
On-Line Self-Test of AES Hardware Implementations

G. Di Natale, M. L. Flottes, B. Rouzeyre
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier

Université Montpellier II / CNRS UMR 5506
161 rue Ada, 34392 Montpellier Cedex 5, France

{dinatale,flottes,rouzeyre}@lirmm.fr

Abstract

In this paper we propose an on-line self-test

architecture for hardware implementations of
Advanced Encryption Standard (AES). The solution
assumes a parallel architecture and exploits the
inherent spatial replications of this implementation.
Because Substitution boxes (S-Box) represent the
largest hardware in this architecture, we focus on
faults affecting these S-Boxes and propose a trade-off
between hardware overhead and fault latency. We
show that our solution is very effective while keeping
the area overhead very low. Moreover, this
architecture does not weak the device with respect to
side-channel attacks based on power analysis. On the
contrary, it makes more difficult this type of attack.

1. Introduction

Cryptography enables to store sensitive information
or transmit it across insecure networks (like the
Internet) so that it cannot be read by anyone except the
intended recipient.

The classic cryptanalysis is purely theoretical. On
the other hand, when the function is implemented in
hardware, specific attacks are possible because the
attacker has access to the physical cryptographic
device and he can play around with it. These types of
attacks are called “Implementation Attacks” which
target the cryptographic device itself. These attacks
can range from the physical opening of the
cryptographic device to changing and observing the
environmental conditions, e.g. attacks based on the
observation of the inherent leakage of the
cryptographic device.

Among all the attacks proposed in the literature,
Side-Channel Attacks exploit the fact that the
cryptographic device itself leaks physical information
during the processing of a cryptographic algorithm.

This physical leakage (e.g., power dissipation, timing
information, ...) can be captured externally and can
then be used to compromise secret keys of
cryptographic algorithms by using standard statistical
tools.

A good cryptographic device must therefore ensure
high reliability and dependability and, in addition, it
must implement some countermeasures to prevent the
possibility of gathering the secret code by mean of a
side-channel attack.

In this paper we propose a low cost concurrent on-
line Self-Test technique able to detect single and
multiple faults in the hardware implementation of the
Advanced Encryption Standard (AES). The solution,
based on the spatial replication inherent to the parallel
implementation of the AES, exploits the native
property to have 16 identical repetitions of the same
block (the S-Box).

We present a trade-off between hardware overhead
and fault detection latency where one additional S-Box
is added every 4 S-Boxes in the circuit. The S-Boxes
represent the biggest part of the AES circuit, counting
up to 95% of the whole circuit. Therefore, it is possible
to obtain very good results in terms of reliability by
protecting the S-Boxes only. We will prove that our
solution is very effective while keeping the area
overhead very low. Moreover, although not
specifically designed to protect against tampering, this
architecture makes more difficult side-channel attacks
based on power analysis.

The paper is organized as follows. Section 2
introduces the basic concepts and the characteristics of
the Advanced Encryption Standard algorithm. Section
3 summarizes the state-of-the-art on this topic, while
Section 4 presents the On-Line Self-Test approach.
Section 5 discusses the results in terms of area
overhead and fault detection capability. Eventually,
Section 6 concludes the paper.

2. Advanced Encryption Standard

The Advanced Encryption Standard (AES) [4] is a
block cipher adopted as an encryption standard by the
U.S. government. AES began immediately to replace
the Data Encryption Standard (DES), which has been
in use since 1976. AES outperforms DES in improved
long-term security because of, among other things,
larger key sizes (128, 192, or 256 bits).

Another major advantage of AES is the possibility
of efficient implementation on various platforms. AES
is suitable for small 8-bit microprocessor platforms and
common 32-bit processors, and it is appropriate for
dedicated hardware implementations. Hardware
implementations can reach throughput rates in the
gigabit range. Several hardware implementations for
AES circuit have been proposed [5]. No matter the
type of implementation, the most expensive part of the
circuit in terms of area is the so called S-Box.

