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Abstract 

This paper addresses the resilience challenges in the 
future nanochips made up of massively defective nanoele-
ments and organized in a replicative multicore architec-
ture. The main idea is to suggest that the chip should work 
with almost no external testing or control mechanisms, 
using a self-configuration methodology to ensure the resi-
lience of operation even in the presence of a significant 
fraction of defective cores. By self–configuration, we mean 
self-diagnosis with mutual tests, self-shutdown of inactive 
cores and self-configuration of communications. We study 
the efficiency of the proposed methodology and show that 
the method is applicable up to a fraction of 30% of 
defective cores in the on-chip network.  

1 Introduction 
Thanks to size reduction and technology advances, chips with 
an extremely large number of transistors, say typically several 
hundreds billions transistors, will become feasible in the next 
decade. While this trend, together with accelerated clock 
speed, is prone to result in substantial performance 
improvements for future processors, some real challenges are 
to be faced to achieve actual improvements [1]. These 
challenges include: defects and variability of the elementary 
devices as well as design complexity and communication 
bandwidth limitation. In this context, the motivation of the 
work presented in this paper results from two main 
observations: 
1) Future technologies will make it increasingly more difficult 

to reach suitable yield levels without relying on fault 
tolerance techniques. 

2) In the design of current processors, performance increase is 
based on the multiplication of the number of cores. 

Extreme downsizing inevitably results in atomic range 
dimensions, thus, in inter- and intra-device variability [2,3] and 
ultimately in massively defective technologies, thus impairing 

the production yield of such nanochips. To cope with this 
problem, much progress has been made for what concerns 
memory chips. Most advanced techniques consist in providing 
spare elements (lines, rows or words) in order to dynamically 
replace some defective elements. Indeed, techniques have been 
proposed that not only cope with production defects but also 
with faults occurring at runtime. Such techniques are primarily 
meant to achieve a high yield, which may require a significant 
overhead. For example, in [4], it is shown that for a 1Mb-chip 
and a cell defect ratio of 3%, a near 100% yield can be 
achieved, but at the cost of close to 100% overhead. Efficient 
fault tolerance techniques have been proposed also for 
processor chips. For example, the technique being recently 
proposed in [5] features a set of fragmented MPUs for which 
redundant fragments are available. 

One may expect that, in the near future, the number of cores 
manufactured and the organization of processor chips will 
evolve significantly beyond the multicore symmetric multipro-
cessor (SMP) architectures such as today's popular bi, or 
quadricore processor chips. The recent announcement for a 80-
core chip by Intel [6], already paves the way forward. 
Moreover, the consequence of this trend is that software 
techniques are evolving so as to take advantage of such 
multicore processor architectures. This means also that alterna-
tive resilience solutions can be readily considered and fully 
exploited. The goal goes beyond simply avoiding the delivery 
of defective chips (i.e., chips with defective cores) even by 
using spare elements at production time. Alone, such an 
approach would require increasingly — perhaps prohibitively 
— high effort and cost in manufacturing and testing. We 
advocate a more pragmatic approach that is to maximize the 
capacity to exploit the valid cores available on a chip. The 
underlying rationale being that at the end of the manufacturing 
process, the chips would then be sorted according the achieved 
MIPS performance level, as is usually the case with respect to 
clock frequency. Consequently, instead of sorting the chips 
according to their frequency (1.6 Ghz, 1.8 Ghz or 2 Ghz), one 
may think of sorting them as a function of the number of valid 



 

 

cores. Such a principle is already applied on the production 
lines of some manufacturers (e.g., Intel Core Duo chips 
featuring a defective device are “recycled” as Core Solo 
chips(1)). 

