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Abstract 

 
In this paper we propose an on-line self-test 

architecture for hardware implementations of 
Advanced Encryption Standard (AES). The solution 
assumes a parallel architecture and exploits the 
inherent spatial replications of this implementation. 
Because Substitution boxes (S-Box) represent the 
largest hardware in this architecture, we focus on 
faults affecting these S-Boxes and propose a trade-off 
between hardware overhead and fault latency. We 
show that our solution is very effective while keeping 
the area overhead very low. Moreover, this 
architecture does not weak the device with respect to 
side-channel attacks based on power analysis. On the 
contrary, it makes more difficult this type of attack.  
 
1. Introduction 
 

Cryptography enables to store sensitive information 
or transmit it across insecure networks (like the 
Internet) so that it cannot be read by anyone except the 
intended recipient. 

The classic cryptanalysis is purely theoretical. On 
the other hand, when the function is implemented in 
hardware, specific attacks are possible because the 
attacker has access to the physical cryptographic 
device and he can play around with it. These types of 
attacks are called “Implementation Attacks” which 
target the cryptographic device itself. These attacks 
can range from the physical opening of the 
cryptographic device to changing and observing the 
environmental conditions, e.g. attacks based on the 
observation of the inherent leakage of the 
cryptographic device.  

Among all the attacks proposed in the literature, 
Side-Channel Attacks exploit the fact that the 
cryptographic device itself leaks physical information 
during the processing of a cryptographic algorithm. 

This physical leakage (e.g., power dissipation, timing 
information, ... ) can be captured externally and can 
then be used to compromise secret keys of 
cryptographic algorithms by using standard statistical 
tools. 

A good cryptographic device must therefore ensure 
high reliability and dependability and, in addition, it 
must implement some countermeasures to prevent the 
possibility of gathering the secret code by mean of a 
side-channel attack.  

In this paper we propose a low cost concurrent on-
line Self-Test technique able to detect single and 
multiple faults in the hardware implementation of the 
Advanced Encryption Standard (AES). The solution, 
based on the spatial replication inherent to the parallel 
implementation of the AES, exploits the native 
property to have 16 identical repetitions of the same 
block (the S-Box). 

We present a trade-off between hardware overhead 
and fault detection latency where one additional S-Box 
is added every 4 S-Boxes in the circuit. The S-Boxes 
represent the biggest part of the AES circuit, counting 
up to 95% of the whole circuit. Therefore, it is possible 
to obtain very good results in terms of reliability by 
protecting the S-Boxes only. We will prove that our 
solution is very effective while keeping the area 
overhead very low. Moreover, although not 
specifically designed to protect against tampering, this 
architecture makes more difficult side-channel attacks 
based on power analysis. 

The paper is organized as follows. Section 2 
introduces the basic concepts and the characteristics of 
the Advanced Encryption Standard algorithm. Section 
3 summarizes the state-of-the-art on this topic, while 
Section 4 presents the On-Line Self-Test approach. 
Section 5 discusses the results in terms of area 
overhead and fault detection capability. Eventually, 
Section 6 concludes the paper. 
 



2. Advanced Encryption Standard 
 

The Advanced Encryption Standard (AES) [4] is a 
block cipher adopted as an encryption standard by the 
U.S. government. AES began immediately to replace 
the Data Encryption Standard (DES), which has been 
in use since 1976. AES outperforms DES in improved 
long-term security because of, among other things, 
larger key sizes (128, 192, or 256 bits). 

Another major advantage of AES is the possibility 
of efficient implementation on various platforms. AES 
is suitable for small 8-bit microprocessor platforms and 
common 32-bit processors, and it is appropriate for 
dedicated hardware implementations. Hardware 
implementations can reach throughput rates in the 
gigabit range. Several hardware implementations for 
AES circuit have been proposed [5]. No matter the 
type of implementation, the most expensive part of the 
circuit in terms of area is the so called S-Box. 