The AES algorithm’s internal operations are
performed on a two dimensional array of bytes called
State. The State consists of 4 rows of bytes and each
row has Nb bytes. Each byte is denoted by Si, j (0 ≤ i <
4, 0 ≤ j < Nb). Since the block length is 128 bits, each
row of the State contains Nb = 4 bytes. For sake of
simplicity we focus on key length equal to 128 bits.
The four bytes in each column of the State array form a
32-bit word, with the row number as the index for the
four bytes in each word. At the beginning of
encryption or decryption, the array of input bytes is
mapped to the State array as illustrated in Figure 1.
The 128-bit block can be expressed as 16 bytes: in0,
in1, in2, … in15. Encryption and decryption processes
are performed on the State, at the end of which the
final value is mapped to the output bytes array out0,
out1, out2, … out15.

in0

in1

in2

in3

in4

in5

in6

in7

in8

in9

in10

in11

in12

in13

in14

in15

Input bytes

out0

out1

out2

out3

out4

out5

out6

out7

out8

out9

out10

out11

out12

out13

out14

out15

Output bytes

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

State array

Figure 1: Mapping of input bytes, State array and

output bytes

The AES algorithm is an iterative algorithm. Each

iteration is called a round. The total number of rounds
is 10. At the start of encryption, input is copied to the
State array. After the initial roundkey addition, 10
rounds of encryption are performed. The first 9 rounds
are identical, with small difference in the final round.
As illustrated in Figure 2, each of the first 9 rounds

consists of 4 transformations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. The final round
excludes the MixColumns transformation.

The encryption scheme in Figure 2 can be inverted
to get a straightforward structure for decryption.

Plaintext (128 bits)

Ciphertext (128 bits)

roundkey(0)

for i=1 to 9

SubBytes

ShiftRows

MixColumns

roundkey(i)

SubBytes

ShiftRows

roundkey(10)

Figure 2: AES Algorithm (encryption)

SubBytes Transformation
The SubBytes transformation is a non-linear byte

substitution that operates independently on each byte
of the State using a substitution table (S-Box). This S-
Box is constructed by composing two transformations:
1. Take the multiplicative inverse in the finite field

GF(28); the element (00000000)2 is mapped to
itself;

2. Apply the following affine transformation (over
GF(2)):

iii

iiii

cbb
bbbb

⊕⊕
⊕⊕⊕=

++

++

8mod)7(8mod)6(

8mod)5(8mod)4(
'

 for 0 ≤ i < 8, where bi is the ith bit of the byte, and
ci is the ith bit of a byte c whose value is fixed and is
equal to {01100011}.

This transformation can be pre-calculated for each
possible input value since it works on a single byte,
therefore there are only 256 values. S-Boxes can be
implemented either as a ROM or as combinational
logic.

ShiftRows Transformation
In this transformation, the bytes in the first row of

the State do not change. The second, third, and fourth
rows shift cyclically to the left one byte, two bytes, and
three bytes, respectively.

MixColumns Transformation
The MixColumns transformation is performed on

the State array column-by-column. Each column is

considered as a four-term polynomial over GF(28) and
multiplied by a(x) modulo x4 + 1, where:

a(x) = (00000011)2 x3 + (00000001)2 x2 +
(00000001)2 x + (00000010)2

AddRoundKey Transformation
In AddRoundKey transformation, a roundkey is

added to the State array by bitwise XOR operation.
Each roundkey consists of 16 words generated from
Key Expansion described below.

Key Expansion
The key expansion routine, as part of the overall

AES algorithm, takes the input key of 128 bits. The
output is an expanded key of 11*128 bits, i.e., the
expanded key is composed of the secret key and 10
roundkeys, one for each round. Details of the
algorithm that allows determining the value of each
roundkey are given in [4].