The approach we are presenting is somewhat more ambitious, 
as we are also considering applying such a self-configuration 
dynamically at runtime rather than simply statically at produc-
tion time via an external diagnosis. This way, it would be 
possible to continue using the processing resources available 
onchip even when faults occurring in operation will impair 
some additional cores. The performance would be simply 
gradually reduced accordingly (as aging process in real life!). 
We consider general purpose network (GPN) chips based on a 
2D-mesh architecture as target for our study. We also identify 
the processing core to be the basic unit for reconfiguration. 
The underlying idea is to be able to discriminate between valid 
and defective cores. In practice, it would be unrealistic to 
consider diagnosing all nodes and routes in such a kind of very 
complex chip via some external equipment. Accordingly, the 
diagnosis should involve as little external interventions as 
possible (e.g., to control the start up phase and the subsequent 
operation). Our contribution consists in suggesting and 
studying an autonomous reconfiguration methodology that 
involves: 
a) Self-diagnosis of cores with cross-node tests. 
b) Self-configuration of communication routes. 
c) Self-shutdown of inactive cores. 
d) Self-adaptative redundancy management at runtime. 
Steps a-c must be executed at startup, and possibly periodically 
at runtime. Step d is executed at runtime exclusively. In this 
paper, we focus on self-configuration at startup (i.e., steps a-c). 
The expected benefits from such self-configuring capability are 
twofold:  

1) Achieving resilient operation in GPNs, despite the 
presence of a fraction of defective cores. 

2) Enabling a smooth degradation of the chip performance as 
a function of the number of defective cores at runtime.  

The paper is organized as follows: In Section 2, we briefly 
introduce the features characterizing the type of GPN 
architecture we are considering that are relevant for our study. 
Section 3 describes how to conduct self-diagnosis through 
mutual tests; in particular, we show that mutual tests enable 
splitting the chip into zones of consistent cores such that all 
cores are good or all are defective in a zone. In Section 4, we 
study the efficiency of the routing discovery to assess how 
many valid cores can be reached via a flooding protocol as a 
function of the node failure probability and of the chip size. 
Section 5 describes the principle adopted to self-shutdown the 
cores, which cannot take part into the processing. Finally, 
Section 6 provides some concluding remarks. 

                                                           
1 http://en.wikipedia.org/wiki/Intel_Core. 

2 The architectural framework 
The typical kind of architectures that we are considering 
consists in general-purpose chips based on a 2D-mesh 
architecture. Figure 1 depicts an example of such an 
architectural framework with 9x5 nodes and one single 
input/output port (IOP). 
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Figure 1: Example of a 9x5 node network architecture 

Each node is made up of a processing core (C) associated 
to a router (R), which forwards the incoming messages to 
enable intercore communications. Lines connecting the 
routers materialize inter-router links. In this figure, 
blackened cores depicts defective ones; 9 cores are 
identified as such: C52, C58, C43, C31, C32, etc. This would 
correspond to a massively defective chip featuring a failure 
core probability of about 20%. Also, dashed lines identify 
logically disconnected links as explained in Section 3. The 
zone enclosed in a dashed line in the top left corner of the 
figure shows that a cluster of 7 cores is unavailable due to 
the failure of cores C52, C43, C32, C31.  

In this study, we concentrate on core failures. The core 
failure probability (PF) is an adjustable parameter in our 
study that will be varied typically from 1% to 20-30%. The 
consideration of link failures and of appropriate mecha-
nisms to cope with them (e.g., see [7]) is not addressed in 
this paper. We also consider that each core is equipped 
with a non-volatile memory (e.g., a flash memory not 
shown in Figure 1) that stores test vectors and several bits 
to save the results of the previous diagnoses even when the 
power supply is turned off (see Section 3).  

The problem is that, at startup (i.e., when the chip is 
powered on), it is not known which cores are defective and 
which communication routes are available to exchange 
messages between nodes, especially between the IOP 
(whose role is to allocate tasks) and the valid idle nodes. 