The AES algorithm’s internal operations are 
performed on a two dimensional array of bytes called 
State. The State consists of 4 rows of bytes and each 
row has Nb bytes. Each byte is denoted by Si, j (0 ≤ i < 
4, 0 ≤ j < Nb). Since the block length is 128 bits, each 
row of the State contains Nb = 4 bytes. For sake of 
simplicity we focus on key length equal to 128 bits. 
The four bytes in each column of the State array form a 
32-bit word, with the row number as the index for the 
four bytes in each word. At the beginning of 
encryption or decryption, the array of input bytes is 
mapped to the State array as illustrated in Figure 1. 
The 128-bit block can be expressed as 16 bytes: in0, 
in1, in2, … in15. Encryption and decryption processes 
are performed on the State, at the end of which the 
final value is mapped to the output bytes array out0, 
out1, out2, … out15. 
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Figure 1: Mapping of input bytes, State array and  

output bytes 
 
The AES algorithm is an iterative algorithm. Each 

iteration is called a round. The total number of rounds 
is 10. At the start of encryption, input is copied to the 
State array. After the initial roundkey addition, 10 
rounds of encryption are performed. The first 9 rounds 
are identical, with small difference in the final round. 
As illustrated in Figure 2, each of the first 9 rounds 

consists of 4 transformations: SubBytes, ShiftRows, 
MixColumns and AddRoundKey. The final round 
excludes the MixColumns transformation.  

The encryption scheme in Figure 2 can be inverted 
to get a straightforward structure for decryption. 

 

Plaintext (128 bits)

Ciphertext (128 bits)

roundkey(0)

for i=1 to 9

SubBytes

ShiftRows

MixColumns

roundkey(i)

SubBytes

ShiftRows

roundkey(10)

 
Figure 2: AES Algorithm (encryption) 

 
SubBytes Transformation 
The SubBytes transformation is a non-linear byte 

substitution that operates independently on each byte 
of the State using a substitution table (S-Box). This S-
Box is constructed by composing two transformations: 
1. Take the multiplicative inverse in the finite field 

GF(28); the element (00000000)2 is mapped to 
itself; 

2. Apply the following affine transformation (over 
GF(2)): 
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 for 0 ≤ i < 8, where bi is the ith bit of the byte, and 
ci is the ith bit of a byte c whose value is fixed and is 
equal to {01100011}.  

This transformation can be pre-calculated for each 
possible input value since it works on a single byte, 
therefore there are only 256 values. S-Boxes can be 
implemented either as a ROM or as combinational 
logic. 

ShiftRows Transformation 
In this transformation, the bytes in the first row of 

the State do not change. The second, third, and fourth 
rows shift cyclically to the left one byte, two bytes, and 
three bytes, respectively. 

MixColumns Transformation 
The MixColumns transformation is performed on 

the State array column-by-column. Each column is 



considered as a four-term polynomial over GF(28) and 
multiplied by a(x) modulo x4 + 1, where:  

a(x) =  (00000011)2 x3 + (00000001)2 x2 +  
(00000001)2 x + (00000010)2 

AddRoundKey Transformation 
In AddRoundKey transformation, a roundkey is 

added to the State array by bitwise XOR operation. 
Each roundkey consists of 16 words generated from 
Key Expansion described below. 

Key Expansion 
The key expansion routine, as part of the overall 

AES algorithm, takes the input key of 128 bits. The 
output is an expanded key of 11*128 bits, i.e., the 
expanded key is composed of the secret key and 10 
roundkeys, one for each round. Details of the 
algorithm that allows determining the value of each 
roundkey are given in [4]. 

 
3. State-of-the-Art 
 

Fault detection and tolerance schemes for various 
implementations of cryptographic algorithm have 
recently been considered. Several motivations led to 
increase the reliability of these circuits. From one side 
the circuit implementation of cryptographic algorithms 
can be quite area consuming, increasing the probability 
of device failures. Fault detection is therefore helpful 
in finding faults during the production tests. In 
addition, fault detection and tolerance schemes are 
very useful during mission time.  

Since crypto chips are consumer products of mass 
production, cheap solutions for concurrent error 
detection and correction are of great importance. 
Mainly, two approaches have been developed: based 
on codes and based on functional redundancy. 

