

Resilience through Self-Configuration
in the Future Massively Defective Nanochips

Piotr Zając (a,b), Jacques Henri Collet (a), Jean Arlat (a), and Yves Crouzet (a)

(a) LAAS- CNRS, Université de Toulouse,
7 av. du Colonel Roche 31077 Toulouse, France

(b) Department of Microelectronics and Computer Science,
Technical University of Lodz, Al. Politechniki 11, 93-590 Lodz, Poland

{pzajac, jacques.collet, jean.arlat, yves.crouzet}@laas.fr

Abstract

This paper addresses the resilience challenges in the
future nanochips made up of massively defective nanoele-
ments and organized in a replicative multicore architec-
ture. The main idea is to suggest that the chip should work
with almost no external testing or control mechanisms,
using a self-configuration methodology to ensure the resi-
lience of operation even in the presence of a significant
fraction of defective cores. By self–configuration, we mean
self-diagnosis with mutual tests, self-shutdown of inactive
cores and self-configuration of communications. We study
the efficiency of the proposed methodology and show that
the method is applicable up to a fraction of 30% of
defective cores in the on-chip network.

1 Introduction
Thanks to size reduction and technology advances, chips with
an extremely large number of transistors, say typically several
hundreds billions transistors, will become feasible in the next
decade. While this trend, together with accelerated clock
speed, is prone to result in substantial performance
improvements for future processors, some real challenges are
to be faced to achieve actual improvements [1]. These
challenges include: defects and variability of the elementary
devices as well as design complexity and communication
bandwidth limitation. In this context, the motivation of the
work presented in this paper results from two main
observations:
1) Future technologies will make it increasingly more difficult

to reach suitable yield levels without relying on fault
tolerance techniques.

2) In the design of current processors, performance increase is
based on the multiplication of the number of cores.

Extreme downsizing inevitably results in atomic range
dimensions, thus, in inter- and intra-device variability [2,3] and
ultimately in massively defective technologies, thus impairing

the production yield of such nanochips. To cope with this
problem, much progress has been made for what concerns
memory chips. Most advanced techniques consist in providing
spare elements (lines, rows or words) in order to dynamically
replace some defective elements. Indeed, techniques have been
proposed that not only cope with production defects but also
with faults occurring at runtime. Such techniques are primarily
meant to achieve a high yield, which may require a significant
overhead. For example, in [4], it is shown that for a 1Mb-chip
and a cell defect ratio of 3%, a near 100% yield can be
achieved, but at the cost of close to 100% overhead. Efficient
fault tolerance techniques have been proposed also for
processor chips. For example, the technique being recently
proposed in [5] features a set of fragmented MPUs for which
redundant fragments are available.

One may expect that, in the near future, the number of cores
manufactured and the organization of processor chips will
evolve significantly beyond the multicore symmetric multipro-
cessor (SMP) architectures such as today's popular bi, or
quadricore processor chips. The recent announcement for a 80-
core chip by Intel [6], already paves the way forward.
Moreover, the consequence of this trend is that software
techniques are evolving so as to take advantage of such
multicore processor architectures. This means also that alterna-
tive resilience solutions can be readily considered and fully
exploited. The goal goes beyond simply avoiding the delivery
of defective chips (i.e., chips with defective cores) even by
using spare elements at production time. Alone, such an
approach would require increasingly — perhaps prohibitively
— high effort and cost in manufacturing and testing. We
advocate a more pragmatic approach that is to maximize the
capacity to exploit the valid cores available on a chip. The
underlying rationale being that at the end of the manufacturing
process, the chips would then be sorted according the achieved
MIPS performance level, as is usually the case with respect to
clock frequency. Consequently, instead of sorting the chips
according to their frequency (1.6 Ghz, 1.8 Ghz or 2 Ghz), one
may think of sorting them as a function of the number of valid

cores. Such a principle is already applied on the production
lines of some manufacturers (e.g., Intel Core Duo chips
featuring a defective device are “recycled” as Core Solo
chips(1)).

