On Fault Tolerance and Robustness
In Autonomous Systems

Benjamin Lussier, Raja Chatila, Felix Ingrand, Marc-Olivier Killijian, David Powell
LAAS-CNRS,
7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 04, France
{blussier, raja, felix, mkilliji, dpowe}l@laas.fr

The dependability of autonomous systems is a particular Dependability basic concepts
concern, notably because of the advanced decisional mechthg dependabilityof a computing system is its ability to
anisms and other artificial intelligence techniques on whiche|ier service that can justifiably be trusteZbrrect service
such systems rely. This paper sets the context qf dependabjlityjelivered when the service implements the sysemction
and autonomy, and focuses on two non-exclusive approachies: is what the system is intended to do. Three concepts
aiming to improve dependability: fault tolerance and robusty iher describe this notion of dependability: the attributes of,

ness. The paper gives definitions of these approaches, 38d threats to, and the means by which it is attained (Figure
studies their relationship and applicability to autonomoui)_

systems.

— AVAILABILITY

~ RELIABILITY

- ATTRIBUTES — f‘,gilEngENTIALITY
INTRODUCTION L rEGRITY
— MAINTAINABILITY
As autonomous systems play an increasing role in space PHYSICAL FAULTS

exploration Deep Space Onm 1999, Spirit and Opportunity FAULTS DESIGN FAULTS
Martian rovers in 2004), increasing opportunities appear ¥apenpasiity THREATS ERRORS INTERACTION FAULTS

other applications, such as elderly-care, tour guides or personal
service. Yet with the introduction of systems capable of taking

decisions without much human supervision, arises the need

to ascertain their dependability, that is a justified trust that [T
they will satisfactly perform their missions and not cause - MEANS L FAULT TOLERANCE

catastrophes. This paper studies the relationship between two — FAULT FORECASTING
approaches aiming at this goal from different fields: fault

tolerance from the computing domain, and robustness from
the robotic domain.

We describe in the first section basic concepts of depend—_l_h ib f d dabili ist of
ability in computing systems, and the associated notion and e attributesot system dependability consist of:
mechanisms of fault tolerance. The second section introduces availability: the deliverance of correct service at a given
autonomous systems, particularly mechanisms and architec- tMme,)])
tures used to enforce autonomy. Finally, we present in the® reliability: the continuous deliverance of correct service
third section the notion of robustness and its connection to for & period of time, _

fault tolerance, describing further robustness and fault toler-* Safety the absence of catastrophic consequences on the

ance mechanisms currently used in autonomous systems, and Users and the environment,

— FAILURES —— FAILURE MODES

} FAULT AVOIDANCE

} FAULT ACCEPTANCE

Figure 1: Dependability tree

potential areas of application in decisional mechanisms. « confidentiality the absence of unauthorized disclosure of
information,
« integrity: the absence of improper system state alterations,
|. DEPENDARBILITY AND FAULT TOLERANCE » maintainability the ability to undergo repairs and modi-
fications.

Computing systems are ubiquitous in modern society, conependability is an integrative concept that encompasses these
trolling structures as critical as railroads, planes, and nucldzasic attributes; depending on the application intended for
plants. Dependability has been for a long time a major concdhre system, different emphasis may be put on each attribute.
in such systems, concepts and techniques are well establist@=lieral other dependability attributes have been defined that
This section presents basic dependability concepts in compaite either combinations or specializations of the above.
ing systems, as described in [9] and [1], and particularly the The threatsto a system’s dependability consist of failures,
technique of fault tolerance. errors and faults. A systefailure is an event that occurs when

the delivered service deviates from correct service. The waye
in which a system can fail are ifailure modescharacterized
by the severity and the symptoms of a failure. émor is that

compensationwhere the erroneous state contains enough
redundancy to enable error elimination.

