

Nanoelectronic Architectures: Reliable Computation on Defective Devices

Alex Orailoglu

Computer Science & Engineering Department University of California, San Diego La Jolla, CA

Scaling beyond CMOS

➢ Moore's law – exponential scaling down of transistors

State-of-the-art device: Si based CMOS

- >>> Provided several decades of scaling: ~ 45nm currently
- Expected to continue for the next several years: beyond 22nm
- ♦ Asymptotic end around year 2019: approaching 6nm
- Physical limits of CMOS
 - Quantum mechanics, fabrication limitations, …

Substantially extending the roadmap beyond CMOS:

- > New nano scale materials, devices
 - Near term: heterogeneous integration with CMOS
 - Long term: nano architectures

Nanoelectronic device candidates

- \gg *Micro*electronic devices \rightarrow *nano*electronic devices
 - New means of processing / representing / storing information
 - Nano system innovations
- Emerging technologies
 Carbon Nanotube (CNT)
 Resonant Tunneling Devices (RTD)
 Single Electron Transistor (SET)
 Quantum Cellular Automata (QCA)
 Molecular Electronics (Molecular)
 Spin transistor (Spin)

Promising device candidates
✓ Logic & Memory

Nano devices: fundamental differences

Different means of physical basis

- Info storage mechanism:
 - Capacitor charge, interlocked state of logic gate vs. charge on floating gate, gate insulator, magnetization, etc

State variables:

Voltage level vs.
 molecular state, spin orientation, phase state, etc

Logic device:

- 3 terminal FET vs.
1D structure, 2 terminal transistor, etc

Implication on logic gates / architecture

- >New basic logic gates
 - Majority gate, XOR gate, Multi-Valued logic, ...
- >New supported logic architectures
 - Crossbar, Cellular nonlinear network (CNN), bio-inspired neurofunctions, ...

Nano– Opportunities vs Challenges

Challenges Reliability **–Defect** -Transient fault ^{*}Interconnect -Nano-nano -Nano-CMOS * Fabrication -Bottom-up vs. top-down

○ advantages
 ✓ Abundant HW resources
 ✓ High speed
 ✓ Low power

Fabrication & interconnect challenges

Fabrication

- Traditional Top-down lithography fabrication reaching physical limits
 - Loss of accuracy
 - > Expensive
- Bottom-up fabrication
 Self-assembly process

Interconnect

- Geometrical challenge of accessing nano scale devices
 - Speed
 - Bandwidth

- ⇒ Fabrication implications:
 - >>> Lead to large # of defects
 - ➢ Result in <u>regular structures</u>
 - >>> Require reconfigurability
 - ✓ build arbitrary circuits
 - ✓ bypass defects

Interconnect limitation:

- ♦ Localized interconnect
- Expensive global communications

Unreliability challenge

S[™] *Extremely small scale ⇒ unreliability of nano devices*

Fabrication limitation:

- random location / orientation of nanotubes / nanowire growth
- Low noise / error immunity
 - ➤ stray charge influence
 - > random charge hopping, crosstalk

Single Event Upsets

 cosmic rays, noise, temperature fluctuations, ...

Expected behavior

- Permanent defects from manufacturing phase
- In-service occurring defects
- Semi-permanent errors
- Transient errors

Two forms of reliability challenges

- Manufacturing defects: offline detect & repair
- Dynamic fault occurrences: online fault tolerance

Specifically: new characteristics

- Device density boost
- Novel basic gates
- Regularity of layout
- **Reconfigurability**
- Interconnect limitations

- → Resource & redundancy exploitable
- Supporting novel FT strategies
- Reducing complexity involved in diagnosis
- → Flexibility
- Topology concern

Hierarchical system construction

The only way to approach complex systems

- Mature methodologies for current CMOS systems
- > CMOS \rightarrow nano: complexity **7**

▷ New challenge

- ♦ Drastic device change
- New design optimization considerations

System Computational component Basic gate

Nano-scale devices High speed High density Unreliability <

New gates

Interconnect

Regular Structure

Reconfigurability

Reliable nano system construction

Nano characteristics

- High / variable / clustering fault rate
- Interconnect constraint
- Regular structure
- Novel logic gates
- Reconfigurability
- Abundant HW

Hierarchical Fault Tolerance

For clustered fault behavior

Superscaling effects in nano

Can utilize various F.T. schemes_{System}

Applicable F.T. schemes vary at different levels

Hierarchical F.T.

- High fault rates faults filtered through levels
- Clustering of faults upper level can use more global resources
 - Variable fault rates flexible

Hierarchical FT in Nano system

⇒ Processor architecture

- FT computational model
 - HW, performance, F.T. capability
- Topology consideration
 - Distributed control

⇒ Arithmetic component

- Memory / data transfer
 - Coding based FT
- Arithmetic / logic computation unit
 - NMR based fault masking
 - Reconfiguration based online repair

⇒ Logic gate

- Defect aware logic synthesis
- HW redundancy based FT

Nano system: order out of disorder

Reliability

- P
- Goal: reliable computation
- Challenge: unreliable HW
- Feasibility: given enough redundancy
 - von Neumann: computations may be done reliably with a high probability, even based on gates with certain failure probability – given enough HW redundancy.

Nanoelectronic systems

- Goal: extending Moore's law beyond CMOS scale
- Foreseeable severe challenges
- Solution Eventually deliverable given the involvement of active research

