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ABSTRACT
The paper introduces the Cama (Context-Aware M obile
Agents) framework intended for developing large-scale mo-
bile applications using the agent paradigm. Cama provides
a powerful set of abstractions, a supporting middleware and
an adaptation layer allowing developers to address the main
characteristics of the mobile applications: openness, asyn-
chronous and anonymous communication, fault tolerance,
device mobility. It ensures recursive system structuring us-
ing location, scope, agent and role abstractions. Cama

supports system fault tolerance through exception handling
and structured agent coordination. The applicability of the
framework is demonstrated using an ambient lecture sce-
nario – the first part of an ongoing work on a series of am-
bient campus applications.

Categories and Subject Descriptors: D.1 Programming
Techniques, D.2.3 Coding Tools and Techniques, D.4.5 Re-
liability

General Terms: Design, Reliability

Keywords: Mobile computing, fault tolerance, agent sys-
tems, coordination, scopes, exception handling, ambient lec-
ture

1. INTRODUCTION
Although the mobile agent paradigm supports structuring

systems using decentralised and distributed entities coop-
erating to achieve their individual aims and promotes sys-
tem openness, flexibility and scalability, the existing frame-
works for development of such systems do not provide ad-
equate means for achieving fault tolerance. The main dif-
ficulties here are caused by agent mobility, autonomy and
asynchronous communication, system openness and dynam-
icity, which create new challenges for ensuring system fault
tolerance.

In this work, we are focusing on coordination mobile en-
vironments, which have become very popular in develop-
ing mobile agent applications. These environments rely on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SELMAS’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

the Linda approach to coordination of distributed processes.
Linda [7] provides a set of language-independent coordina-
tion primitives that can be used for communication-between
and coordination-of several independent pieces of software.
Linda is now becoming the core component of many mo-
bile software systems because it fits in nicely with the main
characteristics of mobile systems. Linda coordination primi-
tives support effective inter-process coordination by allowing
processes to put tuples in a tuple space shared by these pro-
cesses, get tuples out if they match the requested types, and
test for them. A tuple is a vector of typed data values, some
of which can be empty, in which case they match any value
of a given type. Certain operations, like get (or in) and test
(or inp), can be blocking.

A number of Linda-based mobile coordination systems
have been developed in the last years (including Klaim [3],
TuCSoN [14] and Lime [15]). Lime is one of the most de-
veloped, supported and widely-used examples of such en-
vironments. It supports both physical mobility, such as a
device with a running application travelling along with its
user across network boundaries, and logical mobility, when a
software application changes its platform and resumes exe-
cution in a new one. To do that, Lime employs a distributed
tuple space. Each agent has its own persistent tuple space
that physically or logically moves with it. When an agent
is in a location where there are other agents or where there
is a network connectivity to other Lime hosts, a new shared
tuple space can be created, thus allowing agents to commu-
nicate. If connection is lost or some agents leave, parts of the
shared tuple space became inaccessible. Lime middleware –
implemented in Java – hides all the details and complexi-
ties of the distributed tuple space control and allows agents
to treat it as normal tuple space using conventional Linda
operations.

Exception handling [4] is widely accepted to be the most
general approach to ensuring fault tolerance of complex ap-
plications facing a broad range of faults. It provides a so-
phisticated set of features for developing effective fault tol-
erance using handlers specially tailored for the specific ex-
ception and system state in which the error is detected. It
ensures nested system structuring and separates normal sys-
tem behaviour from the abnormal one. Our analysis [12]
shows that the existing Linda-based mobile environments
do not provide sufficient support for development of fault
tolerant mobile agent systems. The real challenge here is
to develop general mechanisms that smoothly combine Lin-
da-based mobility with exception handling. The two key
features of mobile agents are asynchronous communication
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and agent anonymity. This is what makes mobile agents
such a flexible and powerful software development paradigm.
However, traditional fault tolerance and exception handling
schemes are not directly applicable in such environments.

In this paper, we discuss a novel framework for disciplined
development of open fault tolerant mobile agent systems and
show how it is being applied in developing an ambient cam-
pus application. This framework offers a set of powerful ab-
stractions to help developers by supporting exception han-
dling, system structuring and openness. These abstractions
are supported by an effective and easy-to-use middleware
which ensures high system scalability and agent compati-
bility. The plan of the paper is as follows. In the next
section we introduce our Cama framework in detail by de-
scribing the main abstractions offered to system developers,
a novel exception handling mechanism and our current work
on Cama implementation. This is followed by a section dis-
cussing our experience in applying Cama in the development
an ambient lecture scenario as a part of our ongoing work on
ambient campus applications. The last section of the paper
outlines our plans for the future work.

2. CONTEXT›AWARE MOBILE AGENTS
We have developed a framework called Cama (Context-

Aware Mobile Agents), which encourages disciplined devel-
opment of open fault tolerant mobile agent applications by
supporting a set of abstractions ensuring exception han-
dling, system structuring and openness. These abstractions
are backed by an effective and easy-to-use middleware al-
lowing high system scalability and guaranteeing agent com-
patibility.

2.1 Cama Abstractions
Any Cama system consists of a set of locations. A location

is a container for scopes. A scope provides a coordination
space within which compatible agents can interact using the
scoping mechanism described below. Agents are the active
entities of the system. An agent is a piece of software that
conforms to some formal specification. Each agent is exe-
cuted on a platform; several agents may reside on a single
platform. A platform provides an execution environment for
agents as well as an interface to the location middleware.
Figure 1 shows how these abstractions are linked.

Scope

Platform

Agent

Keys:

Location

Figure 1: Location, scopes, platforms and agents in

Cama

An agent is built using one or more roles. A role is a
specification of one specific functionality of an agent. A
composition of all agent roles forms its specification.

Location can be associated with a particular physical lo-
cation (such as lecture theatre, warehouse or meeting room)

and can have certain restrictions on the types of supported
scopes. Location is the core part of the system as it provides
means of communication and coordination among agents.
We assume that each location has a unique name. This
roughly corresponds to the IP address of the host in a net-
work (which are usually unique) on which it resides. A lo-
cation must keep track of the agents present and their prop-
erties in order to be able to automatically create new scopes
and restrict access to the existing ones. Locations may pro-
vide additional services that can vary from one instance to
another. These are made available to agents within what
appears to be a normal scope where some of the roles are
implemented by the location system software. As with all
the scopes, agents are required to implement specific roles in
order to connect to a location-provided scope. Few examples
of such services include printing on a local printer, access-
ing the internet, making a backup to a location storage, and
migrating to another location.

Agent context represents the circumstances in which an
agent find itself [17]. Generally speaking, a context includes
all information from an agent environment which is relevant
to its activity. The context of an agent in Cama consists of
the following parts: the state connections to the engaged lo-
cations; the names, types and states of all the visible scopes
in the engaged locations; and the state of scopes in which
the agent is currently participating, including the tuples con-
tained in these scopes. A set of all locations defines global
structuring of the agent context. This context changes when
an agent migrates from one location to another.

Agents represent the basic structuring unit in Cama ap-
plications. To deal with various functionalities that any in-
dividual agent provides, Cama introduces agent role as a
finer unit of code structuring. A role is a structuring unit
of an agent, and being an important part of the scoping
mechanism, it allows dynamic composition of multi-agent
applications, as well as being used to ensure agent interop-
erability and isolation.

Scope structures the activity of several agents in a specific
location by dynamically encapsulating roles of these agents.
Scope also provides an isolation of several communicating
agents thus structuring the communication space.

A set of agents playing different roles can dynamically in-
stantiate a multi-agent application. A simple example is a
client-server model where a distributed application is con-
structed when agents playing two roles meet and collabo-
rate. An agent can have several roles and use them in dif-
ferent scopes. A server agent can provide the same service
in many similar scopes. In addition it can also implement a
client role and act as a client in some other scopes.

Supporting system openness is one of the top design ob-
jectives of Cama. Openness is understood here as the ability
to create distributed applications composed of agents devel-
oped independently. To this end Cama provide powerful
abstractions that help to dynamically compose applications
from individual agents, an agent isolation mechanism and
service discovery based on the scoping mechanism.

Scoping mechanism
The Cama agents can cooperate only when they partici-
pating in the same scopes. This abstraction is supported
by a special construct of coordination space called scope.
Scoping is a means to structure agent activity by arranging
agents into groups according to their intentions. Scoping
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also allows agent communication to be configured to meet to
the requirements of the individual groups. Reconfigurations
happen automatically, thus allowing agents (and their de-
velopers) to focus solely on collaboration with other agents
participating in the same scope. There are several benefits
of agent system structuring using scopes:

• scopes provide higher-level abstractions of communi-
cation structuring;

• they reduce the risk of creating ad hoc structures that
maybe incorrect, malfunctioning or cyclic;

• this structuring enforces strong relationship among a-
gents supporting interoperability and exception han-
dling;

• scopes support simple semantics thus facilitating for-
mal development;

• scopes become units of fault tolerant system ensuring
error confinement and supporting error recovery at
the scope level.

A scope is a dynamic data container that provides an iso-
lated coordination space for compatible agents. This is done
by restricting visibility of tuples contained in the scope only
to these agents. we say that a set of agents is compatible if
there is a composition of their roles that forms an instance
of an abstract scope model.

Agents can issue a request to create a scope, and when all
the preconditions are satisfied, a scope is atomically instan-
tiated by the hosting location. The scope creation request
includes a scope identifier (a string) and a scope requirement
structure. The request returns the name of a newly created
scope. The agent creating the scope can use it to join the
scope, to make it public (visible to other agents), to leave it
and to remove it.

Scope has a number of attributes divided into two cate-
gories: scope requirements and scope state. Scope require-
ments essentially define the type of a scope, or, in other
words, the kind of activities supported by it. Scope require-
ments are derived from a formal model of a scope activity
and, together with agent roles, form an instance of the ab-
stract scope model. State attributes characterise a unique
scope instance. In addition to these attributes, scope con-
tains data represented as tuples in the coordination space.
Along with these data, there may be subscopes which define
nested activities that may happen inside of the scope.

Nested scopes are used to structure large multi-agent ap-
plications into smaller parts which do not require participa-
tion of all agents. Such structuring has a number of ben-
efits. It isolates agents into groups, thus enhancing secu-
rity. It also links coordination space structuring with ac-
tivity structuring, which supports localised error recovery
and scalability. There is no hard rule when to use nested
scopes. However, for reasons stated above, any application
incorporating different modes of communication or different
types of activities should use subscopes. Online shop is an
example of such application. A seller publicly communicate
with buyers while the latter are looking around for some
products. However, payment must be a private activity in-
volving only the seller and the buyer. In addition to obvious
security benefits, a dedicated payment subscope helps to de-
termine which agents must be involved into recovery should
a failure happen during payment.

Restrictions on roles dictate the roles that are available in
the scope, and how many agents are allowed for any given
role. The latter is defined by two numbers: the minimum

number of agents required for a given role and the maxi-
mum number of agents allowed for a given role. A scope-
state tracks the number of currently-taken roles and deter-
mines whether the scope is ready for agent collaboration or
whether more agents are allowed to join.

The existing scoping mechanisms (e.g. [18, 13]) are not
explicitly developed to support data and behaviour encap-
sulation or isolation crucial for error confining and recovery.
None of them is directly applicable for dealing with mobile
agents interacting using coordination spaces (see our anal-
ysis in [12]). Also, these schemes do not support the set of
abstractions which we have identified as crucial for Cama.

Basic Operations in Cama

In Cama, all the communication within a location happens
through a single shared tuple space. This leads to asym-
metrical design of the middleware where the tuple space
operations are implemented in a location middleware while
agents only carry a lightweight adaptation layer. On top of
the coordination primitives derived from Linda, the Cama

middleware provides the following operations:

• engage(id) - issues a new location-wide name that is
unique and unforgeable for agent id. This name is
used as agent identifier in all other role operations.

• disengage(a) - makes issued name a invalid.
• create(a, n, R)@s (n 6∈ l.s) - agent a creates a new

subscope within scope s called n with given scope re-
quirements R at location l. The created scope be-
comes a private scope of agent a.

• delete(a, n)@l.s (n ∈ l.s ∧ a is owner of l.s.n) -
agent a deletes a subscope called n contained in scope
s. This operation always succeeds if the requesting
agent is the owner of the scope. If the scope is not in
the pending state then all the scope participants shall
receive CamaExceptionNotInScope exception notify-
ing the scope’s closure. This procedure is executed re-
cursively for all the subscopes contained in the scope.

• join(a, n, r)@s (n ∈ l.s∧r ∈ n∧n is pending or ex-
panding) - adds agent a into scope n contained in l.s

with role r. This operation succeeds if scope l.s.n

exists and agent a is allowed to take the specified role
in the scope. This operation may cause the scope to
change state.

• leave(a, n, r)@s (a is in l.s.n with role(s) r) - re-
moves agent a with roles r from scope l.s.n. The call-
ing agent must be already participating in the scope.
This operation may also change the state of the scope.

• put(a, n)@s - agent a advertises scope n contained
in scope s, thus making it a public scope. A public
scope is visible and accessible by other agents.

• get(a, r)@s: enquires the names of the scopes con-
tained in scope l.s and supporting role(s) r.

An agent always starts its execution by looking for avail-
able locations nearby. Once it engages a location it can join
a scope or create a new one. An agent needs to know the
name of the scope it intends to join. It can be the name of
an existing scope or the name of a new scope created by this
agent. When joining a scope, an agent specifies its role in
the scope. In the current implementation of the middleware,
an agent can choose a role in a scope from one of the roles
it implements. The join operation returns a handle for a
scope, which can be used by an agent to collaborate with
other agents through Linda coordination primitives. To cre-
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ate a scope, an agent must specify the name of the scope
and the scope requirements, which define the possible roles
within the scope and their restrictions.

Physical and Logical Mobility
Physical mobility allows devices carrying the agent code to
move between locations. Logical mobility allows agent code
and state to be moved from one location to another.

Physical mobility in Cama is implemented using connec-
tivity of the devices to the locations. When such a connec-
tivity is established, the agent running on the device receives
special event notifying it about discovery of the new loca-
tion. Cama allows any agent to access the list of active
locations it is connected to at any time. An agent receives a
predefined disconnection exception when the connectivity is
lost. To support this functionality, the location middleware
periodically sends hard beats messages in the proximity.

The Cama middleware does not support logical mobility
as the first class concept since the Cama architecture does
not allow locations to see each other. Nevertheless, agent
migration can be provided through the standard inter-agent
communication. Data can be moved between locations in
Cama by agents working at both locations at the same time,
or by an agent physically migrating between two locations
or by using some other capability supporting data transfer
between locations. In particular, we have implemented a
simple proof-of-concept support ensuring weak code mobil-
ity. In this implementation, a dedicated agent provides a
service of data transfer between locations using internet or
LAN networking. Using this service, any agent can transfer
itself or another agent to another location.

2.2 Fault Tolerance
The Cama framework supports application-level fault tol-

erance by providing a set of abstractions and a supporting
middleware that allow developers to design effective error
detection and recovery mechanisms. The main means for
implementing fault tolerance in Cama is a novel exception
handling mechanism which associates scopes with the ex-
ception contexts. Scope nesting provides recursive system
structuring and error confinement. In addition to this, the
Cama middleware supports a number of predefined excep-
tions (e.g. the connection and disconnection ones, violation
of the scope constraints, etc.).

In developing exception handling support for Cama, we
relied on our previous work reported in [12], in which we
proposed and evaluated a novel exception handling scheme
developed for coordination-based agent applications. Here
we give a brief overview of our exception handling mecha-
nism; the full description can be found in [11]. The main
novelty of the Cama mechanism is that it explicitly links
nested scopes with the exception contexts.

Exception handling in Cama allows fast and effective ap-
plication recovery by supporting flexible choice of the han-
dling scope and of the exception propagation policy. The
mechanism of the exception propagation is complimentary
to the application-level exception handling. All the recov-
ery actions are implemented by application-specific handlers
attached to agents. The ultimate task of the propagation
mechanism is to transfer exceptions between agents in a re-
liable and secure way. However, the freedom of agent be-
haviour in agent-based systems does not allow any guaran-
tees of reliable exception propagation to be given in a general

case. In particular, the situations can be clearly identified
when exceptions may be lost or not delivered within a pre-
dictable time period. This is the case for Cama as well.
To alleviate this, for example, in a mobile agent application
requiring cooperative exception handling involving several
agents, agents behaviour must be constrained in some way
to prevent any unexpected migrations or disconnections. In
our ongoing work we are developing techniques supporting
formal analysis of exception handling behaviour of the multi
agent systems.

There are three basic operations available to the Cama

agents for catching and raising inter-agent exceptions. These
functionalities are complementary and orthogonal to the
application-level mechanism used for programming internal
agent behaviour.

The raise operation propagates an exception to an agent
or a scope. There are two variants of this operation:

• raise(m, e) - raises exception e as a reaction to mes-
sage m. The message is used to trace the producer and
to deliver an exception to it. The operation fails if the
destination agent has already left the scope in which
the message was produced.

• raise(s, e) - raises exception e in all participants of
scope s.

The crucial requirement for the propagation mechanism is to
preserve all the essential properties of agent systems such as
anonymity, dynamicity and openness. The exception propa-
gation mechanism does not violate the concept of anonymity
since we prevent disclosure of agent names at any stage of
the propagation process. Note that the raise operation
does not deal with names or addresses of agents. Moreover,
we guarantee that our propagation method cannot be used
to learn the names of other agents.

Two other operations, check and wait are used to explic-
itly poll and wait for inter-agent exceptions.

• check - raises exception E(e) if there are any pend-
ing exceptions for the calling agent. E(e) is a local
envelop for the inter-agent exception e.

• wait - waits until any inter-agent exception appears
for the agent and raises it in the same way as the
previous operation.

Systematic use of exception handling should allow devel-
opers to design mobile agent applications tolerating a broad
range of faults, including disconnections, agent mismatches,
malicious or unanticipated agent activity, violations of sys-
tem properties, potentially harmful changes in the system
environment, reduced amount of resource available, as well
as users’ mistakes.

Unfortunately, there has not been much work carried out
in this area. Paper [19] introduces a guardian model in
which each agent has a dedicated guardian responsible for
handling all agent exception. This model is general enough
to be applied in many types of mobile systems but it does
not directly address the specific characteristics of the coor-
dination paradigm. Another relevant work is on exception
handling in concurrent object-oriented language Oz [20]. In
this system, exceptions can be propagated between the mo-
bile callee and caller objects. The approach proposed is not
applicable to the coordination- based mobile systems. More-
over, the main intention behind this work is not to support
the development of open dynamic agent applications.

2.3 Cama Implementation
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In the current version of the Cama system, the location
middleware is implemented in C (we call it cCama). This
allows us to achieve the best possible performance of the
coordination space and to effectively implement numerous
extension, such as the scoping mechanism. The location
middleware implementation is quite compact - it consists
of approximately 6000 lines of C code and should run on
most Unix platforms. We have so far tested it on Linux
FC2 and Solaris 10. The full implementation of the location
middleware is available at SourceForge [9].

In order to use the location middleware mentioned above,
we have developed a Cama adaptation layer in Java1 called

jCama. This adaptation layer defines several classes for rep-
resenting – among others – the abstract notions of Location,
Scope and Linda coordination primitives. jCama provides
an interface through which mobile agents or applications can
be developed easily.

cCAMA

CAMA Middleware

Platform
Agent
Adaptation Layer (jCAMA)

Keys:

N    e    t    w    o    r    k

Figure 2: Cama architecture

A diagrammatic representation of the Cama-based system
architecture can be seen in Figure 2. Each platform carries
a copy of jCama. Agents residing on a platform uses the
features provided by jCama to connect over the wireless
network to the cCama location middleware.

It is possible to construct other adaptation layers for dif-
ferent platforms and languages. For now, the jCama Java
adaptation layer outlined above permits agent development
for PocketPC-based PDAs. It has a very small footprint
(˜60Kb) and can be used with both standard Java and
J2ME. In the future we plan to develop adaptation layers
for other languages such as Python and Visual Basic, as well
as versions compatible for smartphone devices.

3. AMBIENT LECTURE APPLICATION
This case study provides a demonstration on how the

Cama framework can be used in developing open, dynamic
and pervasive systems involving people carrying hand held
devices (e.g. PDAs) to help them in their daily activities.

3.1 Introduction
We focus on the activities performed by students and

teachers during a lecture (the ambient lecture scenario) and

1We use Java for developing the applications for PDAs.

consider a set of requirements that define this scenario. This
set will be extended to cover more general ambient cam-
pus scenarios (i.e. location-aware activities that can be per-
formed on campus) such as interactive/smart map, events
announcer, library application and students organiser.

There are several other projects aiming to integrate soft-
ware systems – including mobile applications – into edu-
cation or campus domain. The ActiveCampus project [8]
aims to provide location-based services such as Map service
(showing outdoor and indoor map of the user’s vicinity along
with activities happening there) and Buddies service (show-
ing colleagues and their locations, as well as sending mes-
sages to them). The ActiveCampus system is implemented
as a web server using PHP and MySQL. ActiveClass [16] is
a client-server application for encouraging in-class participa-
tion using PDAs allowing students to ask questions regard-
ing the lecture in anonymous manner, hence overcoming the
problem of shyness among many students.

Gay et. al. carried out an experiment investigating the
effects of wireless computing in classroom environment [6].
Students were given laptop computers with wireless or wired
connection to the internet, allowing them to use any exist-
ing tools and services such as web browsers, word processors,
instant messaging software – as well as any additional soft-
ware they wish to install. The results suggest that the intro-
duction of wireless computing in learning environments can
potentially affect the development, maintenance and trans-
formation of learning communities, but not every teaching
activity or learning community can or should successfully
integrate mobile computing applications.

Classtalk [5] is a classroom communication system that
allows teacher to present questions for small group work,
collect the answers and display the histograms showing how
the class answered those questions. Up to four students can
be in one group, sharing one input device (a palmtop), which
is wired to the central computer controlled by the teacher.

Similar to Classtalk, our system allows students to be
grouped together in order to carry out some task given by
the teacher. The novelty of our approach lies in the commu-
nication channel (wireless instead of wired connection) as
well as in using the framework for supporting scoping and
fault tolerance (the mechanisms described in Section 2).

3.2 Traceable Requirements
We started work on the scenario by producing a require-

ments document [2], which consists of an explanatory text,
diagrams, and requirements definitions. The requirements
definitions are arranged using a specially-developed taxon-
omy which allows us to structure them according to various
views on system behaviour, including: environment (EN),
agent states (ST), service requirements and restrictions (SV),
security (SE) and fault tolerance (FT). Each requirement is
given a number within the group, for example:

EN 1: The scenario is composed of users,

locations and ambient computing environment (ACE)

ST 1: The agents’ top-level states are lecture,

free, migrating, outside and emergency

SV 12: Teacher distributes lecture material

FT 14: Migration activity must tolerate

wireless disconnection and loss of ACE support

At the high level, the system consists of users (people
participating in the scenario, i.e. teachers and students),
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locations (rooms with wireless connectivity) and ambient
computing environment (ACE). ACE is composed of wireless
hotspots, software agents and computing platforms (desktop
computers or PDAs) on which the agents are run.

The interactions among users are done through agents.
Each location provides a Cama location middleware through
which agents exchange information. Agents connect to the
location middleware using the wireless hotspot available in
each room.

Each teacher and student has an agent associated with
him/her and assisting his/her participation in the lecture.
During a lecture, teachers and students can be engaged in
the following activities: lecture initiation, material dissem-
ination, organisation of students into groups, individual or
group student work, and questions and answers session.

3.3 Design
The ambient lecture system is being designed to meet the

requirements in [2]. In this design, each classroom is a loca-
tion with a wireless support, in which a lecture is conducted.
An agent can take one of the two roles: teacher or student.
The teacher agent runs on a desktop computer available in
the classroom, while student agents are executed on PDAs
(each student is given a PDA).

We use scoping mechanism described in Section 2.1 to
structure the system. The teacher agent creates the outer
scope constituting the lecture which student agents join. A
lecture starts when there is one teacher agent and a prede-
fined number of student agents joining this scope.

To support better system structuring, data and behaviour
encapsulation, as well as fault tolerance, all major activities
during the lecture are conducted within subscopes (nested
scopes). The group work is one of the activities performed as
a nested scope. Teacher – through his/her agent – arranges
students into groups, so that only students belonging to the
same group can communicate with each other through their
agent. Each group is then given a task to solve (could be the
same task for all groups). Students within the same group
work together on the solution and present their answer at
the end of the group work stage.

At the beginning of any lecture, all agents (teacher and
students alike) are placed in the main scope. The teacher
agent keeps a list of all students joining the lecture, and
through the application’s graphical user interface (GUI),
the teacher can select which students to be placed within
each group. Each group is given a unique name and the
groups are mutually exclusive, i.e. a student cannot belong
to more than one group. The teacher agent creates a sub-
scope for each group and issues a StartGroup tuple to the
student agents involved so that they automatically join the
subscope they are assigned to. This is achieved by executing
the Cama JoinScope operation that uses the group name as
a parameter. This structuring guarantees that while within
a group, a student can only send messages to other students
belonging to the same group, but he/she will also receive
any message sent in the main lecture scope. To achieve this,
the Cama middleware creates a separate thread for each role
inside a subscope.

Once a group is created, it is represented as a button (con-
taining the names of the students assigned to this group) on
the teacher agent’s GUI. Clicking this button ungroups the
students and issues a EndGroup tuple to the relevant student
agents, making them invoke the LeaveScope command.

try {
// Connect to the location middleware
Connection connection = new Connection("Teacher",
server, portNo);

Scope lambda = connection.lambda();

// Create a lecture scope that allows 1 Teacher
// agent and up to 10 Student agents.
ScopeDescr sd = new ScopeDescr(2, "lectureScope").
add(new RoleRest("Teacher", 1,1)).
add(new RoleRest("Student", 0,10));

workScope = lambda.CreateScope("lectureScope", sd);

// Join the scope and make the scope public
workScope = workScope.JoinScope("Teacher");
workScope.PutScope();

}
catch(CamaExceptionInvalidReqs e) { ... }
catch(CamaExceptionNoRoles e) { ... }
...

Figure 3: Sample code: scope creation by Teacher

agent

Following the fault tolerance requirements, the agents han-
dle a number of potentially erroneous conditions. Some of
them are detected by the agents themselves, others are de-
tected by the middleware which raises predefined exceptions
declared in the signatures of the Cama operations. One ex-
ample of these exceptions is the CamaExceptionNoRights

exception, indicating that the agent concerned has no right
to be in a particular scope, hence it cannot send or receive
messages from the tuple space.

3.4 Implementation
We developed an application for the group work activ-

ity described in section 3.3. There are two sets of agent
software: Teacher and Student. Commands and data are
passed as tuples through the tuple space provided by the
location middleware.

Each agent runs at least two threads of execution: one
thread handles the GUI and provides a means for sending
tuples to the tuple space; another thread polls tuples from
the tuple space and interprets the command contained in
them. More threads are created when subscoping is used, so
that an agent can also poll tuples from within the subscopes.

Figure 3 shows a snippet of the code for the Teacher

agent, demonstrating how the lecture scope is initiated. A-
gents can join as a Teacher or a Student. In this example,
only one Teacher agent is allowed, along with up to ten
Student agents. An exception will be raised if this restric-
tion is violated.

Figure 4 shows an example interaction among agents in
the ambient lecture scenario. There is one Teacher agent,
shown on the top of Figure 4. There are three Student

agents: ”Alice” (shown on the bottom left, this agent is run
from a desktop computer), ”Bob” (bottom right, run from a
PDA) and ”Tom” (not shown). At some stage, the Teacher

agent places ”Alice” and ”Tom” into a group. While they
are in this group, all messages they send can only be seen
by other agents in the same group (group messages are in-
dicated by a (g) in front of them). Teacher can end the
group by clicking on the button representing the group (in
this case, the ”Alice-Bob” button). When this happens,
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all students in that group leave the group subscope and the
subscope thread of execution terminates, but they all remain
connected to the lecture main scope.

Figure 4: Screen capture of ambient lecture agents

4. FUTURE WORK
Our long-term goal is to support formal development of

fault tolerant mobile agent systems. To achieve this goal
we are developing a number of formal notations and models
defining the Cama abstractions and the Cama middleware
(some initial results are reported in [10]). We are now work-
ing on a top-down design methodology that insures that
these systems are correct-by-construction. To ensure the
application security, we will use an appropriate encryption
mechanism that allows messages to be securely sent between
PDAs and the location server. Our other plan is to imple-
ment the Cama location middleware for PDAs to support
applications in which locations are physically mobile. In
our future work on Cama for smartphone devices, we will
address the facts that smartphones have capabilities that
are different from PDAs. For example, smartphones utilise
other means for connectivity (such as bluetooth and gprs),
which might imply the need to adapt the communication
support provided by Cama.

5. ACKNOWLEDGEMENTS
This work is supported by the IST RODIN Project [1]. A.

Iliasov is partially supported by the ORS award (UK).

6. REFERENCES
[1] Rigorous Open Development Environment for Complex

Systems. IST FP6 STREP project, http://rodin.cs.ncl.ac.uk/
[Last accessed: 1 Feb 2006].

[2] B. Arief, J. Coleman, A. Hall, A. Hilton, A. Iliasov, I. Johnson,
C. Jones, L. Laibinis, S. Leppanen, I. Oliver, A. Romanovsky,

C. Snook, E. Troubitsyna, and J. Ziegler. Rodin Deliverable
D4: Traceable Requirements Document for Case Studies.
Technical report, Project IST-511599, School of Computing
Science, University of Newcastle, 2005.

[3] L. Bettini, V. Bono, R. D. Nicola, G. Ferrari, D. Gorla,
M. Loreti, E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri.
The Klaim Project: Theory and Practice. In C. Priami, editor,
Global Computing: Programming Environments, Languages,
Security and Analysis of Systems, LNCS 2874, pages 88–150.
Springer-Verlag, 2003.

[4] F. Cristian. Exception Handling and Fault Tolerance of
Software Faults. In M. Lyu, editor, Software Fault Tolerance,
pages 81–107. Wiley, NY, 1995.

[5] R. J. Dufresne, W. J. Gerace, W. J. Leonard, J. P. Mestre, and
L. Wenk. Classtalk: A Classroom Communication System for
Active Learning. Journal of Computing in Higher Education,
7:3–47, 1996.

