB1

BB2 BB3

BB1

BB2 BB3

Function
call graph

…….
add r1, r2, r3
sub r1, r1, r5
nop
mul r2, r3, r4

…….
add r1, r2, r3
sub r1, r1, r5
nop
mul r2, r3, r4

Control
flow graph

Basic
block

APPLICATIONAPPLICATION

f0

f1

call

f2

call
ret

retf0

f1

call

f2

call
ret

retf0f0

f1f1

call

f2f2

call
ret

ret

Extract Application Specific SignaturesExtract Application Specific Signatures

HW

SW