Fault handlingprevents a fault from being activated again in

part of the system state that can cause a subsequent failgggr steps: fault diagnosis, fault isolation, system reconfigura-
An error is detected if its presence is indicated by an errgon, and system reinitialization.
message or error signal; errors that are present but not detecte®rror containmentrestrains the propagation of an error

are latent errors. Afault is the adjudged or hypothesizedyithin a containment area, thus preventing the failure of other
cause of an error. A fault is active when it produces agystem components.

error; otherwise it is dormant. Faults can be characterized and

regrouped into three major fault classgdtysical faultsare ¢ common fault tolerance mechanisms

faults due to adverse physical phenomedesign faultsare
faults unintentionally caused by man during the development
of the system, anihteraction faultsare faults resulting from
the interaction with other systems, including users.

The meango attain a system’s dependability are regroupeéiu
in four techniques:
« fault prevention how to prevent the occurrence or intro-

duction of faults,
« fault removal how to reduce the number or severity of
faults,
« fault tolerance how to deliver correct service in the
presence of faults,
« fault forecastinghow to estimate the present number, the
future incidence, and the likely consequences of faults.
Fault prevention and fault removal can together be considered
as fault avoidance that is the attempt to develop a system
without faults. Fault tolerance and fault forecasting embody
the concept offault acceptancewhich attempt to estimate
and reduce the consequences of the remaining faults, know-
ing that fault avoidance is almost inevitably imperfect. The
development of a dependable computing system calls for th

combined utilization of these four techniques. In the sequgl
we focus on the fault tolerance technique.

B. Fault tolerance

Fault tolerance is intended to preserve the delivery of correct
service in the presence of active faults. It is generally imple-
mented by error detection and subsequent system recovery,
and possibly by error containment.

Error detectionoriginates an error signal or message within
the system. There exist two classes of error detection tech-
nigues:

« concurrent error detectionwhich takes place during

service delivery,

« preemptive error detectigrwhich takes place while ser-
vice delivery is suspended; it checks the system for latent
errors and dormant faults.

Recoverytransforms a system state that contains one or
more errors (and possibly faults) into a state that can be
activated again without detected errors and faults. Recovery
consists of error handling and fault handlirigrror handling
eliminates errors from the system state. It can take three forms:

« rollback, where the state transformation consists of re-
turning the system back to a saved state that existed prior

In the following paragraphs, we consider techniques appli-
cable for tolerating physical faults, design faults and interac-
tion faults.

1) Tolerance of physical faultsThe detection of errors in-
ced by physical faults is commonly attained by the following
mechanisms:

duplication and comparisodetects errors by comparing
the output of two independent and functionally identical
units, under the assumption that the same fault will not
affect the two units simultaneously,

timing and execution checlse usually implemented by
“watchdog” timers; they can be used to detect a timing
error or to monitor the activity of a component,
reasonableness checkse specific hardware or software
to verify value invariants (invalid memory address, invalid
input or output),

error detecting codesntroduce redundancy in the in-
formation representation to detect possible errors in that
representation.

Following an error detection, system recovery is mainly
fained by error handling:

Rollback error recovery is the most popular form of
recovery: hardware or software mechanisms periodically
save the system state so as to be able to return the system
to a previous stable state. They are however time and
resource consuming, as well as ill-adapted to hard real-
time deadlines.

Rollforward error recovery consists in searching for a
new state acceptable for the system from which it will be
able to resume operation (possibly in a degraded mode).
Reinitialization of the system and exception handling are
possible approaches for rollforward error recovery.

Error compensation requires sufficient redundancy in the
system state so that, despite errors, it can be trans-
formed into an error-free state. Error compensation can
be launched following error detectiorddtection and
compensatiop or can be systematiéault masking. The

use of self-checking components in active redundancy
is an example of detection and compensation: in case
of failure of one of them, it is disconnected without
disturbing the other components. Fault masking can be
implemented by majority voting: computation is carried
out by three or more identical or similar components
whose outputs are voted.

to error detection; that saved state is called a checkpoint,2) Tolerance of design faultsThe same principles as for
« rollforward, where the state without detected errors is jghysical faults apply to design faults, except for the type of

new state,

redundancy used for detection and recovery.To achieve (or

at least aim for) independence with respect to design faults,
redundant elements must be of dissimilar or diversified design.