[6] G. Gay, M. Stefanone, M. Grace-Martin, and H. Hembrooke.
The Effects of Wireless Computing in Collaborative Learning
Environments. International Journal of Human-Computer
Interaction, 13(2):257–276, 2001.

[7] D. Gelernter. Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[8] W. G. Griswold, P. Shanahan, S. W. Brown, R. Boyer,
M. Ratto, R. B. Shapiro, and T. M. Truong. ActiveCampus -
Experiments in Community-Oriented Ubiquitous Computing.
IEEE Computer, 37(10):73–81, 2004.
http://activecampus.ucsd.edu/ [Last accessed: 1 Feb 2006].

[9] A. Iliasov. Implementation of Cama Middleware.
http://sourceforge.net/projects/cama [Last accessed: 1 Feb
2006].

[10] A. Iliasov, L. Laibinis, A. Romanovsky, and E. Troubitsyna.
Towards Formal Development of Mobile Location-based
Systems. Presented at REFT 2005 Workshop on Rigorous
Engineering of Fault-Tolerant Systems, Newcastle Upon Tyne,
UK (http://rodin.cs.ncl.ac.uk/events.htm), June 2005.

[11] A. Iliasov and A. Romanovsky. CAMA: Structured
Coordination Space and Exception Propagation Mechanism for
Mobile Agents. Presented at ECOOP 2005 Workshop on
Exception Handling in Object Oriented Systems: Developing
Systems that Handle Exceptions. July 25, 2005. Glasgow, UK,
2005.

[12] A. Iliasov and A. Romanovsky. Exception Handling in
Coordination-based Mobile Environments. In Proceedings of
the 29th Annual International Computer Software and
Applications Conference (COMPSAC 2005), pages 341–350.
IEEE Computer Society Press, 2005.

[13] I. Merrick and A. Wood. Coordination with Scopes. In
Proceedings of the ACM Symposium on Applied Computing
2000, pages 210–217, 2000.

[14] A. Omicini and F. Zambonelli. Tuple Centres for the
Coordination of Internet Agents. In SAC ’99: Proceedings of
the 1999 ACM symposium on Applied computing, pages
183–190, New York, NY, USA, 1999. ACM Press.

[15] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda
Meets Mobility. In Proceedings of 21st Int. Conference on
Software Engineering (ICSE’99), pages 368–377, 1999.

[16] M. Ratto, R. B. Shapiro, T. M. Truong, and W. G. Griswold.
The ActiveClass Project: Experiments in Encouraging
Classroom Participation. In Computer Support for
Collaborative Learning 2003, pages 477–486. Kluwer, 2003.

[17] G.-C. Roman, C. Julien, and J. Payton. A Formal Treatment of
Context-Awareness. In M. Wermelinger and T. Margaria,
editors, Fundamental Approaches to Software Engineering,
7th International Conference, FASE 2004, part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2004, LNCS 2984, pages 12–36. Springer, 2004.

[18] I. Satoh. MobileSpaces: A Framework for Building Adaptive
Distributed Applications using a Hierarchical Mobile Agent
System. In Proceedings of the ICDCS 2000, pages 161–168,
2000.

[19] A. Tripathi and R. Miller. Exception Handling in
Agent-oriented Systems. In Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems (SRDS’02),
pages 304–315. ACM Press, 2002.

[20] P. van Roy, S. Haridi, P. Brand, G. Smalka, M. Mehl, and
R. Scheidhauer. Mobile Objects in Distributed Oz. ACM
Transactions on Programming Languages and Systems,
19(5):804–851, 1997.

7

Part Arch - APPENDIX [Arief et al. 2006] p 7



This is an advance copy of an invited paper to be presented at the 19th IFIP World Computer
Congress, 20-25 August  2006, Santiago, Chile. The presentation is on 22 August at the 1st IFIP
International Conference on Biologically Inspired Cooperative Computing (BICC). The paper will be
published in the Proceedings of IFIP BICC 2006 by Springer Science and Business Media.

AN IMMUNE SYSTEM PARADIGM FOR THE ASSURANCE OF
DEPENDABILITY OF COLLABORATIVE SELF-ORGANIZING SYSTEMS

Algirdas Avižienis

Vytautas Magnus University, Kaunas, Lithuania
and
University of California, Los Angeles, USA
aviz@adm.vdu.lt

Abstract

In collaborative self-organizing computing systems a complex task is performed by relatively
simple autonomous agents that act without centralized control. Disruption of a task can be caused
by agents that produce harmful outputs due to internal failures or due to maliciously introduced
alterations of their functions. The probability of such harmful outputs is minimized by the
application of a design principle called ”the immune system paradigm” that provides individual
agents with an all-hardware fault tolerance infrastructure. The paradigm and its application are
described in this paper.

1. Dependability Issues of Collaborative Self-Organizing Systems

Self-organizing computing systems can be considered to be a class of distributed computing
systems. To assure the dependability of conventional distributed systems, fault tolerance
techniques are employed [1]. Individual elements of the distributed system are grouped into
clusters, and consensus algorithms are implemented by members of the cluster [2], or mutual
diagnosis is carried out within the cluster.

Self-organizing systems differ from conventional distributed systems in that their structure is
dynamic [3]. Relatively simple autonomous agents act without central control in jointly carrying
out a complex task. The dynamic nature of such systems makes the implementation of consensus
or mutual diagnosis impractical, since constant membership of the clusters of agents cannot be
assured as the system evolves. An agent that suffers an internal fault or external interference may
fail and produce harmful outputs that disrupt the task being carried out by the collaborative
system. Even more harmful can be maliciously introduced (by intrusion or by malicious software)
alterations of the agent’s function that lead to deliberately harmful outputs.

The biological analogy of the fault or interference that affects an agent is an infection that can
lead to loss of the agent’s functions and also to transmission of the infection to other agents that
receive the harmful outputs, possibly causing an epidemic. The biologically inspired solution that
I have proposed is the introduction within the agent of a fault tolerance mechanism, called the
fault tolerance infrastructure (FTI), that is analogous to the immune system of a human being
[4,5]. Every agent has its own FTI and therefore consensus algorithms are no longer necessary to
protect the system.
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2.  A Design Principle: the Immune System Paradigm

My objective is to design the FTI for an autonomous agent that is part of a self-organizing
system. I assume that the agent is composed of both hardware and software subsystems and
communicates to other agents via wireless links. Then I will employ the following three analogies
to derive a design principle called “the immune system paradigm”:

(1) the human body is analogous to hardware,
(2) consciousness is analogous to software,
(3) the immune system of the body is analogous to the fault tolerance infrastructure FTI.

In the determination of the properties that the FTI must possess four fundamental attributes of the
immune system are especially relevant [6]:

(1) It is a part of the body that functions (i.e. detects and reacts to threats) continuously and
autonomously, independently of consciousness.
(2) Its elements (lymph nodes, other lymphoid organs, lymphocytes) are distributed throughout
the body, serving all its organs.
(3) It has its own communication links – the network of lymphatic vessels.
(4) Its elements (cells, organs, and vessels) themselves are self-defended, redundant and in
several cases diverse.

Now we can identify the properties that the FTI must have in order to justify the immune system
analogy. The are as follows:

(1a) The FTI consists of hardware and firmware elements only.
(1b) The FTI is independent of (that is, it requires no support from) any software of the agent, but
can communicate with it.
(1c) The FTI supports (provides protected decision algorithms for) multichannel computing by
the agent, including diverse hardware and software channels that provide design fault tolerance
for the agent’s hardware and software.
(2) The FTI is compatible with (i.e., protects) a wide range of the agent’s hardware components,
including processors, memories, supporting chipsets, discs, power supplies, fans and various
peripherals.
(3) Elements of the FTI are distributed throughout the agent’s hardware and are interconnected by
their own autonomous communication links.
(4) The FTI is fully fault-tolerant itself and  requires no external support. It is not susceptible to
attacks by intrusion or malicious software and is not affected by natural or design faults of the
agent’s hardware and software.
(5) An additional essential requirement is that the FTI provides status outputs to those other
agents with which it can communicate. The outputs indicate the state of the agent’s health: perfect
or undergoing recovery action. Upon failure of the agent’s function the FTI shuts down all its
outputs and issues a permanent status output indicating failure.

The above listed set of design requirements is called the immune system paradigm. It defines an
FTI that can be considered to be the agent’s immune system that defends its “body” (i.e.,
hardware) against “infections” caused by internal faults, external interference, intrusions, and
attacks by malicious software. The FTI also informs the other agents in its environment of its
state of health. Such an FTI is generic, that is, it can serve a variety of agents. Furthermore it is
transparent to the agent’s software, compatible with other defenses used by the agent, and fully
self-protected by fault tolerance.
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A different and independently devised analogy of the immune system is the “Artificial Immune
System” (AIS) of S. Forrest and S. A. Hofmeyr [7]. Its origins are in computer security research,
where the motivating objective was protection against illegal intrusions. The analogy of the body
is a local-area broadcast network, and the AIS protects it by detecting connections that are not
normally observed on the LAN. Immune responses are not  included in the model of the AIS,
while they are the essence of the FTI.

3.  Architecture of the Fault Tolerance Infrastructure

The preceding sections have presented a general discussion of an FTI that serves as the analog of
an immune system for the hardware of an agent of a self-organizing system. Such an FTI can be
placed on a single hardware component, or it can be used to protect a board with several
components, or an entire chassis [5]. To demonstrate that the FTI is a practically implementable
and rather simple hardware structure, this and the next section describe an FTI design that was
intended to protect a system composed of Intel P6 processors and associated chip sets and was
first presented in [5].

The FTI is a system composed of four types of special-purpose controllers called ”nodes”. The
nodes are ASICs (Application-Specific Integrated Circuits) that are controlled by hard-wired
sequencers or by read-only microcode. The basic structure of the FTI is shown in Figure 1. The
figure does not show the redundant nodes needed for fault tolerance of the FTI itself. The C
(Computing) node is a COTS processor or other hardware component of the agent being
protected by the FTI. One A (Adapter) node is provided for each C node. All error signal outputs
and recovery command inputs of the C node are connected to its A node. Within the FTI, all A
nodes are connected to one M (Monitor) node via the M (Monitor) bus. Each A node also has a
direct input (the A line) to the M node. The A nodes convey the C node error messages to the M
node. They also receive recovery commands from the M node and issue them to C node inputs.

 The A line serves to request M node attention for an incoming error message. The M node stores
in ROM the responses to error signals from every type of C node and the sequences for its own
recovery. It also stores system configuration and system time data and its own activity records.
The M node is connected to the S3 (Startup, Shutdown, Survival) node. The functions of the S3
node are to control power-on and power-off sequences for the entire agent, to generate fault-
tolerant clock signals and to provide non-volatile, radiation-hardened storage for system time and
configuration. The S3 node has a backup power supply (e.g. a battery) and remains on at all times
during the life of the FTI.

The D (Decision) node provides fault-tolerant comparison and voting services for the C nodes,
including decision algorithms for N-version software executing on diverse processors (C-nodes).
Fast response of the D node is assured by hardware implementation of the decision algorithms.
The D node also keeps a log of disagreements in the decisions. The second function of the D node
is to serve as a communication link between the software of the C nodes and the M node. C nodes
may request configuration and M node activity data or send power control commands. The D
node has a built-in A node (the A port) that links it to the M node.Another function of the FTI is
to provide fault tolerant power management for the entire agent system, including individual
power switches for every C node, as shown in Figure 1. Every node except the S3 has a power
switch. The FTI has its own fault-tolerant power supply (IP).
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SP: System Power
IP: Infrastructure Power
BP: Backup Power
PS: Power Switch
C: Computing Node
A: Adapter Node
D: Decision Node
M: Monitor Node
S3:Startup,Shutdown,
Survival Node
AL: A-Line

Note:Redundant
nodes are not shown

Figure 1.  Basic Structure of the FTI

4.   Fault Tolerance of the FTI

The partitioning of the FTI is motivated by the need to make it fault-tolerant. The A and D nodes
are self-checking pairs, since high error detection coverage is essential, while spare C and D
nodes can be provided for recovery under M node control. The M node must be continuously
available, therefore triplication and voting (TMR) is needed, with spare M nodes added for longer
life.

The S3 nodes manage M node replacement and also shut the agent down in the case of failure or
global catastrophic events (temporary power loss, heavy radiation, etc.). They are protected by
the use of two or more self-checking pairs with backup power. S3 nodes were separated from M
nodes to make the node that must survive catastrophic events as small as possible. The S3 nodes
also provide outputs to the agent’s environment that indicate the health status of the agent:
perfect, undergoing protective action or failed.
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The all-hardware implementation of the FTI makes it safe from software bugs and external
attacks. The one exception is the power management command from C to M nodes (via the D
node) which could be used to shut the system down. Special protection is needed here. Hardware
design faults in the FTI nodes could be handled by design diversity of self-checking pairs and of
M nodes, although the logic of the nodes is very simple and their complete verification should be
possible.

When interconnected, the FTI and the original autonomous agent form a computing system that is
protected against most causes of system failure. An example system of this type is called
DiSTARS: Diversifiable Self Testing And Repairing System and is discussed in detail in [5].
DiSTARS is the first example of an implementation of the immune system paradigm. Much detail
of implementation of the FTI is presented in the U.S. patent application disclosure “Self-Testing
and – Repairing Fault Tolerance Infrastructure for Computer Systems” by A. Avižienis, filed
June 19, 2001.

5. In Conclusion: Some Challenges

The use of the FTI is likely to be affordable for most agents, since the A, M, D, and S3 nodes
have a simple internal structure, as shown in [5] and the above mentioned disclosure. It is more
interesting to consider that there are some truly challenging missions that can only be justified if
their computing systems with the FTI have very high coverage with respect to design faults and to
catastrophic transients due to radiation. Furthermore, extensive sparing and efficient power
management can also be provided by the FTI. Given that the MTBF of contemporary processor
and memory chips is approaching 1000 years, missions that can be contemplated include the
1000-day manned mission to Mars [8] with the dependability of a 10-hour flight of a commercial
airliner.  Another fascinating possibility is an unmanned very long life interstellar mission using a
fault-tolerant relay chain of modest-cost DiSTARS type spacecraft [9]. Both missions are
discussed in [5].
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Abstract. Component adaptation needs to be taken into account when devel-
oping trustworthy systems, where the properties of component assemblies have
to be reliably obtained from the properties of its constituent components. Thus,
a more systematic approach to component adaptation is required when build-
ing trustworthy systems. In this paper, we illustrate how (design and architec-
tural) patterns can be used to achieve component adaptation and thus serve as
the basis for such an approach. The paper proposes an adaptation model which
is built upon a classification of component mismatches, and identifies a number
of patterns to be used for eliminating them. We conclude by outlining an engi-
neering approach to component adaptation that relies on the use of patterns and
provides additional support for the development of trustworthy component-based
systems.

1 Introduction

In an ideal world, component-based systems are assembled from pre-produced com-
ponents by simply plugging perfectly compatible components together, which jointly
realize the desired functionality. In practice, however, it turns out that the constituent
components often do not fit one another and adaptation has to be done to eliminate the
resulting mismatches.

R.H. Reussner et al. (Eds.): Architecting Systems, LNCS 3938, pp. 193–215, 2006.
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Mismatches between components, for example, always need to be addressed when
integrating legacy systems. Thereby, the impossibility of modifying large client appli-
cations is a major reason for the need to employ some form of adaptation during the
development of component-based systems. Besides that, the most structured way to
deal with component evolution and upgrading, which is likely to result in new mis-
matches at the system level, arguably is by applying adaptation techniques. Finally,
adaptation becomes a major task in the emerging area of service-oriented computing,
where mismatches must be solved to ensure the correct interoperation among different
Web services, which have been assembled according to a bottom-up strategy.

For these reasons, the adaptation of components has to be recognized as an unavoid-
able, crucial task in Component-Based Software Engineering (CBSE). Until now, how-
ever, only a number of isolated approaches to eliminate mismatches between compo-
nents have been proposed. They introduce adapters, which are capable of mediating the
interaction between components (e.g., to transform data between different formats or to
ensure a failure-free coordination protocol). In [1, 2, 3, 4, 5, 6, 7, 8, 9], for instance, the
authors show how to automatically derive adapters in order to reduce the set of system
behaviors to a subset of safe (e.g., lock-free) ones. Other papers [9, 10, 11, 12, 13, 14]
show how to plug a set of adapters into a system in order to augment the system behav-
iour by introducing more sophisticated interactions among components. The presented
protocol transformations can be applied to ensure the overall system dependability, im-
prove extra-functional characteristics, and properly deal with updates of the system
architecture (e.g., insertion, replacement, or removal of components).

The approaches mentioned above only address some forms of component mismatch
types, employ specific specification formalisms, and usually do not support any reason-
ing about the impact that component adaptation has on the extra-functional properties
(e.g., reliability, performance, security) of the system. For these reasons, employing
these approaches to adapt components in an ad hoc strategy typically is error prone,
reduces the overall system quality, and thus increases the costs of system development.
Above all, employing such an ad hoc strategy to component adaptation hinders the de-
velopment of trustworthy component-based systems, since it is impossible to reliably
deduce the properties of component assemblies from the properties of the constituent
components and the created adapters.

To counter these problems, it is the objective of this paper to initiate the develop-
ment of an engineering approach to component adaptation that provides developers
with a systematic solution consisting of methods, best practices, and tools. As the basis
for such an approach we suggest the usage of adaptation patterns, since they provide
generic and systematic solutions to eliminate component mismatches. Before establish-
ing the details of the proposed engineering approach, we start by clarifying important
concepts (section 2). After introducing an initial taxonomy of component mismatches
(section 3), we describe a generic process model for component adaptation and discuss
relevant patterns that have emerged both in literature and in practice (section 4). To
illustrate the employment of patterns to eliminate component mismatches, we addition-
ally present some examples (section 5). After discussing related work we conclude by
outlining some of the remaining challenges. They will have to be solved to establish
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a fully-fledged engineering approach, capable of supporting the development of trust-
worthy component-based systems.

2 Component Adaptation: Coming to Terms

Component mismatches originate from contradicting assumptions about the context,
in which interacting components should be used, and the real context, in which they
are being deployed. These contradicting assumptions have been made by the develop-
ers of individual components and become obvious during the assembly of the system,
when individual components are brought together. Component mismatches have been
examined both from an architectural [15] and a reuse-oriented perspective [16].

From a reuse-oriented perspective there always is a tension between the goals of
extending the functionality of a component on the one hand and keeping it reusable
on the other hand. These are contradicting goals, since reuse typically requires sim-
ple, well-defined and well-understood functionality. Because of this reason, it is likely
that a reused component will not exactly fit the required context. In the software reuse
community, component mismatches are usually called component incompatibilities.

From a software architecture perspective, problems occur when components have
different assumptions about normal and abnormal behaviour of other components or
when a software architect makes decisions which contradict individual assumptions
of the components and connectors [17]. Problems of this kind are called architectural
mismatches. In our paper, we summarize the terms ”component incompatibilities” and
”architectural mismatches” as component mismatches to emphasize that they relate to
the same problem.

Before we elaborate the proposed engineering approach to component adaptation,
some terms have to be clarified as they are not used consistently in the domain of adap-
tation techniques.

Software adaptation is the sequence of steps performed whenever a software entity is
changed in order to comply with requirements emerging from the environment in which
the entity is deployed. Such changes can be performed at different stages during the life
cycle. Therefore, we distinguish requirement adaptation, design-time adaptation, and
run-time adaptation (see [18]):

– Requirement adaptation is used to react to changes during requirements engineer-
ing, especially when new requirements are emerging in the application domain.

– Design-time adaptation is applied during architectural design whenever an analysis
of the system architecture indicates a mismatch between two constituent compo-
nents.

– Run-time adaptation takes place when parts of the system offer different behav-
iour depending on the context the parts are running in. This kind of adaptation is
therefore closely related to context-aware systems.

In the following, we restrict ourselves to design-time adaptation.
Software Component Adaptation is the sequence of the steps required to bridge a

component mismatch. According to the common definition, components offer services
to the environment, which are specified as provided interfaces [19, 20]. In addition,
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components explicitly and completely express their context dependencies [19], i.e. their
expectations on the environment. Context dependencies are stated in the form of re-
quired interfaces [19, 20]. Using the concept of provided and required interfaces, a
component mismatch can be interpreted as a mismatch between properties of required
and provided interfaces, which have to be connected (see figure 1). Consequently,
identifying mismatches between components is equivalent to identifying mismatches
between interfaces. A component mismatch thus occurs, when a component, which im-
plements a provided interface, and a component, which uses a required interface, are
not cooperating as intended by the designer of the system.

A Adapter B

Bridge Interoperability 

Problem

Change QoS

in a predictable way

Fig. 1. A software component adapter and its QoS impact

Note that component mismatches explicitly refer to interoperability problems which
have not been foreseen by the producer of one of the components. Many components
offer so called customization interfaces to increase reusability. These interfaces allow
changes to the behaviour of the component during assembly time by setting parameters.
As they are foreseen by the component developer and thus planned in advance, we do
not consider parameterization as adaptation. Therefore, in the following customization
is disregarded.

In accordance with the term adaptation we define a software component adapter as
a software entity especially constructed to overcome a component mismatch.

3 A Taxonomy of Component Mismatches

Although an efficient technique to adapt components is of crucial importance to facili-
tate CBSE, there currently exist only a few approaches to enumerate and classify differ-
ent kinds of component mismatches [21]. Moreover, many of the existing approaches
just broadly distinguish between syntactic, semantic, and pragmatic mismatches and
put them into relation to various aspects of compatibility like functionality, architec-
ture, and quality [22, 23]. In order to get a more detailed understanding of the problem
domain, we start implementing the proposed engineering approach to component adap-
tation by introducing a taxonomy of mismatches. The introduced taxonomy enumerates
different types of component mismatches which will be taken into consideration when
we develop a pattern-based approach to adaptation later on.

In addition, the provided taxonomy summarizes the different types of component
mismatches into categories and classifies them according to a hierarchy of interface
models (see figure 2). Each of the distinguished interface models determines a (distinct)
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Level 4: Quality of Service

Quality Attributes

Level 3: Synchronization

Path Expressions

Level 2: Behavior

Pre- and Postconditions

Level 1: Syntax

Signatures

Basic

Augmented

Level 5: Conceptual Semantics

Concepts

Signatures

Assertions

Protocols

Quality Attributes

Concepts

Interface Models Mismatch Types

Fig. 2. A hierarchy of interface models (based on [24]), which orders interface properties accord-
ing to their specification complexity, supports the identification and elimination of different types
of component mismatches

set of properties which belongs to a component interface [24, 25]. Because compo-
nent mismatches originate from mismatching properties of connected interfaces (the so-
called provided and required interfaces, cf. section 2), the hierarchy of interface models
underlying the interface descriptions simultaneously determines our ability to diagnose
and eliminate a certain type of component mismatch.

The (classical) syntax-based interface model, which focuses on signatures as con-
stituent elements of component interfaces, supports the identification and elimination
of signature mismatches. By using such a syntax-based interface model, the following
types of (adaptable1) mismatches can be distinguished when connecting the required
interface of a component ”A” with a provided interface of a component ”B” as shown
in figure 1 [26, 27]:

– Naming of methods. Methods, which have been declared in the provided and re-
quired interface, realize the same functionality but have different names.

– Naming of parameters. Parameters of corresponding methods represent the same
entity and have the same type but have been named differently in the provided and
required interface.

– Naming of types. Corresponding (built-in or user-defined) types have been declared
with different names.

1 An adaptable mismatch can eventually be eliminated by adaptation.
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– Structuring of complex types. The member lists of corresponding complex types
(e.g. structures) declared both in the provided and required interface are permuta-
tions.

– Naming of exceptions. Exceptions thrown by corresponding methods have the same
type, but have been declared with different names.

– Typing of methods. The method declared in the provided interface returns a type,
which is a sub-type of the one that is returned by the method declared in the required
interface.

– Typing of parameters. Parameters of methods declared in the provided interface
have a type, which is a super-type of the one that belongs to corresponding para-
meters declared in the required interface.

– Typing of exceptions. Exceptions thrown by methods declared in the provided in-
terface have a type, which is a sub-type of the one that belongs to corresponding
exceptions declared in the required interface.

– Ordering of parameters. The parameter lists of corresponding methods declared
both in the provided and required interface are permuted.

– Number of parameters. A method declared in the provided interface has fewer para-
meters or additional parameters with constant values compared to its corresponding
method declared in the required interface.

Compared to this basic interface model, a behavioral interface model also contains
assertions (i.e. pre- and postconditions) for the methods, which have been declared
in the required and provided interfaces. With a behavioral interface model in place,
it becomes principally conceivable to additionally search for (adaptable) mismatches
between assertions when comparing provided and required interfaces. However, we
chose not to consider the detection and adaptation of mismatching assertions as part
of the proposed engineering approach, since they usually cannot be statically identified
in an efficient manner [28, p. 578]. Instead, we refer to [29] for details about existing
techniques, which can be applied to identify and adapt mismatching assertions, as well
as their principal limitations.

By making use of an interaction-based interface model, which focuses on describ-
ing the interaction that takes place between connected components in the form of mes-
sage calls, developers are able to diagnose and eliminate protocol mismatches. Provided
that the interaction protocols belonging to the provided and the required interface are
specified in a way that supports an efficient, i.e. statically computable, comparison, the
following (adaptable) mismatches can be distinguished [2, 30]:

– Ordering of messages. The protocols belonging to the provided and required inter-
face contain the same kinds of messages, but the message sequences are permuted.

– Surplus of messages. A component sends a message that is neither expected by the
connected component nor necessary to fulfil the purpose of the interaction.

– Absence of messages. A component requires additional messages to fulfil the pur-
pose of the interaction. The message content can be determined from outside.

Since it is generally possible to specify interaction protocols as pre- and postconditions
[28, p. 981-982], we have to admit that introducing a behavioral interface model already
would have been sufficient to cover the interaction aspect as well. Nevertheless, we
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chose to view interaction protocols as a separate aspect that has to be distinguished
from pre- and postconditions. This decision is mainly motivated by the problems that
arise when trying to statically compare assertions. We have to admit, however, that
our decision to view interaction protocols as a separate aspect only is profitable, if the
specified interaction protocols can be statically compared in a more efficient way than
assertions. To ensure a better comparability of protocol specifications, we eventually
have to prefer notations of limited expressive power (e.g. finite state machines).

The quality-based interface model instead focuses on describing an aspect that has
not been covered so far. It documents the Quality of Service (QoS) which is being
provided by each of the interface methods by describing a set of quality attributes. The
set of quality attributes that is to be described is determined by the underlying quality
model, e.g. the ISO 9126 quality model [31, 32], which is one of the most popular. By
making use of an interface model that is based on the ISO 9126 quality model, it is
possible to detect and eliminate the following quality attribute mismatches:

– Security. The component requiring a service makes assumptions about the authen-
tication, access, and integrity of messages that differ from the assumptions made
by the component which provides the service.

– Persistency. The component requiring a service makes assumptions about the per-
sistent storage of computed results that differ from the assumptions made by the
component which provides the service.

– Transactions. The component requiring a service makes assumptions about the ac-
companying transactions that differ from the assumptions made by the component
which provides the service.

– Reliability. The service required by component A needs to be more reliable than
the one that is being provided by component B. Reliability is a trustworthiness at-
tribute characterizing the continuity of the service, e.g. by measuring the meantime
between failure, mean downtime, or availability [32, p. 23]. Typically reliability is
achieved by employing fault tolerance means.

– Efficiency (Performance). The service required by component A needs to be more
efficient than the one that is being provided by component B. The efficiency of a ser-
vice is typically characterized by its usage of time and resources, e.g. the response
time, throughput, memory consumption, or utilization of processing unit [32, pp.
42-50].

It is important to stress the fact that, with respect to adaptation, the quality aspect is a
cross-cutting concern. This means, creating and inserting an adapter to eliminate one of
the other component mismatches mentioned in this paper probably influences the qual-
ity properties, e.g. by delaying the response time of a service that now has to be invoked
indirectly. In fact, the quality attributes distinguished above are even cross-cutting con-
cerns among each other, which means that adapting one of the quality attributes is likely
to influence the others.

A conceptual interface model, which describes the conceptual semantics of compo-
nent interfaces as an ontology (i.e. a set of interrelated concepts), supports the identifica-
tion and elimination of so-called concept mismatches. Thereby, concepts can principally
characterize each of the elements contained in a syntactical interface model. Thus, they
may refer to entities (such as parameters, type declarations etc.), functions (methods),
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and processes (protocols). By making use of a concept model that consists of a term
(denominator), an intension (definition), and an extension (corresponding real objects),
the following concept mismatches can be principally distinguished [33, 34]:

– Synonyms. Two concepts, which characterize corresponding interface elements of
a provided and required interface, are identical with respect to their definition, but
have been used with different terms (e.g. customer and buyer).

– Sub- and Superordination. Two concepts, which characterize corresponding inter-
face elements of a provided and required interface, are in a specialization or gener-
alization relationship to each other.

– Homonyms. Two concepts, which characterize corresponding interface elements of
a provided and required interface, are named with the same term but have different
definitions (e.g. price as price including value-added tax and price as price without
value-added tax).

– Equipollences. Two concepts, which characterize corresponding interface elements
of a provided and required interface, have the same extension. However, they have
different definitions which only share some common aspects (e.g. customer and
debitor).

Both conceptual interface models, which make use of ontologies to describe the seman-
tics of component-interfaces, as well as their usage for compatibility tests and adapta-
tion are still under research. Consequently, there currently is little substantial support
that can help in detecting and adapting concept mismatches (an overview of approaches
can be found in [35, 36]). However, conceptual interface models are helpful in detecting
and eliminating certain kinds of signature mismatches, like e.g. methods with identical
functionality and different namings.

Fig. 3. The taxonomy contains five distinct classes of component mismatches

To complete our taxonomy of component mismatches, we finally introduce technical
mismatches as additional component mismatch type. Technical mismatches between
components occur, if two interacting components have been developed for different
platforms (i.e. operating systems, frameworks etc.). Since technical dependencies of the
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former kind usually are not described as interfaces and instead remain as implicit com-
ponent properties, they have not been covered by the introduced taxonomy so far, which
builds upon the hierarchy of interface models to classify component mismatches. They
represent an important mismatch type, however, and have to be considered accordingly
when developing an engineering approach to adaptation. Figure 3 shows the classifica-
tion of component mismatches that results from the inclusion of technical mismatches.
It shows extra-functional mismatches as cross-cutting concern, whereas the other con-
cerns can be summarized as functional mismatches.