All the techniques based on codes add some bits to 
the original data word. The main issue in this approach 
is the prediction of the value of the code, given the 
input value and the function executed by the circuit. 
For example, the prediction of a parity bit (when a 
parity bit is added to each byte) is almost 
straightforward for the ShiftRows, MixColumns and 
AddRoundKey steps because these transformations are 
either linear or they just perform some permutation of 
the position of the bits in the state array (see [6] for 
more details). On the contrary, the prediction of the 
parity bit is not trivial for the S-Box and a dedicated 
circuit must be added in order to calculate it. [6], [7], 
and [8] present a solution based on parity codes. In all 
cases the overhead is about 20% and the coverage of 
single faults is very high. Nevertheless, in case of 
multiple faults or in case of single faults that lead to an 
even number of errors, these solutions are not 

effective. Other solutions are based on the use of codes 
more complex and therefore more expensive, such as 
CRC [9] or systematic nonlinear robust codes [10], that 
allows reaching higher values of coverage in case of 
multiple faults. In this case the area overhead 
significantly increases (> 60%). 

In [11] the authors propose a technique based on 
functional redundancy that can be used whenever the 
encryption and decryption modules are implemented 
on the same circuit. In this case after each encoding (or 
decoding) the plaintext (ciphertext) is decoded 
(encoded) again to check its correctness. 

None of the previous works considered the 
characteristics of the proposed approach when the 
circuit is attacked by mean of power analysis. Only in 
[12] there is a comparative analysis for several codes 
of the correlation between the hamming distance of the 
processed data and the power consumption. 

The technique that we propose guarantees high fault 
coverage of single and multiple faults and it makes the 
use of power analysis very difficult. 
 
4. Architecture Description 
 

The technique we propose in this paper is designed 
for all the AES cores (encryption and decryption) that 
use 16 S-Box repetitions. We do not consider low-area 
implementations, where there is only one S-Box at the 
cost of several clock cycles for completing one 
encryption/decryption round. The proposed solution is 
anyway applicable to AES implementations where the 
computation is performed in a semi-parallel way: for 
instance, AES with 4 or 8 S-Boxes can be modified in 
order to increase their dependability with the technique 
we propose in this paper. Typical hardware 
architecture of the AES where 16 S-Boxes are used at 
the same time is sketched in Figure 3. 
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Figure 3: Typical AES Implementation 

 



The most critical part of the circuit in terms of 
silicon area is composed by the registers and the S-
Boxes, counting up to 85% of the whole circuit. In this 
paper we focus on the registers and the S-Boxes. 
The main idea of the approach is to use one additional 
SubBytes block (8 bits register and S-Box) every 4 
blocks, and to on-line test a pair of SubBytes blocks 
each clock cycle (see figure 4). In particular, at each 
clock cycle two blocks are fed by the same inputs and 
the related outputs are compared in order to detect 
possible faults. 

= = = =

Figure 4: Different test configurations 
 

Figure 5 details the behavior of a part of the circuit 
where one SubBytes block has been added to 4 blocks. 
In this figure, LMux(2) and LMux(3) are 
multiplexers with an additional output that is asserted 
whenever the two inputs are equal (i.e., a multiplexer 
with a comparator). 
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Figure 5: On-Line BIST Architecture 

 
Table 1 details the signals controlled and observed 

by the control unit. 
For instance, when SB4 and SB3 work together, 

the UMux(3) let the input I(4) go into the SB3. 
Among the four signals coming from the comparators, 
only one at a time is considered by the control unit. For 
example, in the above case, the check(4) signal is 
verified, i.e., the related SubBytes block is checked. 

 

Table 1: Signals controlled by the Control Unit  
Working together Um Lm To check 

SB4, SB3 000 1 check(4) 
SB3, SB2 100 1 check(3) 
SB2, SB1 110 0 check(2) 
SB1, SB0 111 0 check(1) 

 
 



The scheduling of the pairs of SubBytes blocks that 
have to work together is a very important issue of the 
proposed method. The control unit must guarantee that 
each SubBytes block is tested at least once during the 
10 rounds of the AES algorithm. A first solution is 
based on the use of a counter. In this way each 
SubBytes is tested at least twice (4 different 
combinations, repeat in 10 clock cycles, i.e., one for 
each AES round). 