The approach we are presenting is somewhat more ambitious,
as we are also considering applying such a self-configuration
dynamically at runtime rather than simply statically at produc-
tion time via an external diagnosis. This way, it would be
possible to continue using the processing resources available
onchip even when faults occurring in operation will impair
some additional cores. The performance would be simply
gradually reduced accordingly (as aging process in real life!).
We consider general purpose network (GPN) chips based on a
2D-mesh architecture as target for our study. We also identify
the processing core to be the basic unit for reconfiguration.
The underlying idea is to be able to discriminate between valid
and defective cores. In practice, it would be unrealistic to
consider diagnosing all nodes and routes in such a kind of very
complex chip via some external equipment. Accordingly, the
diagnosis should involve as little external interventions as
possible (e.g., to control the start up phase and the subsequent
operation). Our contribution consists in suggesting and
studying an autonomous reconfiguration methodology that
involves:
a) Self-diagnosis of cores with cross-node tests.
b) Self-configuration of communication routes.
c) Self-shutdown of inactive cores.
d) Self-adaptative redundancy management at runtime.
Steps a-c must be executed at startup, and possibly periodically
at runtime. Step d is executed at runtime exclusively. In this
paper, we focus on self-configuration at startup (i.e., steps a-c).
The expected benefits from such self-configuring capability are
twofold:

1) Achieving resilient operation in GPNs, despite the
presence of a fraction of defective cores.

2) Enabling a smooth degradation of the chip performance as
a function of the number of defective cores at runtime.

The paper is organized as follows: In Section 2, we briefly
introduce the features characterizing the type of GPN
architecture we are considering that are relevant for our study.
Section 3 describes how to conduct self-diagnosis through
mutual tests; in particular, we show that mutual tests enable
splitting the chip into zones of consistent cores such that all
cores are good or all are defective in a zone. In Section 4, we
study the efficiency of the routing discovery to assess how
many valid cores can be reached via a flooding protocol as a
function of the node failure probability and of the chip size.
Section 5 describes the principle adopted to self-shutdown the
cores, which cannot take part into the processing. Finally,
Section 6 provides some concluding remarks.

1 http://en.wikipedia.org/wiki/Intel_Core.

2 The architectural framework
The typical kind of architectures that we are considering
consists in general-purpose chips based on a 2D-mesh
architecture. Figure 1 depicts an example of such an
architectural framework with 9x5 nodes and one single
input/output port (IOP).

IOP

21

11

31 32

43

52

4241

51

14

58

37 3936

46 47

38

C Processing Core R Router IOP I/O Port

Inter-router links: Operationnal inhibited
Figure 1: Example of a 9x5 node network architecture

Each node is made up of a processing core (C) associated
to a router (R), which forwards the incoming messages to
enable intercore communications. Lines connecting the
routers materialize inter-router links. In this figure,
blackened cores depicts defective ones; 9 cores are
identified as such: C52, C58, C43, C31, C32, etc. This would
correspond to a massively defective chip featuring a failure
core probability of about 20%. Also, dashed lines identify
logically disconnected links as explained in Section 3. The
zone enclosed in a dashed line in the top left corner of the
figure shows that a cluster of 7 cores is unavailable due to
the failure of cores C52, C43, C32, C31.

In this study, we concentrate on core failures. The core
failure probability (PF) is an adjustable parameter in our
study that will be varied typically from 1% to 20-30%. The
consideration of link failures and of appropriate mecha-
nisms to cope with them (e.g., see [7]) is not addressed in
this paper. We also consider that each core is equipped
with a non-volatile memory (e.g., a flash memory not
shown in Figure 1) that stores test vectors and several bits
to save the results of the previous diagnoses even when the
power supply is turned off (see Section 3).

The problem is that, at startup (i.e., when the chip is
powered on), it is not known which cores are defective and
which communication routes are available to exchange
messages between nodes, especially between the IOP
(whose role is to allocate tasks) and the valid idle nodes.

