
FPGA Hardware Implementation of Statically-derived
Application-aware Error Detectors∗

Peter Klemperer†, Shelley Chen§, Karthik Pattabiraman†, Zbigniew Kalbarczyk†, Ravishankar K. Iyer†

†Center for Reliable and High Performance Computing
University of Illinois (Urbana-Champaign)

{klempere, pattabir, kalbar, rkiyer}@uiuc.edu

§SAIC
Champaign, IL

shelley.chen@saic.com

Abstract

Previous software-only error detection techniques have
provided high-coverage, low-latency detection but suffer
significant performance overheads with a large percentage
of benign detections. This paper presents a FPGA hard-
ware implementation of application-aware data error de-
tectors. The detectors are automatically derived at compile
time and executed in hardware at runtime, minimizing the
performance overhead. We implement the static detectors
using the Reliability and Security Engine, which provides
a standard interface for developing reliability and secu-
rity hardware modules. An initial, proof-of-concept model
shows that there is only a 2% performance penalty when the
detectors are implemented in hardware.

1. Introduction

This paper presents a hardware implementation of an
error detection technique to protect applications against
data errors. Traditionally, this has been done through
duplication-based techniques. Software-only duplication
techniques, such as [1], perform checking after every in-
struction in order to achieve high coverage. Unfortunately,
considerable performance needs to be sacrificed for this
high coverage. Other techniques reduce the granularity of
the checking in order to regain performance [10][7]. How-
ever, reduced checking has insufficient coverage, as it can-
not detect errors such as hangs and crashes that occur be-
tween checks. The IBM G5 moves the comparison logic
into hardware in order to reduce the performance overhead
of duplication [11], but this results in high hardware design

∗This work was supported in part by the U.S. Department of Commerce
under Grant SBAHQ-05-I-0062, NSF grant CRI CNS 05-51665, Gigascale
Research Center (GSRC/Marco), Motorola Corporation, and Intel Corpo-
ration.

complexity and area overheads. In addition, full duplica-
tion, whether implemented in hardware or software, detects
many benign errors [5], or errors that do not impact the fi-
nal outcome of the application. Ideally, we want a solution
where high coverage is maintained, with low performance
and hardware area overheads.

[9] details a technique which generates application-
aware error detectors to protect a program from data errors.
Protecting structures like the register file and memory with
well-known techniques such as ECC is insufficient as data
errors can result from incorrect computation. The detec-
tors are derived statically through compiler enhancements
and execute the checks at runtime. Initially, the checkers
were implemented entirely in software, resulting in an aver-
age performance overhead of 33%, but maximum overheads
of up to 80%. The path tracking was also implemented in
software, resulting in intolerable overheads (400%). They
proposed moving the implementation into hardware, which
can significantly improve the efficiency of the technique.

This study utilizes the same technique presented in [9] to
statically generate the detectors, but implements the checker
logic in the FPGA-based hardware. We see substantial per-
formance benefits for a small application with very sim-
ple checker logic. With larger programs, which need more
complex checking expressions, even greater benefits are ex-
pected.

The rest of this paper is organized as follows: Section 2
gives some background information. Section 3 dives into
the implementation details of the detector module. Sec-
tion 4 evaluates the hardware module and Section 5 de-
scribes limitations of the module and some future work.

(a) (b)

Figure 1. Backward slice of critical variable,
Data[i], from inner loop of bubblesort. (a)
original code. (b) checking expressions.

2. Background Information

2.1. Path Tracking and Checkers

This section gives a high level overview of the static
derivation of the error detectors, which are invoked at run-
time. Further details of the technique can be found in [9].

First, we identify the critical variables for the target pro-
gram. These are variables that are highly sensitive to ran-
dom data errors. In [8], we performed a study to identify
sensitive variables in a program. In that study, we found that
variables having high fanout (successors in the dynamic de-
pendence graph) are highly sensitive to data errors. This
is because an error in a high-fanout variable can propa-
gate to many other variables and result in program failure
(crash or incorrect output). Other metrics that were consid-
ered in the study include variables with high lifetimes (dis-
tance between their definition and use) as well as variables
with high execution count (number of times the instruction
computing the variable is executed). However, these met-
rics resulted in lower error-detection coverage compared to
variable fanouts. Therefore, protecting fanout variables will
result in maximum error detection coverage.