4 Relevant Patterns for Component Adaptation

Patterns - either on the component design or on the architectural level - have become
popular since the Gang of Four [37] published their well-known book on design pat-
terns. According to our classification there are a lot of possible component incompat-
ibilities. Therefore, it is reasonable that there are several patterns for bridging those
incompatibilities. As patterns are established and well known solutions to reoccurring
problems we decide to utilize patterns for adaptation problems. Thus, in this section we
highlight some of the relevant patterns - mainly taken from literature [37, 38, 39, 40].

Before we go into details, we focus on the basic structure of some of the patterns.
Many patterns look similar or even identical at the design or source code level. This
leads to the assumption that there are even more basic concepts used in the patterns
than the patterns itself. For example, delegation is such a concept. Delegation takes
place whenever a component wrapping another component uses the wrapped compo-
nents service to fulfil its own service. For example, an adapter (see below) converting
currencies from Euro to US Dollar. It first converts the input currency, then it delegates
the call to the wrapped component using the right currency, and afterwards the cur-
rency is translated back again. The same idea is used also in, i.e., the Decorator pattern.
Therefore, we try to identify in the following text these basic structures as well to build
a taxonomy of the basic building blocks of the patterns introduced and also to capture
the basic technique used in the patterns mentioned. An analysis of the basic techniques
can also lead to a more engineering-based approach to adaptation in future work.

We classify the introduced patterns according to section 2 basically in adapters
dealing primarily with functional aspects and extra-functional aspects respectively.

4.1 Functional Adaptation Patterns

This section gives an overview of the most often used patterns to bridge functional
component incompatibilities. Most are well known to experienced developers and used
quite frequently - even without the knowledge that a pattern has been used.

Adapter. The adapter or wrapper pattern is described in [37, p. 139]. The pattern di-
rectly corresponds to the definition given in section 2 as its main idea is to bridge be-
tween two different interfaces. The pattern is used in different flavours: a variant using
inheritance and a second one based on delegation. The latter can be used in component-
based development by using the concepts on the component instance level instead of the
object instance level. The adapter pattern is very flexible as theoretically every interface
can be transformed into every other interface. Thus, the range of adapters is infinite.
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Decorator. The decorator pattern [37, p. 175] can be seen as a special class of adapters
where the adapter’s interface is a subtype of the adapted component. This enables the
use of a decorated component instead of the undecorated. Additionally, it is possible
to decorate a single component as often as necessary. As the adapted component has
the same list of signatures as the original component, a decorator can only change or
add functionality to the methods already offered by the original component. As the
decorator is a special kind of adapter it also uses delegation as main technique.

Interceptor. Often the term interception is used when implementing aspect oriented
programming (AOP) techniques. Interception is a technique which intercepts method
calls and presents the call to some pre- or post-code for additional processing [39, p.
109]. It can be realized by the afore-mentioned decorator pattern but is often part of
component runtime environments. For example, the J2EE container technology uses
interception to add advanced functionality to components during deployment like con-
tainer managed persistency or security. Basically, it also uses delegation but as said
before often hidden in the runtime environments.

Wrapper Facade. The wrapper facade pattern is used to encapsulate a non-object
oriented API using wrapper objects [39, p. 47]. Therefore, it can also be used to en-
capsulate services in a component-based framework. The basic idea is to encapsulate
corresponding state and functions operating on this state in a single component. For ex-
ample, consider a file system component encapsulating a file handle and the operations
which can be performed on the respective file. Basic principles used in this pattern are
delegation and the encapsulation of state.

Bridge. The bridge pattern is used to decouple an abstraction and its implementation
[37, p. 151]. Thus, it is often used to define an abstract interface on a specific technol-
ogy and its implementations deal with vendor specific implementations. Abstract GUI
toolkits like Swing which can be used on top of different GUI frameworks can be seen
as example. The basic technique here is the use of the subtype relation and polymor-
phism.

Microkernel. The Microkernel pattern uses a core component and drivers to build
an external interface to emulate a specific environment [38, p. 171]. It can be used
to simulate a complete target environment on a different technological platform. The
pattern has been used for adaptation in writing emulation layers or virtual machines.

Mediator. The Mediator pattern is used to encapsulate how a given set of objects in-
teract [37, p. 283]. A typical scenario in the context of adaptation is to use several com-
ponents to provide a service, e.g., querying multiple database servers to return a single
result set. The components can interact using the mediator’s coordinating role. Often
mediation is used simultaneously with the adapter pattern to transform data passed
to or from the service in formats being expected by the respective interfaces. With
a focus on data transformations the pattern is often also called Coordinator pattern
[40, p. 111].
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4.2 Extra-Functional Adaptation Patterns

The extra-functional patterns selected here are often used to increase a single or several
quality attributes of the components being adapted. We give examples of properties that
are often addressed by the patterns in the respective paragraphs.

Proxy. A Proxy is put in front of a component to control certain aspects of the access to
it [37, p. 207]. Security issues like access control, encryption, or authentication are often
added to components by respective Proxys. Additionally, it can be used to implement
caching strategies [40, p. 83] or patterns for lazy acquisition of resources [40, p. 38] to
increment response times. The basic technique used in this pattern is delegation.

Component Replication. The component replication pattern is derived from the object
replication pattern [41, p. 99]. The idea is to distribute multiple copies of the same com-
ponent to several distinct computation units to increase response time and throughput.
Additionally, you might get an increased reliability in the case the controller coordi-
nating the replicated components is not the point of failure. The basic technique in this
pattern is based on copying the state of a component.

Process Pair. The process pair pattern runs each component twice so that one com-
ponent can watch the other and restart it in case of a failure [41, p. 133]. The pattern
is used to increase the availability of components in high availability scenarios, e.g.,
whenever safety is an important aspect of the system design. The basic principle of this
pattern is based on timeouts.

Retransmission. Retransmission is used when a service call might vanish or fail [41,
p. 187]. In case the failure lasts for a short period of time, e.g., a network transmission
failure, a retransmission results in successful execution. Thus the pattern increases the
reliability of the system - especially when unreliable transactions are involved. The
pattern is based on timeouts combined with a respective retry strategy.

Caching. The cache pattern keeps data retrieved from a slower memory in a faster
memory area to allow fast access if an object is accessed twice [40, p. 83]. Therefore,
the pattern is used to increase response time and throughput. The benefits are acquired
by accepting a larger memory footprint. The basic technique of the pattern uses memory
buffers to increase performance.

Pessimistic Offline Lock. The pessimistic offline lock is a pattern used to control
concurrent access to components or resources controlled by components [42, p. 426].
The lock is used to ensure that solely one single thread of execution is able to access
the protected resource. Hence, the lock ensures certain safety criteria on the cost of
performance as concurrent threads have to wait before they can execute. The basic
principle used in the pattern is based on blocking the control flow using the process
scheduler.

Unit of Work. The unit of work pattern is used to collect a set of sub-transactions in
memory until all parts are complete and then commits the whole transaction by access-
ing the database only a short time [42, p. 184]. Like the cache pattern there is a trade-off
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Adapter ✔ ✔ ✔ ✔

Decorator ✔

Interceptor ✔ ✔

Wrapper Facade ✔ ✔

Bridge ✔

Microkernel ✔

Mediator ✔

Proxy ✔

Replication ✔

Process Pair ✔

Retransmission ✔

Caching ✔

Pessimistic Lock ✔

Unit of Work ✔

Fig. 4. A classification of Patterns and Mismatches

between memory consumption and efficiency. As in the caching pattern the basic idea
is to use a memory buffer.

4.3 Classification of Patterns

The collection of patterns does not claim to be complete, there are more patterns which
we could look at. We introduced it to show that there are a lot of patterns which can be
used to adapt components - mostly in a way which is not producing hand written glue
code. In the table in figure 4 we show which patterns can be used to solve problems of
the introduced mismatch classes.

5 Using Patterns to Eliminate Component Mismatches

After introducing a set of patterns in the previous section, we will now discuss how to
use the patterns in a software engineering process. First, we will introduce a generic
process which is supposed to serve as a guideline for adaptation. We will illustrate its
usage by giving an example of a functional and an extra-functional adaptation. In par-
ticular, we will show an application of the Adapter/Wrapper pattern and of the Caching
pattern.

The process of adapting components in order to construct trustworthy component
assemblies using software engineering consists of the following steps:

1. Detect mismatches: First the mismatch between the required and provided interface
has to be detected. As stated above, this directly depends on the specifications avail-
able, i.e., if no protocol specification is available then we can not detect protocol
mismatches.
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2. Select measures to overcome the mismatch: Second, we select from a set of estab-
lished methods the one which is known to solve the specific mismatch. Note, that
this choice also depends on the specifications available as some patterns can only
be distinguished by examining subtle differences in the target setting (as already
mentioned in section 4). This can sometimes require semantic information which
is hard to analyze automatically. It is therefore necessary in many cases to leave the
final choice to the developer. Nevertheless, it is possible to filter unsuitable patterns
out in advance.

3. Configure the measure: Often the method or pattern selected can be fine-tuned as
patterns are described as abstract solutions to problems. Thereby, we can for in-
stance utilize the specifications and query the developer for additional input. If the
specification is complete the solution to the mismatch problem is analyzed.

4. Predict the impact: After determining the solution of the problem we predict the
impact of the solution on our setting. This is common in other engineering disci-
plines.

5. Implement and test the solution: If the prediction indicates that the mismatch is
fixed, the solution is implemented, either by systematic construction or by using
generative technologies.

5.1 Adapting Functional Mismatches with the Adapter Pattern

This section shows how functional adaptation can be implemented by utilizing the
Adapter/Wrapper pattern [37, p. 139]. As shown in the table in figure 4, this pattern
might be used to repair syntax, protocol and semantics mismatches.

The Adapter pattern (also known as Wrapper pattern) maps the interface of a compo-
nent onto another interface expected by its clients. The Adapter lets components work
together that could not otherwise because of incompatible interfaces. The participants
in the “schema” of this pattern are: (i) the existing component interface that needs to
be adapted, usually denoted as Adaptee; (ii) Target is the interface required by a client
component and it is not compatible to Adaptee; (iii) Client denotes any client whose
required interface is compatible to Target and (iv) Adapter, which is the component
responsible for making Adaptee compatible to Target.

Here, we discuss an example of a possible application of the Adapter pattern seen
as a means to overcome only protocol mismatches. Let us suppose that we want to
assemble a component-based cooling water pipe management system that collects and
correlates data about the amount of water that flows in different water pipes. The water
pipes are placed in two different zones, denoted by P and S, and they transport water
that has to be used to cool industrial machinery. The system we want to assemble is
a client-server one. The zones P and S have to be monitored by a server component
denoted as Server. Server allows the access to a collection of data related to the water
pipes it monitors. It provides an interface denoted as IServer. Since some of the water
pipes do not include a Programmable Logic Controller (PLC) system, Server cannot
always automatically obtain the data related to the water that flows in those water pipes.
Therefore, IServer exports the methods PCheckOut and SCheckOut to get an exclusive
access to the data collection related to the water which flows in the pipes. This allows
a client to: (i) read the data automatically stored by the server and (ii) manually update
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the report related to the water which flows in the pipes that are not monitored by a PLC.
Correspondingly, IServer exports also the methods PCheckIn and SCheckIn to both
publish the updates made on the data collection and release the access gained to it. We
want to assemble the discussed client-server system formed by the following selected
components: Server and one client denoted as Client. The interface required by Client
is compatible to IServer at level of both signature and semantics.

According to step 1 of the presented process, we need to be able to detect possi-
ble protocol mismatches. These days, we can utilize UML2 Sequence Diagrams and
Interaction Overview Diagrams (i.e., the UML2 Interaction Diagrams suite) to extend
the IDL specification of a component interface for including information related to the
component interaction protocol. UML2 sequence diagrams are for describing a single
execution scenario of a component or a system; UML2 interaction overview diagrams
can be used to compose all the specified component/system execution scenarios into ex-
ecution flows to indicate how each scenario fit together different ones during the overall
execution of the component/system (see Figure 5).

Adapter
sd Server_S2

:Server :Environment

SCheckOut

PCheckOut

SCheckIn

PCheckIn

sd Server_Overview

ref
Server_S1

ref
Server_S2

sd Server_S1

:Server :Environment

PCheckOut

SCheckOut

PCheckIn

SCheckIn

sd Client_S1

:Client :Environment

PCheckOut

PCheckIn

sd Client_S2

:Client :Environment

SCheckOut

SCheckIn

sd Client_Overview

ref
Client_S1

ref
Client_S2

Fig. 5. An example of UML2 Interaction Diagrams specification to detect protocol mismatches

From the UML2 specification shown in Figure 5, it is possible to check automatically
that the interaction protocols expected by Server and Client mismatch. That is, the
selected server component forces its clients to always access to the data collections
related to the zone P and S subsequently and in any possible order, before releasing
the access gained for both of them. Instead, the selected client component gains the
access and releases it for the data collections related to the zone P and S separately.
This protocol mismatch leads to a deadlock.

According to step 2 of our proposed engineering approach to component adaptation,
we have to choose the right type of measure to solve the problem. We decide to deploy
an Adapter/Wrapper component to force a “check-out” of the data collection related to
the zone S (P) after the client has performed a PCheckOut (SCheckOut) method call.
The release of the gained access is handled analogously. In doing so, the interaction
protocol of Client is enhanced in order to match the interaction protocol of Server (i.e.,
to avoid the deadlock). This adaptation strategy can be automatically derived by a tool
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Client

Adapter
PCheckOut(…)
SCheckOut(…)
PCheckIn(...)
SCheckIn(...)

res = pServer->PCheckOut(…);
pServer-SCheckOut(…);
return res;

<requires>

<requires>

<implements>

sd Client_S1

:Client :Environment

PCheckOut

PCheckIn

sd Client_S2

:Client :Environment

SCheckOut

SCheckIn

sd Client_Overview

ref
Client_S1

ref
Client_S2

Target Protocol

Adaptee Protocol

sd Server_S2

:Server :Environment

SCheckOut

PCheckOut

SCheckIn

PCheckIn

sd Server_Overview

ref
Server_S1

ref
Server_S2

sd Server_S1

:Server :Environment

PCheckOut

SCheckOut

PCheckIn

SCheckIn

Fig. 6. Overall structure of the Adapter/Wrapper pattern to avoid protocol mismatches

that - by exploiting the UML2 XMI - is able to take in input an XML representation
of the UML2 interaction diagrams specification of Server and Client. This tool might
elaborate - in some way - this specification and produce the adaptation strategy that
must be implemented by the Adapter. A similar approach can be found in [14].

In the third step of our process we have to customize the pattern to our needs (i.e.,
protocol adaptation purposes) and choose the right variant of it. We plan to implement
the pattern according to Figure 6 depicting the overall structure of our realization.

The following are the participants to the Adapter patter applied to bridge protocol
mismatches: (i) Target Protocol which is the protocol required by a client component
(i.e., the interaction protocol of Client); (ii) Client which is a component whose pro-
tocol is compatible to the Target Protocol (i.e., Client); (iii) the Adapter which is the
component responsible for making an existing protocol compatible to the Target Proto-
col; and (iv) the Adaptee Protocol which is the existing protocol (i.e., the interaction
protocol of Server). In the figure we also show a portion of the code implementing
the method PCheckOut as provided by the Adapter component. SCheckOut, PCheckIn
and SCheckIn are implemented analogously. This code reflect the adaptation strategy
discussed above.

In the next step, in order to make it an engineering process, we predict the impact
of the deployed Adapter in terms of checking whether the detected protocol mismatch
has been solved or not. To be able to do so, we do not need any further information
beyond the UML2 Interaction Diagrams specification of Client and Server and the un-
derlined structure of the Adapter component. In fact, from this kind of specification, it
is possible to automatically derive a process algebra notation e.g., FSP notation [43], of
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the interaction behavior of Client, Server and of the Adapter component. FSP notation
might be a useful formalism to check automatically if the insertion of the Adapter in
the system will avoid the detected protocol mismatch. In the literature, there are more
functional analysis tools that support FSP as input language.

One of these tools is LTSA (Labeled Transition System Analyser) [43]. LTSA is
a plugin-based verification tool for concurrent systems. It checks automatically that
the specification of a concurrent system satisfies required properties of its behavior
such as deadlock-freeness. Thus, by integrating our process with such tools we can
predict whether the detected protocol mismatch will be solved by the Adapter com-
ponent or not. Moreover - since the Adapter also changes extra-functional properties
of the system, e.g., by slowing down accesses because of the injected method calls -
we should predict the impact of the Adapter on the performance of method calls. In
the next subsection it is very clearly explained how to predict it by using an usage
profile of an adapted service. Here, we simply note that performance of method calls
should decrease but very little because the Adapter adds only a lightweight extra-level of
indirectness.

In the final step, the adapter is built by exploiting the information contained in its
pattern description. Depending on the complexity of the Adapter, this can be done either
mechanically by a tool or by the developers. Once the Adapter is deployed, tests that
validate both the results of the prediction and the adapter correctness are performed.

5.2 Adapting Extra-Functional Mismatches with the Caching Pattern

In the following we show how extra-functional adaptation can be achieved by employ-
ing the Caching pattern [40, p. 83]. A cache is used if a service needs some kind of re-
source whose acquisition is time consuming and the resource is not expected to change
frequently but to be used often. The idea is to acquire the resource and to put it in the
cache afterwards. The resource can be retrieved faster from the cache than re-acquiring
it again. This is often done by utilizing additional memory to store the resource for
faster retrieval. Hence, a trade-off is established between retrieval time and memory
consumption. If the resource is needed again, it is retrieved from the cache. Often a val-
idation check is performed in advance to test whether the cached resource is still up to
date. Additionally, if the resource is altered by its usage we have to ensure consistency
with the non-cached original object. This can be done by either storing it at its original
location directly when the resource is altered (write-through-strategy). The other option
is that the resource gets stored as soon as it gets evicted from the cache.

According to step 1 of the presented process, we need to be able to detect the mis-
matching response times. These days, we can utilize QML [44] specifications of the
respective interfaces for this task. For example, let’s assume an average response time
of 3000ms is needed and an average response time of 6000ms is provided for service
under investigation (see figure 7).

Additionally, we know that the required service processes requests to a static data-
base. Therefore, we can consider the database table rows in the above stated sense. The
database is not updated frequently, so caching the database query results will improve
the average response time. Note, that we also need to know that the service fulfills these
prerequisites of the cache pattern. It is to automatically determine if the prerequisites

Part Arch - APPENDIX [Becker et al. 2006] p 16



Towards an Engineering Approach to Component Adaptation 209

Cache

require Performance contract 

{

delay { mean < 3000 msec }

};

provide Performance contract 

{

delay { mean < 6000 msec}

};

type Performance = contract {

delay: decreasing numeric msec;

};

Fig. 7. An example QML specification to detect a QoS mismatch

are fulfilled as service specifications often state nothing about the resource usage of the
specified service.

Second, we have to choose the right type of measure to solve the problem. We decide
to deploy a cache to speed up an encapsulated resource access in the component being
used. In doing so, the response time is decreased and the components can interoperate
as desired.

In the third step we have to customize the pattern to our needs and choose the right
variant of the pattern. Referring to the description in [40] we have to

– Select resources: The database query results
– Decide on an eviction strategy: Here we can choose between well-known types like

least recently used (LRU), first in - first out (FIFO), and so on.
– Ensure consistency: We need a consistency manager whose task is to invalidate

cache entries as soon as the master copy is changed. In the given database scenario
it makes no sense to omit that part.

– Determine cache size: How much memory the cache is going to use. Most likely
this is specified in number of cacheable resource units.

We plan to implement the pattern according to the following figure depicting the
static structure of our realization (see figure 8).

Fig. 8. The cache pattern implemented with components

In the next step, in order to make it an engineering process, we predict the impact
of the deployed cache. To be able to do so, the usage profile of the adapted service
is needed, as the performance of a cache depends on it. The usage profile information
needed in this context, is the (estimated) frequency and type of requests. Together with
the decisions taken in the previous step a specialized prediction model for the cache
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impact can be applied and the result is compared to the requirements. This step is not
well researched so that today we often neglect the step and trust on the experience
of the deployer. Future work might come up with more prediction models to enable
the engineering process as depicted here. To continue, let us assume, that the result is
2500ms and thus, the mismatch is resolved.

In the final step the adapter is finally constructed or generated by using the instruc-
tions given in the respective pattern description. Once the adapter is deployed, we per-
form tests to ensure that the predictions have been right and that everything works as
expected.

6 Related Work

Even though Component-Based Software Engineering was first introduced in 1968 [45],
developing systematic approaches to adaptation of components in order to resolve in-
teroperability problems is still a field of active research. Many papers are based on the
work done by Yellin and Strom [2, 46], who introduced an algorithm for the (semi-)
automatic generation of adapters using protocol information and an external adapter
specification. Bracciali et al. propose the use of some kind of process calculus to en-
hance this process and generate adapters using PROLOG [47].

Schmidt and Reussner present adapters for merging and splitting interface protocols
and for a certain class of protocol interoperability problems [30]. Besides adapter gen-
eration, Reussner’s parametrized contracts also represent a mechanism for automated
component adaptation [48]. Additionally, Kent et al. [49] propose a mechanism for the
handling of concurrent access to a software component not built for such environments.

Vanderperren et al. have developed a tool called PaCoSuite for the visual assembly
of components and adapters. The tool is capable of (semi-)automatic adapter generation
using signature and protocol information [50]. Gschwind uses a repository of adapters
to dynamically select a fitting adapter [51]. Min et al. present an approach called Smart
Connectors which allows the construction of adapters based on the provided and re-
quired interface of the components to connect [27].

Passerone, de Alfaro and Henzinger developed a game-theoretical approach to find
out whether incompatible component interfaces can be made compatible by inserting
a converter between them which satisfies specified requirements [4]. This approach is
able to automatically synthesize the converter. Their approach can only be applied to a
restricted class of component mismatches (protocols and interaction). In fact, they are
only able to restrict the system’s behavior to a subset of desired ones and, for example,
they are not able to augment the system’s behavior to introduce more sophisticated
interactions among components.

In [10], Garlan et al. have shown how to use formalized protocol transformations
to augment the interaction behavior of a set of components. The key result was the
formalization of a useful set of interaction protocol enhancements. Each enhancement
is obtained by composing wrappers. This approach characterizes wrappers as modular
protocol transformations. The basic idea is to use wrappers to introduce more sophisti-
cated interactions among components. The goal is to alter the behavior of a component
with respect to the other components in the system, without actually modifying the
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component or the infrastructure itself. While this approach deals with the problem of
enhancing component interactions, it does not provide a support for wrapper generation.

A common terminology for the Quality of Service prediction of systems which are
being assembled from components is proposed in [52]. A concrete methodology for
predicting extra-functional properties of .NET assemblies is presented in [53]. None
of these approaches, however, provides a specialized method for including adapters in
their predictions. Engineering Quality of Service guarantees in the context of distributed
systems is the main topic of [54].

An overview on adaptation mechanisms including non-automated approaches can be
found in [55] (such as delegation, wrappers [37], superimposition [56], metaprogram-
ming (e.g., [57])). Both works also contain a general discussion of requirements for
component adaptation mechanisms. Not all of these approaches can be seen as adapters
as defined in this paper. But some of the concepts presented can be implemented in
adapters as shown here.

7 Conclusions and Future Directions

This paper introduces an engineering approach to software component adaptation. We
define adaptation in terms of dealing with component mismatches, introduce the con-
cept of component mismatch, and present a taxonomy to distinguish different types of
component mismatches. Afterwards, we discuss a selection of adaptation patterns that
can be used to eliminate the different mismatch types. The main contribution of the
paper is a presentation of how these patterns can be used during the component adap-
tation process. The presented approach is demonstrated by both a functional and an
extra-functional adaptation example.

Futureresearchisdirectedtowardsexploringadditionalinterfacedescriptionlanguages
which enable the efficient checking of the introduced mismatch types. On the basis of
the available specification data, algorithms have to be developed to statically check
for the identified component mismatch types during a compatibility test. Further on,
existing prediction methods, which are based on the available component data, have to
be improved to include adaptation and its impact on extra-functional system properties.
In doing so, measures have to be developed that assess the impact on the extra-functional
properties of systems when applying specific patterns to identified adaptation problems.

The application of generative techniques or concepts of Model-Driven Architecture
(MDA) to construct the appropriate adapters is another strand of ongoing work. In this
context, dependable composition of adapters and generation of adapters from the spec-
ification of the integrated system and the components are emerging areas of research.
Finally, to achieve a fully-fledged engineering approach to component adaptation, fur-
ther effort will be required to develop suitable tools that are capable of supporting the
selection of pattern(s) which can be applied to solve specific mismatch types (viz., step
2 of the process proposed in Sect. 5).
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ABSTRACT 
Handling erroneous conditions in context-aware mobile agent 
systems is challenging due to their intrinsic characteristics: 
openness, lack of structuring, mobility, asynchrony and increased 
unpredictability. Even though several context-aware middleware 
systems support now the development of mobile agent-based 
applications, they rarely provide explicit and adequate features for 
context-aware exception handling. This paper reports our 
experience in implementing error handling strategies in some 
prototype context-aware collaborative applications built with the 
MoCA (Mobile Collaboration Architecture) system. MoCA is a 
publish-subscribe middleware supporting the development of 
collaborative mobile applications by incorporating explicit 
services to empower software agents with context-awareness. We 
propose a novel context-aware exception handling mechanism 
and discuss some lessons learned during its integration in the 
MoCA infrastructure.  

Keywords 
Exception handling, mobile agents, mobile computing, pervasive 
computing, context-awareness, middleware, fault tolerance. 

1. INTRODUCTION 
There is a growing popularity of pervasive agent-based 
applications that allow mobile users to seamlessly exploit the 
computing resources and collaboration opportunities while 
moving across distinct physical regions. Typically mobile 
collaborative applications need to be made context aware to  
allow autonomous adaptation of the agent functionalities. In 
particular, they need to deal with frequent variations in the system 
execution contexts, such as fluctuating network bandwidth, 
temperature changes, decreasing battery power, changes in 
location or device capabilities, degree of proximity to other users, 
and so forth. However, the development of robust context-aware 
mobile systems is not a trivial task due to their intrinsic 
characteristics of openness, “unstructureness”, asynchrony, and 
increased unpredictability [6, 22]. 

These system features seems to indicate that the handling of 
exceptional situations in mobile applications is more challenging, 
which in turn makes it impossible the direct application of 
conventional exception handling mechanisms [20, 21]. First, error 
propagation needs to be context aware since it needs to take into 
consideration the dynamic system boundaries and changing 
collaborative agents. Second, both the execution of error recovery 

activities and determination of exception handling strategies often 
need to be selected according to user contexts. Third, the 
characterization of an exception itself may depend on the context, 
i.e. a system state may be considered an erroneous condition in a 
given context, but it may be not in others. 

Several middleware systems [6,14,23] are nowadays available to 
support the construction of mobile agent-based applications. Their 
underlying architecture rely on different coordination techniques, 
such as tuplespaces [6], publish-subscribe mechanisms [14], and 
computational reflection [23]. However, such the middleware 
systems rarely provide explicit support for context-aware 
exception handling. Often the existing solutions (e.g. [17,22,24]) 
are too general and not specific for the characteristics of the 
coordination technique used. Typically they are not scaleable 
because they do not support clear system structuring using 
exception handling contexts. Our analysis shows that 
understanding the interplay between context awareness and 
exception handling in mobile agent systems is still an open issue. 
As a result, in order to deal with the complexity of context-aware 
exceptions, application programmers need to directly rely on 
existing middleware mechanisms, such as interest subscriptions or 
regular tuple propagation. The situation is complicated even 
further when they need to express exceptional control flows in the 
presence of mobility.  

We have implemented error handling features in several prototype 
context-aware collaborative applications built with the MoCA 
(Mobile Collaboration Architecture) system [14]. MoCA is a 
publish-subscribe middleware that supports the development of 
collaborative mobile applications by incorporating explicit 
services empowering software agents with context-awareness. 
This paper presents the lessons learned while developing 
exception handling in MoCA applications. We have identified a 
number of exception handling issues that are neither satisfied by 
the regular use of the exception mechanisms of programming 
languages nor addressed by conventional mechanisms of the 
existing context-aware middleware systems, such as MoCA.  

The main contributions of this paper are as follows.  First, we 
present a case study helping us to identify the requirements for 
the context-aware exception handling mechanism. The system is a 
typical ambient intelligence (AmI) application developed with the 
MoCA middleware. Secondly, using these requirements we 
formulate a proposal for a context-aware exception handling 
model. Thirdly, we describe a prototype implementation of the 
model in the MoCA middleware; it consists of an extension of the 
client and server APIs and new middleware services, such as 
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management of exceptional contexts, context-sensitive error 
propagation and execution of context-aware exception handlers. 
We also analyse the difficulties in using a typical publish-
subscribe infrastructure for supporting context-aware exception 
handling.  

The plan of the paper is as follows. Section 2 presents the basic 
concepts of context awareness, surveys context-aware middleware 
styles and introduces the fundamental exception handling 
concepts. Section 3 describes the case study in which we have 
identified challenging exception handling issues for the 
development of robust context-aware agent applications. Section 
4 discusses an implementation of the proposed mechanism in 
MoCA. Section 5 overviews the related work. Section 6 
concludes the paper by discussing directions of future work. 

2. BACKGROUND 
This section discusses the background of our work. Section 2.1 
introduces the terminology and a categorization of the context-
aware middleware. Section 2.2 overviews the MoCA system. 
Section 2.3 introduces the exception handling concepts used in 
this paper. 