3 Self-diagnosis via mutual testing
The simplest method to identify defective cores is core
self-test. In this approach, every core executes its test
instructions and compares the outputs that it generates with
the result vectors also stored in the non-volatile memory.
Unfortunately, a faulty core can behave unpredictably, and
diagnoses itself as non-faulty, independently of the state of
its neighbors. Thus, mutual diagnosis [8] is much
preferred. In this alternative approach, every core (say A)
in the network executes the diagnosis program
simultaneously to each neighbor (say B) and both compare
the generated results. If the results differ and if A is good
(i.e., fault-free), it concludes that B is faulty. If A is faulty,
its response is unpredictable and it can diagnose B as good
or faulty. In Table 1, the two leftmost columns display the
four possible real states of two adjacent cores and the two
rightmost columns reveal the corresponding mutual
diagnosis. For sake of concision GOOD and FAULTY will
be denoted as G and F, respectively, and X means that the
result of the diagnosis is unpredictable (i.e., either G or F).

Actual
state of
core A

Actual
state of
core B

Diagnosis for
core A made

by core B

Diagnosis for
core B made

by core A

GOOD GOOD GOOD GOOD
GOOD FAULTY X FAULTY

FAULTY GOOD FAULTY X
FAULTY FAULTY X X

X means undetermined diagnosis, possibly GOOD or FAULTY.

Table 1: Diagnoses using mutual testing

It turns out that the diagnosis G-G may correspond to any
combination of real states in the self-test approach (namely G-
G, G-F, F-G or F-F) whereas, in the mutual test, the sole
possible real states are G-G or F-F.

Mutual diagnosis may be used to split de facto the core array is
several zones through the following isolation mechanism:
when a G-core (i.e., a core in a G state) concludes that a
neighbor is faulty, it stores a Boolean variable in its memory
(or possibly in the router memory) to inhibit all
communications with this neighbor. In other words, the G-core
executes a logical inhibition (not a physical disconnection) of
the F-core. For instance, in Figure 1, C36 will conclude that C37
is faulty and it will disable all communications with this core.
The link between C36 and C37 therefore appears as dashed. This
allows G-cores to build up one or several simple-connected
zones (SCZ) in the network enabling full propagation of
messages between any two cores inside each of these zones.
The border of a SCZ is made up with F-cores (diagnosed as
faulty by neighbor G-cores), and consequently logically
disconnected. In this approach, the SCZ enclosing the IOP is
especially important as all cores outside this zone are lost for
the processing. For sake of clarity, let us refer again to
Figure 1. The dotted zone in the top left corner shows a cluster

of cores disconnected from the main SCZ, which are lost for
processing. The issue is that some cores in this cluster are in
the good state but lost, see cores C41, C51 and C42. This will
become especially problematical when PF increases.

As we previously stressed, all cores in a SCZ are in the same
state (i.e., all cores are good or all are faulty). This property
holds in particular for the SCZ enclosing the IOP, which
includes the cores that will execute the processing.
Unfortunately, there is one pernicious issue in that we don't
know the real state of the cores in this SCZ, except that the
probability to get a SCZ with n G-cores or n F-cores is ≈ (1 –
PF)n or ≈ PF

n , respectively. To remove this ambiguity, we
suggest executing an external diagnosis of the sole IOP to
make sure that it works correctly. Ultimately, self-diagnosis is
not completely autonomous and requires a minimal external
test for chip validation.

4 Self-configuration of communications
The step that we consider here consists in discovering the
routes connecting the IOP to G-cores. Remember that valid
routes are unknown, because the topology of the SCZ
including the IOP is a priori unknown and because it might
be necessary to move around (clusters of) defective nodes
within the SCZ. Nevertheless, these routes are crucial for
chip operation, as the IOP will use them to allocate
incoming tasks to idle cores. The basic idea to execute task
allocation at runtime is that the IOP should include a buffer
of valid routes (VRB) to the idle cores, so that the IOP
allocates incoming processes by searching a core in this
buffer. Of course, this buffer is initially empty.
Consequently, route discovery must be executed at startup
to initialize the VRB. We describe in Section 4.1 the route-
discovery protocol. The efficiency of this protocol is then
studied in Section 4.2.