 

 

3 Self-diagnosis via mutual testing 
The simplest method to identify defective cores is core 
self-test. In this approach, every core executes its test 
instructions and compares the outputs that it generates with 
the result vectors also stored in the non-volatile memory. 
Unfortunately, a faulty core can behave unpredictably, and 
diagnoses itself as non-faulty, independently of the state of 
its neighbors. Thus, mutual diagnosis [8] is much 
preferred. In this alternative approach, every core (say A) 
in the network executes the diagnosis program 
simultaneously to each neighbor (say B) and both compare 
the generated results. If the results differ and if A is good 
(i.e., fault-free), it concludes that B is faulty. If A is faulty, 
its response is unpredictable and it can diagnose B as good 
or faulty. In Table 1, the two leftmost columns display the 
four possible real states of two adjacent cores and the two 
rightmost columns reveal the corresponding mutual 
diagnosis. For sake of concision GOOD and FAULTY will 
be denoted as G and F, respectively, and X means that the 
result of the diagnosis is unpredictable (i.e., either G or F).  

Actual 
state of 
core A 

Actual 
state of 
core B 

Diagnosis for 
core A made 

by core B 

Diagnosis for 
core B made 

by core A 

GOOD GOOD GOOD GOOD 
GOOD FAULTY X FAULTY 

FAULTY GOOD FAULTY X 
FAULTY FAULTY X X 

X means undetermined diagnosis, possibly GOOD or FAULTY. 

Table 1: Diagnoses using mutual testing  

It turns out that the diagnosis G-G may correspond to any 
combination of real states in the self-test approach (namely G-
G, G-F, F-G or F-F) whereas, in the mutual test, the sole 
possible real states are G-G or F-F.  

Mutual diagnosis may be used to split de facto the core array is 
several zones through the following isolation mechanism: 
when a G-core (i.e., a core in a G state) concludes that a 
neighbor is faulty, it stores a Boolean variable in its memory 
(or possibly in the router memory) to inhibit all 
communications with this neighbor. In other words, the G-core 
executes a logical inhibition (not a physical disconnection) of 
the F-core. For instance, in Figure 1, C36 will conclude that C37 
is faulty and it will disable all communications with this core. 
The link between C36 and C37 therefore appears as dashed. This 
allows G-cores to build up one or several simple-connected 
zones (SCZ) in the network enabling full propagation of 
messages between any two cores inside each of these zones. 
The border of a SCZ is made up with F-cores (diagnosed as 
faulty by neighbor G-cores), and consequently logically 
disconnected. In this approach, the SCZ enclosing the IOP is 
especially important as all cores outside this zone are lost for 
the processing. For sake of clarity, let us refer again to 
Figure 1. The dotted zone in the top left corner shows a cluster 

of cores disconnected from the main SCZ, which are lost for 
processing. The issue is that some cores in this cluster are in 
the good state but lost, see cores C41, C51 and C42. This will 
become especially problematical when PF increases.  

As we previously stressed, all cores in a SCZ are in the same 
state (i.e., all cores are good or all are faulty). This property 
holds in particular for the SCZ enclosing the IOP, which 
includes the cores that will execute the processing. 
Unfortunately, there is one pernicious issue in that we don't 
know the real state of the cores in this SCZ, except that the 
probability to get a SCZ with n G-cores or n F-cores is ≈ (1 – 
PF)n or  ≈ PF

n ,  respectively. To remove this ambiguity, we 
suggest executing an external diagnosis of the sole IOP to 
make sure that it works correctly. Ultimately, self-diagnosis is 
not completely autonomous and requires a minimal external 
test for chip validation. 

4 Self-configuration of communications 
The step that we consider here consists in discovering the 
routes connecting the IOP to G-cores. Remember that valid 
routes are unknown, because the topology of the SCZ 
including the IOP is a priori unknown and because it might 
be necessary to move around (clusters of) defective nodes 
within the SCZ. Nevertheless, these routes are crucial for 
chip operation, as the IOP will use them to allocate 
incoming tasks to idle cores. The basic idea to execute task 
allocation at runtime is that the IOP should include a buffer 
of valid routes (VRB) to the idle cores, so that the IOP 
allocates incoming processes by searching a core in this 
buffer. Of course, this buffer is initially empty. 
Consequently, route discovery must be executed at startup 
to initialize the VRB. We describe in Section 4.1 the route-
discovery protocol.  The efficiency of this protocol is then 
studied in Section 4.2. 