3. State-of-the-Art

Fault detection and tolerance schemes for various
implementations of cryptographic algorithm have
recently been considered. Several motivations led to
increase the reliability of these circuits. From one side
the circuit implementation of cryptographic algorithms
can be quite area consuming, increasing the probability
of device failures. Fault detection is therefore helpful
in finding faults during the production tests. In
addition, fault detection and tolerance schemes are
very useful during mission time.

Since crypto chips are consumer products of mass
production, cheap solutions for concurrent error
detection and correction are of great importance.
Mainly, two approaches have been developed: based
on codes and based on functional redundancy.

All the techniques based on codes add some bits to
the original data word. The main issue in this approach
is the prediction of the value of the code, given the
input value and the function executed by the circuit.
For example, the prediction of a parity bit (when a
parity bit is added to each byte) is almost
straightforward for the ShiftRows, MixColumns and
AddRoundKey steps because these transformations are
either linear or they just perform some permutation of
the position of the bits in the state array (see [6] for
more details). On the contrary, the prediction of the
parity bit is not trivial for the S-Box and a dedicated
circuit must be added in order to calculate it. [6], [7],
and [8] present a solution based on parity codes. In all
cases the overhead is about 20% and the coverage of
single faults is very high. Nevertheless, in case of
multiple faults or in case of single faults that lead to an
even number of errors, these solutions are not

effective. Other solutions are based on the use of codes
more complex and therefore more expensive, such as
CRC [9] or systematic nonlinear robust codes [10], that
allows reaching higher values of coverage in case of
multiple faults. In this case the area overhead
significantly increases (> 60%).

In [11] the authors propose a technique based on
functional redundancy that can be used whenever the
encryption and decryption modules are implemented
on the same circuit. In this case after each encoding (or
decoding) the plaintext (ciphertext) is decoded
(encoded) again to check its correctness.

None of the previous works considered the
characteristics of the proposed approach when the
circuit is attacked by mean of power analysis. Only in
[12] there is a comparative analysis for several codes
of the correlation between the hamming distance of the
processed data and the power consumption.

The technique that we propose guarantees high fault
coverage of single and multiple faults and it makes the
use of power analysis very difficult.

4. Architecture Description

The technique we propose in this paper is designed
for all the AES cores (encryption and decryption) that
use 16 S-Box repetitions. We do not consider low-area
implementations, where there is only one S-Box at the
cost of several clock cycles for completing one
encryption/decryption round. The proposed solution is
anyway applicable to AES implementations where the
computation is performed in a semi-parallel way: for
instance, AES with 4 or 8 S-Boxes can be modified in
order to increase their dependability with the technique
we propose in this paper. Typical hardware
architecture of the AES where 16 S-Boxes are used at
the same time is sketched in Figure 3.

Register

Key7-0

Register

Key127-120

S-Box S-Box

Shift Rows
Mix Columns

I(127-120) I(7-0)

Figure 3: Typical AES Implementation

The most critical part of the circuit in terms of
silicon area is composed by the registers and the S-
Boxes, counting up to 85% of the whole circuit. In this
paper we focus on the registers and the S-Boxes.
The main idea of the approach is to use one additional
SubBytes block (8 bits register and S-Box) every 4
blocks, and to on-line test a pair of SubBytes blocks
each clock cycle (see figure 4). In particular, at each
clock cycle two blocks are fed by the same inputs and
the related outputs are compared in order to detect
possible faults.

= = = =

Figure 4: Different test configurations

Figure 5 details the behavior of a part of the circuit
where one SubBytes block has been added to 4 blocks.
In this figure, LMux(2) and LMux(3) are
multiplexers with an additional output that is asserted
whenever the two inputs are equal (i.e., a multiplexer
with a comparator).