4.1 Contract net protocol
Route discovery is achieved by means of a contract net
protocol (CNP) based on message multicast [9], which can
be typically decomposed in the two phases (request
emission and acknowledgment) that we describe hereafter.

4.1.1. Request phase: First, the IOP emits a request
message (RM). We consider broadcast diffusion, where
each node forwards each incoming RM by copying it on all
links except the incoming link [10]. Broadcast protocols
are successful in discovering routes (with high probability
as will be shown in section 4.2) that move around
disconnected zones, i.e., around zones including cores
diagnosed as F-cores in the mutual-test procedure depicted
in Section 2.

4.1.2. Acknowledgment phase: Each valid node receiving
the RM sends an acknowledgment message (AM) towards
the IOP. Globally, the number of AMs returning to the IOP
is as large as the number of contacted nodes in the SCZ
enclosing the IOP. However, the AM is not broadcast. We

suggest rather that each time a node forwards the RM in
phase 1 of the protocol, it adds in the RM route field the
input and output link IDs. For instance, for a scheme with 4
links per node as in Figure 1, one may consider the
following coding IDNorth=00, IDEast=01, IDSouth=10, and
IDWest=11. A node adding 0111 to the route field of the
request message tells that the message came in through
East and was forwarded through West. Note also that no
absolute node addressing is needed in this communication
approach. In this context, the AM in phase 2 simply
follows the RM route in the opposite direction, which
dramatically limits the number of reemissions compared to
the broadcast mechanism implemented in phase 1.

For clarity, we illustrate in Figure 2 the mutual test and the
resulting limited propagation of the RM considering a 1-D
network with 8 cores connected to the IOP. Cores 1, 6 and
8 are defective.

C

1) Mutual test

2) RM propagation

RM RM RM RM

G GG G G G G G F X X F XFX F F

1 2 3 4 5 6 7 8IOP

IOP

Figure 2: Illustration of mutual test and RM

propagation

Figure 2.1 shows the mutual diagnosis step. When the IOP
tests its neighbors (Cores 2 and 3), its diagnoses them as
good, and this result is stored in the IOP router with setting
the East bit and the West bit to G. When Core 2 tests its
neighbors, its diagnoses Core 1 as faulty and the IOP as
good, and this result is stored in its router by setting the West
bit to F (for faulty) and East bit to G (for good), and so on,
etc. After the diagnosis has been executed by all cores, we
get the final result as: X FG GG GG GG GF XX FF X,
Figure 2.2 shows the propagation of the RM across the
network. Because of the logical disconnection mechanism
described in Section 3, the propagation is blocked after Core
5 in East direction and after Core 2 in West direction.

4.2 Route discovery efficiency
We study in this paragraph the efficiency of the request phase,
i.e., the capability to contact cores in a faulty network via the
broadcast mechanism.

RM broadcasting was simulated using the multiagent simulator
MASS2. Briefly, MASS is a Windows® application developed
at LAAS, which calculates the temporal evolution of any
system that can be described in terms of coexistence of state

2 A detailed and comprehensive documentation is available from

http://www.laas.fr/~collet together with the possibility of
downloading the simulator.

automata (SA). The full description of MASS is beyond the
scope of this paper. MASS was successfully used in multiagent
simulations, communication, prey-predator games. In the route
discovery studies considered here, each node is represented by
a SA, which forwards incoming messages. All nodes are
activated in the asynchronous mode through a global
scheduler. The principle of each simulation is as follows:
1) The simulator randomly generates a fraction NPF of holes

in the network. Holes represent the faulty cores logically
inhibited following the mutual test process.