The fanouts for each variable can be determined through
application profiling and analysis of the application’s data
flow by the compiler. The compiler first chooses the vari-
ables with the highest fanouts in the program. Next, the
compiler computes the backward slice for the critical vari-
ables. A backward slice of a particular variable at a program
location includes any instruction that can affect the value
of the variable at that location [12]. Heuristics are imple-
mented to keep the memory storage required for the depen-
dency trees low, which allows for scaling to larger appli-

Figure 2. Block diagram of host with RSE.

cations. At this point, the compiler computes the checking
code (later implemented in hardware) and inserts it into the
program. Recall that the checks are path-specific. Hence,
path-tracking instrumentation is added by the compiler to
the application to ensure that the correct checks execute at
runtime.

Figure 1 illustrates the statically-derived detectors. The
original code is shown in Figure 1(a). It shows the inner
loop of a simple bubblesort application. The derived check-
ing expressions are shown in Figure 1(b). Assuming the
compiler has identified theData[ic] as a critical variable,
it creates checking expressions to recomputeData[ic] in
Data[j] throughip, a stored value ofi from the previous
iteration. Afterwards, the values inData[ic] andData[j]
are compared. If they are different, an error is thrown. Oth-
erwise, normal program execution continues.

In [9], the path tracking and the checks are executed in
software, resulting in a significant performance reduction
versus the unprotected application. In our design, the path
tracking and the checks are moved into hardware so that the
overhead at runtime is minimal. We implement both the
path tracking and checks as a module in the Reliability and
Security Engine, which is detailed in the following section.

2.2. Reliability and Security Engine

The RSE (Reliability and Security Engine) [3][4] is a
framework that provides a standard interface between the
host processor and the modules that implement reliability
and security services for the executing application. Fig-
ure 2 illustrates a block diagram of the RSE connected
to host processor. The modules are running alongside the
host, monitoring the behavior of the executing application.
Probes are inserted into the pipeline of the host processor
and continuously transfer all the host state information to
the RSE modules. Each module needs only a subset of the
overall state information. Thus, some routing functionality

is integrated into the RSE to get the proper signals to the
proper modules.

The RSE provides an ideal interface for the development
of new reliability and security modules. Many probes have
already been inserted into the host processor pipeline. Thus,
no further intrusions need to be made as these signals are
already being forwarded from the host to the RSE. In order
to design a new module, one would just need to create the
module and route the necessary signals to it.

In addition to the RSE being aware of the application
running on the host, the application itself must be aware of
the modules that are in the RSE. We augment the ISA with
CHECK instructions that enable and disable the different
modules. The software developer must indicate to the com-
piler what parts of the application he wants to protect and
the compiler inserts the necessary CHECK instructions to
enable and disable the corresponding modules.

2.3. Fault Model

Our fault-model covers any hardware fault that results
in incorrect data values (data errors) in the program. Such
faults include but are not limited to:

• Faults in Fetch and Decode Units: Either the wrong
instruction is fetched, and it writes to an active regis-
ter/memory location in the program (OR) a correct in-
struction is decoded incorrectly, either resulting in an
incorrect (but valid) opcode, or resulting in an incor-
rect register/memory operand being written to or read
from the instruction.

• Faults in Execution and Load/Store Units: An ALU
instruction is executed incorrectly inside a functional
unit, (OR) the wrong memory address is computed for
a load/store instruction.

• Faults in Cache/Memory/Register File: A value in
the cache, memory, or register file experiences a soft
error that causes it to be incorrectly interpreted in the
program (assuming that ECC is not used).

All the above three categories of faults result in corrup-
tion of architectural state. Faults that do not affect architec-
tural state usually raise an exception in the same instruction
in which they occur and would be immediately detected by
the processor itself. Hence, we do not consider these faults
in our fault-model.