SB4 SB3 SB2 SB1 SB0

From the
Control Unit

From the
Control Unit

To the
Control Unit

0 1 0 1 0 1

= 0 1 0 1
= =

um(3)
um(2)
um(1)

lm
check(1)
check(2)
check(3)
check(4)

I(4) I(3) I(2) I(1)

O(4) O(3) O(2) O(1)

=

SBox

Reg

SBox

Reg

SBox

Reg

SBox

Reg

SBox

Reg

LMux(3) LMux(2)

UMux(3) UMux(2) UMux(1)

Figure 5: On-Line BIST Architecture

Table 1 details the signals controlled and observed

by the control unit.
For instance, when SB4 and SB3 work together,

the UMux(3) let the input I(4) go into the SB3.
Among the four signals coming from the comparators,
only one at a time is considered by the control unit. For
example, in the above case, the check(4) signal is
verified, i.e., the related SubBytes block is checked.

Table 1: Signals controlled by the Control Unit
Working together Um Lm To check

SB4, SB3 000 1 check(4)
SB3, SB2 100 1 check(3)
SB2, SB1 110 0 check(2)
SB1, SB0 111 0 check(1)

The scheduling of the pairs of SubBytes blocks that
have to work together is a very important issue of the
proposed method. The control unit must guarantee that
each SubBytes block is tested at least once during the
10 rounds of the AES algorithm. A first solution is
based on the use of a counter. In this way each
SubBytes is tested at least twice (4 different
combinations, repeat in 10 clock cycles, i.e., one for
each AES round).

These considerations also lead to the fact that this
technique is applicable for levels of redundancy
starting from one spare SubBytes block every 10
blocks. In this way, there is the time to test each block
before the end of the 10 rounds. We decided to add
one spare block every 4 blocks because this solution
has a low overhead (as shown in Section 5) while
keeping the fault detection latency at an acceptable
level (each block tested every 4 clock cycles).

In order to make more difficult the attacks based on
fault injection or power analysis, the scheduling of the
pairs of SubBytes blocks can be randomly performed.
Instead of using a counter for the selection of which
pairs must be on-line tested, it’s possible to use an
LFSR or a True Random Number Generator. In this
case, the control unit has to guarantee that anyway all
the combinations of pairs are tested before the end of
the 10 rounds. Some considerations will be analyzed in
Section 5.

5. Experimental Results

In this section we provide some results related to
the area overhead and the fault coverage of the
proposed approach.

The proposed architecture has been described in
VHDL and synthesized using Cadence RTL Compiler
[13]. We used the 0.35µm CMOS library provided by
Austria Micro Systems [14].

All the S-Boxes have been synthesized as
combinational logic. However, the proposed solution
can be implemented using a ROM for the S-Box.
Moreover, we implemented two different versions of
the circuit: in the first version we considered that all
the keys used in the AddRoundKey step (see Section
2) were pre-computed and stored in the circuit; in the
second version we also implemented the module able
to generate all the round keys. In this case, since the
Key Generator uses 4 S-Boxes, we implemented the
same architecture of Figure 5 for this module.

Table 2 summarizes the area of the circuit described
in Figure 5.

Table 2: Area
 Base Redundant
 # Cells Area

[µm2] # Cells Area
[µm2]

Registers
S-Boxes 9590 642563 2397 160640

MixColumns
ShiftRows
AddKey

552 82918 0 0

Control Unit 55 4332 275 32067
Total
(w/o Key Generator) 10197 729813 2672 192707

Key Generator 2805 228210 746 46937
Total 13002 958023 3418 239644

The area overhead of the first version is 26,40%
(corresponding to a gate overhead of 26,20%) while
the overhead of the second version is 26,28%
(corresponding to a gate overhead of 25,01%).

This technique is able to detect any fault (single or
multiple) that leads to a different output value of the S-
Box while it is tested.

Regarding the protection against attacks based on
power analysis, it’s important to notice that this
architecture has several power profiles based on the
configuration of the pairs of SubBytes blocks. In
particular, for the same input, the circuit can be in 4
different states (see Figure 4) for each of the 4 groups
of 5 SubBytes blocks. This leads to a 256 different
combinations of pairs, i.e., 256 different power
profiles. This characteristic makes the power analysis
extremely difficult, particularly when the scheduling of
the pairs of SubBytes blocks is randomly selected
because in this case the 256 power profiles are not
cyclically repeated.