2) The IOP emits a RM, which is broadcast across the
defective network, following the “hot potatoes forwarding”
that was described in Section 4.1.

3) The program calculates the number of nodes n receiving
the RM. The array table[NMAX] is created and the entry
table[n] is incremented every time exactly n nodes
received the RM.

4) This procedure is repeated typically 2.000 times. At the
end of the simulation, the entry table[i] determines the
number of times i nodes were exactly reached. For
instance, table[26]=110 would mean that the message
reached exactly 26 nodes in 110 simulations. The
probability to reach 26 nodes is therefore estimated as
p(26)=110/2000.

Figure 3 shows the Probability that the IOP reaches at least
the fraction η of cores in a network comprising 10x10 cores.

PF =0.1

0

0.2

0.4

0.6

0.8

1

10x10 network PF =0.2

PF =0.3

PF=0.35
PF =0.4

0 0.2 0.4 0.6 0.8 1

AB

C

η : Fraction of chip cores

P
ro

ba
bi

lit
y

th
at

 th
e

IO
P

 r
ea

ch
es

at
 le

as
t t

he
 fr

ac
tio

n
η

of
 c

or
es

Figure 3: Probability for the IOP to reach a given

fraction of cores (10X10 core network chip)

This figure provides a quantitative assessment of the (antici-
pated) fact that the more defective nodes (i.e., the higher the
PF), the smaller the SCZ including the IOP and therefore the
more difficult building efficient multicore chips in the case of
massively defective technologies. Maybe, the simplest way to
explain this figure is by way of considering a specific example.
For instance, we deduce from point A (XA = 0.68 and
YA = 0.96) that the probability is approximately YA= 0.96 that
the IOP reaches at least η = 68% of all cores when the
PF = 0.2. Remember that (on average) in this case, it is
impossible to reach more than η = 80% of the cores. Thus, the
average fraction of lost cores (i.e., not in the IOP zone and

unavailable for processing) is approximately 80 – 68 = 12%. It
can be seen that the number of lost cores increases quickly
with PF.

From point B, we conclude that the probability is
approximately YB=0.92 that the IOP reaches at least
η = 40% of all cores for PF = 0.2. Thus, point B means that
the fraction 70 – 40 = 30% of cores is lost to participate to
the processing. Figure 3 shows that, when PF = 0.2, the
probability decreases to 0.6 that the IOP reaches at least η
= 60% of all cores in the main SCZ. Figure 4 below shows
the results obtained for a chip featuring 30x30 nodes.

PF =0.1

0

0.2

0.4

0.6

0.8

1

30x30 network

PF =0.2

PF =0.3

PF=0.35
PF =0.4

0 0.2 0.4 0.6 0.8 1

A
B

η : Fraction of chip cores

C

P
ro

ba
bi

lit
y

th
at

 th
e

IO
P

 r
ea

ch
es

at
 le

as
t t

he
 fr

ac
tio

n
η

of
 c

or
es

Figure 4: Probability for the IOP to reach a given
fraction of chip cores (30X30 core network chip)

The comparison of these results with those in Figure 3
essentially shows that for 35.0≤FP , the probability that the
IOP reaches a given fraction of nodes is higher in the network
with 30x30 nodes than in the network with 10x10 nodes. For
larger values of PF, this is the opposite, as the risk is
significantly increased of losing cores due to the fact they are
enclosed into a cluster separated from the IOP SCZ by F-cores.

4.3 Production yield
It is interesting to correlate the production yield R to the
probabilities P(η, PF) (displayed in Figures 2 and 3) that the
IOP reaches a given fraction η of cores as a function of PF. A
chip will be validated if i) the IOP is operating (the
corresponding probability is 1-PF) and ii) for instance at most
one of its four direct neighbors is defective (the probability is
() ()34 141 FFF PPP −+−). The production yield in this
example will be respectively () () ()FF PPPR ,14 5 η−= (for 4
IOP neighbor G-cores) and () () ()FFF PPPPR ,143 4 η−= (for
3 IOP neighbor G-cores out of 4). Figure 5 displays the
estimation of the production yield as () ()34 RR + in a 10x10-
core chip for various values of PF.