3. Implementation Details

3.1. Software Application Instrumentation

The static-detector has been implemented as a module
in the RSE on a superscalar DLX microprocessor [2]. For

Figure 3. Static-Detector block diagram.

now we have hand-instrumented a sample application, bub-
blesort, as a proof-of-concept design. In the future, the in-
strumentation process can be automated using tools already
developed for software instrumentation, but not yet adapted
to the DLX ISA and the hardware modules.

For the bubblesort application, we show a code segment
for the inner loop iteration in Figure 1. We deemed the first
data value of the sorting algorithm (Data[ic]) as the critical
variable. Figure 1(a) shows the selected instructions which
affect the calculation of the critical variable,Data[ic], in-
cluded in the backward slice of the control flow for a single
iteration.

Two parameters must be provided to the static-detector:
critical branch locationsandstate machine definitions. The
PC of the critical branch is required for path tracking. State
machine definitions describe the actual checks to be per-
formed. These parameters are all derived from the specific
details of the application and its compiled implementation.

3.2. Static-Detector Module Hardware
Implementation

The hardware implementation of the static-detector
module uses the interfacing capabilities of the RSE to ac-
cess the internals of the DLX host processor which are both
synthesized together onto the FPGA fabric. Figure 3 il-
lustrates the inputs and the outputs to the detector module.
There are two main components to the static-detector mod-
ule: thepath trackerand thecheckers.

The path tracking section of the static-detector module
utilizes signals from the branch resolution unit of the DLX.
The path trackers keep track of which branch path is taken
during program execution. The inputs required are the PC
of the critical branch and the result of the branch (taken or
not taken). For this implementation, the PC is input at mod-
ule synthesis time and stored in a ROM. Several improve-
ments are discussed in the future work section.

Wait

Evaluation

Error

!CHECK

CHECK

incorrect

correct

Reset

!Reset

Figure 4. State Machine for Checkers.

The checkers are the code segments that verify the re-
computed results for errors, as shown in Figure 1(b). They
use the output of the path tracker to determine what check-
ing code needs to be executed. In this implementation, one
state machine was hand-derived to perform the checking op-
erations and synthesized into the module. The state machine
takes the value recomputed in the checking state-machine
and compares it to the result originally computed by the
host. If the two values do not match up, then an error has
been detected.

The state-machine template consists of aWait state, an
Error state, and anEvaluationstate for each of the pos-
sible checks. This is illustrated in Figure 4. TheWait state
waits for a CHECK instruction to be committed by the DLX
pipeline. When a CHECK is detected, the branch tracker
is consulted and the state-machine transitions to theEval-
uation state of the indicated branch. AnEvaluationstate
performs the appropriate checking expression. If the evalu-
ation of the expression indicates an error, the state-machine
transitions to theError state, otherwise, if the expression
evaluates correctly, the state-machine transitions back to the
Wait state. If theError state is reached, the state-machine
flags such to the processor and will not transition out of the
Error state until a processor reset is performed.

Currently, the checks are hand-derived from the software
checks by extracting the expressions that form the basis
of each check. The checking expressions are rewritten as
VHDL expressions and inserted into the state-machine tem-
plate.

4. Evaluation

The hardware implementation of the static-detector
module utilizes a Nallatech BenONE PCI card with a Xilinx
XCV2VP70 Virtex-II Pro FPGA chip [6]. We use the Xil-
inx XST tool to synthesize the designs and the Xilinx ISE

tool flow for bitfile generation. In addition, Xilinx Chip-
scope Pro software logic analyzer is used for testing of the
hardware implementation.

Software checks have traditionally run slowly because
they add a significant amount of overhead to the application
code for implementing the checks. By implementing the
checks in hardware, we are able to accelerate the program
considerably. This comes from both moving the logic into
the hardware, and being able to run the checks in parallel
with the execution of the application on the DLX pipeline.
As shown in Table 1, with a bubblesort application, we are
able see overall speedups of 352% over a pure software in-
strumentation of the technique.