Tolerance of design faults addresses two major concerns: to
limit the consequences of task failure on the rest of the system
or its environment, and to maintain service continuity.

« In the former case, one tries to detect an erroneous task

as early as possible and to halt it to prevent propagation

of errors; examples are an approach caltéil-fast” ,

and the notion ofafety-bag8]. A safety-bag intercepts
the actions requested by the users or components of the
system, rejecting those that invalidate its set of safety

rules.

« In the latter case, one makes use d#sign diversity
which relies on several copies of a component (called«
varianty, designed and produced separately from the
same specification. Alecision makeris also required,
which aims to produce an error-free result from those
produced by execution of the variants. There exist three
basic approaches for design fault tolerance using design
diversity: recovery blockgd15], N-version programming
[4], and N-self-checking programminid.0].

3) Tolerance of interaction faults:Distinction is made
between accidental interaction faults, such as an operator
mistake, and intentionally malicious interaction faults. .

« Accidental interaction faultcan be tolerated both by
error processing and treatment of error caudesor
processings achieved through error detection ustagk
modelsor diversified sources of information, and error
recovery such as the replacement of the erroneous action,

an autonomous systerimplements selection and
execution of actions to be taken through one or
more of the following Al functionalities: planning,
execution control, situation recognition, diagnosis,
and may also incorporate learning mechanisms.

Planning consists in choosing and organizing actions to
be taken, according to their estimated results, in order to
achieve one or more objectives.

Execution controlacts as coordinator and supervisor of
the execution of plans. It mainly decomposes high-level
actions into sequences of behaviors or simpler tasks,
and controls their execution in order to react to possible
failures due to the system itself or to its environment.
Situation recognitioraims to identify the circumstances
confronting the system that are likely to affect its behav-
ior, generally the system state and that of its environment.
Situation recognition usually rely on pas event observa-
tions in order to draw conclusions on the current situation,
and eventually on the intentions of other agents involved.
Diagnosisidentifies an erroneous system state, generally
after an error detection. Although diagnosis may be
viewed as a specific application of situation recognition,
their approaches and techniques are distinct.

Learning seeks to improve the system capabilities by
using information related to preceding executions. The
learning process does not make decisions, but typically
develops some models that can be used by other func-
tionalities.

automatically or after the user’s approval. Tineatment B. Al approaches for autonomy’s functions

of error causesaims to establish the diagnosis of error

causes and then to design solutions to act on these cauge
« Intentionally malicious interaction faultsray be caused

by intruders external to the system attempting to penetr

Several approaches developed in the Al field may be used
?mplement the functions listed above; they are commonly
referred to asdeliberative approaches, in opposition to the

.%edctive mechanisms of classical automation. Deliberative

the system, registered users trying to extend their P"hechanisms are either executefi-line before activation of

leges, or privileged users abusing their privileges. Toleﬁ
ance of such intrusions aims to protect the availability, irh
tegrity and confidentiality of the information, using tech-
nigues such as replication, fragmentation-redundancy-
scattering and cryptography, or to act on the intrusions
themselves via detection and recovery.

II. AUTONOMOUSSYSTEMS

Artificial Intelligence (Al) originally aimed to develop ma-
chines with reasoning capabilities similar to or better than .
human. Although far from such a goal, techniques and mech-
anisms have been successfully introduced in various domains,
such as autonomous systems. This section proposes a defini-
tion of autonomous systems, and describes some decisional
mechanisms and architecture principles used to support au-
tonomy. It introduces in particular the LAAS architecture.

A. Definition of autonomy

Common definitions of autonomy (“self-independence”,
“ability to self-manage”) are not adapted to characterize the
systems that we are interested in, so we attempt to formulate
a functional definition of an autonomous system:

{he system, oonline concurring to its execution. The most
“ommon approaches used to implement autonomy are [16]:

States space searamanipulates a graph which nodes
are the states of the system, and transitions are events
and actions leading from one state to another. The search
consists in examining possible sequences of actions, then
choosing the most appropriated one to achieve some
given goal. This approach is mainly used for planning,
situation recognition and diagnosis.