2.1 Context and Context-Aware Middleware 
The concepts of context and context-aware systems have been 
defined in a number of ways (e.g. [2, 3, 4]). According to Dey and 
Abowd [1], context is any information that can be used to 
characterize the situation or an entity. A system is context-aware 
if it uses context to provide relevant information and/or services 
to the user. Thus, one entity can be represented by an agent or a 
person with a mobile device and the context-aware system can 
provide information about location, identity, time and activity for 
these entities. Before the context can be used it is necessary to 
acquire data from sensors, conduct context recognition and some 
other tasks [5].  These tasks are usually implemented by context-
aware middleware, which hides the heterogeneity and distributed 
nature of devices processing the contextual information. In 
general, three types of architectural styles are used to implement 
context-aware middleware systems: (i) tuplespace-based 
architectures [9], (ii) reflective architectures [10,11] and (iii) 
publish/subscribe architectures [7]. 
Tuplespace is a form of distributed shared memory spread across 
all participant processes and/or hosts. Processes using this model 
communicate by generating tuples and anti-tuples which are 
submitted to the tuple space [9]. Tuples are typed data structures 
(e.g., objects in C++ and Java), each tuple is formed from a 
collection of typed data fields and represents a cohesive piece of 
information. In a tuplespace-based system, all inter-process 
communications are exclusively conducted using the tuple space 
and any process using a tuple space has the ability to access all 
the tuples it contains, dynamically insert new tuples, find matches 
for nondestructive anti-tuples andremove tuples by generating 
matching destructive anti-tuples [9]. Cama (Context-Aware 
Mobile Agents) [6] is an example of the tuplespace middleware. 
The four basic CAMA abstractions are location, scope, agent, and 
role. A location is a container for scopes. A scope provides a 
coordination space within which compatible agents can interact. 
In this framework, devices can move from location to location. 
Each location runs a host computer supporting wireless 
connectivity. This computer keeps and controls the local tuple 
space to be accessed from the devices connected locally. This 

tuple space is the only media supporting communication between 
these devices. 
Reflective middleware [10, 11] exploits mechanisms of 
computational reflection [12] to implement mobility and context-
awareness services. Reflection is used to monitor the middleware 
internal (re)configuration [13]. Reflective middleware system is 
divided in two levels: base level and meta level. The base level 
represents the middleware and the application core. The meta 
level contains the building blocks responsible for supporting 
reflection. These two levels are connected through a meta-object 
protocol (MOP) to ensure that modifications at the meta level are 
reflected into the corresponding modifications at the base level. 
Thus, modifications at the core should be reflected at the meta-
level. The elements of the base level and of the meta level are 
respectively represented by base-level objects and meta-level 
objects. For example reflection is explored in CARISMA [23] to 
enhance the construction of adaptive and context-aware mobile 
applications. The middleware provides software engineers with 
primitives to describe how context changes should be handled 
using policies. The reflective middleware is in charge of 
maintaining a valid representation of the execution context by 
directly interacting with the underlying network operating system. 
Applications may require some services to be delivered in 
different ways (using different policies) when requested in the 
different context. 
Publish/Subscribe (pub/sub) architectures rely on an 
asynchronous messaging paradigm that allows loose coupling 
between publishers and subscribers. Publishers are the agents that 
send information to a central component, while subscribers 
express their interest in receiving messages. Broker [7] or 
Dispatcher [8] is the central component of a pub/sub system, and 
is responsible for recording all subscriptions, matching 
publications against all subscriptions, and notifying the 
corresponding subscribers. The following session describes 
MoCA, a context-aware publish/subscribe middleware which has 
been used in our first experiment to incorporate exception 
handling strategies in context-aware mobile agent systems. Such 
an architecture was selected because of the growing number of 
context-aware middleware systems based on the publish-subscribe 
model [7,8,14]. 

2.2 MoCA: Mobile Collaboration 
Architecture 
MoCa [14] is a middleware system supporting development and 
execution of the context-aware collaborative applications which 
work with mobile users. Figure 1 shows the three elements that 
compose the MoCa application: a server, a proxy, and clients. The 
first two are executed on the nodes of the wired network, while 
the clients run on mobile devices. A proxy intermediates all 
communication between the application server and one or more of 
its clients on mobile hosts. The server and the client of a 
collaborative application are implemented using the MoCA APIs, 
which hide from the application developer most of the details 
concerning the use of the services provided by the architecture. 
The ProxyFramework white-box framework is used for 
developing and customizing the proxies according to the specific 
needs of the application [14]. It allows adaptation to be triggered 
by the context-change events. 
The internal MoCA infrastructure is shown in Figure 2. To 
support context-aware applications, MoCA supplies three 
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services: Context Information Service (CIS), Symbolic Region 
Manager (SRM) and Location Inference Service (LIS). The CIS 
component receives and processes state information sent by the 
clients. It also receives notification requests for from the 
application Proxies, and generates and delivers events to a proxy 
whenever a change in a client’s state is of interest to this proxy. 
To provide transparency, CIS takes decisions on behalf of the 
publish/subscribe mechanism; which is implemented using built-
in mechanisms that cater for the basic functionalities rather than 
deal with the high levels of heterogeneity and dynamicity intrinsic 
to mobile environments, such as the problem of late delivery [7]. 

 
Figure 1. MoCA application 

SRM provides an interface to define and request information 
about hierarchies of symbolic regions, which are names assigned 
to well-defined physical regions (i.e. rooms, halls, buildings) that 
may be of interest to location-aware applications [14]. Based on 
SRM information, LIS infers the approximate location of a mobile 
device from the raw context information collected by CIS of this 
device. It does this by comparing the current pattern of radio 
frequency (RF) signals with the signal patterns previously 
measured at the pre-defined Reference Points of the physical 
region. Therefore, to make any inference, the LIS database has to 
be populated with RF signal probes (device pointing in several 
directions) at each reference point, and with the inference 
parameters that are chosen according to the specific 
characteristics of the region.  

 
Figure 2. MoCA internal infrastructure 

The communication infrastructure consists of the pub/sub 
mechanism and a communication protocol. The former supplies 
the basic functionality to the CIS, once the context recognition is 
done by the definition of subscriptions that specify a set of 
features to activate a specific user-defined context. The 
communication protocol currently works with an 802.11 wireless 
network based on the IP protocol stack, but the architecture could 

be extended to accommodate a cellular data network protocol, 
such as GPRS. 
 

2.3 Exception Handling  
Agent activity, as the activity of any software component, can be 
divided into two parts [25]: normal activity and exceptional 
activity. The normal activity implements the agent’s normal 
services while the exceptional activity provides measures that 
cope with exceptions. Each agent (and other system components) 
should have exception handlers, which constitute its exceptional 
activity. Handlers are attached to a particular region of the normal 
code which is called protected region or handling scope. 
Whenever an agent cannot handle an exception it raises, the 
exception will be signaled and propagated to other handling 
scopes defined in the higher-level components of the system. 
After the exception is handled, the system returns to its normal 
activity.  
Developers of dependable systems often refer to errors as 
exceptions because they manifest themselves rarely during the 
agent’s normal activity. Exceptions can be classified into two 
types [21]: (i) user-defined, and (ii) pre-defined. The user-defined 
exceptions are defined and detected at the application level. The 
predefined exceptions are declared implicitly and are associated 
with the erroneous conditions detected by the run-time support, 
the middleware or hardware . 
Exception handling mechanisms [20,21] developed for many 
high-level programming languages allow software developers to 
define exceptions and to structure the exceptional activity of 
software component. An exception handling mechanism 
introduces the specific way in of exception propagation and of 
changing the normal control flow to the exceptional control flow 
when an exception is raised. It is also responsible for supporting 
different exceptional flow strategies and search for the 
appropriate handlers after an exception occurs. Exception 
mechanisms are either built as an inherent part of the language 
with its own syntax, or as a feature of the middleware systems 
coping with the intricacies of the different application domains 
and architecture styles.  

3. Context-Aware Exception Handling in 
Mobile Agent Systems 
This section describes a typical context-aware agent-based 
application, for which we have implemented a prototype system 
with the MoCA architecture, and identified a number of 
difficulties in incorporating error handling. Section 3.1 describes 
the case study, while Section 3.2 presents the identified 
requirements for a mechanism smoothly supporting context-aware 
exception handling. 

3.1 AmI: a Case Study 
The case study is an ambient intelligence (AmI) [16] application, 
which is composed of numerous sensors, devices and control units 
interconnected to effectively form a machine [15]. A wide range 
of sensors and controllers could be utilized, such as: fire alarm, 
energy control, heating control, ventilation control, climate, 
surveillance, lightning, power, and automatic door and window. 
Figure 3 depicts an AmI scenario where each office contains 
sensors and output devices, which are monitored and controlled 
locally by software agents. All these agents are connected 
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together via a network, forming a decentralized architecture that 
enables building-wide collaboration. 
Each piece of equipment has an associated device controlling its 
activation. All users have a smartcard that operates as a mobile 
device supplying the current position and employee ID. 
Immediately after entered the office, the system needs to identify 
the user preferences and starts the procedures for dealing with the 
temperature, ventilation, illumination, and climate adaptation for 
the specific user preferences. In order to achieve the system 
robustness, a number of environmental, hardware, and software-
related exceptions that need to be effectively handled. Such 
exceptional circumstances include fire or excessive number of 
users in a given building region, or the occurrence of problems in 
the diverse primary and/or secondary mobile heating systems 
distributed over the building, or even in the central heating 
system. The handling of such exceptional conditions depend on 
the combination of changing contextual information, such as the 
location and type of the heating systems, the physical regions 
where the different system administrators are, and so on. 

 
Figure 3. Plant: A floor of a typical building structured into 

offices. All sensors are wired to a common field-bus network. 

In the following, we discuss problems relative to the incorporation 
and implementation of error handling scenarios in such a context-
aware mobile agent-based application. First, we explain the 
problems found in the context of our case study. Second, we 
explain why they cannot be addressed while using the underlying 
mechanisms of the MoCA architecture. The shortcomings here 
vary from exception declaration to exception handlers and error 
propagation issues.  

3.2 Specification of “Exceptional Contexts” 
During design of the AmI application we have identified a 
number of user-defined “exceptional contexts” that depend on a 
multitude of contextual information and also on user preferences, 
which in turn are typically application-specific. For us, 
exceptional contexts mean one or more conditions associated with 
the context types, which together denote a environmental, 
hardware, or software fault. For example, the exceptional contexts 
can be characterized by the situations when the temperature of an 
office or public room in the building occasionally exceeds the 
maximum limit according to user preferences, which can indicate 
a serious problem in the heating system (not detected by the 
associated controlling system). Handling of such situations 
requires an exceptional control flow different from the normal 
one, consisting of regular notification-based reactions. The 
seriousness of this context requires propagation of such 

exceptional context information to the proper administrators, 
which also may vary depending on their physical location. It may 
also require involvement of several people. 
The specification of contextual conditions of interest in publish-
subscribe systems, such as MoCA, requires explicit subscriptions 
based on regular expressions. The subscription is usually carried 
out by the code in the devices or proxy servers, which will be 
receiving notifications when those contextual conditions are 
matched according to the changing circumstances. However, the 
specification of an exceptional context situation inherently has a 
different semantics and, as such, needs to encompass different 
elements in its specification, including the handling scope, 
alternative “default handlers”, types of contextual information 
which should and should not propagated together with the 
exception occurrence, and so on. This is why in MoCA normal 
contextual subscriptions need to be different from the exceptional 
subscriptions.  

3.3 Lack of Exception Handling Scoping 
There are several situations in the AmI case study (Section 3.1) 
when handling exceptions requires several software agents and 
users to be involved depending on the physical regions and other 
types of contextual information. For example, as discussed in 
Section 3.2, the proper handling of some exceptional conditions in  
the mobile heaters requires exceptions to be propagated to a set of 
devices belonging to the staff responsible for heater maintenance. 
However, the propagation needs to be context sensitive in the 
sense it should take into account the suitable maintainers for the 
specific heater type that is closest to the region where the faulty 
heater is located. The contextual exception needs to be 
systematically propagated to broader scopes until the appropriate 
handlers are found. Moreover, if some fire exception is detected, 
it needs to be propagated to all the building regions and group of 
mobile users. Hence the physical regions or a group of devices 
(such as, those ones with the maintenance people) are examples of 
contextual handling scopes that should be supported by the 
underlying middleware. In this way, the proper exception 
handlers could be activated in all the relevant devices according 
to different user preferences. However, the MoCA middleware 
does not support such scopes for context-aware error handling, 
which hinders the modularity of the system on the presence of 
exceptional contexts.  

3.4 Need for Context-Aware Handlers 
There are also some cases where the selection of proper exception 
handlers depends on the contextual conditions associated with 
devices involved in the coordinated error handling. For the same 
exception, we need to create handlers tailored to different 
contextual conditions, and make sure that they are correctly 
executed. For instance, we need to associate contextual 
information about the heater physical location to the handlers 
dealing with the faulty heaters. Some handlers can be only 
selected if the mobile heater is in the context of a specific 
department. Again, we have to implement such a control of 
context-aware handlers as part of the application since there is no 
MoCA facility for that purpose.  

3.5 Awareness of Unforeseen Exceptions  
In an open mobile system, like the AmI study (Section 3.1), we 
could not wait that all the devices, in which software agents were 
developed by different designers, would be able to foresee all the 

Part Arch - APPENDIX [Damasceno et al. 2006]  p 4



exceptional contexts. In the AmI case, for example, the presence 
of fire in the building may not have been foreseen by all the 
designers of the software agents running in the mobile devices 
located in the different building regions. As a result, there was a 
need for exploiting the mobile collaboration infrastructure when 
an exceptional context is detected by one of the peers. Depending 
on the exception severity, it should be notified to other mobile 
devices even when they have not registered interest in that 
specific exceptional context. In other words, the contextual 
exception should be proactively raised in other mobile 
collaborative agents and/or mobile devices pertaining to the same 
region. Thus robust context-aware mobile systems require more 
intelligent, proactive exception handling due to their features of 
openness, asynchrony, and increased unpredictability. The 
problem is that conventional coordination models (Section 2.1) 
such as tuplespace-based and publish-subscribe architectures (e.g. 
MoCA), require the explicit subscription of interest from the 
collaborative agents.  

4. Exception Handling in MoCA 
This section presents our context-aware exception handling model 
and its MoCA implementation, which deal with the problems 
discussed in Sections 3.2 – 3.2.4. Our current approach basically 
supports the notion of exceptional context (Section 3.2) and 
different levels of handling scopes (Section 3.3) to treat the 
limitations of conventional APIs and mechanisms provided by 
existing context-aware middleware systems (Section 2.1). 
Exceptional contexts. The goal of exceptional contexts is to 
facilitate the definition of exceptional situations in applications 
that have a great number of devices and sensors that collect 
information for a specific purpose. An exceptional context 
corresponds to undesirable or dangerous set of conditions 
pertaining to different contexts. They can be associated with one 
specific user, application’s agents, or mobile devices. 
Scope nesting: protected device(s), regions, or groups. In order 
to support a modular context-aware approach for error 
propagation, exceptions can be caught by scopes at four different 
levels: a device, a group (of devices), a proxy server, and a 
region. In our MoCA implementation, the central MoCA server, 
where the CIS and LIS services (Section 2.2) are located, is also 
treated as an exception handling scope. To illustrate these types of 
handling scopes, Figure 4 depicts how scopes of different type 
covers different elements of our AmI case study (Section 3.1). 
Device and server scopes comprise basic operational units of the 
context-aware system, which allows the exception handler 
functionality to be encapsulated into the scope of its own unit 
(device or server).  

Group-based scopes. Group scope encompasses a set of devices 
which are defined by the application to support mobile 
cooperative handling of an exception amongst the device’s agents 
pertaining to that group. This kind of scope is not directly related 
to spatial relationship, and it makes it possible to insert or remove 
elements from the scope according to the application necessity. 
Thus software agents can autonomously join and leave a group. 
For example, the agents acting on behalf of heat maintainers 
(Section 3.1) can form a specific group, as when heating-related 
exceptions are raised all of them may be notified. 
Region-based scopes. Differently from the three first ones, a 
region scope has a more dynamic behavior to identify t-he devices 

that is part of the scope. In our implementation, this scope is 
strongly related to the MoCa LIS service (Section 2.2) as it 
provides a reference mechanism that allows a device be aware of 
its neighbors. In addition, it is possible to control when a device 
enters and goes out from one region scope. A device movement 
characterizes the scope change; in other words, whenever a device 
moves from one a physical region X to Y, it automatically moves 
from the region-based handling scope X to Y. Hence this 
movement encompasses the context-sensitive change of the 
exceptional conditions that the device can handle. 

 

Figure 4. Different scope levels: Device, Region, Group, 
Server 

Region hierarchy. Moreover, region scope can be organized in a 
hierarchy fashion in which is possible to define that, for example, 
Office 1 is part of Offices, and subsequently, Offices is part of 
Computing Dep. that is also part of University region. This 
hierarchy allows a specific handler or exception for a specific 
region or sub-region to be defined. To support hierarchy 
arrangement, users should define the relationship between LIS 
symbolic regions and SRM hierarchy tree (Section 2.2). This can 
be done by the MoCa API. 

 
Figure 5. Scope hierarchy definition 

Regular contextual subscription. Figure 6 shows the server code 
responsible for defining a user preference for a specific office. 
Due to the user movement, it is necessary to subscribe a listener 
in the LIS service to notify whenever a new device enters in the 
office. When this occurs, server gets user preferences and starts 
the appropriate services to suit the user requirements. To avoid 
long connections between server and devices, once each device 
can take long time to finish the process, servers break the 
connection after invoking the start method.  
An exceptional context example. As discussed in Section 3, a 
device’s agent suddenly detects that the temperature is exceeding 
the maximum limit, and then, it infers that there is a fault in the 
mobile heating system. In this situation, the device should throw 
and propagate an exception to inform the other mobile users and 
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the heater support about the problem. This step is done by the 
code shown in Figure 7. The UnableToHeat exception is created 
and thrown by the heating device.  
 

 

RegionListener listen = new RegionListen(); 
Lis_service.subscribe(UserDevice, listen); 
... 
private class RegionListen 
              implements RegionListener { 
 public void onDeviceEntered(String regionID, 
                             String deviceID) 
   HashMap userpref = getUserPref(deviceId, 
                                regionID); 
   Heat.start(userpref.get(“Temperature”)); 
   LightCtrl.start(userpref.get(“Light”)); 
                . . . 
}} 

    Figure 6. User preference definition. 

Context-aware error propagation. It also specifies that it needs 
to be propagated to a set of scopes. To define the sequence of 
exception propagation, the user should use the propagateTo 
method. This method receives as parameter the scope reference, 
the sequence number, and also the condition constant. The scope 
reference determines for which scope the exceptional context will 
be propagated, the sequence number, and in which order. Scope 
constant defines the propagation policy in which the error 
propagation will occur; it determines when the exception needs to 
propagated: whether when none (NONE value), one (ONE value) 
or all handlers (ALL value) were found and successfully executed 
to deal with this exception. For instance, in Figure 7, the 
UnableToHeat will firstly propagate to the region and group. If 
none of them handles this exception, it is delivered to the server 
scope.  
Contextual information propagation and context-aware 
selection of handlers. In addition, the UnableToHeat exceptional 
context can carry information related to the exceptional 
occurrence. This may include the operation status of the 
thermostat, the operation status of the tip over the safety 
mechanism, the heater type, and also the heater brand. This 
contextual information is carried with the  propagated exception 
to allow the exception mechanism to select an appropriate 
context-aware handler for a specific exception. Note that, after 
defining the exception content, this exception is thrown in the last 
line of the Figure 7. 
 

UnableToHeat unaheat = new UnableToHeat(); 
Unaheat. propagateTo((RegionScope.getInstance(),1, 
Scope.NONE); 
Unaheat.propagateTo((RegionScope.getInstance(”Heat
Maintainer”),1,Scope.NONE); 
Unaheat.propagateTo((ServerScope.getInstance(”Main
Server”),2); 
Unaheat.getContext(). 
    setStringProperty(“Thermostat”,”noanswer”); 
Unaheat.getContext(). 
    setStringProperty(“tipoversafety”,”noanswer”); 
Unaheat.getContext(). 
    setStringProperty(“HeaterType”,”Electric”); 
Unaheat.getContext(). 
    setStringProperty(“Brand”,”HeaterCompanyA”); 
EHMechanism.throw(unaheat); 
 

Figure 7. Device code: throwing exception. 

Context-sensitive handlers. In order to handle the UnAbleHeat 
exception, four handlers are defined in different scopes. The first 
one deals with the university maintenance group; it is defined by 
each maintainer device and informs each one whether the heaters 
related to the offices have a problem. Figure 8 describes the 
BrandSupport handler definition and also its association with the 
maintainer group of users. To define a handler in our mechanism 
it is necessary to extend the Handler abstract class. This class 
requires the implementation of verifyContextCondition and 
execute abstract methods defined in the API of our mechanism. 
The first method performs verification if the exceptional context 
is really appropriate for this handler and the second one executes 
the handler functionality. For instance, in our case study, each 
maintainer employee is responsible for a specific university 
region and also for a specific type of heating. For this reason, 
there is a handler for each employee with appropriate conditions. 
Therefore, when an exception is caught, the mechanism executes 
the verifyContextCondition for each handler defined in that scope. 
Whether this method returns true, the mechanism invokes 
execute, but if not, the mechanism follows to the next defined 
handler. The purpose of this approach is to promote extra 
flexibility that supports the definition of context-aware handlers. 
After the handler definition, Figure 8 depicts 
UniversityHeaterFail and the scope group definition. The 
exceptional context UniversityHeaterFail catch all UnableToHeat 
exception occurrences that come from University region and has 
one of the two brands (A or B). To deal with this exception, each 
maintainer device gets an instance of the HeatMaintainer scope 
group and adds itself to this scope. Thus, whenever 
UnableToHeat was propagated to the HeatMaintainer, each 
device can carry out the exceptional context through its context-
aware handlers. 
 

public class BrandSupport extends Handler { 
  
public boolean verifyContextCondition(){ 
SimpleContext simple =getException().getContext(). 
     find("Computing Dep", 
            "HeaterType = ’Ceramic’"); 
  if (simple != null) return true; 
  else return false;  
 } 
  public boolean execute(){ 
     makeAppointment(); 
  } 
} 
                 . . . 
UniversityHeaterFail branduni =  
    new UniversityHeaterFail(CompositeContext.OR); 
branduni.addContext(“University”, 
         ”UnableToHeat.Brand=’HeaterCompanyA’”) 
branduni.addContext(“University”, 
         ”UnableToHeat.Brand=’HeaterCompanyB’”) 
BrandSupport suppCeramic = BrandSupport(branduni); 
DeviceGroupScope groupScope = DeviceGroupScope. 
           getInstance(“HeatMaintainer”); 
groupScope.addDeviceList(this.getMyDefice()); 
groupScope.attachHandler(suppCeramic); 
            . . . 

Figure 8. Group scope definition. 
The second approach to handle the UnAbleToHeat is responsible 
to inform the fire brigade about a more dangerous situation that is 
potentially going on (Figure 9). This is done by mobile agents that 
have subscriptions in all maintainer groups. The agent defines 
DangerousHeaterFail exception that deals with the University 
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region, temperature and thermostat information which can ignite 
combustion. The mechanism needs to ensure that the temperature 
is really coming from the correct region when the environment 
contains a huge number of sensors that supply temperature 
information. For this reason, the user can define a combination of  
the constraints that compare the exception and temperature source 
region. This comparison does not use the LIS mechanism to 
support hierarchy regions, once we want the exact regions, not 
“super” regions, as for instance, University is equal to Computing 
Dep. 
 

DangerousHeaterFail dangerfail = new  
      DangerousHeaterFail(CompositeContext.AND); 
dangerfail.addContext(“University”, 
      ”UnableToHeat.Thermostat=’noanswer’”); 
dangerfail.addContext(“University”, 
       ”UnableToHeat.Region= Temperatura.Region”); 
dangerfail.addContext(“University”, 
       ”Temperatura.value > 30”); 
FireBrigade avoidfire = FireBrigade(dangerfail); 
DeviceGroupScope groupScope = DeviceGroupScope. 
           getInstance(“HeatMaintainer”); 
groupScope.addDeviceList( 
           getMyVirtualDevice()); 
groupScope.attachHandler(avoidfire); 

Figure 9. Group scope for mobile agent. 

To be aware of what is happening in the office, the user device 
need to define the exception shown in Figure 10. This exception 
represents all exception occurrences that come from its own 
current region. It is and associated with a handler that informs the 
user about the current problem. 
 

BeAwareException awarex = new BeAwareException (); 
Unaheat.addContext(device.getRegion()); 
NotifyUsers ntusers = new NotifyUsers(awarex); 

RegionScope regionScope = 
                RegionScope.getInstance(); 
regionScope.attachHandler(ntusers); 

Figure 10. Region scope definition. 
As we can see in Figure 7, if none of the devices that are part of 
the group scope do not handle the UnableToHeat exception, it 
will be propagated to the server scope. To deal with this 
exception, Figure 11 illustrates the exception and server scope 
definition. The MakExternal handler creates an external request to 
fix the problem that no internal maintainer is able to satisfy. 
 

UnableToHeat uncatch = new UnableToHeat(); 
MakExternal makexternal =  
                 new MakExternal(uncatch); 
ServerScope serverScope = ServerScope. 
                        getInstance(“MainServer”); 
serverScope.attachHandler(makexternal); 

Figure 11. Server scope definition. 
Finally, Figure 12 depicts three dimensions in which our 
exception handling mechanism is applied: the application 
elements, the internal mechanism components, and the MoCa 
components. For example, the application programmer needs to 
defines application-specific exceptional contexts, add contextual 
information, define context-aware handlers, and attach them to 
the scopes. In MoCa exceptional contexts are defined in the CIS 
as a set of subscriptions and listeners supplied by the MoCa API.  

 
Figure 12. Different views of the exception mechanism 

5. Discussions and Related Work 
Although our current implementation (Section 4) supports a 
heterogeneous set of handling scopes, their granularity may not be 
always appropriate. To this end we are planning to adopt role-like 
abstractions, as supported by the CAMA tuplespace-based 
middleware [6], in order to allow handlers to be attached the 
specific agent actions or plans. Furthermore we plan to extend our 
mechanism to support code mobility in addition to physical 
mobility. In our previous work [18, 19], we have combined 
reflective and tuplespace middleware features (Section 2.1) in 
order to smoothly support code migration. We are also working 
on developing proactive exception handling (Section 3.5). 
Developing advanced exception handling mechanisms suitable for 
multi agent systems is an area that needs serious efforts from the 
research community even though there have been a number of 
interesting results. A scheme in [17] supports exception handling 
in systems consisting of agents that cooperate by sending 
asynchronous messages. This scheme allows handlers to be 
associated with services, agents and roles, and supports 
concurrent exception resolution. Paper [22] identifies several 
typical failure cases in building context-based collaborative 
applications and proposes an exception handling mechanism for 
dealing with them. 
An approach in [24] is based on defining a specialized service 
fully responsible for coordinating all exception handling activities 
in multi agent systems. Although this approach does not scale 
well, it supports separation of the normal system behavior from 
the abnormal one as the service curries all fault tolerance 
activities: it detects errors, finds the most appropriate recovery 
actions using a set of heuristics and executes them. As opposed to 
the last three schemes above which do not explicitly introduces 
the concept of the exception handling context  (scope), the 
CAMA framework [6] (introduced in Section 2.1) supports the 
concept of (nested) scopes, which confine the errors and to which 
exception handlers are attached. However, CAMA and the other 
mechanisms mentioned above do not support a fully context-
aware exception handling, as supported by our approach (Section  
4). In particular, they do not implement context-aware selection of 
handlers, proactive exception handling, and the definition of 
exceptional contexts. 
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6. Final Remarks  
Error handling in mobile agent-based applications needs to be 
context sensitive. This paper discussed our experience in 
incorporating exception handling in several prototype MoCA 
applications. This allowed us to elicit a set of requirements and 
define a novel context-aware exception handling model, which 
consists of: (i) explicit support for specifying “exceptional 
contexts”; (ii) context-sensitive search for exception handlers; (iii) 
multi-level handling scopes that meet new abstractions (such as 
groups), and abstractions in the underlying context-aware 
middleware, such as devices, regions, and proxy servers, (iv) 
context-aware error propagation, (v) contextual exception 
handlers, and (vi) proactive exception handling. We have also 
presented an implementation of this mechanism in the MoCA 
architecture, and illustrated its use in an AmI agent-based 
application.  
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Abstract 
 

We have reported previously [1] results of a study 

with a sample of bug reports from four off-the-shelf 

SQL servers. We checked whether these bugs caused 

failures in more than one server. We found that very 

few bugs caused failures in two servers and none 

caused failures in more than two. This would suggest 

a fault-tolerant server built with diverse off-the-shelf 

servers would be a prudent choice for improving 

failure detection. To study other aspects of fault tol-

erance, namely failure diagnosis and state recovery, 

we have studied the “data diversity” mechanism and 

we defined a number of SQL rephrasing rules. These 

rules transform a client sent statement to an addi-

tional logically equivalent statement, leading to more 

results being returned to an adjudicator. These rules 

therefore help to increase the probability of a correct 

response being returned to a client and maintain a 

correct state in the database.  

 
1. Introduction 
 
Fault tolerance is frequently the only viable ap-

proach of obtaining the required system dependability 
from systems built out of “off-the-shelf” (OTS) prod-
ucts [2]. There are various methods in which this fault 
tolerance can be achieved ranging from simple error 
detection and recovery add-ons (e.g. wrappers [3]) to 
diverse redundancy replication using diverse versions 
of the components.  
These design solutions are well known. Questions 

remain, however, about the dependability gains and 
implementation difficulties for a specific system. 
We have studied some of these issues in SQL da-

tabase servers, a very complex category of off-the-
shelf products. We have previously reported [1] re-
sults from a study with a sample of bug reports from 
four off-the-shelf SQL servers so as to assess the pos-
sible advantages of software fault tolerance - in the 

form of modular redundancy with diversity - in com-
plex off-the-shelf software. We found that very few 
bugs cause failures in two servers and none cause 
failures in more than two, which would indicate that 
significant dependability improvements can be ex-
pected from the deployment of a fault-tolerant server 
built out of diverse off-the-shelf servers in compari-
son with individual servers or the non-diverse repli-
cated configurations.  
Although we found that using multiple diverse 

SQL servers can dramatically improve error detection 
rates it does not make them 100%, e.g. our study [1] 
found four bugs causing identical non-self-evident 
failures in two servers. Thus there is room for im-
proving failure detection further. Many of the cases, 
in which a failure was detected did not allow for im-
mediate diagnosis of the failed server. Fault tolerance 
requires also diagnosing the faulty server and main-
taining data consistency among the databases in addi-
tion to failure detection. To improve the situation, we 
studied the mechanism called “data diversity” by 
Ammann and Knight [4] (who studied it in a different 
context). The simplest example of the idea in [4] re-
fers to computation of a continuous function of a con-
tinuous parameter. The values of the function com-
puted for two close values of the parameter are also 
close to each other. Thus, failures in the form of dra-
matic jumps of the function on close values of the 
parameter can not only be detected but also corrected 
by computing a “pseudo correct” value. This is done 
by trying slightly different values of the parameter 
until a value of the function is calculated which is 
close to the one before the failure. This was found [4] 
to be an effective way of detecting as well as masking 
failures, i.e. delivering fault-tolerance. Data diversity, 
thus, can help with failure detection and state recov-
ery, and thus complement fault-tolerance solutions 
which employ diverse modular redundancy, as well as 
helping achieve a certain degree of fault tolerance 
without employing diverse modular redundancy.  