Faster acceleration is possible by allowing the RSE di-
rect access to main memory. In this implementation, any
checks that require access to main memory are loaded di-
rectly from memory by the RSE interface. Our tests show
that this reduces the performance overhead of the checkers
to only 2% over an unprotected design, which is a 345%
speedup over our software-checking-only implementation,
as shown in Table 1. The remaining 2% overhead represents
the effect of the CHECK instructions that are still present in
the instrumented code. Bubblesort has a very tight main
loop, thus the CHECK instructions account for a significant
percentage of the instructions in the inner loop. In addition,
the overhead of path tracking is minimal with the hardware
implementation. This is because no specialized instructions
are necessary for tracking.

If DMA from the RSE is not available, the main proces-
sor pipeline can load the critical information from memory
and store it into registers accessible by the static-detection
module. In this case, overheads of 90.9% were encountered
in our testing, but this still represents a speedup of 138%
over a pure software implementation. This cost represents
the overhead of the processor loading main memory within
the program instead of the RSE loading from main memory
in parallel with the program. For the bubblesort applica-
tion, only two memory locations are loaded, but with more
complicated programs this overhead can be very high.

The DLX Processor runs at 4 MHz for testing purposes.
Table 2 illustrates the area requirements of the design. The

Table 1. Bubblesort Performance Evaluation

Evaluation Cycles
Performance

Overhead

No Instrumentation 30,067 -

Static-Detector Module w/
DMA

30,688 2.1%

HW Static-Detector Module 57,411 90.9%

SW Static-Detector Module 136,607 354.3%

static-detector module requires only an extra 271 slices, 2%
of the area of the synthesized superscalar DLX and less than
1% of available chip area for the XC2VP70 FPGA. There
is a negligible difference in maximum clock rate when the
static-detectors are included in the design, indicating that
the module does not create any critical paths that would
slow the overall design.

The Static-Detector Module (SDM) operation is verified
using fault injection. We inject both control and data faults
into the operation of the bubblesort program and verify that
the checker does detect the errors. Some example faults
follow.

• Control flow fault: Control flow faults, such as a mis-
calculated branch target, can result in the omission of
instructions from a program run. For this experiment,
the omitted instructions are replaced with NOPs (in-
side the instruction-cache) during a run of bubblesort.
The specific instructions omitted from bubblesort de-
termined which two values in the list are sorted in
a given iteration. Having skipped these instructions
causes the list to be improperly sorted. The checking
functions inside the Static-Detector Module detect that
the sorting had not completed properly, and an error is
flagged.

• Data fault: The data fault injection was carried out
by changing the memory values of the list of value to
be sorted, in between the time when the sorting func-
tion finishes writing back to the list and the hardware
checks are carried out. The checker was able to de-
tect a difference between the data that had been writ-
ten back to this memory line and that memory’s state
at the time of the check, thereby indicating an error.

The Static-Detector module is able to detect both the
control and data errors injected into the operation of bub-
blesort with minimal impact on performance and area over-
head. In this paper we do not perform rigorous fault-
injection experiments to assess the coverage of the proposed
technique, but [9] presents such an evaluation of the tech-

Table 2. Static-Detector Synthesis Stats

Slice
Utilization

BRAM
Utilization

Max Pin
Delay

DLX + RSE
12262/33088

(37%)
45/328
(37%)

13.134 ns
(76 MHz)

DLX + RSE +
SDM

12533/33088
(37%)

45/328
(37%)

13.009 ns
(77 MHz)

DLX + RSE +
SDM + ILHD +
PTaint

12500/33088
(37%)

45/328
(37%)

16.099 ns
(62 Mhz)

nique implemented in software. We believe that the cover-
age results for the technique implemented in hardware are
likely to be similar to those presented in [9]. Future work
will involve injecting a wider range of hardware errors to
evaluate the technique

5. Limitations and Future Work

The proof-of-concept bubblesort design demonstrates
the feasibility of implementing the static-detector module
in FPGA hardware, but the design still has many obstacles
to overcome before it can be integrated into large-scale ap-
plications using automated tools. These issues are discussed
in the next few paragraphs.