6. Conclusions

Cryptosystems are inherently computationally
complex, and in order to satisfy the high throughput
requirements of many applications, they are often
implemented by means of VLSI devices.

In this paper we proposed a low cost concurrent on-
line self-test technique able to detect faults in the
registers and in the S-Boxes of the AES.

The solution, based on spatial redundancy, exploits
the native AES property to have 16 identical
repetitions of the same block (the S-Box). We
presented a trade-off between hardware overhead and
fault latency where one additional S-Box is added
every 4 S-Boxes in the circuit leading to 2 tests of
every S-Box per encryption cycle (10 rounds).

The solution is very effective while keeping the
area overhead very low (about 26%). Moreover,
although not specifically designed to protect against

tampering, this architecture makes more difficult side-
channel attacks based on power analysis.

This solution can be easily enhanced with the use of
other detection and/or correction techniques like those
based on codes.

We consider as future work the development of an
advanced architecture with 2 additional S-Boxes for
each block of 4 S-Boxes, able to detect and repair
faults in the circuit.

7. References

[1] E. Biham, A. Shamir, “Differential fault analysis of

secret key cryptosystems,” In Advances in Cryptology –
CRYPTO’97, LNCS 1294, pp. 513–525, Springer-
Verlag, 1997

[2] P. Dusart, G. Letourneux and O. Vivolo, “Differential
Fault Analysis on A.E.S.,” Cryptology Archive of
IACR, No. 010, 2003, available at
http://eprint.iacr.org/2003/010

[3] C. Giraud, “DFA on AES,” Cryptology Archive of
IACR, No. 008, 2003, available at
http://eprint.iacr.org/2003/008

[4] “Advanced Encryption Standard (AES)”, Federal
Information Processing Standards Publication 197,
November 26, 2001.

[5] X. Zhang, K. K. Parhi, “Implementation Approaches for
the Advanced Encryption Standard Algorithm”, IEEE
Circuits and Systems Magazine, vol. 2, Issue 4, pp. 24-
46, 2002

[6] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri
“Error Analysis and Detection Procedures for a
Hardware Implementation of the Advanced Encryption

Standard”, IEEE Trans. Computers, vol. 52, no. 4,
pp.492-505, Apr. 2003

[7] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri,
“A parity Code Based Fault Detection for an
Implementation of the Advanced Encryption Standard”,
Proc. IEEE Int. Symposium on Defect and Fault
Tolerance in VLSI, pp. 51-59, Nov. 2002

[8] V. Ocheretnij, G. Kouznetsov, R. Karri, M. Gossel,
“On-Line Error Detection and BIST for the AES
Encryption Algorithm with Different S-Box
Implementations”, Proc. IEEE Int. On-Line Testing
Symposium, 2005, pp. 141-146

[9] C. Yen, B. Wu, “Simple Error Detection Methods for
Hardware Implementation of Advanced Encryption
Standard”, IEEE Trans Computers, vol. 55, no. 6, June
2006, pp. 720-731

[10] M Karpovsky, K. J. Kulikowski, A. Taubin, “Robust
Protection against Fault-Injection Attacks on Smart
Cards Implementing the Advanced Encryption
Standard”, Proceedings of the 2004 International
Conference on Dependable Systems and Networks
(DSN’04), pp. 93-101

[11] R. Karri, K. Wu, P. Mishra, Y. Kim, “Concurrent Error
Detection Schemes for Fault-Based Side-Channel
Cryptanalysis of Symmetric Block Ciphers”, IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, Dec. 2002, pp. 1509-1517

[12] V. Maingot, R. Leveugle, “On the Use of Error
Correcting Codes in Secured Circuits”, Proc. IEEE
Latin-American Test Workshop (LATW07), 2007

[13] http://www.cadence.com
[14] http://asic.austriamicrosystems.com/databooks/index.html
[15] http://www.synopsys.com