This material is presented to ensure timely dissemination of scholarly and 
technical work.  Copyright and all rights therein are retained by authors or 
by other copyright holders. All persons copying this information are expected 
to adhere to the terms and constraints invoked by each  author's copyright. In 
most cases, these works may not be reposted without the explicit permission  

of the copyright holder. 
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Data diversity is applicable to SQL servers be-
cause of the inherent redundancy that exists in the 
SQL language: statements can be “rephrased” into 
different, but logically equivalent [sequences of] 
statements. While working with the bug reports we 
found examples where a particular statement causes a 
failure in a server but a rephrased version of the same 
statement does not. Examples of such statements of-
ten appear in bug reports as “workarounds”. 
In this paper we provide details of how SQL re-

phrasing can be employed systematically in a fault-
tolerant server and provide examples of useful re-
phrasing rules. We also report on performance meas-
urements using the TPC-C [5] benchmark client im-
plementation to get some initial estimates of the de-
lays introduced by rephrasing.  
The paper is structured as follows: in section 2 we 

give details of the architecture of a fault-tolerant 
server employing rephrasing. In section 3 we give 
details of the data diversity study we have conducted 
for defining SQL rephrasing rules and illustrate how 
one of these rules has been used as a workaround for 
two known bugs of two SQL servers. In section 4 we 
give some empirical results of experiments we have 
conducted to measure the performance penalty due to 
rephrasing. In section 5 we discuss some general im-
plications of our results and finally in section 6 some 
conclusions are presented with possibilities for fur-
ther work. 
 
2. Architecture of a Fault-Tolerant Server  
 
2.1 General Scheme 
 
Data replication is a well-understood subject [6], 

[18], [7]. The main problem replication protocols 
deal with is guaranteeing consistency between copies 
of a database without imposing a strict synchronisa-
tion regime between them. A study which compared 
various replication protocols in terms of their per-
formance and the feasibility of their implementation 
can be found in [8]. Existing protocols implement 
efficient solutions for this problem, but depend on 
running copies of the same (non-diverse) server. 
These schemes would not tolerate non-self-evident1 
failures that cause incorrect writes to the database or 
                                                           
1 In [1] we classified the failures according to their detect-
ability by a client of the database servers into: Self-Evident 
failures - engine crash failures, cases in which the server 
signals an internal failure as an exception (error message) 
and performance failures; Non-Self-Evident failures: incor-
rect result failures, without server exceptions within an 
accepted time delay. 

that return incorrect results from read statements. For 
the former, incorrect writes would be propagated to 
the other replicas and for the latter, incorrect results 
would be returned to the client. This deficiency can 
be overcome by building a fault-tolerant server node 
(“FT-node”) from two or more diverse SQL servers, 
wrapped together with a “middleware” layer to ap-
pear to each client as a single SQL server. An illustra-
tion of this architecture with two diverse Off-The-
Shelf servers (“O-servers”) is shown in Fig. 1. A brief 
explanation of the figure follows. Several nodes 
(computers) are depicted which run client applica-
tions (Client node 1, Client node 2 and Client node 3) 
or server applications (Middleware node, RDBMS 1 
node and RDBMS 2 node). The bottom three nodes 
together form the FT-server. Components may share a 
node: e.g. Replication Middleware, and the two SQL 
connectors for dialects 1 and 2 are deployed on the 
Middleware node.  The SQL connectors additionally 
contain the SQL rephrasing rules. The diagram as-
sumes that the Off-The-Shelf servers (O-servers) run 
on separate nodes, RDBMS 1 node and RDBMS 2 
node. The circles represent the interfaces through 
which the components interact. Each SQL connector, 
implements the SQL Connector API interface used by 
the Replication Middleware component. This, in turn 
implements the Middleware API interface via which 
the client applications access the FT-server, either 
directly or via a driver for the FT-server in a specific 
run-time environment, e.g. JDBC driver or .NET 
Provider. 
Further improvements to this architecture would 

be to also run diverse replicas of the middleware 
component. We have described elsewhere [9], [2] in 
more detail the FT-node architecture. Here we will 
only elaborate on the parts relevant to the discussion 
of rephrasing. 
 

2.2 SQL Connectors 
 
The O-servers are not fully compatible: they 

“speak different dialects” of SQL, despite being com-
pliant at various levels with SQL standards. Therefore 
the FT-server includes a translator between these dia-
lects, defined for a subset of SQL (e.g. “SQL-92 entry 
level”) plus some more advanced features important 
for enterprise applications (such as TRIGGERs and 
STORED PROCEDUREs). The translators are depicted 
as “SQL Dialect Connector’s” in Fig 1. 
A similar idea (implemented in [10], [11]) is to re-

define the grammar of one database server to make it 
compatible with that of another while keeping the 
core database engine unchanged. 
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Fig. 1 - UML Deployment diagram of the FT-server. 

  

2.3 Failure Detection, Masking, Recovery 
 
The middleware of the FT-server includes extensive 

functionality for failure detection, masking and state 
recovery. Self-evident server failures are detected as in 
a non-diverse server, via server error messages (i.e. via 
the existing error detection mechanisms inside the 
servers), and time-outs for crash and performance fail-
ures. Diversity gives the additional capability of detect-
ing non-self-evident failures by comparing the outputs2 
of the different O-servers. In a FT-node with 3 or more 
diverse O-servers, majority voting can be used to 
choose a result and thus mask the failure to the clients, 
and identify the failed O-server which may need a re-
covery action to correct its state. With a 2-diverse FT-
node, if the two O-servers give different results, the 
middleware cannot decide which O-server is in error. 

                                                           
2 An “output” may be the results from a SELECT statement 
or the number of rows affected for a write (INSERT, 
UPDATE and DELETE) statement. For INSERT and 
UPADTE statements a more refined way would be to read 
back the affected rows and use those for comparison. 

This is where “data diversity” can help by providing 
additional results to break the tie (more in the next sub-
section). State recovery of the database can be obtained 
in the following ways: 
• via standard backward error recovery, which will be 
effective if the failures are due to transient failures 
(caused by so called “Heisenbugs” [12]). To com-
mand backward error recovery, the middleware may 
use the standard database transaction mechanisms: 
aborting the failed transaction and replaying its 
statements may produce a correct execution. With 
“data diversity” a finer granularity level of recovery 
is possible using SAVEPOINTs and ROLLBACKs; 

• additionally, diversity offers ways of recovering 
from non-transient failures (caused by so called 
“Bohrbugs” [12]), by essentially copying the data-
base state of a correct server into the failed one 
(similarly to [13]). Since the formats of the database 
files differ between the servers, the middleware 
would need to query the correct server[s] for their 
database contents and command the failed server to 
write them into the corresponding records in its da-
tabase, similar to what is proposed in [14]. This 

Part Arch - APPENDIX [Gashi and Popov 2006] p 3



would be expensive, perhaps to be completed off-
line, but a designer can use multi-level recovery, in 
which the first step is to correct only those records 
that have been found erroneous on read statements. 
 

2.4 Data Diversity Extensions 
 
Even with just two diverse O-servers, many of the 

O-server failures may be masked by using “data diver-
sity” (rephrasing an SQL statement into a different, but 
semantically equivalent one) to solicit “second opin-
ions” from the O-servers and if possible outvote the 
incorrect response. 
Data diversity could be implemented via an algo-

rithm in the “Middleware Node” that rephrases state-
ments according to predefined rules. We can define 
these rules for each type of SQL statement defined by 
the SQL grammar implemented by the server. These 
rules therefore may form part of the “SQL Dialect Con-
nectors“. Upon receiving a statement from a client ap-
plication the middleware can look up a rule from the 
list of available rules and rephrase the statement. The 
middleware must allow for new rules to be defined as 
and when necessary. If the middleware exhausts the list 
of rules that it can apply to a certain statement but no 
“correct result”3 can be established by applying the 
closed adjudication mechanism then an error message 
is returned to the client. 
Data diversity can be used with or without design 

diversity. Architectural schemes using data diversity 
are similar to those using design diversity. For instance, 
Amman and Knight in [4] describe two schemes, which 
they call “retry block” and “n-copy programming”, 
which can also be used for SQL servers. The “retry 
block” is based on backward recovery. A statement is 
only rephrased if either the server “fail-stops” or its 
output fails an acceptance test. In “n-copy program-
ming”, a copy of the statement as issued by the client is 
sent to one of the O-servers and rephrased variant(s) 
are sent to the others; their results are voted to mask 
failures.  
Data diversity allows for a finer-granularity of state 
recovery, which is facilitated by the implementation of 
“SAVEPOINT” and “ROLLBACK” within transactions. 
The procedure (written in pseudocode), for a statement 
within a transaction, is given at the end of this subsec-
tion. 
A performance optimization could be to perform ad-

judication at an intermediate step of the WHILE loop 
execution rather than at the end (e.g. for a “majority 

                                                           
3 Depending on the setup used a correct result could be either 
the majority result or one that passes an acceptance test. 

voting” adjudication, if there are five rules for a par-
ticular statement then could check after the execution 
of the first three rephrased versions of the statement 
whether results returned by each of them are identical; 
if yes then majority result is already obtained and there-
fore no need for the last two rephrased versions of the 
statement to be executed).  
The SAVEPOINT and ROLLBACK approach is the cor-
rect way of ensuring the “isolation” property of an 
ACID transaction.4 Otherwise, if we “ABORTed” the 
transaction and started a new one to perform the re-
phrased version of the statement, a concurrent transac-
tion may have updated rows in the target table. This 
would lead to different results being returned by the O-
server for the rephrased statement even though the be-
havior is not faulty. 
WHILE more rephrasing rules available for the statement DO 

IF WRITE (i.e. DML (INSERT, UPDATE or DELETE) or DDL (e.g. 

CREATE VIEW etc.)) statement THEN 

SAVEPOINT; 

Execute WRITE statement[s] produced by the current re-

phrasing rule; 

READ the rows amended by the WRITE statement; 

Store the results produced by the preceding READ state-

ment; 

ROLLBACK TO last SAVEPOINT; 

ELSE IF READ (i.e. SELECT) statement THEN  

Execute READ statement[s] produced by the current re-

phrasing rule; 

Store the results produced by the READ statement; 

END IF 

END WHILE 

Adjudicate from the stored results produced by each rephrased version 

of the statement; 

IF adjudication succeeds (e.g. “majority voting” produced a result) THEN 

Execute the statement which was adjudicated to be correct; 

ELSE 

ABORT current Transaction 

Raise an exception; 

END IF 

 
3. SQL Rephrasing Rules 
 
As explained in section 2, the support for data di-

versity can be implemented in the middleware in the 
form of rephrasing rules. The initial step is defining the 
rules that are to be implemented. The rules can be de-
fined by studying in depth the SQL language itself to 
identify the parts of the language which are synony-
mous and therefore enable the definition of logically 
equivalent rephrasing rules. We took a different more 

                                                           
4 This is under the assumption that the ACID property of the 
transaction is failure-free. 
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direct approach to defining these rules: we studied the 
known bugs reported for 4 open-source servers, namely 
Interbase 6.0, Firebird 1.05, PostgreSQL 7.0 and Post-
greSQL 7.2 (abbreviated IB 6.0, PG 7.0, FB 1.0 and 
PG 7.2 respectively). However our intention was not to 
simply define workaround rules which are highly bug 
specific, but instead to define generic rephrasing rules, 
which can be used in a broader setting. As a result we 
found that some of the generic rules that we defined 
could be applied to multiple bugs in our study. We 
provide examples next. 
 

3.1 Generic Rules 
 
The “generic rules” are rephrasing rules, which can 

be applied to a range of ‘similar’ statements, be it DML 
(data manipulation language: SELECT, INSERT, 

UPDATE and DELETE) or DDL (data definition lan-
guage e.g. CREATE TABLE etc.) statements. We have 
defined a total of 14 generic rephrasing rules. Full de-
tails of these rules are in [15]. We will provide details 
of Rule 8 and how it proved to be a useful workaround 
for two different bugs reported for two different serv-
ers.  
Rule 8: An SQL VIEW can be rephrased as an 

SQL STORED PROCEDURE or SQL TEMPORARY 

TABLE 
This rule proved to be a useful workaround for FB 

1.0 Bug 488343 [16]. To observe the failure the bug 
report details the following setup: 
CREATE TABLE CUSTOMERS (ID INT, NAME, VARCHAR(10) ); 

CREATE TABLE INVOICES (ID INT, CUST_ID INT, CODE 

VARCHAR(10), QUANTITY INT);  

INSERT INTO CUSTOMERS VALUES (1, 'ME');    

INSERT INTO INVOICES VALUES (1, 1, 'INV.1', 5); 

INSERT INTO INVOICES VALUES (2, 1, 'INV.2', 10); 

INSERT INTO INVOICES VALUES (3, 1, 'INV.3', 15); 

INSERT INTO INVOICES VALUES (4, 1, 'INV.4', 20); 

The following VIEW is faulty (specifically, the use 
of the SQL DISTINCT keyword to filter the results of a 
SELECT statement is faulty in SQL VIEWs of the FB 
1.0 server): 
CREATE VIEW V_CUSTOMERS AS SELECT DISTINCT ID, NAME 

FROM CUSTOMERS;  

The failure can be observed by issuing the follow-
ing statement:  

SELECT SUM(INV.QUANTITY) FROM INVOICES INV INNER JOIN 

    V_CUSTOMERS CUST ON INV.CUST_ID = CUST.ID; 
SUM 

20 

                                                           
5 Firebird is the open-source descendant of Interbase 6.0. The 
later releases of Interbase are issued as closed-development 
by Borland. 

The expected result is 50 not 20. If we use a 
STORED PROCEDURE instead of the VIEW then the 
correct results is returned6: 
SET TERM !!; 

CREATE PROCEDURE V_CUSTOMERS RETURNS  (ID INT, NAME 

VARCHAR(10)) AS 

BEGIN 

FOR SELECT DISTINCT ID, NAME FROM CUSTOMERS 

INTO :ID, :NAME DO 

BEGIN 

SUSPEND; 

END 

END!! 

SET TERM; !! 

Issuing the same SELECT statement as before we 
obtain the expected result (50): 
SELECT SUM(INV.QUANTITY) FROM INVOICES INV INNER JOIN 

V_CUSTOMERS CUST ON INV.CUST_ID = CUST.ID; 

SUM 

50 
The same rule was a useful workaround for another 

bug, this time the PG 7.0 bug 23 [17]. To observe the 
failure the bug report details the following setup: 
CREATE TABLE L (PID INT NOT NULL, SEARCH BOOL, SERVICE 

BOOL); 

INSERT INTO L VALUES (1,'T','F'); INSERT INTO L VALUES (1,'T','F'); 

INSERT INTO L VALUES (1,'T','F'); INSERT INTO L VALUES (1,'T','F'); 

INSERT INTO L VALUES (1,'T','F'); INSERT INTO L VALUES (1,'F','F'); 

INSERT INTO L VALUES (1,'F','F'); INSERT INTO L VALUES (2,'F','F'); 

INSERT INTO L VALUES (3,'F','F'); INSERT INTO L VALUES (3,'T','F'); 

The following VIEWs are then defined (notice the 
use of the GROUP BY clause): 
CREATE VIEW CURRENT AS SELECT PID, COUNT(PID), SEARCH, 

SERVICE FROM L GROUP BY PID, SEARCH, SERVICE; 

CREATE VIEW CURRENT2 AS SELECT PID, COUNT (PID), 

SEARCH, SERVICE FROM L GROUP BY PID, SEARCH, SERVICE; 

By issuing the following SELECT statement incor-
rect results are obtained (this is due to the GROUP BY 
clause used in the VIEWs and the COUNT used on a 
column from a VIEW): 
SELECT CURRENT.PID, CURRENT.COUNT AS SEARCHTRUE, 

CURRENT2.COUNT AS 

SEARCHFALSE FROM CURRENT,CURRENT2 WHERE 

CURRENT.PID =CURRENT2.PID AND CURRENT.SEARCH='T' 

AND CURRENT2.SEARCH='F' AND CURRENT.SERVICE='F' AND 

CURRENT2.SERVICE='F'; 

--  pid | searchtrue | searchfalse 

--     1  |          10      |           10 

--     3  |          1        |           1 

The expected results are: 
--  pid | searchtrue | searchfalse 

--     1  |          5        |           2 

--     3  |          1        |           1 

                                                           
6 The syntax used is specific for Firebird. 
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By using TEMPORARY TABLEs instead of VIEWs the 
correct result is obtained: 
SELECT PID, COUNT(PID), SEARCH, SERVICE INTO TEMP 

  CURRENT FROM L GROUP BY PID, SEARCH, SERVICE; 

SELECT PID, COUNT(PID), SEARCH, SERVICE INTO TEMP 

CURRENT2 FROM L GROUP BY PID, SEARCH, SERVICE; 

SELECT CURRENT.PID,CURRENT.COUNT AS SEARCHTRUE, 

CURRENT2.COUNT AS SEARCHFALSE FROMCURRENT, 

CURRENT2 WHERE CURRENT.PID=CURRENT2.PID AND 

CURRENT.SEARCH='T' AND CURRENT2.SEARCH='F' AND 

CURRENT.SERVICE='F' AND CURRENT2.SERVICE='F'; 

 --  pid | searchtrue | searchfalse 

--     1  |          5         |           2 

--     3  |          1         |           1 

We used TEMPORARY TABLEs in PG 7.0 and not 
STORED PROCEDUREs since PG 7.0 does not support 
functions (procedures) that return multiple rows.  
Details of the other generic rephrasing rules and 

how they can be used as workarounds for other re-
ported bugs are given here [15].  
We looked at how many of the generic rules can be 

applied to the bugs reported for the open-source servers 
in our bugs study. The results are shown in Table 1. 
The leftmost three columns of the table show the re-
sults for the non-self-evident failures caused by read 
(i.e. SELECT) statements. Clearly, a number of these 
are also classified as a “user error”, i.e. the user issues 
an incorrect statement, which the server incorrectly 
executes without raising an exception. For example IB 
6.0 incorrectly executes a statement such as SELECT X 

FROM A, B even though the column X is defined in 
both tables A and B, which can lead to ambiguous re-
sults. PG 7.0 / PG 7.2, correctly, raise an exception.  
If we take away the “user error” bugs then we can 

see that in all the server pairs the generic rules can be 
used as workarounds for at least 80% of the non-self-
evident failures caused by read statements. 
The right-most 4 columns of the table are for the 

bugs that cause state-changing failures, which have 
been further subdivided into bugs in DDL and write 
statements. We can see that generic rules can be used 
as workarounds for at least 60% of failures caused by 
the state-changing statements. 
 

3.2 Specific Rules 
 
The generic rephrasing rules that we have defined 

do not provide workarounds for all the failures caused 
by the bugs collected in our study. For these failures 
specific workaround rules need to be defined. For ex-
ample recursive BEFORE UPDATE TRIGGERS can re-
turn error messages in FB 1.0/IB 6.0 which means the 
table for which the trigger is defined becomes unusable 
(FB 1.0 bug 625899 [16]). A generic rule could not be 
defined for this bug. A specific workaround (and a ge-
neric recovery procedure) upon encountering this error 
message would be to: 
• disable the trigger in FB 1.0 / IB 6.0 
• read the log of the other server to check the se-
quence of the write statements that have been issued 
as a result of the trigger 

• send this sequence of statements explicitly to the 
FB 1.0 / IB 6.0 server 
The workaround above would work in a diverse 

server-type configuration if the other server[s] works 
correctly (the other server[s] in our study do not con-
tain this bug) while without design diversity a fault, 
clearly, cannot be dealt with this way.  
We have found that a large number of bugs, if 

server diversity is not employed, would require very 
specific rules to be defined to workaround the failures 
that they cause. In many cases these rules require sub-
stantial new implementation in the form of “wrapping” 
of the results returned to the client (or for write state-
ments before they are stored in the database) or re-
implementing parts of the functionality of the database 
that are found to be faulty and no workaround exists in 
SQL. Although possible such an approach is clearly 
limited because the newly developed code can itself be 
faulty which may diminish the gains in reliability that 
can be obtained from its use. This reiterates that design 
diversity is desirable.  
 

4. Performance Implications of Rephrasing 
 
To measure the performance implications of re-

phrasing, we conducted a number of experiments based 
Table 1. A summary of applying the generic rephrasing rules for non-self evident and state-

changing bugs of IB 6.0 and PG 7.0 and the later releases FB 1.0 and PG 7.2 

State-changing failures  
Server pair 

Non-self evident non-state-changing fail-

ures (SELECT statements) DDL statement failures Write statement failures 

 Total 
Total covered 

by generic rules 

Total user 

errors * 
Total 

Total covered 

by generic rules 
Total 

Total covered by 

generic rules 

IB 6.0 + PG 7.0 21 12 6 21 13 9 7 
IB 6.0 + PG 7.2 26 18 6 19 13 7 5 
FB 1.0 + PG 7.0 16 11 2 19 13 8 6 
FB 1.0 + PG 7.2 19 15 2 17 13 6 4 
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on the industry standard benchmark for databases - 
TPC-C [5]7. The factors which degrade performance 
when rephrasing is employed are: 
1. delays enforced by the middleware for comparison 
of results 

2. delays from using the following mechanisms within 
transactions: 
• Transaction SAVEPOINTs 
• Transaction ROLLBACKs 
• Execution of SELECT statements after WRITE 
statements (INSERT, UPDATE, DELETE) 

• Rephrasing 
The additional delay introduced by the use of re-

phrasing is delay 2. We have performed an experimen-
tal study to estimate delay 2. Delay 1 would exist also 
in a diverse setup with or without rephrasing. Studies 
that have reported measures of other delays which are 
not specific to rephrasing (such as enforcing 1-copy 
serialisability) can be found in [18], [6] 8. There are 
other factors that can influence the degradation of per-
formance that we have not measured in our experimen-
tal setup (e.g. rephrasing delays when more than one 
rephrasing rule is used etc.). The experiments that we 
have conducted aim to provide an initial estimate of the 
delays due to rephrasing. A more thorough perform-
ance evaluation should also take into account concur-
rent execution of transactions. As was also noted by 
one of the anonymous reviewers, for some concurrency 
control mechanisms, the increase in transaction execu-
tion times due to the use of rephrasing, the probability 
of conflicts due to concurrency may also increase 
which may further degrade performance. 
The experimental setup consisted of three com-

puters. All three computers ran on Microsoft’s Win-
dows 2000 operating system, they had 384 MB RAM, 
and Intel Pentium 4 1.5GHz processors. One machine 
hosted the client implementation of the TPC-C bench-
mark. The other two machines hosted the servers 
(PostgreSQL 8.0 and Firebird 1.5). We used later re-
leases of the servers than the ones used in our bugs 
study since these earlier releases do not support SAVE-

POINTs and ROLLBACKs within transactions. We have 
not used any commercial servers in our experiments 
since the license agreements are very restrictive with 
regard to publishing performance data.  
We ran experiments on both diverse and non-

diverse setups. In the diverse experiments we always 
wait for the slowest server response before we can start 

                                                           
7 The TPC-C experiments were carried out with 1 emulated 
client and 1 warehouse with client think times set to 0. 
8 These studies also provide some optimisation procedures 
for 1-copy serialisability. 

the next transaction. Therefore the diverse setups here 
are always slower (other configurations are possible 
and we have discussed some of these in [9]). 
Figure 2 illustrates the sequence of executions 

within a transaction for the different non-diverse set-
ups. The grey boxes represent the fault tolerance 
mechanism used whereas the dotted lines represent the 
added delay from the use of the respective mechanism. 
Setup a) is the baseline, against which we will measure 
the added delays. Setups b), c), and d) measure the 
delays of using the fault tolerance mechanisms when no 
failures are observed (i.e. the cost of being cautious)9. 
Setups e) and f), measure the cost of re-execution of a 
statement10. These experiments measure delays for a 
number of situations: 
• re-execution of an unchanged statement as a possi-
ble protection against transient failures (caused by 
the so called “Heisenbugs” [12]) 

• re-execution of a logically equivalent rephrased 
statement in case the first one has failed self-
evidently (i.e. a crash or other exceptional failures) 

• re-execution of a logically equivalent rephrased 
statement to get additional results for comparison 
on the middleware to increase the likelihood of 
failure detection for non-self-evident failures 
In our experiments we did not use rephrased state-

ments. Instead, the same statement was executed twice. 
This is a simplification due to the absence of a proper 
implementation of rephrasing. In the absence of any 
other data, we wanted to get an initial estimate of the 
delays that the various fault tolerance mechanisms will 
produce with the database servers. 
The diverse setups have a similar structure. The only 
difference is that in diverse setups we only use 1 
SAVEPOINT (at the beginning of the transaction) rather 
than before each write statement and therefore we may 
also have only one ROLLBACK (at the end of transac-
tion). For setups e) and f), this means that we first exe-
cute every statement once then we ROLLBACK to the 
beginning and execute all the statement again. So the 
difference between the diverse and non-diverse setups 
is a different level of granularity of using SAVE-

POINTs/ROLLBACKs. 

                                                           
9 b) detection of erroneous writes; c) SAVEPOINT are used 
before write statements for finer grained recovery; d) both 
SAVEPOINTs are used and the modified rows are read back  
(combination of b) and c));  
10 e) optimistic (on writes) rephrasing: each statement is exe-
cuted twice; to ensure that the state of the database remains 
unchanged during the second execution of the write state-
ment we use SAVEPOINTs and ROLLBACKs; f) pessimis-
tic rephrasing: same as e) but the written rows are also read 
to protect against erroneous writes. 
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Fig. 2. A transaction execution sequence in the experimental setups. The shaded boxes represent 

the fault tolerant mechanism used and the dotted lines represent the additional delays from their 

use. The second executions of the statements are proxies for rephrased versions of statements.
The full results of these experiments are given in 

Table 2. The first column explains the setup under 
which the experiment was run. The following 4 col-
umns spell out which fault tolerance mechanisms were 
used (if the cell is blank then the respective mechanism 
was not used). The following 3 columns show the aver-
age execution time of a transaction, and the last 3 col-
umns show the added delay (in percentages) propor-
tional to the baseline of each setup. The first six rows 
contain the results for each of the setups we explained 
earlier (and illustrated in Figure 2).  
The last two rows are structurally the same as setups 
(e) and (f) respectively. However in these experiments 
we have tried to simulated the effect of a simple learn-
ing rule: if after 1000 executions a statement has been 
found to be correct then we stop rephrasing (in our 
simulation it means we stop executing the statement 
twice for both setups and additionally stop executing 

the SELECT statement that read the modifications of the 
write statements for setup (h)). 
The delays seem to be higher proportionally in 

PostgreSQL than in Firebird. This is because the exe-
cution time of COMMITs is smaller in Firebird for the 
experiments with larger number of SELECT statements. 
The number of write statements to be COMMITed al-
ways remains the same in all experiments (even in the 
ones with 2 executions of statements, since the first 
execution of a write statement is always ROLLBACKed). 
Comparing the setups a) with e) we can see that even 
though in setup e) every statement is being executed 
twice the average execution times of the transactions 
are not simply twice the execution time of transactions 
in setup a). This is explained by the fact that the num-
ber of transactions remains the same (i.e. we still have 
the same number of COMMITs) and also the data may 
be stored already in the RAM which reduces the execu-

Table 2 Performance effects of the various fault-tolerance schemes. Each experiment is run 

with loads of 10,000 transactions 

Setup 
Average Transaction Execution 

time (milliseconds) 
Delays proportional to the 

baseline (%) 

Setup description (with reference to  
Figure 3) 

SA
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IN
T
s 
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L
L
B
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C
K
s 

2 
ex
ec
ut
io
ns
 f
or
 

ea
ch
 s
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te
m
en
t 

SE
L
E
C
T
 a
ft
er
 

W
ri
te
 s
ta
te
m
en
ts
 

PG 
8.0 

FB 
1.5 

Diverse PG 
8.0 & FB 1.5 

PG 
8.0 

FB 
1.5 

Diverse 
PG 8.0 
& FB 
1.5 

Baseline (a)     228 306 343    
Detection of erroneous writes (b)    √ 292 356 434 28.3 16.3 26.5 

Finer granularity of recovery (c) √    240 308 350 5.3 0.4 1.8 
Combination of b and c (d) √   √ 305 364 433 33.9 18.6 26.0 

Optimistic (on writes) Rephrasing (e) √ √ √  353 450 489 54.9 46.9 42.3 
Pessimistic Rephrasing (f) √ √ √ √ 496 601 699 118. 96.2 105.5 

Learning Optimization (g) √ √ √  256 325 402 12.6 6.2 17.3 
Learning Optimization (h) √ √ √ √ 278 341 524 22.5 11.4 52.6 
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tion time of the second statement. The same holds 
when comparing results of setups b) with f).  
Since the numbers in Table 2 represent point estimates 
(i.e. they are single runs of an experiment per setup) we 
have repeated the experiments for setup a) and f) to 
measure the non-deterministic variation that may exist 
between the different runs. We observed a very small 
difference (less than 1% for 5 out of six of the experi-
ments and less than 3% for all). Hence we can trust 
with a higher degree of confidence that the observa-
tions documented in table 2 represent closely the ‘true’ 
differences between different setups. 
 