Constraint satisfaction techniquegek to resolve a Con-
straint Satisfaction Problem (CSP), defined by a set of
variables and constraints upon them. A solution of the
problem is found when all variables have value ranges
satisfying the constraintsiemporal constraint planning

is achieved through extension of a CSP to include a
temporal dimension.

Markov Decision ProcessgdDP) are sequential deci-
sional problems on the actions (deterministic or stochas-
tic) and states of the system. A given solution has the
form of a policy which gives the best action for the
system to take in each possible state. The MDP technique
supposes that the system knows exactly in which state

it is; an extension calledPartially Observable Markov In our opinion, the lack of symbolic representation in the
Decision Processe@POMDP) addresses this limitation.subsumption type prevents an efficient use in complex envi-
MDPs are mainly used for planning and learning. ronments and situations. The subsumption type is currently
« A Bayesian networkis an oriented acyclic graph rep-used on toy robots but not for complex critical systems.
resenting the state variables of the system, and their2) “Three layer” type of architecture:The “three layer”
influences on each other; such a network is used to manippe of architecture consists of several hierarchical compo-
ulate probabilities and uncertainties. Dynamic Bayesiarents (orlayers, considering different level of abstraction for
networks extend this approach with a discrete tempordle symbolic representation of the system and its environment.
dimension. Bayesian networks are mainly used for diaghere are typically three layers (hence the name), but some ar-
nosis and learning. chitectures focus only on some of these layers, or regroup two
« Hidden Markov ModelsHMM) are discrete temporal layers into one. The three classical layers are the decisional
and probabilistic models of the system state; this stat®yer, the executive layer, and the functional layer (Figure 3):
is not supposed to be directly observable but produces, The decisional layeris situated at the top level of
observable outputs. With some manipulations, an equiv- apstraction. It carries out the most complex decisions,
alent Bayesian network can be found for each HMM proqucing the plan required to achieve the objectives of
(and vice versa); each representation is more appropriated the system, and taking into consideration problems or
for different algorithms. HMMs are mainly used for errors raised by the executive layer.
diagnosis and leaming. _ . The executive layerselects sequences of elementary
« A neural networkis a compound of units, also called fynctions needed to execute the high level plan of the
artificial neurons, which defines a complex non-linear gecisjonal layer. It also reacts quickly to errors or failed
function. The units are linked by directed weighted tasks, raising the problem to the decisional layer when
connections, and organized in different layers. Neural | naple to solve it.
networks can be cyclic or acyclic, and are mainly used , The functional layer offers an interface between the
for learning. higher layers and the hardware, combining sensors and
Several other approaches have also been implemented for actuators into elementary functions controlled by the
autonomy, such as genetic algorithms, contradictory search, executive layer. It does not possess a symbolic repre-
and expert systems; in our opinion, these approaches are less sentation of the system, but must guarantee real-time

viable than those mentioned previously. constraints to control the hardware efficiently.
C. Types of architecture for autonomous systems High-level Objectives
We describe in the following paragraphs three types of ar- l

chitecture most popular for the implementation of autonomous |

. Decisional L
systems: thesubsumptionype, the“three layer” type, and the ecislona’ -aver |

multi-agenttype. The subsumption type and the “three layer” | . t on C It |
type are discussed in [6]. xeium" ontro *ayer

1) Subsumption type of architectur&his type of architec-

ture [3] is “behavior-based™: it rejects the need for a symbolic |
representation of the system and its environment, proposing @

instead layers of progressively more complex task-specific (T :
control programs (calletbehaviory on top of each other. At (SR e f
each execution cycle, each behavior may generate an output;
the different outputs are then combined into the task to be
executed, for example: by executing only the behavior with

the utmost priority, or combining all of the outputs (Figure 2). The “three layer” type of architecture is the one most often
used to develop complex autonomous systems. It has been

implemented in the RAX architecture during the NASAs Deep

Space One mission [13], and is currently used in the CLARAty

—'| Behavior 1 H architecture [18] and the LAAS architecture (described in the
_ next section).