These considerations also lead to the fact that this 
technique is applicable for levels of redundancy 
starting from one spare SubBytes block every 10 
blocks. In this way, there is the time to test each block 
before the end of the 10 rounds. We decided to add 
one spare block every 4 blocks because this solution 
has a low overhead (as shown in Section 5) while 
keeping the fault detection latency at an acceptable 
level (each block tested every 4 clock cycles). 

In order to make more difficult the attacks based on 
fault injection or power analysis, the scheduling of the 
pairs of SubBytes blocks can be randomly performed. 
Instead of using a counter for the selection of which 
pairs must be on-line tested, it’s possible to use an 
LFSR or a True Random Number Generator. In this 
case, the control unit has to guarantee that anyway all 
the combinations of pairs are tested before the end of 
the 10 rounds. Some considerations will be analyzed in 
Section 5. 
 
 
5. Experimental Results 
 

In this section we provide some results related to 
the area overhead and the fault coverage of the 
proposed approach.  

The proposed architecture has been described in 
VHDL and synthesized using Cadence RTL Compiler 
[13]. We used the 0.35µm CMOS library provided by 
Austria Micro Systems [14]. 

All the S-Boxes have been synthesized as 
combinational logic. However, the proposed solution 
can be implemented using a ROM for the S-Box. 
Moreover, we implemented two different versions of 
the circuit: in the first version we considered that all 
the keys used in the AddRoundKey step (see Section 
2) were pre-computed and stored in the circuit; in the 
second version we also implemented the module able 
to generate all the round keys. In this case, since the 
Key Generator uses 4 S-Boxes, we implemented the 
same architecture of Figure 5 for this module. 

Table 2 summarizes the area of the circuit described 
in Figure 5. 

 

Table 2: Area  
 Base Redundant 
 # Cells Area 

[µm2] # Cells Area 
[µm2] 

Registers 
S-Boxes 9590 642563 2397 160640 

MixColumns 
ShiftRows 
AddKey 

552 82918 0 0 

Control Unit 55 4332 275 32067 
Total  
(w/o Key Generator) 10197 729813 2672 192707 

Key Generator 2805 228210 746 46937 
Total 13002 958023 3418 239644 
 

The area overhead of the first version is 26,40% 
(corresponding to a gate overhead of 26,20%) while 
the overhead of the second version is 26,28% 
(corresponding to a gate overhead of 25,01%). 

This technique is able to detect any fault (single or 
multiple) that leads to a different output value of the S-
Box while it is tested.  

Regarding the protection against attacks based on 
power analysis, it’s important to notice that this 
architecture has several power profiles based on the 
configuration of the pairs of SubBytes blocks. In 
particular, for the same input, the circuit can be in 4 
different states (see Figure 4) for each of the 4 groups 
of 5 SubBytes blocks. This leads to a 256 different 
combinations of pairs, i.e., 256 different power 
profiles. This characteristic makes the power analysis 
extremely difficult, particularly when the scheduling of 
the pairs of SubBytes blocks is randomly selected 
because in this case the 256 power profiles are not 
cyclically repeated. 
 
6. Conclusions 
 

Cryptosystems are inherently computationally 
complex, and in order to satisfy the high throughput 
requirements of many applications, they are often 
implemented by means of VLSI devices.  

In this paper we proposed a low cost concurrent on-
line self-test technique able to detect faults in the 
registers and in the S-Boxes of the AES. 

The solution, based on spatial redundancy, exploits 
the native AES property to have 16 identical 
repetitions of the same block (the S-Box). We 
presented a trade-off between hardware overhead and 
fault latency where one additional S-Box is added 
every 4 S-Boxes in the circuit leading to 2 tests of 
every S-Box per encryption cycle (10 rounds).  

The solution is very effective while keeping the 
area overhead very low (about 26%). Moreover, 
although not specifically designed to protect against 



tampering, this architecture makes more difficult side-
channel attacks based on power analysis. 

This solution can be easily enhanced with the use of 
other detection and/or correction techniques like those 
based on codes. 

We consider as future work the development of an 
advanced architecture with 2 additional S-Boxes for 
each block of 4 S-Boxes, able to detect and repair 
faults in the circuit. 
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