5. Discussion 
 
We presented in section 2 the architecture we pro-

pose for a fault-tolerant server employing rephrasing. 
The middleware used would make use of a rephrasing 
algorithm. Any fault-tolerant solution, which makes use 
of server diversity would need to have “connectors” 
developed as part of the middleware to translate a cli-
ent sent statement to the dialect of the respective 
server. This is because each server ‘speaks’ its own 
dialect of SQL. The rephrasing algorithms can also be 
part of these connectors. A related point is that data-
base servers offer features that are extensions to the 
SQL standard, and these features may differ between 
the servers. Therefore for applications which require a 
richer set of functionality data diversity would be at-
tractive alone as it would for instance allow applica-
tions to use the full set of features. A complex state-
ment, which can be directly executed with some servers 
but not others, may need to be rephrased as a logically 
equivalent sequence of simpler statements for the latter. 
For example, the TRUNCATE command is a Post-
greSQL specific feature (and is buggy in version 7.0; 
see bug 20 [17] for details). In its stead the DELETE 
command can be used to workaround the problem. The 
DELETE command is also implemented in Firebird and 
all the other SQL compliant servers.  
Since most of these rules are transformations of the 

SQL grammar, they are amenable to formal analysis. 
Thus, despite the additional implementation, high reli-
ability can be achieved with a combination of formal 
analysis and testing of the new code. 
The results presented in section 3 demonstrate that a 

small number of rephrasing rules can help with server 
diagnosis and state recovery. We observed that a lim-
ited set of generic rephrasing rules that we have defined 
(14 in total) can be used as workarounds for at least 
80% of the non-self-evident failures caused by read 
statements and at least 60 % of failures caused by write 
or DDL statements in any of the open-source 2-diverse 

setups in our study. We have also observed that using 
data diversity without design diversity would lead to a 
large number of specific rephrasing rules to work-
around certain failures. Implementing such rules might 
require a substantial amount of new implementation, 
which itself may be faulty, thus, reducing the possible 
reliability gains that can be obtained from their use.  
Rephrasing has been proposed as a possibility to de-

tect failures that would otherwise be un-detectable in 
some replication settings. The possible benefits of this 
approach could be its relatively low cost in comparison 
with design diversity, and also that it can be used with 
or without design diversity allowing for various cost-
dependability trade-offs. Possible setups include: 
• In non-diverse redundant replication settings, if 
high dependability assurances are required, the only 
option available would be to rephrase all the state-
ments sent to the server. This can lead to high per-
formance penalties. To reduce the performance 
penalty some form of learning strategy can be ap-
plied, e.g. keep track of all the statements that have 
been rephrased. If the rephrased statement keeps 
giving the same results as the original statement 
then confidence is gained that the original statement 
is giving the correct result and the statement does 
not have to be rephrased in future occurrences 
(what we did in setups g) and h) of the TPC-C ex-
periments). The other dimension is to stop sending 
the client-version of the statement to a server if it 
always gives an incorrect result. In this case the 
middleware can flag each occurrence of this state-
ment and use the rephrased version of it without 
sending the original statement to the server [2]. This 
reduces the time taken to respond to the client. 

• In a diverse server configuration a less rephrasing-
intensive approach may be used where only the read 
statements (i.e. SELECTs) that return different re-
sults are rephrased (assuming that at least two serv-
ers are running in parallel so that a mismatch is de-
tected). The rephrasing is also done for all the write 
statements (to ensure that the state of the database is 
not corrupted). Since a smaller set of statements 
needs to be rephrased the performance is enhanced. 
The non-self-evident identical failures, however, 
(we observed 4 of these in the study with known 
bugs of SQL servers [1]) will not be detected. To 
further enhance the performance the same learning 
strategies can be used as in the previous setup. 

 
6. Conclusions 
 
We have reported previously [1] on the dependabil-

ity gains that can potentially be achieved from deploy-
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ing a fault-tolerant SQL server, which makes use of 
diverse off-the-shelf SQL servers. From studying bugs 
reported for four off-the-shelf servers we reported that 
failure detection rates in 1-out-of-2 configurations was 
at least 94% and this increased to 100% in configura-
tions which employed more than two servers.  However 
fault tolerance is more than just failure detection. In 
this paper we reported on the mechanism of data diver-
sity and its application with SQL servers in aiding with 
failure diagnosis and state recovery. We have defined 
14 generic ‘workaround rules’ to be implemented in a 
‘rephrasing’ algorithm which when applied to a certain 
SQL statement will generate logically equivalent 
statements. We have also argued that since these rules 
are transformations of the SQL language syntax, they 
are amenable to formal analysis and dependability 
gains from employing rephrasing are achievable de-
spite the development of a bespoke new code.   
We also outlined a possible architecture of a fault 

tolerant server employing diverse SQL servers and 
detailed how the middleware used in it can be extended 
to also handle rephrasing of SQL statements. 
We also presented some performance measurements 

from experiments we have run with an implementation 
of the TPC-C benchmark [5], which gave initial esti-
mates of the likely delays due to employing rephrasing. 
Further work that is desirable includes: 

• demonstrating the feasibility of automatic transla-
tion of SQL statements from, say ANSI/ISO SQL 
syntax to the SQL dialect implemented by the de-
ployed SQL servers. We have completed some pre-
liminary work on implementing translators between 
MSSQL and Oracle dialects for SELECTs, and be-
tween Oracle and PostgreSQL dialects for SELECT, 
INSERT and DELETE statements; 

• developing the necessary components so that users 
can try out diversity in their own installations, since 
the main obstacle now is the lack of popular off-
the-shelf “middleware” packages for data replica-
tion with diverse SQL servers. This would also in-
clude implementing a mechanism of maintaining 
(adding/removing) rephrasing rules as add-on com-
ponents in the middleware. 
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Fault Tolerance via Diversity for Off-The-Shelf 
Products: a Study with SQL Database Servers

Ilir GASHI, Peter POPOV, and Lorenzo STRIGINI, Member, IEEE

Abstract— If an off-the-shelf software product exhibits poor dependability due to design faults, software fault tolerance is often the 
only way available to users and system integrators to alleviate the problem. Thanks to low acquisition costs, even using multiple 
versions of software in a parallel architecture, a scheme formerly reserved for few and highly critical applications, may become 
viable for many applications. We have studied the potential dependability gains from these solutions for off-the-shelf database 
servers. We based the study on the bug reports available for four off-the-shelf SQL servers, plus later releases of two of them. We 
found that many of these faults cause systematic, non-crash failures, a category ignored by most studies and standard 
implementations of fault tolerance for databases. Our observations suggest that diverse redundancy would be effective for tolerating 
design faults in this category of products. Only in very few cases would demands that triggered a bug in one server cause failures in 
another one, and there were no coincident failures in more than two of the servers. Use of different releases of the same product 
would also tolerate a significant fraction of the faults. We report our results and discuss their implications, the architectural options 
available for exploiting them and the difficulties that they may present.

Index Terms— C.4.b Fault tolerance, C.4.f Reliability, availability, and serviceability, H.2.4.i Relational databases, D.2.17.e Error 
processing, design diversity, COTS software, fault records, non-crash failures, database availability. 

——————————  ——————————

1 INTRODUCTION

HE use of “off-the-shelf” (OTS) – rather than custom-
built – products is attractive in terms of acquisition 
costs and time to deployment but brings concerns 

about dependability and "total cost of ownership". For 
safety- or business-critical applications, in particular, pur-
pose-built products would normally come with extensive 
documentation of good development practice and extensive 
verification and validation; when switching to mass-
distributed OTS systems, users – system designers or end 
users – often find not only a lack of this documentation, but 
anecdotal evidence of serious failures and/or bugs that 
undermines trust in the product. Despite the large-scale 
adoption of some products, there is usually no formal sta-
tistical documentation of achieved dependability levels, 
from which a user could attempt to extrapolate the levels to 
be achieved in his/her own usage environment.

For all these reasons, when systems are built out of OTS 
products, software fault tolerance is often the only viable 
way of obtaining the required system dependability [1], [2], 
[3]. We use the phrase “software fault tolerance” to mean 
“fault tolerance against software faults”. These preliminary 
considerations apply not only to OTS software, but also to 
hardware, like microprocessors, or complete hardware-
plus-software systems; but our focus in this paper is a cate-
gory of software products. Fault tolerance may take multi-
ple forms [4], from simple error detection and recovery 
add-ons (e.g. wrappers) [5] to full-fledged “diverse modu-
lar redundancy” (e.g. "N-version programming": replica-

tion with diverse versions of the components) [4]. Even this 
latter class of solutions becomes affordable with many OTS 
products and has the advantage of a fairly simple architec-
ture. The cost of procuring two or even more OTS products 
(some of which may be free) would still be far less than that 
of developing one’s own.

All these design solutions are well known from the lit-
erature. The questions, for the developers of a system using 
OTS components, are about the dependability gains, im-
plementation difficulties and extra cost that they would 
bring for that specific system. We report here some evi-
dence about potential gains, and briefly discuss the archi-
tectural issues that would determine feasibility and costs, 
for a specific category of OTS products: SQL database serv-
ers, or "database management systems" (DBMSs)1. 

This category of products offers a realistic case study of 
the advantages and challenges of software fault tolerance in 
OTS products. DBMS products are complex, mature 
enough for widespread adoption, and yet with many faults 
in each release2. Fault tolerance in DBMS products is a 
thoroughly studied subject, with standard recognized solu-
tions, some of which are commercially available. But these 
solutions do not give full protection against software faults, 
because they assume fail-stop [8] or at least self-evident 

1 Ordinary terms may be ambiguous when discussing redundant and di-
verse architectures. We will apply these conventions: a DBMS product is a 
specific software package; a fault-tolerant database server includes one or 
more channels (each performing the database server function), each includ-
ing an installation of a DBMS product (these may be the same product or 
different ones - different versions) and a replica of the database. Two replicas 
of the database will be physically different if they are in channels that use 
different DBMS products. They may also exhibit temporary differences due 
to the asynchronous operation of the channels. We follow the popular us-
age of the word “bug” as synonym for “software fault” or “defect”. 

2 And even features that imply an accepted possibility of an incorrect be-
havior, albeit rare. An example of the latter is the known “write skew” [6]
problem with some optimistic concurrency control architectures [7]

T
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failures3: errors are detected promptly enough that the da-
tabase contents are not corrupted, or that a suitable correct 
checkpoint can be identified and used for rollback. There is 
no guarantee that software faults in the OTS DBMS prod-
ucts themselves will satisfy this assumption. As we docu-
ment here, they do not, and we know of no published sta-
tistical evidence of the frequency of violations, which one 
could use as evidence that the assumption is satisfied with 
high enough probability for a specific application of one of 
these OTS products. 

There are many OTS SQL DBMS products, obeying (at 
least nominally) common standards (SQL 92 and SQL 99) 
that make diverse redundancy feasible in principle. For 
instance, a parallel-redundant architecture using two repli-
cas of a database, managed by two diverse DBMS products, 
would allow error detection via comparison of results from 
the two DBMS products. A fault-tolerant server capable of 
tolerating server software faults can be built from installa-
tions of two or more diverse DBMS products, connected by 
middleware that makes them appear to clients as a single 
database server. There are clearly problems as well: in par-
ticular, existing DBMS products have certain concurrency 
control and fault tolerance features that rely on lack of di-
versity between replicated executions for their proper and 
efficient operation. However, it is worth exploring the costs 
and benefits of solutions that accept the drawbacks of di-
versity in return for improved dependability. For many 
users, there is no practical alternative to OTS DBMS prod-
ucts, and performance losses may well be acceptable in re-
turn for improved assurance. In addition to tolerating faults 
in general, users may look at software fault tolerance as a 
way of guaranteeing good service during upgrades of the 
DBMS products, when new bugs might appear that are 
serious under the usage profile of their specific installation, 
and/or of delaying “patches” and upgrades, thus reducing 
the total cost of ownership of DBMS products.

As a preliminary assessment of the potential effective-
ness of software fault tolerance with DBMS products, we 
have studied publicly available fault reports for four DBMS 
products (two open-source and two closed-development). 
We ask questions about the potential effectiveness of design 
diversity – deploying two different products. Fault reports 
are the only publicly available dependability evidence for 
these products, so our study concerns fault diversity among 
them. Complete failure logs would be much more useful as 
statistical evidence, but they are not available. Many of the 
vendors discourage users from reporting already known 
bugs, and detailed failure data are rarely available even to 
the software vendors themselves. 

In a first study [9], we looked at the set of bugs reported 
for one release of each DBMS product. For each bug, we 
took the bug script (a sequence of SQL statements) that 
would trigger it and ran it on all four DBMS products (if 
possible), to check for coincident failures: if the bug script 
does not trigger failures in the other DBMS product, there is 

3 By “self-evident failures” we will mean failures that a generic client of 
the DBMS product can detect without depending on knowledge of the 
specific database and its semantics. They are those failures that – as seen by 
the client – consist in issuing an error message to the client, spontaneously 
aborting a transaction, “hanging” or crashing.

evidence that software fault tolerance would tolerate that 
fault. We found that a high number of reported faults 
would not be tolerated (or even detected) by existing, non-
diverse fault-tolerant schemes but did not cause coincident 
failures in any two DBMS products, offering a way of toler-
ating them.  

These intriguing results suggested a potential for con-
siderable dependability gains from using diverse OTS 
DBMS products, but they only concerned a specific snapshot
in the evolution of these products. We therefore ran a fol-
low-up study with later releases of DBMS products (thus 
with different set of bug reports), with results that substan-
tially confirm the previous ones. This paper reports the 
complete results of the two studies. 

The rest of the paper is organized as follows: in Section 
2, we briefly discuss the architectural issues in software 
fault tolerance with DBMS products – feasibility, design 
alternatives and performance issues – since they determine 
the usefulness of the empirical results we report; Section 3 
presents the results of the two empirical studies of known 
bugs of DBMS products, including the comparisons be-
tween older and newer releases of two DBMS products; 
Section 4 contains a discussion of the implications of our 
studies; Section 5 contains a review of related work on da-
tabase replication, interoperability of databases, empirical 
evidence on DBMS products’ faults and failures and diver-
sity with off-the-shelf components and Section 6 contains 
conclusions and outlines of further work.

2 ARCHITECTURAL CONSIDERATIONS
2.1 Current Solutions for DBMS Replication
Standard solutions for automatic fault tolerance in data-
bases use the mechanisms of atomic transactions and/or 
checkpointing to support backward recovery of failed com-
putations, which can be followed by retry of the failed 
statements4. These solutions will tolerate transient faults, if 
detected, and if combined with replication will mask per-
manent faults, without service interruption.

Various data replication solutions exist [10], [11], [12], 
[13], [14]. In commercial DBMS products, they are often 
called “fail-over” solutions: following a (crash) failure of 
the primary DBMS product, the load is transparently taken 
over by a separate installation of the DBMS product hold-
ing a redundant copy of the database, at the cost of aborting 
the transactions affected by the crash. Multiple copies may 
be used. The code for fault tolerance is integrated inside the 
DBMS product. A recent survey [15] calls this a “white box” 
solution. As an alternative, replication can be managed by 
middleware separate from the DBMS products: “black box” 
solutions (fault tolerance is entirely the responsibility of the 
middleware), or “grey box” (the middleware exploits use-
ful functions available from the DBMS products [16]). Our 
discussion here will refer to “black box” solutions: the only 
ones that can be built without access to OTS source code, 
and most convenient for studying the design issues in the 
use of redundancy and diversity. We will assume that fault 

4 We will use the term “statement” to refer to the SQL requests that are 
sent to the server. These may be read or write data manipulation language
(DML) statements or data definition language (DDL) statements.
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tolerance is managed by a layer of middleware; clients see 
the fault-tolerant database server via this middleware layer, 
which co-ordinates the redundant channels. 

Existing data replication solutions use sophisticated 
schemes for reducing the overhead involved in keeping the 
copies up to date. Their common weakness is their depend-
ence on the assumption of “fail-stop” or at least “self-
evident” failures. This assumption simplifies the protocols 
for data replication, and allows some performance optimi-
zation. For instance, in the Read Once Write All Available 
(ROWAA) [10] replication protocol the read statements are 
executed by a single replica while the write statements are 
executed by all replicas. These fault-tolerant solutions are 
considered adequate by standardizing bodies [17], despite 
the assumption being false in principle. Some recent solu-
tions [18] seek further optimization by executing the write 
statements on a single replica, which then propagates the 
changes to all the (available) replicas.

As we shall see, current OTS DBMS products suffer from 
many bugs that cause non-crash, non self-evident failures. 
The failures that these cause may be undetected erroneous 
responses to read statements, and/or incorrect writes to all 
the replicas of the database. 

For these kinds of failure, the current data replication so-
lutions are deficient, in the first place from the viewpoint of 
error detection. Two kinds of remedy are possible:
- database-, or client-specific solutions that depend on the 

client (an automatic process or a human operator) to run 
reasonableness checks on the outputs of the DBMS prod-
uct and order recovery actions if it detects errors. Good 
error detection may be achieved by exploiting knowledge 
of the semantics of the data stored and the processes that 
update them. This knowledge may also support more ef-
ficient error recovery than simple rollback and retry. The 
main disadvantages are high implementation cost (espe-
cially with a workforce generally unaware of the need for 
fault tolerance), high run-time cost, at least for human-run 
checks, and the possibility of low error detection coverage 
if the database is – as common – the sole repository of the 
data5. 

- generic solutions that use active replication [19] for error 
detection, so that errors can be detected by comparing the 
results produced by redundant executions, and/or cor-
rected, via voting or copying the results of correct execu-
tions.

2.2 Diversity
Replication will give a basis for effective fault tolerance if 
the multiple copies of the database do not usually fail to-
gether on the same demand, or at least they tend not to fail 
with identical erroneous results. To pursue such failure di-
versity, a designer can use various forms of diversity in a 
redundant system: 
- simple separation of redundant executions. This is the 

weakest form, but it may yet tolerate some failures. It is 
well known that many bugs in complex, mature software 

5 Simple reasonableness or “safety” checks are often available, but have 
limited efficacy against some failure scenarios. E.g., reasonableness checks 
may prevent the posting of incredibly large movements in a company’s 
accounts, yet allow many small systematic errors, allowing large cumula-
tive errors to build up before the problem comes to light.

products are “Heisenbugs”6 [20], i.e., they cause appar-
ently non-deterministic failures. When a database fails, its 
identical copy may not fail, even with the same sequence 
of inputs. Even repeating the same operations on the 
same copy of a database after rollback may in principle 
not replicate the same failure;

- design diversity, the typical form of parallel redundancy 
for fault tolerance against design faults: the multiple rep-
licas of the database are managed by diverse DBMS 
products;

- data diversity [21]: thanks to the redundancy in the SQL 
language, a sequence of one or more SQL statements can 
be "rephrased" into a different but logically equivalent se-
quence to produce redundant executions (on multiple 
DBMS products or on a single one), thus giving a better 
chance of a failure not being repeated when the rephrased 
sequence is executed on another replica of even the same 
DBMS product. Two of the present authors have reported 
elsewhere [22] on a set of "rephrasing rules" that would 
tolerate at least 60% of the bugs examined in our studies.

- configuration diversity (which can be seen as a special form 
of data diversity). DBMS products have many configura-
tion parameters, affecting e.g. the amount of system re-
sources they can use (amount of RAM and/or the “page 
size” used by the database), or the degree of optimization 
to be applied to certain operations: given the same data-
base contents, varying these parameters between two in-
stallations can produce different implementations of the 
data and the operation sequences on them, and thus de-
crease the risk of the same bug being triggered in two in-
stallations of the same DBMS product by the same se-
quence of SQL statements. Another example is the use of 
“hints” with SQL statements: they are directives to the 
“query optimizer”7 to change the execution plan of the 
SQL statements.
These precautions can in principle be combined (for in-

stance, data diversity can be used with diverse DBMS 
products), and implemented in various ways, including 
manual application by a human operator.

Among the above forms of diversity, design diversity 
appears the most likely to avoid coincident failures in re-
dundant executions, but it may impose substantial limita-
tions or design costs. In the first place, OTS DBMS prod-
ucts, even if they nominally implement the operations of 
the standard SQL language, in practice use different “dia-
lects”: they use different syntax for commands that are se-
mantically the same (this problem can be solved via auto-
matic, on-the-fly translation); more importantly, each offers 
extra, non-standard features, which would require either 
more complex translation8, and/or clients to be limited to 

6 A term was introduced by Gray [20], defining two types of bugs: “Bohr-
bugs” appear to be deterministic (the failures they cause are easy to repro-
duce in testing); “Heisenbugs”, are difficult to reproduce as they only cause 
failures under special conditions: "strange hardware conditions (rare or 
transient device fault), limit conditions (out of storage, counter overflow, 
lost interrupt, etc.) or race conditions".

7 A component of a DBMS product that attempts to determine the most 
efficient way to execute a statement

8 “Rephrasing” of statements, mentioned above as a form of data diver-
sity, can also be useful to overcome this difficulty: a statement sent by a 
client using the dialect of one DBMS product may not ”make sense” to 
another DBMS product; but a logically equivalent, rephrased version of the 
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using a common subset among the features of the diverse 
DBMS products. In addition, many aspects of database 
operation are specified in a non-deterministic fashion, mak-
ing the goal of ensuring consistency among replicas diffi-
cult even with same-product replication, and more so with 
diverse replication.

A special case of design diversity is using successive re-
leases of the same DBMS product. This will avoid or greatly 
reduce the problems due to “dialect” differences. It may be 
expected to tolerate fewer faults, since the successive re-
leases will share large portions of their code, including 
some bugs; but they may be attractive for “smoothing out” 
upgrades which may otherwise cause peaks of unreliability 
in a database installation, due to the new faults introduced, 
and at the same time evaluating the new release to decide 
when it has reached sufficient dependability to be used 
alone in the installation. Similar practices have been ap-
plied for embedded and safety critical systems [24], [25].

We now discuss briefly the architectural options avail-
able in designing automated fault tolerance solutions with 
some form of diversity applied to OTS DBMS products. A 
basic "black box" replication architecture delegates the 
management of redundancy to a layer of middleware [26], 
as in Fig. 1, so that the multiple DBMS products appear to 
clients as a single server. There may be any number of 
channels, though typical values would be one (using "time 
redundancy" – repeating the execution on the single DBMS 
product – when needed), two or three (the minimum that 
allows error masking through voting). We will normally 
refer to systems with two replicas, unless otherwise noted.

This basic architecture can be used for various fault tol-
erance strategies, with different trade-offs between cover-
age for various types of failures, performance, ease of inte-
gration etc [27]. The most serious design trade-offs with all 
these schemes concern ensuring replica determinism, for 
replication schemes that require it. The design difficulty is 
that each DBMS product has its own concurrency control 
strategy, and these are non-deterministic and may be dif-
ferent between products. Proprietary replication solutions 

statement might be supported by both producs. E.g. the TRUNCATE com-
mand is a specific feature of the PostgreSQL DBMS (and is faulty in release 
7.0; see bug report 20 [23] for details); but all uses of TRUNCATE can be 
translated into uses of the DELETE command, which is implemented in all 
the SQL compliant DBMSs. 

can deal with this problem by using knowledge of the im-
plementation of the DBMS product. For a middleware layer 
dealing with generic OTS products, this is more difficult, 
especially since commercial vendors may keep these details 
secret. The middleware can instead artificially serialize 
statements in the same way on all replicas [28], [29]. This 
solution carries performance costs, but these will be accept-
able for many installations, though intolerable on others, 
depending on the amount and pattern of write transactions 
in a specific installation.

A separate requirement, easier to satisfy, is that any vot-
ing/comparison algorithm need to allow for “cosmetic” 
differences between equivalent correct results issued by 
different DBMS products, e.g. differences in the padding 
blank characters in character strings or different numbers of 
digits in the representations of floating point numbers. 
Trade-offs exist here between embedding in the algorithm 
more knowledge about the idiosyncrasies of each specific 
product, and keeping it more generic at the cost of possibly 
lower coverage.

2.3 Design Options for Fault Tolerance via Diverse 
Replication

2.3.1 Detecting Server Failures 
Erroneous responses to read statements can be detected by 
comparing the outputs of the channels, detecting those non-
self-evident failures that cause some discrepancy between 
these outputs.

Both design diversity and data diversity increase the 
chance of detection, compared to simple replication. Rep-
lica determinism is necessary, i.e. discrepancies between 
correct results must be rare as they may cause correct re-
sults to be flagged as erroneous, and thus a performance 
penalty. Self-evident DBMS product failures are detected as 
in a non-diverse DBMS products, via server error messages 
(i.e. via the existing error detection mechanisms inside the 
DBMS products) and time-outs.  

Erroneous updates to the databases that will only cause 

output discrepancies in the future are also a concern. To 
detect them, the middleware can compare the contents of 
the database replicas, via the standard read commands of 
the DBMS products. There is a degree of freedom in how 

Fig. 1 - A stylized design of a fault-tolerant database server with two channels. Each channel includes an installation of an OTS DBMS product 
(these may be the same or different products, including different releases of a same product) and a replica of the database. The middleware
must ensure connectivity between the clients and the DBMS products, some filtering of the statements sent by clients (e.g. returning error 
messages to the client for statements that are not supported by both the underlying OTS DBMS products), replication and concurrency control, 
management of fault tolerance (error detection; error containment, diagnosis and correction; state recovery), as well as translation of SQL 
statements (“S” in the figure) sent by the clients to the dialects of the respective OTS DBMS products (translation may be done in off-the-shelf 
add-on components). Support for “data diversity” through “rephrasing” may also form part of the same components which perform translation: 
rephrasing rules will produce rephrased versions – “S-reph” in the figure –of the statements sent by clients. The middleware must also adjudi-
cate the results – “R” in the figure – from the OTS DBMS products and return a result to the client[s]. 
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much should be compared, allowing latency/performance 
trade-offs. The middleware can just ask each DBMS prod-
uct for the list of the records modified in each write opera-
tion, and then read and compare their contents. In princi-
ple, though, a buggy DBMS product could modify other 
records as well, and omit them from the list it returns. So, a 
designer could decide to compare a superset of the data 
that appear to be affected, trading off time for better error 
detection. 

Error detection can be run in a more or less pessimistic 
mode: in the most pessimistic mode, at each operation the 
middleware performs all its comparisons before forwarding 
to the client the response from the DBMS product[s]. More 
optimistically, it can forward most responses immediately, 
and run the checks in parallel with the subsequent opera-
tion of the client and DBMS products. A natural synchroni-
zation point is at transaction commit: the middleware only 
allows the transaction to commit if it detected no failures. 
Thus the designer can trade off the error latency against the 
overhead imposed by the fault-tolerant operation.

In addition, the middleware can use slack capacity for a 
background audit task, comparing the complete contents of 
the database replicas.

2.3.2 Error Containment, Diagnosis and Correction 
Error containment is tightly linked to detection. For read 
statements, the middleware receives multiple responses for 
each statement sent to the diverse channels, one from each 
of them, and must return a single response to the client. In 
general, the middleware will present to the client a DBMS 
product failure as a correct but possibly delayed response 
(masking), or as a self-evident failure (crash - the behavior 
of a “fail-silent” fault-tolerant server; or an error message -
a “self-checking” server). DBMS product failures can be 
masked to the clients, if the middleware can select a result 
that has a high enough probability of being correct:
- if more than two redundant responses are available, ma-

jority voting can be used to choose a consensus result, and 
to identify the failed replica which may need a recovery 
action to correct its state. 

- with only two redundant channels, if they give different 
results the middleware cannot decide which one is in er-
ror. A possibility is not to offer masking, but simply a 
clean failure to be followed by manual diagnosis of the 
problem. Alternatively, additional redundant execution 
can be run by replaying the statements, possibly with 
“data diversity”, i.e., rephrasing the statements [22].
Depending on how redundant executions are organized, 

the middleware may need to resolve rather complex scenar-
ios, e.g., two diverse DBMS products, A and B, may give 
different responses upon first submission for a read state-
ment, while upon resubmission of a rephrased statement A 
produces an error message and B a result matching A’s 
previous result; but this is a standard adjudication problem 
[30], [31], [32] for which the design options and trade-offs 
are well known. 

Again, the need for replica determinism is the main de-
sign issue with these schemes.

2.3.3 State Recovery 
Besides selecting probably correct results, adjudication will 
identify probably failed DBMS products (diagnosis). This 
improves availability: the middleware can selectively direct 
recovery actions at the DBMS product diagnosed as having 
failed, while letting the other DBMS product(s) continue 
providing the service.

The state of a replica DBMS product can be seen as com-
posed of the state of permanent data in the database and 
that of volatile data in the DBMS product's variables. For 
erroneous states of the latter, since the middleware cannot 
see the internal state of each executing DBMS product, 
some form of "rejuvenation" [33] must be applied, e.g. 
stopping and restarting the DBMS product.

As for state recovery of the database contents, it can be 
obtained:
- via standard backward error recovery – rollback followed 

by retry of logged write statements –, which will some-
times be effective (failures due to Heisenbugs), at least if 
the failures did not violate the ACID property in the af-
fected transactions. "Data diversity" will extend the set of 
failures that can be recovered this way. To command 
backward error recovery, the middleware can use the 
standard database transaction mechanisms: aborting the 
failed transaction and replaying its statements may pro-
duce a correct execution. Alternatively or additionally, it 
can use checkpointing [34]: the middleware orders the 
states of the database replicas to be saved at regular inter-
vals (by database “backup” commands: e.g., in Post-
greSQL the pg_dump command). After a failure, a data-
base replica is restored to its last checkpointed state and 
the middleware replays the sequence of (all or just write) 
statements since then (the redo log provided in some 
DBMS products cannot be used because it might contain 
erroneous writes). Finer granularity of recovery can be 
achieved by using the checkpoint-rollback mechanism 
within transactions: this allows the handling of exceptions 
within transactions, and should be applied when using 
data diversity through “rephrasing” [22];

- additionally, diversity allows one to achieve forward re-
covery by essentially copying the state of a correct data-
base replica into the failed one (similarly to [35]). Since 
the formats of database files differ between the DBMS 
products, the middleware would need to query the cor-
rect channel[s] for their database contents and command 
the failed channel to write them into the corresponding 
records in its database, similar to the solution proposed in 
[36]. This would be expensive, perhaps to be completed 
off-line, but a designer can use multi-level recovery, in 
which the first step is to correct only those records that 
have been found erroneous on read statements.