| Behavior 2 |_': 3) Multi-agent type of architectureThe multi-agent type

> | Behavior 3 >0 of architecture considers a group of autonomous systems (or

Functional Layer |

Figure 3: “Three layer” type of architecture

> agent$. These agents may be homogeneous or heterogeneous,
2 evolve in the same environment, and interact with one another
r in order to achieve common or self-centered objectives.
77 ‘ Amongst other works, the IDEA architecture [12] considers
Hardware ! an autonomous system as a group of multiple agents, each

77 possessing deliberative mechanisms and the same symbolic
Figure 2: Subsumption type of architecture representation (Figure 4).

| Per¢eption

High-level Objectives

Figure 4: Multi-agent type of architecture: IDEA principle

D. The LAAS architecture

This architecture has been used on several autonomous
robots, such as Rackham: a tour guide currently exhibited at
the ToulouseSpace City Museum

The notion of robustness appeared in the robotic field as
an answer to the large variability of execution context due to
an open environment. To some extents, it may be considered
similar to fault tolerance as both techniques seek to cope with
adverse situations that may arise during system operation. This
section introduces a definition of robustness and its connection
to fault tolerance, and presents examples of both approaches
in autonomous systems. It finally discusses their applications

ROBUSTNESS AND FAULT TOLERANCE

The LAAS architecture [2] [14] [11] possesses three layef@ decisional mechanisms.

(Figure 5):

« The decisional layerencompasses both decisional ang. Definition of robustness

executive layers of the typical “three layers” based ar-
chitecture. A temporal executive planner called IxTe
eXeC produces high level plans by constraint planning
A procedural executive called OpenPRS controls plq
execution and decomposes the high-level actions inacR,

sequences of simpler tasks.

« Therequest control leveis implemented by the Reques
and Resource Checker (R2C) component. It checks t

T

The termrobustnessis frequently used in the scientific
community, although in rather a vague way (a common
efinition of robust is “strong and healthy”). Th&anta Fe
Hstitutehas recorded seventeen definitions of robustness from
erse scientific domains [5]. These various definitions may
be interpreted as the deliverance ajrrect servicedespite
ossibly adverse situations, and then classified into four types
Fusituation tolerance” (Figure 6):

validity of requests produced by OpenPRS according to T))
the current system state and a set of conditions definedl) tolerance ofiny situation deliverance of correct service

during the development of the system. Requests that2

invalidate the rules are then rejected.

o The functional levelis composed of a hierarchy of

software components (calladodule$ offering services

to specific hardware or software resources (sensors,
tuators, data...). The modules’ generic structure is auto-4

matically generated via the85oM tool.

missmnitf report
|
Procedural -
Exeoutive |of PlAATET ,‘ Eemsmnal
OpenPRS ixTeT-eXeC ayer
s
—
Request and Resource
ExoGen ™ Checker (R2C) / Request
< Moduleel Control
GemT;j// AouIEG Level
T Functional
Level

i

it
ce=

Environment

Figure 5: LAAS architecture

in both adverse and nominal situations,

) tolerance ofadverse situationsdeliverance of correct

service in non-nominal situations,

tolerance oéxplicitly-specified adverse situatiorteliv-

erance of correct service in adverse situations mentioned

in the system’s specifications,

) extra-tolerance, or tolerance ohexpected adverse sit-
uations deliverance of correct service in adverse situ-
ations over and above those mentioned in the system’s
specifications.