4.1 Contract net protocol 
Route discovery is achieved by means of a contract net 
protocol (CNP) based on message multicast [9], which can 
be typically decomposed in the two phases (request 
emission and acknowledgment) that we describe hereafter. 

4.1.1. Request phase: First, the IOP emits a request 
message (RM). We consider broadcast diffusion, where 
each node forwards each incoming RM by copying it on all 
links except the incoming link [10]. Broadcast protocols 
are successful in discovering routes (with high probability 
as will be shown in section 4.2) that move around 
disconnected zones, i.e., around zones including cores 
diagnosed as F-cores in the mutual-test procedure depicted 
in Section 2. 

4.1.2. Acknowledgment phase: Each valid node receiving 
the RM sends an acknowledgment message (AM) towards 
the IOP. Globally, the number of AMs returning to the IOP 
is as large as the number of contacted nodes in the SCZ 
enclosing the IOP. However, the AM is not broadcast. We 



 

 

suggest rather that each time a node forwards the RM in 
phase 1 of the protocol, it adds in the RM route field the 
input and output link IDs. For instance, for a scheme with 4 
links per node as in Figure 1, one may consider the 
following coding IDNorth=00, IDEast=01, IDSouth=10, and 
IDWest=11. A node adding 0111 to the route field of the 
request message tells that the message came in through 
East and was forwarded through West. Note also that no 
absolute node addressing is needed in this communication 
approach. In this context, the AM in phase 2 simply 
follows the RM route in the opposite direction, which 
dramatically limits the number of reemissions compared to 
the broadcast mechanism implemented in phase 1. 

For clarity, we illustrate in Figure 2 the mutual test and the 
resulting limited propagation of the RM considering a 1-D 
network with 8 cores connected to the IOP. Cores 1, 6 and 
8 are defective. 

C

1) Mutual test

2) RM propagation

RM RM RM RM

G GG G G G G G F X X F XFX F F

1 2 3 4 5 6 7 8IOP

IOP

 
Figure 2: Illustration of mutual test and RM 

propagation 

Figure 2.1 shows the mutual diagnosis step. When the IOP 
tests its neighbors (Cores 2 and 3), its diagnoses them as 
good, and this result is stored in the IOP router with setting 
the East bit and the West bit to G. When Core 2 tests its 
neighbors, its diagnoses Core 1 as faulty and the IOP as 
good, and this result is stored in its router by setting the West 
bit to F (for faulty) and East bit to G (for good), and so on, 
etc. After the diagnosis has been executed by all cores, we 
get the final result as: X FG GG GG GG GF XX FF X, 
Figure 2.2 shows the propagation of the RM across the 
network. Because of the logical disconnection mechanism 
described in Section 3, the propagation is blocked after Core 
5 in East direction and after Core 2 in West direction. 

4.2 Route discovery efficiency 
We study in this paragraph the efficiency of the request phase, 
i.e., the capability to contact cores in a faulty network via the 
broadcast mechanism.  

RM broadcasting was simulated using the multiagent simulator 
MASS2. Briefly, MASS is a Windows® application developed 
at LAAS, which calculates the temporal evolution of any 
system that can be described in terms of coexistence of state 

                                                           
2 A detailed and comprehensive documentation is available from 

http://www.laas.fr/~collet together with the possibility of 
downloading the simulator. 

automata (SA). The full description of MASS is beyond the 
scope of this paper. MASS was successfully used in multiagent 
simulations, communication, prey-predator games. In the route 
discovery studies considered here, each node is represented by 
a SA, which forwards incoming messages. All nodes are 
activated in the asynchronous mode through a global 
scheduler. The principle of each simulation is as follows: 
1) The simulator randomly generates a fraction NPF of holes 

in the network. Holes represent the faulty cores logically 
inhibited following the mutual test process. 

2) The IOP emits a RM, which is broadcast across the 
defective network, following the “hot potatoes forwarding” 
that was described in Section 4.1.  

3) The program calculates the number of nodes n receiving 
the RM. The array table[NMAX] is created and the entry 
table[n] is incremented every time exactly n nodes 
received the RM.  