3 OUR STUDIES OF BUG REPORTS FOR OFF-THE-
SHELF DBMS PRODUCTS

3.1 Generalities
We use the following terminology. The known bugs for the 
OTS DBMS products are documented in bug report reposi-
tories (i.e. bug databases, mailing lists etc). Each bug report
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contains a description of the bug and a bug script for repro-
ducing the failure (the erroneous behavior that the reporter 
of the bug observed). The bug script may come with indica-
tions on the database states that are preconditions for the 
failure (e.g., in the form of statements to issue for the data-
base to reach one such state), plus the statements (and val-
ues for their parameters) which reproduce the failure. In our 
study we collected these bug reports and ran the bug scripts 
on installations of each of the DBMS products we used (we 
will use the phrase “running a bug” for the sake of brevity). 

What constitutes an individual bug is of course not de-
finable by any a priori rule [37, section 2.2]: people charac-
terize a bug in terms of the apparent mistakes made by the 
developers, of code changes required to fix it, and/or of 
circumstances on which the software fails. We define a 
"demand" as the complete circumstances (i.e. an initial state 
plus a series of statements) that would cause failure. A bug 
report does not necessarily identify the whole set of de-
mands (the "failure region") on which the product fails and 
would no longer fail if the bug were corrected. When run-
ning a bug script, we usually tested all DBMS products on 
at least one demand (the same for all DBMS products in our 
study) mentioned in the bug report, and we listed the bug 
as present in all DBMS products where the demand caused 
a failure. In some cases, we also tested the DBMS products 
with other similar demands - variations of the statements 
and/or parameters specified in a bug script. We did this 
when a bug script did not seem to trigger a failure in the 
DBMS product to which it related, to check whether the 
bug did appear to be present, but the reporter may have 
been imprecise in characterizing the conditions for trigger-
ing it; and when a bug script caused failures in more than 
one DBMS products, to study and compare the “failure re-
gions” identified in the two products, especially to deter-
mine whether they coincide and whether the DBMS prod-
ucts fail identically throughout them.

3.1.1 Reproducibility of Failures 
As mentioned earlier, DBMS products offer features that 
extend the SQL standard, and these extensions differ be-
tween products. Bugs affecting these extensions literally 
cannot exist in a DBMS product that lacks them. We called 
these bugs “dialect-specific”. For example, Interbase bug 
217138 [23] affects the use of the UNION operator in 
VIEWs, which PostgreSQL 7.0 VIEWs do not offer, and thus 
cannot be run in PostgreSQL 7.0: it is a dialect-specific bug.

Another reproducibility issue arises when a bug script 
does not cause failure in the DBMS product for which the 
bug was reported. We called these bugs ‘Unreproduced’ 
bugs. These bugs may be Heisenbugs [20] or bugs reported 
without enough detail for reproducing them. As we men-
tioned, for these bugs we attempted to run more variations 
of the incomplete bug script described in the bug reports. In 
some cases, more complete bug scripts were also posted 
after our collection period or they were reported in a differ-
ent mailing list other than the main bugs’ repository of the 
respective DBMS product. This allowed us to trigger a few 
of the bugs that we had previously considered to be ‘Unre-
produced’ (therefore the statistics we report here differ 
slightly from the preliminary results we reported in [9]).

3.1.2 Classifications of Failures 
We ran each bug first on the DBMS product for which it 
was reported, and then (after translating the script into the 
appropriate SQL dialect[s]) on the other DBMS product[s].  
We classified bugs into Reproduced and Unreproduced 
and into dialect-specific and non-dialect-specific bugs, as 
explained previously, and failures into different categories 
that would require different fault tolerance mechanisms:

Engine Crash failures: a crash or halt of the core engine of 
the DBMS product.

Incorrect Result failures, which are not engine crashes but 
produce incorrect outputs: the results do not conform to the 
DBMS product’s specification or to the SQL standard. 

Performance-related failures. We classified as perform-
ance failures: i) failures that are so classified in bug reports; 
ii) failures observed by us if either the DBMS product 
clearly “hung” or, whatever the observed latency, the bug 
script generated a query plan indicating potential perform-
ance problems, e.g. with an un-utilized column “index” in a 
SELECT statement using that column.

Other failures: e.g. security related failures, such as in-
correct privileges for database objects (tables, views etc.)

We further classified failures according to their detect-
ability by a client of the DBMS products. We already came 
across some of these terms in section 2. In the context of our 
study and with reference to the types of failures defined 
above then the following definitions apply: 

Self-Evident Failure: engine crash failures, internal fail-
ures signaled by DBMS product exceptions (error mes-
sages) or performance failures

Non-Self-Evident Failures: incorrect result failures without 
DBMS product exceptions, with acceptable response time. 

For clients with access to at least two diverse DBMS 
products the failures would be:

Divergent failures: any failures where DBMS products re-
turn different results. All failures affecting only one out of 
two (or at most n-1 out of n) DBMS products are divergent. 
Even if all fail but ‘differently’ the failure will still be diver-
gent.

Non-divergent failures: the ones for which two (or more) 
DBMS products fail with identical symptoms. For some 
bugs, all demands we ran caused non-divergent failures, 
for others only some demands did. In the tables that follow 
we use the labels “non-divergent – all demands” and “non-
divergent – some demands” for these two cases.

All the divergent or self-evident failures are detectable by a 
client of the DBMS products when at least two replicas of 
the database are available, on different DBMS products. 
The remaining failures (non-divergent and non-self-evident) 
are non-detectable.

3.2 The First Study

3.2.1 Bug Reports 
In our first study [9] we used a total of four DBMS prod-
ucts: two commercial (Oracle 8.0.5 and Microsoft SQL 
Server 7, without any service packs applied) and two open-
source ones (PostgreSQL Version 7.0.0 and Interbase Ver-
sion 6.0). Interbase, Oracle and MSSQL were all run on the 
Windows 2000 Professional operating system; PostgreSQL 
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7.0.0 (not available for Windows) was run on RedHat Linux 
6.0 (Hedwig). For the sake of brevity, we will use the fol-
lowing abbreviations: 
- PG 7.0 9 - for PostgreSQL 7.0.0
- IB - for Interbase 6.0 
- OR - for Oracle 8.0.5 
- MS - for Microsoft SQL Server 7 

For each of these DBMS products there is an accessible 
repository of reports of known bugs. We collected the IB 
bugs from SourceForge [38], the PG 7.0 bugs from its mail-
ing list, [39], MS bugs from its service packs site [40] and 
OR bugs from the Oracle Metalink [41].

We only used bugs that caused failure of a DBMS prod-
uct’s core engine. Other bugs, e.g. causing failures of a cli-
ent application tool, various connectivity (JDBC/ODBC 
etc.) or installation-specific bugs were not included in the 
study, because these functions in a future fault-tolerant ar-
chitecture would be provided by the middleware. 

For each reported bug, we attempted to run the corre-
sponding bug script. Full details are available in [23] (and 
also provided as Supplement A).

3.2.2 Detailed Results 
In total, we included in the study 181 bug reports: 55 for 

IB, 57 for PG, 51 for MS and 18 for OR. Out of these 181 
bugs, 70 were dialect-specific (could be run in only one of 
the four DBMS products); 58 could be run in all four DBMS 
products; 26 could be run in only two DBMS products and 
27 in only three DBMS products. Each bug report was 
unique, i.e., none of the bugs were reported for more than 
one DBMS product.

Table 1 contains the results of the first study. The struc-
ture of the table is as follows. Each grey column lists the 

results produced when the bugs reported for a certain 
DBMS product were run on that DBMS product. For exam-
ple, we collected 55 known IB bugs, of which, when run on 
our installation of IB, 8 did not cause failures (Unrepro-

9 For PostgreSQL we also use the release number in the identifier since 
we will report later on results of one of its later releases.

duced). The 47 bugs that caused failures are further classi-
fied in the part of the column below the double horizontal 
line, after the “Failure observed” row. All the performance 
failures and all the DBMS product engine crashes are self-
evident. Incorrect Result failures and “Other” failures can 
be self-evident or non-self-evident, depending on whether 
the DBMS product gives an error message.

To the right of the grey column, three columns present 
the results of running the IB bugs on the other three DBMS 
products. For example, we can see that 24 of the IB bugs 
cannot be run in PG 7.0 (dialect-specific bugs). Out of 55 
Interbase bugs we managed to run 31 in PG 7.0; only one 
caused a failure in both IB and PG 7.0. This particular fail-
ure was a non-self-evident incorrect result, as can be seen 
from the table. Details about the bugs causing coincident 
failures were given in [9]. Three bugs are classified as “Un-
decided Performance”: this means that the bug report indi-
cated a “performance failure” but we could not decide, by 
analyzing the query plan and observed response time, 
whether a performance failure also occurs in PG 7.0.

As for the failure types, we can see that most of the bugs 
for each DBMS product cause Incorrect Result failures. The 
percentage of non-self-evident failures is also high: they 
range from 44% for MS to 66 % for IB. Engine crashes are 
less frequent: they range from 13% for MS to 21.5% for OR. 

3.2.3 Implications for Fault Tolerance: Two-Version 
Combinations 

We now look more closely at the two-version combinations 
of the four different DBMS products in our study. We want 
first to find out how many of the coincident failures are 
detectable (i.e. divergent or self-evident) in the two-version 
systems. Table 2 contains a summary of the results on each 

of the six possible two-version combinations10.

10 Here we only include bugs (reported for any of the four DBMS prod-
ucts) that could be run on both DBMS products, i.e. we exclude dialect-
specific bugs. For instance, Table 2 shows that there were a total of 71 bugs 
that could be run on both IB and PG 7.0. In detail, 31 of these were reported 
for IB and 24 for PG; these two numbers can be deduced from Table 1. The 
remaining 16 were bugs of either OR or MS which could be run on both IB 
and PG 7.0 – these numbers are not directly deducible from Table 1 due to 

TABLE 1. STUDY 1: RESULTS OF RUNNING THE BUG SCRIPTS ON ALL FOUR DBMS PRODUCTS. 
ABBREVIATIONS: IB – INTERBASE 6.0; PG 7.0 - POSTGRESQL 7.0.0; OR – ORACLE 8.0.5; MS – MICROSOFT SQL SERVER 7.

IB
PG
7.0

OR MS
PG 
7.0

IB OR MS OR IB MS
PG
7.0

MS IB OR
PG 
7.0

Total bug scripts 55 55 55 55 57 57 57 57 18 18 18 18 51 51 51 51

Bug script cannot be run (Func-
tionality Missing)

n/a 24 21 17 n/a 33 27 24 n/a 14 14 13 n/a 36 35 31

Total bug scripts run 55 31 34 38 57 24 30 33 18 4 4 5 51 15 16 20

Undecided performance 0 3 3 3 0 0 0 0 0 0 0 1 0 3 4 2
No failure observed 8 27 31 33 5 24 30 31 4 4 4 3 12 11 12 12

Failure observed 47 1 0 2 52 0 0 2 14 0 0 1 39 1 0 6

Poor Performance 3 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0

Engine Crash 7 0 0 0 11 0 0 0 3 0 0 0 5 0 0 0

Self-evident 4 0 0 1 14 0 0 1 3 0 0 0 10 0 0 6Incorrect 
Result Non-self-evident 23 1 0 1 20 0 0 1 7 0 0 1 17 1 0 0

Self-evident 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0

Ty
pe

s 
of

 fa
ilu

re
s

Other
Non-self-evident 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
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Only twelve coincident failures occurred (note that there 
were thirteen bugs that caused failures in a different DBMS 
product than the one for wich they were reported (as de-
tailed in Table 1); one bug (MS bug report 56775) [23], al-
though reported for MS, did not cause failure in MS (Unre-
produced) but did cause failure in PG 7.0); only four of 
these twelve are non-detectable. We can see that diversity 
allows detection of failures for at least 95% of these bugs (41 
out of 43, for the IB+MS pair). Moreover, it would support 
masking and forward recovery (following the self-evident 
failure of a single channel) for a fraction of bugs varying 
between 11/32 (34%) for the IB+OR pair) and 11/18 (61%) 
for the OR+MS pair. More details on these bugs are in [9]
and [23].

3.3 The Second Study

3.3.1 Description of the Study 
To repeat the study on later releases of DBMS products, we 
collected 92 new bug reports for the later releases of the 
open-source DBMS products: PostgreSQL 7.2 and Firebird 
1.011 (abbreviated as PG 7.2 and FB respectively). We ex-
cluded the closed-development DBMS products as the bug 
scripts needed to trigger the faults were missing in most of 
their bug reports. But we still translated the new bug scripts 
of bugs reported for the open-source DBMS products into 
the dialects of the closed-development ones, and ran them 
in the same releases that we used in the first study (Oracle 
8.0.5 and MSSQL 7.0). The results of the second study are 
shown in Table 3 (for full details see [23]). The classifica-
tions of faults and failures are as defined in section 3.1.

Incorrect results are still the most frequent failures. En-
gine crashes are slightly more frequent than in the first 
study but still no more than 22.2%. The number of non-self-
evident failures is lower than in the first study: 35% for PG 
7.2 and 53% in FB. The number of bugs causing coincident 
failures was again low: in the second study we observed a 
total of 5 coincident failures. None of the bugs caused fail-
ures in more than two DBMS products. Full details of the 
coincident failures will be given in section 3.3.3.

some bugs being dialect-specific for one DBMS product but not another; 
they can however be obtained from [23, Table 3]).

11 Firebird is the open-source descendant of Interbase 6.0. The later re-
leases of Interbase are issued as closed-development by Borland. 

3.3.2 Implications for Fault Tolerance: Two-Version 
Combinations 

Table 4 shows the results of the two-version combinations 
of the 4 DBMS products used in the second study. None of 
the bugs caused non-detectable failures for all demands. 
One bug caused a non-detectable failure only for some de-
mands, but is detectable for vast majority of others. Three 
bugs caused self-evident failures in both DBMS products 
and one caused non-self-evident failure in one and self-
evident failure in the other.

So, diversity allows detection of failures for all these 
bugs. It would allow masking and forward recovery (fol-
lowing the self-evident failure of a single channel) for a 
fraction of bugs varying between 11/28 (39%) for the 
FB+MS pair and 12/20 (60%) for the PG 7.2+MS pair.

3.3.3 Common Bugs 
It is interesting to describe in some more detail some of the 
bugs that caused coincident failures, listed in Table 512, and 
speculate about the probable frequency and severity of the 
failure observed.
Arithmetic-related bugs
Firebird bug 926001 [23] causes non-self-evident failure in 
both FB and PG 7.2 when the DBMS product is asked to 
add two values of type Timestamp (a timestamp value con-
tains both date and time information). Due to rounding 
errors, FB always gives a result that is 1 second less than the 
correct result, whereas PG 7.2 adds the dates but not the 
time of the second timestamp value (i.e. it treats the opera-
tion as Timestamp1 + Date2). The failure rate for this bug 
would be highest in applications that require high precision 
arithmetic computations with timestamp datatypes. On 
most demands the erroneous results of the two DBMS 
products would be different: the failure is non-divergent 
only for some (probably rare) demands.

FB bug 926624 [23] causes a crash in both FB and MS. 
The crash is due to a stack overflow from attempting to use 
in the column part of the SELECT statement an arithmetic 
expression longer than: 8000 characters in FB; 2834 charac-
ters in MS. Therefore FB fails for a smaller set of demands 
than MS. The expected correct behavior is for the DBMS 
product to process the statements, or to give an error mes-
sage that warns the user of the maximum limit for an ex-

12 Similar accounts for bugs in Study 1 are in our preliminary report [9].

TABLE 2. STUDY 1: SUMMARY OF RESULTS FOR THE TW O-VERSION COMBINATIONS.
ABBREVIATIONS: S.E. – SELF-EVIDENT FAILURE; N.S.E. - NON-SELF-EVIDENT FAILURE.

One out of two DBMS 
products failing Both DBMS products failing

Non – Divergent Divergent
All Demands Some Demands

Pairs of 
DBMS 

Products

Total 
number 
of bug 
scripts 

run

Bugs 
scripts 
causing 

failure (in at 
least one 

DBMS 
product)

s.e. n.s.e.
s.e. n.s.e. s.e. n.s.e.

1 s.e. &
1 n.s.e.

2 
s.e.

2 
n.s.e.

IB + PG 7.0 71 49 22 26 0 1 0 0 0 0 0
IB + OR 69 32 11 21 0 0 0 0 0 0 0
IB + MS 78 43 17 23 1 2 0 0 0 0 0
PG 7.0 + OR 72 33 16 16 0 0 0 0 0 0 1
PG 7.0 + MS 85 48 20 21 0 1 0 0 3 3 0
OR + MS 80 18 11 7 0 0 0 0 0 0 0

Part Arch - APPENDIX  [Gashi et al. 2006] p 8



9

pression length. The failure rate for this bug would proba-
bly be low for most installations, as SELECT statements 
would seldom contain such long arithmetic expressions.
Miscellaneous bugs
FB bug 910423 [23] causes failure in both FB and MS. Fig. 2 
shows the demands for which they fail. The failure consists 
in allowing the datatype of a table column to be changed 
from integer to string even when the string type is specified 
to be shorter than needed to hold the data already stored in 
the column. The expected correct behavior is for the DBMS 
product to refuse (with an error message) to change the 
datatype of either any column that already contains data, or 
at least those containing data that wouldn’t fit in the new 
length specified. If a client later tries to read the column 
affected, the two DBMS products react differently: FB re-
sponds with an error message (self-evident failure), while 
MS returns a ‘*’ symbol. We have therefore classified the 
failure as divergent. As shown, MS actually fails on a su-
perset of the demands on which FB does. It is difficult to 
conjecture how often applications change the datatypes of 

columns and hence the likely failure rates for this bug. The 
severity of this failure is different in the two DBMS prod-
ucts. FB does not lose the data stored in the column: if you 
just change the type again to a long enough string (≥10 in 
the example above) then the data can again be read. MS 
instead truncates the data item to the new length set, so that 
it is irremediably lost.

PG 7.2 bug 847 [23] causes failure in both PG 7.2 and MS. 
PG 7.2 allows the creation of exceptions that return a mes-
sage longer than 4000 characters, but then crashes if the 
exception is raised. The correct behavior is for a DBMS 
product to give an error message once its maximum length 
for exception messages is reached: either at exception defi-
nition or when attempting to raise the exception. The same 
problem occurs in MS, but the threshold message length is 
even smaller (440 characters), and thus failures would be 
more frequent. 

The PG 7.2 bug reported on 16 May 2003 (with no ID in 
the PG 7.2 mailing list [23]) activates an error message in 
PG 7.2 and FB, although no error exists. The bug script is:

CREATE TABLE TEST2 (V1 INT, V2 INT, CONSTRAINT 
UQ_TEST UNIQUE (V1,V2));
INSERT INTO TEST2 VALUES (0,0);
INSERT INTO TEST2 VALUES (0,1);
INSERT INTO TEST2 VALUES (0,2);
UPDATE TEST2 SET V2=V2+2;
Violation of PRIMARY or UNIQUE KEY constraint 
"UQ_TEST" on table "TEST2"

The UPDATE statement in this script changes the con-
tents of the database during intermediate steps so as to vio-

TABLE 3. STUDY 2: RESULTS OF RUNNING THE BUG SCRIPTS OF FB AND PG ON ALL FOUR DBMS PRODUCTS. 
ABBREVIATIONS: FB – FIREBIRD 1.0; PG 7.2 - POSTGRESQL 7.2; OR – ORACLE 8.0.5; MS – MICROSOFT SQL SERVER 7.

FB PG 7.2 OR MS PG 7.2 FB OR MS

Total bug scripts 43 43 43 43 49 49 49 49

Bug script cannot be run (Functionality Missing) n/a 12 15 13 n/a 29 29 30
Total bug scripts run 43 31 28 30 49 20 20 19

Undecided performance 0 1 2 1 0 2 2 0
No failure observed 4 29 26 27 4 17 18 18
Failure observed 39 1 0 2 45 1 0 1

Poor Performance 4 0 0 0 5 0 0 0

Engine Crash 6 0 0 1 10 0 0 1
Self-evident 7 0 0 0 13 1 0 0

Incorrect Result
Non-self-evident 20 1 0 1 15 0 0 0

Self-evident 1 0 0 0 1 0 0 0

Ty
pe

s 
of

 fa
ilu

re
s

Other
Non-self-evident 1 0 0 0 1 0 0 0

TABLE 4. STUDY 2: SUMMARY OF RESULTS  FOR THE TW O-VERSION COMBINATIONS. 
ABBREVIATIONS: S.E. – SELF-EVIDENT FAILURE; N.S.E. - NON-SELF-EVIDENT FAILURE.

One out of two 
DBMS products 

failing
Both DBMS products failing

Non – Divergent Divergent

All Demands Some 
Demands

Pairs of 
DBMS 

Products

Total 
number 
of bug 
scripts 

run

Bugs 
scripts 
causing 

failure (in 
at least 

one DBMS 
product)

s.e. n.s.e.

s.e. n.s.e. s.e. n.s.e.

1 s.e. &
1 n.s.e.

2 
s.e.

2 
n.s.e.

FB + PG 7.2 51 47 26 19 1 0 0 1 0 0 0
FB + OR 46 25 10 15 0 0 0 0 0 0 0
FB + MS 46 28 11 15 0 0 1 0 1 0 0
PG 7.2 + OR 47 21 13 8 0 0 0 0 0 0 0
PG 7.2 + MS 47 20 12 7 0 0 1 0 0 0 0

TABLE 5. BUGS THAT CAUSE COINCIDENT FAILURES 

On which additional DBMS product was failure ob-
served?

FB PG OR MS

FB N/A 1 - (Bug 
ID 926001) 0 2– (BugIDs 

910423, 926624)

Fo
r w

hi
ch

 D
B

M
S 

pr
od

uc
t w

as
 th

e 
bu

g 
re

po
rt

ed
?

PG
1 (Bug 

report date 
16/05/2003)

N/A 0 1 – (BugID 847)
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late the UNIQUE CONSTRAINT13 although the final state 
does not violate it. OR and MS correctly execute the script 
without error messages; PG 7.2 and FB do the UNIQUE 
CONSTRAINT checks at intermediate states (in this case 
after each row is updated), which causes the exception to be 
raised. The failure is not specific to this bug script. It can be 
triggered with any UNIQUE CONSTRAINT on integer, real 
or float datatypes affecting multiple columns, whenever an 
update is attempted that will (at an intermediate step dur-
ing the execution) set a value of a row to that of an existing 
row in the table, although at the end of the execution of the 
statement no violations would be present. On every set of 
parameter values that we tried, either both DBMS products 
failed or neither did. The failure rate for this bug is ex-
pected to be relatively high in update-intensive applications 
if UNIQUE CONSTRAINT is used on multiple columns.

3.4 Newer vs. Older Releases (Open-Source DBMS 
Products) 

We now look more closely at those DBMS products that 
were used in both studies (i.e. the two open-source prod-
ucts). We ran all the new bugs reported for the newer re-
leases on the older releases, to check how many already 
existed there. The results are in the leftmost eight columns 
of Table 6 (full details are in [23]).

The structure of the table is the same as that of Table 1
and Table 3. We can see that 33 bugs reported for FB also 
cause failure in the older release IB. Of the six that do not 
cause failures in IB, four were Unreproduced in FB. So only 
2 bugs that caused failure in FB (the new release) appear to 
be new bugs, introduced in functionalities that used to 
work correctly. The reason for the little difference that we 
see in running the bugs of FB in IB could be that FB 1.0 was 
mainly a bug fix release, with no major enhancements, 
which probably also reduced the number of potential new 
problems that could be introduced.

The situation is different for PG 7.2, which featured 
many more enhancements, for example the support for 
OUTER JOINS in SELECT statements. We can see that 13 of 
the bugs reported for PG 7.2 cannot be reproduced at all in 
the older release (they affect newly added functionality) 
and, more importantly, 17 of the bugs do not cause failures

13 A UNIQUE CONSTRAINT means that within a set of columns no two 
values for different rows must be equal.

in the older release (2 of these bugs are Unreproduced in 
both releases). This means that the development of the 
newer release introduced many bugs in functionality that 
used to work correctly in the old release.

We also ran the old bugs in the new releases of the 
DBMS products to see how many were fixed. The results 
are given in the rightmost eight columns of Table 6 (full 
details are in [23]).

More PG 7.0 bugs were fixed in PG 7.2 than the number 
of bugs reported for IB that were fixed in FB. This may add 
an additional explanation to the results of the first half of 
Table 6, where we saw that some of the existing functional-
ity of PG 7.0 had been “broken” by the attempted fixes in 
PG 7.2: there were more fixes integrated in this release, so 
the probability of breaking the existing functionality was 
also higher.

3.4.1 Implications for Fault Tolerance: The Open-Source 
Two-Version Combinations 

Table 7 shows the results for all the bugs, from both studies, 
that could be run on the various open-source combinations.

The first two rows concern the pairs of different releases 
of the same DBMS product. For PostgreSQL we can see out 
of 93 bugs that caused failure in at least one of the releases 
7.0 or 7.2 only 35 cause failures in both; 58 bugs cause fail-
ures in only one of the releases. So, using diverse releases of 
the same DBMS product in a fault-tolerant configuration, as 
discussed in Section 2, does provide some protection 
against upgrade problems and can help to assure higher 
dependability. However there are still many bugs causing 
failures in both releases of the same DBMS product:
- 57 in Interbase/Firebird
- 35 in PostgreSQL. 
This can be compared with the four DBMS product pairs 
using different DBMS products (last four rows in Table 7), 
where we get at most 2 bugs that cause coincident failures. 
This is because:  
- The IB 6.0 bug 223512(2) [23], which caused non-

divergent coincident failure in IB 6.0 and PG 7.0, has been 
fixed in the newer releases of both DBMS products. 

- The FB 1.0 bug 926001 [23], which causes coincident fail-
ure in the new releases FB 1.0 and PG 7.2, did not cause a 
failure in IB 6.0 and cannot be run in PG 7.0 (dialect-
specific).
The main conclusion is to confirm the high level of fault 

diversity between these DBMS products, and thus potential 
advantages of a diverse redundant fault-tolerant server. 
Using different releases of the same DBMS product would 
also achieve dependability gains, but these still seem no-
where near as high as the gains that can be achieved by 
using diverse DBMS products.

4. DISCUSSION

The results presented in section 3 are intriguing and sug-
gest that assembling a fault-tolerant database server from 
two or more of these OTS DBMS products could yield large 
dependability gains. But they are not definitive evidence. 
Apart from the sampling difficulties caused e.g. by lack of 
certain bug scripts, it is important to clarify to what extent 

Fig. 2. FB bug 910423: demands on which MS fails (light grey shaded 
boxes) and demands for which both FB and MS fail (dark grey).
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our observations allow us to predict such gains. We gave a 
detailed discussion of the difficulties in [9, section 5]. In
summary:
- the reports available concern bugs, not how many failures

each caused. They do not tell us whether a bug has a large 
or a small effect on reliability, although the unknown 
faults – those that have not yet caused failures – would 
tend to have stochastically lower effect on reliability than 
those that did cause failures. A better analysis would be 
obtained from the actual failure reports (including failure 
counts), if available to the vendors. However, vendors are 
often wary of sharing such detailed dependability infor-
mation with their customers.

- less than 100% of the failures that occur, and thus also of 
the bugs causing them, are reported. However, blatant 
failures are more likely to be reported than subtle (argua-
bly more dangerous) failures. Therefore failure underre-
porting probably causes a bias towards underestimating 
the frequency of these subtler failures for which diversity 
would help.

- an organization needs to predict the dependability of its 
specific installation[s] of a diverse server, compared to a 
single DBMS product, which depends on the organiza-
tion’s (or each specific installation’s) usage profile, which 

differs – perhaps markedly – from the aggregate profile of 
the user population which generated the bug reports.
How can then individual user organizations decide 

whether diversity is a suitable option for them, with their 
specific requirements and usage profiles? As usual for de-
pendability-enhancing measures, the cost is reasonably 
easy to assess: costs of the DBMS products, the required 
middleware, difficulties with client applications that re-
quire vendor-specific features, hardware costs, run-time 
cost of the synchronization and consistency enforcing 
mechanisms, and possibly more complex recovery after 
some failures. The gains in improved reliability and avail-
ability (fewer system failures and easier recovery from 
some failures, to be set against possible extra failures due to 
the added middleware), and possibly less frequent up-
grades, are difficult to predict except empirically. In such 
cases using ballpark figures may provide useful guidelines: 
there are studies that suggest that the “Total Cost of Own-
ership” may exceed the initial investment by more than one 
order of magnitude, and the cost of recovery from failures 
is a major part of this [42]. This uncertainty will be com-
pounded, for many user organizations, by the lack of 
trustworthy estimates of their baseline reliability with re-
spect to subtle failures: databases are used with implicit 

TABLE 6. THE RESULTS OF RUNNING THE NEW SCRIPTS REPORTED FOR FB AND PG 7.2 ON THE OLDER RELEASES (IB AND PG 7.0 
RESPECTIVELY) AND THE BUGS REPORTED FOR THE OLD RELEASES ON THE NEW ONES

ABBREVIATIONS: FB – FIREBIRD 1.0; IB – INTERBASE 6.0; PG 7.0 - POSTGRESQL 7.0.0; PG 7.2 - POSTGRESQL 7.2.

FB IB
PG 
7.2

PG 
7.0

PG 
7.2

PG 
7.0

FB IB IB FB PG 
7.0

PG 
7.2

PG 
7.0

PG 
7.2 IB FB

Total bug scripts 43 43 43 43 49 49 49 49 55 55 55 55 57 57 57 57

Bug script cannot be run (Function-
ality Missing)

n/a 4 12 26 n/a 13 29 29 n/a n/a 24 21 n/a n/a 33 33

Total bug scripts run 43 39 31 17 49 36 20 20 55 55 31 34 57 57 24 24

Undecided performance 0 0 1 1 0 0 2 2 0 0 3 3 0 0 0 0

No failure observed 4 6 29 16 4 17 17 17 8 33 27 31 5 40 24 24

Failure observed 39 33 1 0 45 19 1 1 47 22 1 0 52 17 0 0

Poor Performance 4 3 0 0 5 1 0 0 3 2 0 0 0 0 0 0

Engine Crash 6 6 0 0 10 3 0 0 7 2 0 0 11 2 0 0

Self-evident 7 6 0 0 13 8 1 1 4 2 0 0 14 6 0 0Incorrect 
Result Non-self-evident 20 16 1 0 15 5 0 0 23 10 1 0 20 5 0 0

Self-evident 1 1 0 0 1 1 0 0 2 2 0 0 2 0 0 0

Ty
pe

s 
of

 fa
ilu

re
s

Other
Non-self-evident 1 1 0 0 1 1 0 0 8 4 0 0 5 4 0 0

TABLE 7. SUMMARY OF THE RESULTS OF BOTH STUDIES FOR OPEN-SOURCE TW O-VERSION COMBINATIONS
(ABBREVIATIONS: S.E. – SELF-EVIDENT FAILURE; N.S.E.- NON-SELF-EVIDENT FAILURE)

One out of two 
DBMS products 

failing
Both DBMS products failing

Non – Divergent Divergent

All Demands Some 
Demands

Pairs of 
DBMS prod-

ucts

Total 
number 
of bug 
scripts 

run

Bugs scripts 
causing fail-

ure (in at 
least one 

DBMS prod-
uct)

s.e. n.s.e.

s.e. n.s.e. s.e. n.s.e.