3)
ac-

EXPLICITLY-SPECIFIED
ADVERSE SITUATIONS

®

UNEXPECTED ADVERSE
SITUATIONS

NOMINAL SITUATIONS
ANY
SITUATIONS

@ |: ADVERSE SITUATIONS *I:
®

Figure 6: Types of “situation tolerance”

Strictly speaking, robustness is thus a superset of fault
tolerance since the latter focuses on faults whereas the former
considers adverse situations in general. However, a useful
distinction between the two can be made by restricting the use
of the term robustness to the tolerance of adverse situations
not due to faults. We therefore adopt the following definitions
in the context of autonomous systems (Figure 7):

o robustnessis the delivery of a correct service in
implicitly-defined adverse situations arising due to an
uncertain system environment (such as an unexpected
obstacle or a change in lightning condition affecting
sensors),

« fault toleranceis the delivery of a correct service despiteC. Fault tolerance mechanisms in autonomous systems

faults aﬁeﬁ;mg t_system res]f:urcesf (Stlthh as a flat dre, Araults affecting system resources can be divided in faults af-
sensor malfunction or a software fault). fecting non-computational resources (mechanical or electrical
EXPLIGITLY-SPECIFIED components such as tires, joints, sensors and actuators), and
ADVERSE SITUATIONS ¢ UNCEFTED SEUROSMENT faults affecting computational resources (such as memories,
CPU and software). The latter refers specifically to mecha-
N rUATIONS - ©—» SYSTEM RESOURCES nisms detailed in subsectidfault tolerancel.B
SITUATIONS (FAULT TOLERANCE) ; g D
1) Faults affecting non-computational system resources:
Faults affecting non-computational system resources are
Figure 7: Robustness vs. fault tolerance mainly treated by the function ofliagnosisand reconfig-
uration. Diagnosis is activated after an error detection and

In practice, it is not always easy to distinguish situatiori§entifies the cause of an erroneous state by reasoning based
due to an uncertain environment from situations due to fauR8 fault and error models. Reconfiguration may correspond

affecting system resources, especially input/output devices, Bifher to replacement of the failed component, or relocation
this goes beyond the scope of this paper. of its supported functions to other components by functional

redundancy.

2) Faults affecting computational system resourcd$ie
following paragraphs describes the computational fault toler-

Robustness in robotic systems is typically achieved either Byice mechanisms currently identified in autonomous systems.
functional redundancy, aimed at Compensating the |imitati0nSErr0r detectionis main|y imp|emented through:
of hardware components or software algorithms (such as a
combined use of camera, laser sensor and bumper to detect
obstacles, or complementary localization algorithms), or by
using uncertainties management, aimed at compensating en-
vironment uncertainties for control and observation (such as
fuzzy logic or Kalman filtering).

Autonomous functions mainly improve the robustness of a
system through the use of decisional mechanism and recovery:
the ability to act and react according to the current environment
and system state. .

1) Rlannipg: Planning improves system rqbystness_in 9eN- 1y the R2C component in the LAAS architecture.
eral since it allows the autonomous decision-making that o
is a prerequisite for operation in an uncertain environment, E/TOF recoveryis implemented through:

Moreover, least commitment planningllows flexibility with ~ « positioning in a safe state; this can occur during replan-
respect to action ordering, temporal deadlines and resource Ning (LAAS and RAX architectures), or after failure of

ADVERSE SITUATIONS —|:

B. Robustness mechanisms in autonomous systems

timing and execution checks; watchdogs check the live-
ness of critical functions in the RoboX autonomous
system [17],

reasonableness checks; they are either implemented by
checking a value with invariants (such as the maximum
robot speed in RoboX), or by detecting incoherences
between the current system state (characterized by sensor
outputs) and a mathematical model (typically used to
activate diagnosis, as in the RAX architecture).
safety-bag checks; a set of safety properties is checked

consumption. a critical component (RoboX and Care-O-Bot [7]),
Planning can itself be made robust through replanning ande Software reconfiguration; this can be implemented by
plan repair: switching between control modes, or by applying a

« replanning can be activated when a plan has failed; Software patch.
it consists in stopping the plan execution, eventually Error containments implemented through dedicated CPUs:
positioning the system in a safe state, and developiftpboX runs one CPU for critical functions (obstacle avoid-
a new plan from the current situation and the remainirgnce, navigation, localization) and one CPU for interaction
objectives, functions (face tracking, speech out).