4) This procedure is repeated typically 2.000 times. At the 
end of the simulation, the entry table[i] determines the 
number of times i nodes were exactly reached. For 
instance, table[26]=110 would mean that the message 
reached exactly 26 nodes in 110 simulations. The 
probability to reach 26 nodes is therefore estimated as 
p(26)=110/2000.  

Figure 3 shows the Probability that the IOP reaches at least 
the fraction η of cores in a network comprising 10x10 cores.  
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Figure 3: Probability for the IOP to reach a given 

fraction of cores (10X10 core network chip) 

This figure provides a quantitative assessment of the (antici-
pated) fact that the more defective nodes (i.e., the higher the 
PF), the smaller the SCZ including the IOP and therefore the 
more difficult building efficient multicore chips in the case of 
massively defective technologies. Maybe, the simplest way to 
explain this figure is by way of considering a specific example. 
For instance, we deduce from point A (XA = 0.68 and 
YA = 0.96) that the probability is approximately YA= 0.96 that 
the IOP reaches at least η = 68% of all cores when the 
PF = 0.2. Remember that (on average) in this case, it is 
impossible to reach more than η  = 80% of the cores. Thus, the 
average fraction of lost cores (i.e., not in the IOP zone and 



 

 

unavailable for processing) is approximately 80 – 68 = 12%. It 
can be seen that the number of lost cores increases quickly 
with PF. 

From point B, we conclude that the probability is 
approximately YB=0.92 that the IOP reaches at least 
η = 40% of all cores for PF = 0.2. Thus, point B means that 
the fraction 70 – 40 = 30% of cores is lost to participate to 
the processing. Figure 3 shows that, when PF = 0.2, the 
probability decreases to 0.6 that the IOP reaches at least η 
= 60% of all cores in the main SCZ. Figure 4 below shows 
the results obtained for a chip featuring 30x30 nodes.  
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Figure 4: Probability for the IOP to reach a given 
fraction of chip cores (30X30 core network chip) 

The comparison of these results with those in Figure 3 
essentially shows that for 35.0≤FP , the probability that the 
IOP reaches a given fraction of nodes is higher in the network 
with 30x30 nodes than in the network with 10x10 nodes. For 
larger values of PF, this is the opposite, as the risk is 
significantly increased of losing cores due to the fact they are 
enclosed into a cluster separated from the IOP SCZ by F-cores.  

4.3 Production yield 
It is interesting to correlate the production yield R to the 
probabilities P(η, PF) (displayed in Figures 2 and 3) that the 
IOP reaches a given fraction η of cores as a function of  PF. A 
chip will be validated if i) the IOP is operating (the 
corresponding probability is 1-PF) and ii) for instance at most 
one of its four direct neighbors is defective (the probability is 
( ) ( )34 141 FFF PPP −+− ). The production yield in this 
example will be respectively ( ) ( ) ( )FF PPPR ,14 5 η−=  (for 4 
IOP neighbor G-cores) and ( ) ( ) ( )FFF PPPPR ,143 4 η−=  (for 
3 IOP neighbor G-cores out of 4). Figure 5 displays the 
estimation of the production yield as ( ) ( )34 RR +  in a 10x10-
core chip for various values of PF. 
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Figure 5: Estimation of the production yield 

Point A means that, when PF = 0.2, the production yield 
achieved by validating chips in which the IOP may reach at 
least 70% of the cores is about 0.65. Note that the 
reduction of the production yield becomes quickly catastro-
phic when considering PF > 0.2. For instance, point B 
means that, when PF = 0.3, the production yield achieved 
by validating chips in which the IOP may contact at least 
50% of the cores is about 0.4. In that case, not only the 
production yield is very low, but moreover, half of the 
cores may be lost for processing! 

5 Self-shutdown of cores 
In this section, we consider limiting the power consumption of 
chips by shutting down all cores outside the SCZ enclosing the 
IOP. Remember that these cores are lost for processing, and 
that in the massively defective technologies they may represent 
a significant core fraction. We illustrate the proposed self-
shutdown method considering the 1-D network already 
depicted in Figure 2. Indeed, Figure 6 may be viewed as the 
temporal continuation of steps 1 and 2 in Figure 2.  

