

NBTI-Resilient Memory Cells with NAND Gates for Highly-Ported Structures

Jaume Abella, Xavier Vera, Osman Unsal, Antonio González Intel Barcelona Research Center, Intel Labs - UPC

Workshop on Dependable and Secure Nanocomputing (in conjunction with the DSN'07) Edinburgh (Scotland, UK), June 28th, 2007

Work done in the Phoenix Project

One of the main **sources of failure** affecting transistors:

NBTI (Negative Bias Temperature Instability)

NBTI issues

- Affects PMOS transistors with "0" at their gates
- Some molecules are broken and some atoms displaced

NBTI negative effects

- V_{TH} increases, and hence, PMOS transistors become slower
- Minimum operating voltage (Vmin) of bit cells in a given block increases, so V_{DD} cannot be decreased as much for power savings (e.g. UL1 cache)

Agenda

Motivation

NBTI effects

Memory cell design: conventional vs NAND-based

Results and final remarks

NBTI affects PMOS transistors when voltage at the gate is negative: Si-H bonds break

• More traps (N_{IT}) in the interface make the transistor slower

Source: M.A. Alam, "On Reliability of Microelectronic Devices: An Introductory Lecture on Negative Bias Temperature Instability", Sept. 2005

Self-healing during non-negative voltage at gate

- H, H⁺, H₂⁺ close to the Si rebuild their bonds
- Self-healing is partial (not all bonds are rebuilt)

Source: M.A. Alam, "On Reliability of Microelectronic Devices: An Introductory Lecture on Negative Bias Temperature Instability", Sept. 2005

Agenda

Motivation

NBTI effects

Memory cell design: conventional vs NAND-based

Results and final remarks

Conventional Memory Cell Design

PMOS transistors degrade only when they have a "0" at their gates (what we call "duty cycle")

• Two inverters. One of them degrades at any time

• Average PMOS degradation 50%

NAND-based memory cells

- A given number (N) of NANDs. Only one NAND outputs a "O"
- Average PMOS degradation 1/N (e.g. N=4, degradation 25%)
- Area overhead pays off for highly ported structures (e.g. register files)

Example: 4-NAND cell

- Twice the number of bitlines than a conventional memory cell
- 4 different states, so it encodes 2
 bits
- Thus, same overhead per port as a conventional memory cell

Data highly biased towards "0"

- Conventional cells: One PMOS degrades much more than the other
- NAND-based cells: Some PMOS degrade much more that the others

Solution

- Conventional cells: store inverted contents 50% of the time
- NAND-based cells: periodically change codification of data to balance degradation of PMOS

Agenda

Motivation

NBTI effects

Memory cell design: conventional vs NAND-based

Results and final remarks

Preliminary Results

Intel Barcelona Research Center WDSN 2007, Edinburgh (Scotland, UK)

3-NAND: 33% duty cycle 4-NAND: 25% duty cycle

Final Remarks

- NAND-based cells reduce duty cycle so lower guardbands are required for the cycle time and the Vmin
- Decreasing guardbands may offset overheads (partially or totally?)
- Test chip data required
 - Obtain accurate results of the overheads
 - Measure whether NAND-based cells payoff for current technologies
- NBTI degradation is still an open research topic
 - How much does it cost for current technologies? Different works show large discrepancies
 - Will it worsen for future technologies?

Thank you!