« plan repair can be activated when part of a plan has
failed, before replanning occurs; it consists in developi

: . . Robustness and fault tolerance for decisional mechanisms
a new plan from the failed one by backtracking an

eliminating the failed and impossible actions. Decisional mechanisms can be characterized by three prop-
2) Execution control: Execution control improves robust-€rties:
ness by: » soundnessinferred conclusions are “true” under the
« managing the flexibilities left in the plan, system assumptions,

« detecting possible problems in the plan execution con-* completenessa true conclusion will eventually be in-
cerning failed tasks or exceptions raised by the lower ferred,
layers, « tractability: the conclusion can be inferred in polynomial

. allowing recovery of a failed task by selecting and time and space.
executing an alternative one (in a similar way as recoveAlthough soundness and completeness are verified for some
block tolerance of software design faults); it reports a plasecisional approaches (usually the case for state space search
failure when all alternative tasks have failed. or constraint planning, but not for neural networks), tractability

is often impossible due to NP-hard complexity or semi- incorrect or incomplete knowledge due to system defi-

decidability of the considered problems. Therefore soundness ciencies, design compromise for efficiency, and faults in

and completeness are sometimes sacrificed for efficiency, for the decision procedure,

example with the application of heuristics. Robustness ande robustness can be implemented to improve reliability

fault tolerance can compensate to a point these drawbacks by towards unexpected changes of situation due to the envi-

improving reliability and safety of the decisional mechanisms. ronment or system dynamics, and incorrect or incomplete
Robustness techniques can aim to improve the reliability of knowledge due to lack of observability.

an autonomous system through decisional recovery. They can

treat specifically adverse situations affecting the acceptability

of decisions, that is unexpected changes of situation due to REFERENCES

environment and system dynamics, and incorrect knowledg[?

d to lack of ob bilit th . t] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese, Y. Deswarte,
ue 1o lack or observability on the environment. K. Kursawe, J. C. Laprie, D. Powell, B. Randell, J. Riordan, P. Ryan,

Fault tolerance techniques can aim to improve the reliability w. Simmonds, R. Stroud, P. Verissimo, M. Waidner, and A. Wespi.

of an autonomous system through error detection and the use Conceptual Model and Architecture of Maftia. Technical Report 03011,
o . LAAS-CNRS, 2003.

of alternate procedures. They can treat specifically: mcorre?] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An

or incomplete knowledge due to system deficiencies (faults), Architecture for Autonomy. The International Journal of Robotics
design compromises in favor of efficiency of the decisiorL Research17(4):315-337, April 1998.

rocedure, faults in design or implementation of the decisio] R. A Brooks. A Robust Layered Control System for a Mobile Robot.
p) g p IEEE Magazine on Robotics & Automatio®(1):14—23, March 1986.

procedure. [4] L. Chen and A. Avizienis. N-version Programming: A Fault Tolerance

Fault tolerance techniques can also aim to improve the Approach to Reliability of_Software Operation. I?roceed!ngs of the
8th International Symposium on Fault Tolerant Computing (FTGS-8)

safety of an autonomous system through error detection and pages 3-9, Toulouse, France, 1978.
positioning in a safe state. [5] Santa Fe Institute document reference RS-2001-009, Posted 10-22-01.
http://discuss.santafe.edu/robustness.
[6] E. Gat. On Three-Layer Architectures. Hutificial Intelligence and
CONCLUSION Mobile RobotsD. Kortenkamp, R. P. Bonnasso, and R. Murphy editors,
i . . . MIT/AAAI Press, pages 195-210, 1997.
In this paper, we have briefly discussed several notions: [7] B. Graf, M. Hans, and R. D. Schraft. Mobile Robot Assistants - Issues
« dependability that is the ability of a system to deliver ~ for Dependable Operation in Direct Cooperation With HumaltsEE