PF =0.1

0

0.2

0.4

0.6

0.8

1

10x10 network
PF =0.2

PF =0.3PF=0.35

PF =0.4

0 0.2 0.4 0.6 0.8 1

η : Fraction of chip cores

P
ro

du
ct

io
n

yi
el

d
ve

rs
us

 th
e

fr
ac

tio
n

 o
f c

or
es

 r
ea

ch
ed

 b
y

th
e

IO
P

A

B

Figure 5: Estimation of the production yield

Point A means that, when PF = 0.2, the production yield
achieved by validating chips in which the IOP may reach at
least 70% of the cores is about 0.65. Note that the
reduction of the production yield becomes quickly catastro-
phic when considering PF > 0.2. For instance, point B
means that, when PF = 0.3, the production yield achieved
by validating chips in which the IOP may contact at least
50% of the cores is about 0.4. In that case, not only the
production yield is very low, but moreover, half of the
cores may be lost for processing!

5 Self-shutdown of cores
In this section, we consider limiting the power consumption of
chips by shutting down all cores outside the SCZ enclosing the
IOP. Remember that these cores are lost for processing, and
that in the massively defective technologies they may represent
a significant core fraction. We illustrate the proposed self-
shutdown method considering the 1-D network already
depicted in Figure 2. Indeed, Figure 6 may be viewed as the
temporal continuation of steps 1 and 2 in Figure 2.

3) SM propagation

SMSM SM SM SM SM SM SM

SHUTDOWN

4) Processors shutdown

IOP

IOP

SHUTDOWN
Figure 6: Illustration of the self-shutdown method

In step 3 (Figure 6.3), we consider that a second message
(say the shutdown message - SM) is emitted by the IOP and
again broadcast across the network. Contrarily to the RM, it
is forwarded by each router independently of the diagnosis
results deduced from the mutual test. Thus, this message is

not blocked at the border of the SCZ and it may propagate
across the “faulty zones” which cannot take part to the
processing. Now, let us reasonably assume that routers are
entities much smaller than cores, so that the probability of
router failure is much lower than that of cores. Consequently,
there will be no (or almost no) defective routers in the
network and, in particular in the faulty zones. Thus, the SM
will propagate across the whole network. The final step
consists in defining in the router automaton the action of
shutting down the core when the router did not receive the
RM, but the SM (Figure 6.4). Consequently, all (or almost
all) cores which cannot participate to the processing, and
which are outside the main SCZ including the IOP will be
shutdown. This is particularly useful to reduce the power
consumption in massively defective technologies.

Additionally, let us stress that the method described in
Section 3 is based on the complete disconnection of each
defective node, i.e., the disconnection of the core and of the
router. This mechanism creates holes in the communication
network, possibly resulting in unbalanced traffic, bottlenecks
and the need for route discovery as described in Section 4.
Now, we just showed that if routers are structurally simple
and thus fault-free, it becomes possible to shutdown all cores
outside the SCZ of the IOP (the router can keep track of this
action by way of a dedicated private register) and moreover
to keep using the routers in the faulty zones (outside the SCZ
including the IOP) for broadcasting messages.

6 Conclusion
We have described a self-configuration methodology to
tolerate defective nodes and to enable reliable operation of
multicore chips in massively defective technologies. Self-
configuration includes self-diagnosis of cores with mutual
tests, self-configuration of communications and self-
shutdown of inactive cores not in the SCZ enclosing the
IOP. We studied the efficiency of the routing discovery
mechanism in a 2D-mesh, i.e., how many valid cores can
be reached by the IOP via a flooding protocol as a function
of the node failure probability PF and of the size of the
chip. The results (shown in Figures 2 and 3) may be
summarized as follows: When the PF > 0.2, it becomes
extremely difficult to efficiently produce chips that will
feature at least 60% of valid cores and at most one
defective core adjacent to the IOP.