The path tracking implementation currently in use is
somewhat limited. It can currently only track one branch
at a time and requires the PC of the critical branch to
be synthesized into the design. Future designs will re-
quire tracking multiple paths. Additionally, the PC of the
branches should not have to be known until the program
load-time. One solution is to add special CHECK instruc-
tions which would contain the PC of the critical branches
encoded within them and load them with other program
initialization data. Furthermore, we imagine creating state
machines which contain all valid paths through the criti-
cal branches and would allow more complicated tracking
schemes to be implemented [3]. These state machines could
also be loaded using special loading CHECK instructions.

A similar, but more daunting, problem is also presented
in implementing expanded state-machines for the static-
detector module’s checker routines. One approach is to en-
code the state machines into a standardized format and load
them into register arrays within the static-detector module.
This may have high overhead in on-board memory and load-
ing time if the modules are loaded using encoded CHECK
instructions or even direct memory access. Another ap-
proach we are investigating is automatically generating cus-
tom VHDL descriptions for each check and synthesizing
unique checking state-machines for each software applica-
tion. This approach will likely create high-performance so-
lutions with minimum area overhead over a hand-designed
solution.

6. Conclusion

The Static-Detector Module in the Reliability and
Security Engine offers promise of high-performance,
application-aware checking with low logic overhead. This
FPGA implementation demonstrates that statically-derived
detectors placed in hardware offer significant acceleration
over software-only techniques and that marginal overhead
over un-instrumented software will be possible in the near
future.

References

[1] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri. A
C/C++ source-to-source compiler for dependable applica-
tions. InDSN ’00: Proceedings of the 2000 International
Conference on Dependable Systems and Networks (formerly
FTCS-30 and DCCA-8), page 71, Washington, DC, USA,
2000. IEEE Computer Society.

[2] J. Horch. DLX processor. Online. http://www.rs.tu-
darmstadt.de/downloads/docu/dlxdocu/SuperscalarDLX.html.

[3] R. K. Iyer, Z. Kalbarczyk, K. Pattabiraman, W. Healey,
W.-M. W. Hwu, P. Klemperer, and R. Farivar. Toward
application-aware security and reliability.IEEE Security
and Privacy, 5(1):57–62, 2007.

[4] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu. An ar-
chitectural framework for providing reliability and security
support. InDSN ’04: Proceedings of the 2004 Interna-
tional Conference on Dependable Systems and Networks
(DSN’04), page 585, Washington, DC, USA, 2004. IEEE
Computer Society.

[5] N. Nakka, K. Pattabiraman, and R. K. Iyer. Processor-level
selective replication. InProc. of Intl. Conference on De-
pendable Systems and Networks (DSN), 2007.

[6] Nallatech. Bendata-II product brief. Online.
http://www.nallatech.com/mediaLibrary/images/english/
3576.pdf.

[7] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detec-
tion by duplicated instructions in super-scalar processors.
In IEEE Transactions on Reliability, pages 63 – 75, March
2002.

[8] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer.
Application-based metrics for strategic placement of detec-
tors. In Proceedings of 11th International Symposium on
Pacific Rim Dependable Computing (PRDC), pages 75–82.
IEEE Computer Society, December 2005.

[9] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer. Auto-
mated derivation of application-aware error detectors using
static analysis. InProc. of Intl. Online Testing Symposium
(IOLTS), 2007.

[10] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August. SWIFT: Software implemented fault tolerance. In
Proceedings of the 3rd International Symposium on Code
Generation and Optimization, March 2005.

[11] T. J. Siegel, E. Pfeffer, and J. A. Magee. The IBM eServer
z990 microprocessor.IBM J. Res. Dev., 48(3-4):295–309,
2004.

[12] M. Weiser. Program slicing. InICSE ’81: Proceedings of
the 5th international conference on Software engineering,
pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