. L s . Magazine on Robotics & Automatiphl(2):67—77, 2004.
service that can justifiably be trusted; this notion furth('3"‘[8] P. Klein. The Safety-Bag Expert System in the Electronic Railway

encompasses attributes (such as safety and reliability), Interlocking System Elektr&Expert Systems with Apllication3(4):499—

threats (fault rrors and failur nd means (f 506, 1991.
eats . (auts, e 0 S a.d aiu ES) and eans (aul] J. C. Laprie, J. Arlat, J. P. Blanquart, A. Costes, Y. Crouzet, Y. Deswarte,
prevention, fault elimination, fault tolerance and fault™ ; ¢ Fapre, H. Guillermain, M. Kaaniche, K. Kanoun, C. Mazet,

forecasting), D. Powell, C. Rabéjac, and P. Théven@Ependability Handbook (2nd

i il i edition). Cépadués - Editions, 1996. (ISBN 2-85428-341-4) (in French).
¢ .amonomythat I.S the ablllty to .Sel(.aCt and ?XeCUte act|_o 0] J. C. Eaprig, J. Arlat, C. Béounes,(and K. Kanoun. D)ef(inition anzi
in order to achieve stated objectives, using Al function- = analysis of Hardware-and-Software Fault-Tolerant ArchitectUEEEE
alities: planning, execution control, situation recognition, Computer 23(7):39-51, 1990.
; ; ; [11] S. Lemai and F. Ingrand. Interleaving Temporal Planning and Execution
diagnosis and learning, . in Robotics Domains. IfProceedings of AAAI-Qfages 617-622, San
« robustnessand fault tolerance approaches respectively Jose, California, July 25-29 2004
from the robotic domain and the computing systeni$2] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt. IDEA
domain. : Planning at the Core of Autonomous Reactive AgentsAlRS 2002
Workshop on On-line Planning and Schedulifigulouse, France, April
Fault tolerance and robustness both characterize the ability 22 2002. http://citeseer.nj.nec.com/593897.htm.
to deliver correct service, but we have distinguished theld#] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Wiliams. Remote

. . - Agent: To Boldly Go Where No Al System Has Gone Befohgtificial
according to the type of adverse situations that they try to mgt’e,“gence 103321_2):5_47 1998, Y e

confront: [14] F. Py and F. Ingrand. Real-Time Execution Control for Autonomous

. Systems. InProceedings of the 2nd European Congress ERTS, Embed-
« fault tolerance characterizes tolerance towards faults af- ;24 real Time Softwardoulouse, France, January 21-23 2004,

fecting the system resources, [15] B. Randell. System Structure for Software Fault TolerandEEE

« robustness characterizes tolerance towards uncertainties Transactions on Software Engineerjritf2):220-232, 1975.
of the environment. [16] S. Russell and P. NorvigArtificial Intelligence, A Modern Approach

(2nd edition) Prentice Hall, 2002. (ISBN 0-13-790395-2).

We have introduced the main mechanisms used by these i N. Tomatis, G. Terrien, R. Piguet, D. Burnier, S. Bouabdallah, K. O.

techniques: Arras, and R. Siegwart. Designing a Secure and Robust Mobile
) Interacting Robot for the Long Term. Rroceedings of the 2003 IEEE

« fault tolerance consists mainly ierror detectionand International Conference on Robotics & Automatipages 4246-4251,

Taipei, Taiwan, September 14-19 2003.
error recoverythrOUQh the use of redundancy’ [18] R.Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. CLARAty

. rObUStr_‘eSS consists _m?inly func'gio_nal diversity com- : Coupled Layer Architecture for Robotic Autonomy. Technical Report
pensation of uncertaintieanddecisional recovery D-19975, NASA - Jet Propulsion Laboratory, 2000.
We have identified areas of application for both techniques in
decisional mechanisms:

» fault tolerance can be implemented to improve on one
hand safety, and on the other hand reliability towards