Two additional comments can be added:
1) The results in Figures 2 and 3 ultimately define the
upper core failure PF (versus the fraction of cores)
tolerable to achieve efficient processing or in other words,
to warrant that a minimal fraction of cores will be able to
participate to the processing controlled by the IOP.
Consequently, in massively defective technologies, one
must consider a compromise between the possible top
complexity of the core and the necessary hardware

overload to maintain PF under the values deduced from this
study. Thus, the more defective the technology, the more
one will be forced to consider simpler cores, which poses
the problem of the massive parallelization of applications.
2) The insights gained from this study rest on the assumption
that the mutual test mechanism is perfect, i.e., that the fault
coverage of test vectors is complete. It is well known that this
is generally not true, especially if the core implements a
complex micro-architecture. Thus, it will be safe to consider
that any core deemed as fault-free could be ultimately faulty,
especially in massively defective technologies, when PF is as
high as 0.2 or 0.3. Consequently, a safe and conservative
position will be to consider another fault-tolerance layer at
runtime, based on the redundant execution of the applications
among the available nodes. Additionally, this fault tolerance
layer will enable for coping with transient faults.

References
[1] R. I. Bahar, D. Hammerstrom, J. Harlow, W. H. Joyner,

C. Lau, D. Marculescu, A. Orailoglu, M. Pedram,
“Architectures for Silicon Nanoelectronics and Beyond,”
Computer, vol. 40, no. 1, pp. 25-33, January 2007.

[2] A. J. Bhavnagarwala, X. Tang, J. D. Meindl, “The Impact of
Intrinsic Device Fluctuations on CMOS SRAM Cell
Stability,” IEEE Journal on Solid-State Circuits, vol. 36, no.
4, pp. 658–665, April 2001.

[3] S. Roy, A. Aaenov, “Intrinsic Parameter Fluctuations in
Nano-scale CMOS,” Science, vol. 309, no. 5733, pp. 388-
390, July 2005.

[4] M. Nicolaïdis, N. Achouri, L. Anghel, “A Diversified
Memory Built-In Self-Repair Approach for
Nanotechnologies,” in Proc. 22nd IEEE VLSI Test Symp
(VTS'2004), Napa Valley, CA, USA, 2004, pp. 313-318,
(IEEE CS Press).

[5] T. Nakura, K. Nose, M. Mizuno, “Fine-Grain Redundant
Logic Using Defect-Prediction Flip-Flops,” in Proc. IEEE
International Solid-State Circuits Conference (ISSCC-
2007), San Francisco, CA, USA, 2007, (IEEE CS Press).

[6] S. Vangal et al., “An 80-Tile 1.28TFLOPS Network-on-
Chip in 65nm CMOS ” in Proc. IEEE International Solid-
State Circuits Conference (ISSCC-2007), San Francisco,
CA, USA, 2007, (IEEE CS Press).

[7] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin,
L. Benini, G. D. Micheli, “Analysis of Error Recovery
Schemes for Networks on Chips,” IEEE Design & Test of
Computers, vol. 22, no. 5, pp. 434- 442, Sept.-Oct. 2005.

[8] L.E. Laforge, K. Huang, V.K. Agarwal, “Almost Sure
Diagnosis of Almost Every Good Elements,” IEEE Trans.
on Computers, vol. 43, no. 3, pp295-305, 1994.

[9] R.G. Smith, “The Contract Net Protocol: High-level
Communication and Control in a Distributed Problem
Solver,” IEEE Trans. on Computers, vol. 29, pp. 1104-
1113, 1980.

[10] Y.K. Dalal, and R.M. Metcalfe, “Reverse Path Forwarding
of Broadcast Packets,” Communications of the ACM,
vol. 21, no. 12, pp.1040-1048, 1978.