3) SM propagation

SMSM SM SM SM SM SM SM

SHUTDOWN

4) Processors shutdown

IOP

IOP

SHUTDOWN  
Figure 6: Illustration of the self-shutdown method 

In step 3 (Figure 6.3), we consider that a second message 
(say the shutdown message - SM) is emitted by the IOP and 
again broadcast across the network. Contrarily to the RM, it 
is forwarded by each router independently of the diagnosis 
results deduced from the mutual test. Thus, this message is 



 

 

not blocked at the border of the SCZ and it may propagate 
across the “faulty zones” which cannot take part to the 
processing. Now, let us reasonably assume that routers are 
entities much smaller than cores, so that the probability of 
router failure is much lower than that of cores. Consequently, 
there will be no (or almost no) defective routers in the 
network and, in particular in the faulty zones. Thus, the SM 
will propagate across the whole network. The final step 
consists in defining in the router automaton the action of 
shutting down the core when the router did not receive the 
RM, but the SM (Figure 6.4). Consequently, all (or almost 
all) cores which cannot participate to the processing, and 
which are outside the main SCZ including the IOP will be 
shutdown. This is particularly useful to reduce the power 
consumption in massively defective technologies. 

Additionally, let us stress that the method described in 
Section 3 is based on the complete disconnection of each 
defective node, i.e., the disconnection of the core and of the 
router. This mechanism creates holes in the communication 
network, possibly resulting in unbalanced traffic, bottlenecks 
and the need for route discovery as described in Section 4. 
Now, we just showed that if routers are structurally simple 
and thus fault-free, it becomes possible to shutdown all cores 
outside the SCZ of the IOP (the router can keep track of this 
action by way of a dedicated private register) and moreover 
to keep using the routers in the faulty zones (outside the SCZ 
including the IOP) for broadcasting messages.  

6 Conclusion 
We have described a self-configuration methodology to 
tolerate defective nodes and to enable reliable operation of 
multicore chips in massively defective technologies. Self-
configuration includes self-diagnosis of cores with mutual 
tests, self-configuration of communications and self-
shutdown of inactive cores not in the SCZ enclosing the 
IOP. We studied the efficiency of the routing discovery 
mechanism in a 2D-mesh, i.e., how many valid cores can 
be reached by the IOP via a flooding protocol as a function 
of the node failure probability PF and of the size of the 
chip. The results (shown in Figures 2 and 3) may be 
summarized as follows: When the PF > 0.2, it becomes 
extremely difficult to efficiently produce chips that will 
feature at least 60% of valid cores and at most one 
defective core adjacent to the IOP.    

Two additional comments can be added: 
1) The results in Figures 2 and 3 ultimately define the 
upper core failure PF (versus the fraction of cores) 
tolerable to achieve efficient processing or in other words, 
to warrant that a minimal fraction of cores will be able to 
participate to the processing controlled by the IOP. 
Consequently, in massively defective technologies, one 
must consider a compromise between the possible top 
complexity of the core and the necessary hardware 

overload to maintain PF under the values deduced from this 
study. Thus, the more defective the technology, the more 
one will be forced to consider simpler cores, which poses 
the problem of the massive parallelization of applications. 
2) The insights gained from this study rest on the assumption 
that the mutual test mechanism is perfect, i.e., that the fault 
coverage of test vectors is complete. It is well known that this 
is generally not true, especially if the core implements a 
complex micro-architecture. Thus, it will be safe to consider 
that any core deemed as fault-free could be ultimately faulty, 
especially in massively defective technologies, when PF is as 
high as 0.2 or 0.3. Consequently, a safe and conservative 
position will be to consider another fault-tolerance layer at 
runtime, based on the redundant execution of the applications 
among the available nodes. Additionally, this fault tolerance 
layer will enable for coping with transient faults. 
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