1 s.e. &
1 n.s.e.

2 
s.e.

2 
n.s.e.

FB 1.0 + IB 6.0 157 84 8 19 24 33 0 0 0 0 0
PG 7.2 + PG 7.0 164 93 33 25 20 15 0 0 0 0 0
FB 1.0 + PG 7.2 127 65 33 30 1 0 0 1 0 0 0
FB 1.0 + PG 7.0 106 65 34 30 1 0 0 0 0 0 0
IB 6.0 + PG 7.2 127 79 37 41 1 0 0 0 0 0 0
IB 6.0 + PG 7.0 106 77 39 37 0 1 0 0 0 0 0
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confidence that failures will be self-evident. 
Despite all these uncertainties, for some users our evi-

dence already means that a diverse server is a reasonable 
and relatively cheap precautionary choice, even without 
good predictions of its effects. These are users who have: 
serious concerns about dependability (e.g., high costs for 
interruptions of service or for undetected incorrect data 
being stored); applications which use mostly the core fea-
tures common to multiple off-the-shelf DBMS products 
(recommended by practitioners to improve portability of 
the applications); modest throughput requirements for 
write statements, which make it easy to accept the synchro-
nization delays of a fault-tolerant diverse server.

5. RELATED WORK

5.1 Fault Tolerance in Databases
Software fault tolerance has been thoroughly studied and 
successfully applied in many sectors, including databases. 
We already mentioned standard database mechanisms such 
as transaction “rollback and retry” and “checkpointing” 
which can be used to tolerate faults that are due to transient 
conditions. These techniques can be used with or without 
data replication in the databases. Data replication [13], [14], 
[10] solutions offered by OTS DBMS product vendors and 
their shortcomings were discussed at length in section 2.

5.2 Interoperability Between Databases
Due to the incompatibilities between the SQL “dialects” of 
different DBMS products we emphasized the need for SQL 
translators in the middleware of a diverse fault-tolerant 
server. Similar ideas have been applied for increasing the 
interoperability between the DBMS products [43], [44]: the 
grammar of a DBMS product is re-defined to make it com-
patible with that of another DBMS product, while keeping 
the core DBMS product engine unchanged. 

Another solution which allows diverse replication (albeit 
with a minimal subset of SQL) is C-JDBC [45].

5.3 Empirical Studies of Faults and Failures
The usefulness of diversity depends on the frequency of 
those failures that cannot be tolerated without it. There 
have been comparatively few studies. 

Gray studied the TANDEM NonStop system (with non-
diverse replication) [20]. Over the (unspecified) measure-
ment period, 131 out of 132 faults were “Heisenbugs” and 
thus tolerated. A later study of field software failures for 
the Tandem Guardian90 operating system [46] found that 
82 % of the reported failures were tolerated. However, the 
others caused failure of both non-diverse processes in a 
Tandem process, and thus system failure.

Other related studies concern the determinism and fail-
stop properties of database failures, but, like our study, 
they concern faults rather than failure measurements. A 
study [47] examined fault reports of three applications 
(Apache Web server, GNOME and MySQL DBMS product). 
Only a small fraction of the faults (5-14%) were Heisenbugs 
triggered by transient conditions, that would be tolerated 
by simple rollback retry. However, as the authors point out, 
the reason why they, like us, found few Heisenbugs, might 

be that people are less likely to report faults that they can-
not reproduce. Using fault injection the same authors also 
found [48] that a significant number of their injected faults 
(7%) violated the fail-stop model by writing incorrect data 
to stable storage. Although this fell to 2% when using the 
Postgres95 transaction mechanism, 2% is still high for ap-
plications with stringent reliability requirements.

5.4 Diversity with Off-The-Shelf Applications
Several research projects have addressed architectures sup-
porting software fault tolerance for OTS software. Some 
have as their main aim intrusion tolerance, e.g.: HACQIT 
[49], which demonstrated diverse replication (with two 
OTS web servers - Microsoft’s IIS and Apache) to detect 
failures (especially maliciously caused ones) and initiate 
recovery; SITAR [50], an intrusion-tolerant architecture for 
distributed services and especially COTS servers; the Cac-
tus architecture [3], intended to enhance survivability of 
applications which support diversity among application 
modules; DIT [51], an intrusion-tolerant architecture using 
diversity at several levels (hardware platform, operating 
system platform, and web servers); the MAFTIA [52] pro-
ject delivered a reference architecture and supporting 
mechanisms. Others target fault tolerance against mainly 
accidental faults, e.g.: the BASE approach [53] focuses on 
supporting state recovery for diverse replicas of compo-
nents via a common abstract specification of a common 
abstract state, the initial state value and the behavior of 
each component; the GUARDS [54] and Chameleon [55]
architectures aim at supporting multiple application-
transparent fault tolerance strategies using COTS hardware 
and software components.

In another example (Macromedia JRun) [56], uses di-
verse Java virtual machines for dealing with interoperabil-
ity problems rather than for tolerating failures.

6. CONCLUSIONS
We have reported two studies with samples of bug reports 
for four popular off-the-shelf SQL DBMS products, plus 
later releases of two of them. We checked for bugs that 
would cause common-mode failures if the products were 
used in a diverse redundant architecture: such common 
bugs are rare. For most bugs, failures would be detected 
(and may be masked) by a simple two-diverse configura-
tion using different DBMS products. In summary:
- out of the 273 bug scripts run in both our studies, we 

found very few bug scripts that affected two DBMS prod-
ucts and none that affected more than two. 

- only five of these bug scripts caused identical, non-
detectable failures in two DBMS products; of these five, 
one caused non-detectable failures on only a few among 
the demands affected.
The results of the second study, on later releases of the 

same products, substantially confirmed the general conclu-
sions of the first study: one may conclude that the factors 
that make diversity useful do not disappear as the DBMS 
products evolve. 

Using successive releases of the same product for fault 
tolerance also appeared useful, although less so. We found 
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a high level of fault diversity between successive releases of 
PostgreSQL: most of the old bugs had been fixed in the new 
release; many of the newly reported bugs did not cause 
failure (or could not be run at all) in the old release.

These results must be taken with caution, as discussed in 
section 4, and their immediate implications vary between 
users, but for some classes of DBMS product installations 
diversity could already be recommended as a prudent and 
cost-effective strategy. The topic of diversity with OTS 
software certainly deserves further study.

The need for middleware is an obstacle for users wishing 
to try out diversity in their applications (rudimentary solu-
tions such as C-JDBC [45] only allow for the use of a mini-
mal subset of SQL with diverse DBMS products). But our 
results provide a good business case for implementing the 
required middleware software.

The performance penalty due to controlling concurrency 
via the middleware would be a problem with write-
intensive loads, but not if concurrent updates are rare [57].

Some other interesting observations include:
- there is strong evidence against the fail-stop failure as-

sumption for DBMS products. The majority of bugs re-
ported, for all products, led to “incorrect result” failures 
rather than crashes (64.5% vs 17.1% in our first study; 
65.5% vs 19% in the second), despite crashes being more 
obvious to the user. Even though these are bug reports 
and not failure reports, this evidence goes against the 
common assumption that the majority of failures are en-
gine crashes, and warrants more attention by users to 
fault-tolerant solutions, and by designers of fault-tolerant 
solutions to tolerating subtle and non fail-silent failures;
- it may be worthwhile for vendors to test their DBMS 

products using the known bug reports for other DBMS 
products. For example, in the first study we observed 4 
MSSQL bugs that had not been reported in the MSSQL 
service packs (previous to our observation period). Oracle 
was the only DBMS product that never failed when run-
ning on it the reported bugs of the other DBMS products; 

Future work that is desirable includes:
- statistical testing of the DBMS products to assess the ac-

tual reliability gains from diversity. We have run a few 
million queries with various loads, including ones based 
on the TPC-C benchmark, observing no failures (however, 
we found a significant potential for performance gain 
from using diverse servers [19], [57]). These results may 
not be particularly surprising, since these benchmarks use 
a limited set of well-exercised features of SQL servers. It 
would be interesting to repeat the tests with test loads 
that do not suffer from this limitation. However, these 
studies are likely to be most useful with reference to spe-
cific application environments for which the operational 
profile can be reasonably well approximated;
- developing the necessary middleware components for 

users to be able to try out data replication with diverse 
servers in their own installations. Lack of these compo-
nents is the main practical obstacle in the way of the 
adoption and practical evaluation of these solutions. 
There are signs that some DBMS product vendors may 
also help with this problem: EnterpriseDB [43] and Fyra-
cle [44] are Oracle-mode implementations based on Post-

greSQL and Firebird DBMS engines, respectively. With 
these solutions the problem with SQL dialects is signifi-
cantly reduced. 
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Abstract

Due to the increasing need of highly dependable services in Service-Oriented Ar-
chitectures (SOA), service-level agreements include more and more frequently such
traditional aspects as security, safety, availability, reliability, etc. Whenever a ser-
vice can no longer be provided with the required QoS, the service requester need
to switch dynamically to a new service having adequate service parameters. In the
current paper, we propose a metamodel to capture such parameters required for
reliable messaging in services in a semi-formal way (as an extension to [1]). Fur-
thermore, we incorporate fault-tolerant algorithms into appropriate reconfiguration
mechanisms for modeling reliable message delivery by graph transformation rules.

Key words: Service Oriented Architecture, Graph
Transformation, Reliable Messaging,

1 Introduction

Service-Oriented Architectures (SOA) provide a flexible and dynamic plat-
form for implementing business services. The main business-level driver of
the SOA paradigm is componentization, which raises the level of abstraction
from objects to services in the design process of distributed applications. The
main architectural-level driver of the SOA paradigm is to provide a common
middleware framework for dynamic discovery, interaction and reconfiguration
of service components independently of the actual business environment.

Due to the increasing need of highly dependable services, service-level
agreements include more and more frequently such traditional (non-functional)
aspects as security, safety, availability, reliability, etc. The general idea is that
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whenever a service can no longer be provided with the required QoS, the ser-
vice requester needs to switch dynamically to a new service having adequate
service parameters.

In an ideal scenario of using service-level agreements, designers only specify
the requirements for a specific service, and reconfigurations aiming to maintain
the required QoS parameters are handled automatically by the underlying ser-
vice middleware platform. Therefore, the service requestor does not need to be
adapted explicitly (i.e. on the code level) to the evolution of the environment.

Recently, the identification of non-functional parameters of services have
been addressed by various XML-based standards related to web services (such
as WS-Reliable Messaging, WS-Reliable Messaging Policies, etc.). A focal
topic in many of these standards is related to reliable messaging between ser-
vices, where the delivery of a message can be guaranteed by the underlying
platform by appropriate reconfiguration mechanisms. In contrast to the speci-
fication of these reliability service properties, currently only very experimental
solutions exist in the industry (such as RAMP-Toolkit [13] by IBM or RM4GS
[14] by a consortium led by Fujitsu-Siemens, Hitachi and NEC) that actually
implement these reconfigurations in order to maintain the required level of
reliability.

In the paper, we facilitate the use of a precise model-based approach for
the development of high-level, reconfiguration mechanisms required for reli-
able messaging in the underlying service middleware. Our long term goal is
automatically derive implementations of reliable messaging on various exist-
ing platforms based directly upon provenly correct dynamic reconfiguration
mechanisms.

In the current paper, we conceptually follow [1] where a semi-formal platform-
independent and a SOA-specific metamodel (ontology) was developed to cap-
ture service architectures on various levels of abstraction in a model-driven
service development process. Furthermore, reconfigurations for service pub-
lishing, querying and binding were captured by graph transformation rules
[4], which provide a formal, rule and pattern-based specification formalism
widely used in various application areas. This combination of metamodeling
and graph transformation rules fits well to a model-based development process
for service middleware.

This paper extends the core metamodel defined in [1] (and overviewed
in Sec.3) by a new package for reliable messaging (Sec. 4.2). Moreover, we
provide new reconfiguration primitives for reliable message delivery in the
form of graph transformation rules (Sec. 5.2) by integrating dependability
techniques [10].

2
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2 Service Reconfigurations for Reliable Messaging: An
Overview

Our overall research objectives towards provenly correct service reconfigura-
tions for reliable messaging follows the SENSORIA approach [16], and it is
sketched in Fig. 1.

Fig. 1. Towards Provenly Correct Service Reconfigurations for Reliable Messaging

• A dependability extension of the core SOA metamodel will be developed
which is synthesized from existing standards related to web services and
other application areas. The current paper provides a first step towards
this by focusing on service parameters for reliable messaging.

• High-level reconfiguration primitives will be defined to capture dependable
services in the form of graph transformation rules by integrating traditional
fault-tolerance techniques into SOA. In the current paper, basic reconfigu-
ration steps are identified for providing reliable messaging between services.

• Formal analysis will be carried out in order to justify the correctness of
reconfigurations.

• A new kind of virtual machine (called a global computer) is envisaged with
a special instruction set tailored to dependable service reconfigurations.

• Finally, this instruction set will be mapped to existing technologies dedicated
to the development of reliable web services (such as RAMP [13] or RM4GS
[14])

3 Core SOA Metamodel

To illustrate the problem domain with a small but practical example, the case
study of a course management system is introduced.

Let us consider a university where the students can perform their admin-
istrative tasks (for instance, signing for courses and exams) online. Hereby

3
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Gönczy, Varró

we model the exam management service within this course management sys-
tem. The exam management component offers services to students, teachers
and other employees of the university like the administrative staff. Students
can sign up for or cancel an exam while teachers can submit the result of the
exams. Administrative staff can perform queries against the exam database
(for instance, to retrieve the course with the highest failure ratio).

The main architectural concepts of the domain of service-oriented architec-
tures are captured by a corresponding metamodel. The metamodel of ”core”
SOA functionality is shown in Fig. 2. It is based on the metamodel presented
in [1], with a minor modification of merging both the structural and dynamic
aspects into a single package.

Fig. 2. Core metamodel of SOA

The core model to service-oriented architectures consists of the following
elements:

• A component is a basic ”module” in the system which provides a service.
In the online course management system, for instance, ExamAdministration,
ExamRegistration , ExamQuery will be such components.

• A service is a set of well-defined functionality. In our case, there will be three
services: ExamAdministrationService for educational staff to create new ex-
ams, set the parameters of exams (such as date, limit, etc.) and to upload
the results of the exams; ExamRegistrationService for students to register
themselves to exams (and to cancel registrations, if necessary) and Exam-
Query for the administrative staff to retrieve statistics on exams.These will
be provided by the three components, respectively.

• A port is the communication ”endpoint” of the service, with a set of abstract

4
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operations and messages. For instance, ExamRegistrationPort is the interface
of ExamRegistrationService.

• A connection denotes a bidirectional channel between two ports at run-time.

• An operation is an ”atomic” action with input and output messages. There
can be multiple operations defined on the same port. SignUp is an operation,
defined on ExamRegistrationPort.

• A message is a set of parameters with pre-defined types. For instance,
ExamDescription message may have parameters like studentName, examId,
etc. The abstract message class is refined into the following subtypes of
messages: response, request, service publication, query and query result.

• A service description is a descriptor file containing all necessary information
about the runtime cooperation with the service, such as description of port,
operations, messages, etc.

4 Extensions for Reliable Messaging in Web Services

4.1 Non-functional Requirements in Existing Web Service Technologies

Although there exist some initiatives to define the so-called ”non-functional”
properties of services, such as Web Services Modeling Ontology [18], W3C
Web Services Architecture [17], DublinCore Metadata for ServiceDiscovery
[3], the terminology is still ambiguous.

To illustrate the modeling of non-functional properties by a practical and
simple example, hereby we present a model-based reconfiguration for reliable
messaging to tolerate communication faults. As the consumers of the Web
services are not aware of the details of underlying network protocol, the se-
mantics of the message delivery has to be specified at the application level as
requirements for reliable messaging. This needs a platform-independent rep-
resentation of message attributes, which is reflected by a number of emerging
standards, such as [20] and [19], which are converging to each other [21]. Some
reference implementations for popular application servers like IBM WebSphere
or Apache Tomcat are available.

These industrial standards and initiatives usually suppose that the ser-
vice provide signs a contract with each client about the Quality of Service,
measured in terms such as average response time, minimal throughput, type
of message delivery, etc. These contracts are typically identical for classes of
similar clients (roles), for instance, Golden User, Business Partner, Individual
Customer, etc. The runtime service instances send their messages according to
these contracts, and the additional information, regarding these non-functional
aspects, is hidden from the application layer, so that the modification of the
original clients on the consumers’ side is not necessary. The additional infor-
mation is handled by components aware of reliability attributes, called ”Re-
liable Message Endpoints”. Technologically speaking, the header of SOAP

5
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envelopes is extended with some attributes by a ”Reliable Message Endpoint”
on the provider’s side, which are then removed from the messages by another
”Reliable Message Endpoint” at the client side. Since the concrete format
of these attributes in message headers is out of our scope, here we model an
abstract description, which, however, will be mapped to existing technologies
using model transformation techniques in the future.

4.2 Metamodel extensions for reliable messaging in services

Now we extend the core SOA metamodel of [1] to capture properties of reliable
messaging between services. After enriching the domain metamodel, our long
term goal is to define a corresponding UML profile to provide extensions to the
UML language tailored to a specific application domain by introducing domain
concepts, attributes and relations in the form of stereotypes and tagged values.
However, the current paper only focuses on designing extensions for reliable
messaging in the SOA metamodel.

In the current paper, we first derive a subclass from SOA element in the
reliable SOA metamodel, and then create an association from the child class
(e.g. RelMsgEnvelope) to the parent class (e.g. Message) in addition. As
a result, original SOA reconfiguration rules defined in [1] are still applicable
with the extensions for the reliable messaging metamodel, thus we can handled
messaging between services on the communication level in the same way as
before. Furthermore, the original messages are kept but wrapped into an
envelope by introducing a new association.

The extensions of the SOA metamodel for reliable messaging is presented
in Fig. 3:

Fig. 3. Metamodel of Reliability Extensions

• RelMsgSpecification is a class for specifying the requirements for reliable
messaging between SOA services (see association specOf).
· Attribute needsAck is a boolean value to express if an acknowledgement

should be sent to a message. If an acknowledgement arrives to the sender
for a message, then it is guaranteed that the message is sent at least once.

· Attribute filterDuplicates is a boolean value to express that a message
should be accepted and processed by the receiver at most once.

6
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· Attribute timeout is a timer constraint which specifies how much does the
sender waits for the acknowledgement of a message before retransmission.

· Attribute maxNumberOfRetrans is an integer which puts an upper limit
how many times a message can be retransmitted by the sender due to the
lack of acknowledgement from the receiver.

• RelMsgEnvelope is a subclass of core SOA Message which serves as an enve-
lope for wrapping up the real message to be sent (wraps).
· Attribute numberOfRetrans is a serial number for the envelope which is

increased by one each time the same message is retransmitted.
· Attribute timeElapsed denotes the time elapsed since the (last) transmis-

sion of a message.

• Acknowledgement is a subclass of core SOA Message which denotes an ac-
knowledgement sent in response to a message.

As this extension reflects to existing standards, implementations of models can
be derived following the Model Driven Architecture (MDA, [12]) approach.
Runtime values of attributes will be generated from XML descriptors. The
automated generation of XML descriptors from high level models is part of
our future research.

In the course management application, let us consider the scenario of sign-
ing up for an exam. The two communicating components are ClientApp and
ExamRegistration. The client signs up for a particular exam by sending a mes-
sage to the instance port of ExamRegistrationProviderPT port type. This op-
eration needs an ExactlyOnce messaging semantics, denoted by the attributes
of the reliability specification of the message. Fig. 4 shows the relevant part
of the instance graph of the system.

Fig. 4. Instance graph of the exam management system

Message sending operation will be executed by the application of transfor-
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mations on the instance graph as described in Sect. 5.

5 Reconfiguration for Reliable SOA Messaging by Graph
Transformation

We now propose to describe the reconfiguration mechanisms of reliable SOA
messaging by graph transformation rules (conceptually following the approach
presented in [1]).

5.1 Overview of graph transformation

A main benefit of using graph transformations as a formal specification paradigm
for capturing reconfiguration rules is that they are visual, intuitive, therefore
they can be understood by service engineers as well. The interested reader
may find a detailed theoretical discussion of graph transformation in [4], here
we present just a brief overview on it.

Furthermore, graph transformation allows dynamic metamodeling [7] in a
certain domain. The high-level (ontological) concepts are visualized as UML
class diagrams while graph patterns are considered to be UML object dia-
grams to express that concrete models are instances (objects) of the meta-
model (classes). This combines the advantage of precise modeling and visual
design, as the ontology ”behind” the class diagram defines the semantics of the
model, while the graph transformation rules, interpreted on concrete model
instances, can be designed visually by existing graph transformation tools.

A graph transformation rule consists of a Left Hand Side (LHS), a Right
Hand Side (RHS) and optionally a Negative Application Condition (NAC).
The LHS is a graph pattern consisting of the mandatory elements which pre-
scribes a precondition for the application of the rule. The RHS is a graph
pattern containing all elements which should be present after the application
of the rule. Elements in the RHS ∩ LHS are unchanged after the execution
of the transformation, elements in LHS \ RHS are deleted while elements in
RHS \ LHS are newly created by the rule. The fulfillment of the negative
condition prevents the rule from being executed on the particular matching.
Furthermore, graph transformation rules frequently allow the use of attribute
conditions (constraints) which restrict attributes of the matched nodes, and
attribute assignments, which may describe the updates of certain attributes
as a result of rule application. Hereby we follow the Double Pushout (DPO)
approach [4] for the semantics of graph transformation.

A Graph Transformation System, GTS consists of a graph instance and
the transformation rules. The execution of a GTS is nondeterministic, since
the next rule to be applied and the matching on which a rule is applied is not
restricted (by default) by additional control information.

In this paper, we use a compact visualization of graph transformation rules
(first introduced in the Fujaba framework [6]), when the entire rule is merged

8
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into a single pattern. Newly created elements are denoted by {new} and by
slashed lines while deleted elements have a grey background and a {deleted}
tag. Elements in the subset of the LHS and the RHS are visualized normally,
and elements of NAC are crossed out. In the current paper, the {new} tag
implicitly implicates a negative condition as well, which prevents the rule from
creating infinite number of new elements on the same matching (in the case
of messaging, the same message is received only once).

Rules of Fig. 5 (which is a simplified version of rules presented in [1])
illustrate message sending and receiving in Service Oriented Architectures
with the ”traditional” and the compact visualization style.

Fig. 5. Sending and receiving a message

The rules in Fig. 5 capture the operations of the basic messaging. Two
services can communicate if there is an open connection between them. The
message is first sent via the connection (a new sentVia association is created).
The service provider can receive the message only once, this is implicated by
the negative application condition of the receive rule.

5.2 Reconfiguration Rules

The reliable messaging can be assured by the following reconfiguration rules
captured by graph transformation.

First, the normal messages have to be packed into and wrapped from
envelopes (as in the case of present reliable messaging technologies). Thus,
the messages are wrapped up in the sender side instead of being transmitted
(Fig. 6) and envelopes are opened before receiving their content at the receiver

9
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side Fig. 7. As the type of the message is of specified, these rules will match
for instances of every subclass of message class with a reliability specification.
Thus, reliable messaging is also provided for asynchronous service invocations,
discovery queries, etc.

Fig. 6. Wrapping a Message into an Envelope

Fig. 7. Opening an Envelope

At the sender side, there are basically two message sending modes, depend-
ing on the value of the needsAck parameter of the ReliableMessageSpecification
object describing the requirements for messaging.

At least once message delivery

If this parameter is true, reliable message sending required for a particular
message, which corresponds to the AtLeastOnce messaging semantics. In this
case, the sender will wait for an acknowledgement and consider the trans-
mission of a message successful only if the acknowledgement arrives within
the timeout interval. The rule of the successful message transmission (more
precisely, the arrival of an acknowledgement in time) is shown in Fig. 8

On the other hand, if the acknowledgement does not arrive in time, then
the next action (i.e. the next rule to be applied) depends on the number of
retransmitted messages. If the retransmission number of a particular message
is smaller than the allowed (precondition of rule RetransmitMsg), then a new
instance of the ReliableMsgEnvelope class is created and sent with the same

10
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Fig. 8. Acknowledgement arrives in time

content and a higher retransmission number (rule RetransmitMsg). If the
same message content cannot be sent again (precondition of rule Transmis-
sionFailure), then the transmission of the message is considered to be failed.
Note that if no acknowledgement is needed, then no additional rules are ap-
plied at message sending, only the core ”SendMsg” rule matches the instance
graph.

Fig. 9. Retransmission of a Message if Timeout Exceeded

Fig. 10. Failure of Message Transmission

On the receiver side, the messages are acknowledged if needed (see Fig. 11),
otherwise the core ReceiveMsg rule is applied.

11
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Gönczy, Varró

Fig. 11. Sending an Acknowledgement to an incoming message

Exactly once message delivery

Some applications may need the guarantee of the ExactlyOnce semantics,
which prescribes acknowledgements and filtering (needsAck and filterDuplicates
are set to true, respectively).

At this communication mode, if the first instance arrives (no previous
message has been received with the same content), then the message is received
and an acknowledgement is created and sent back, as shown in Fig. 12.

Fig. 12. Receiving the first message instance with the ExactlyOnce semantics

If the acknowledgement of a message is lost (due to some network error),
then the sender will retransmit the same message after the timeout exceeds.
In this case, a duplicate message will be received at the from Port. If the
duplicates are filtered , then the arriving duplicate message is dropped but an
acknowledgment is still created, as shown in Fig. 13.

In the case of registration for an exam, the successful registration may
correspond to the following rule application sequence: closeEnvelope, sendMsg,
sendAck, openEnvelope, receiveMsg, and transmissionSuccess.
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Fig. 13. Deleting duplicates

6 Related work

Related works in this field usually concentrate either on describing the non-
functional attributes of services, or on visual modeling of dynamic aspects of
Service Oriented Architectures. Our work is based on the approach of [1]. [2]
describes the application of graph transformations in the runtime matching
of behavioral Web service specifications. In [8], the conformance testing of
Web services is based on graph transformations, focusing on the automated
test case generation. However, none of these works discusses the aspects of
reliable messaging. Our aim was to utilize the benefits of this approach by
extending the metamodel and the transformation rules.

Graph transformation is used as a specification technique for dynamic ar-
chitectural reconfigurations in [5] using the algebraic framework CommUnity.
Hirsch uses graph transformations over hypergraphs in [9] to specify run-time
interactions among components, reconfigurations, and mobility in a given ar-
chitectural style. However, the problem of reliable messaging in SOA is not
addressed in either case.

A profile for reliability was designed for J2EE applications in [15]. Our
work is different in the sense that we introduce a formal operational semantics
of reliability messaging mechanisms which can provide basis for the underlying
SOA middleware in an application independent way.

In [11], a pattern based specification and run-time validation approach
is presented for interaction properties of web services using a semantic web
rule language (SWRL). These patterns include constraints (requirements) on
service invocations including at-most-n and at-least-n message delivery. This
approach only reports run-time violation of the constraints, while our over-
all goal is to guarantee the delivery of messages with appropriate reliability
semantics by the underlying middleware.

In the industrial field, there are existing and emerging specifications and
technologies like [19], [20], [21]. However, their use is still ad-hoc and no
model-based design-time support is available for reliable messaging.
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7 Conclusion

In this paper we proposed an extension to the core SOA metamodel of [1] and
a technique to capture the reconfiguration mechanisms to enhance the devel-
opment of more robust SOA middleware. The main advantage of our solution
is its seamless integration with the previous initiative: core SOA reconfigura-
tion mechanisms of [1] are directly applicable without changes, furthermore,
the original messages are kept unaltered by the proposed wrap up mechanism.

We are currently working on the formal verification of the correctness of
the proposed reconfiguration mechanisms using existing verification tools for
graph transformation systems. As the next step in the future, we plan to
implement the automatic generation of runtime implementation in existing
middleware and to create test cases for reliable messaging.
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Abstract. Flexibility to adapt to changing business needs is a core requirement
of today’s enterprises. This is addressed by decomposing business processes into
services that can be provided by scalable service-oriented architectures. Service-
oriented architectures enable requesters to dynamically discover and use sub-
services. Today, service selection does not consider security. In this paper, we
introduce the concept of Service-Oriented Assurance (SOAS), in which services
articulate their offered security assurances as well as assess the security of their
sub-services. Products and services with well-specified and verifiable assurances
provide guarantees about their security properties. Consequently, SOAS enables
discovery of sub-services with the “right” level of security. Applied to business
installations, it enables enterprises to perform a well-founded security/price trade-
off for the services used in their business processes.

1 Introduction

Enterprises struggle to increase their flexibility to adapt to changing business needs.
Service-oriented architectures address this challenge by decomposing enterprises into
loosely coupled services, which are hosted on platforms that can adapt to changing load
and performance requirements. This trend is reflected by the growth of value networks,
in which enterprises specialize on their core competencies and interconnect these criti-
cal services to provide a better overall service to their customers.

Whereas current research focuses on how to integrate the business processes of
these value networks, security will be a major obstacle to their wide-spread adoption.
Cross-enterprise security is still addressed by long-lasting trust relationships, contracts,
and manual audits. Emerging service-oriented architectures and flexible usage patterns
are slowly invalidating this static closed-world approach. There exists no approach that
guarantees overall security while permitting the flexibility required today.

In this paper we propose a new concept called “Service-oriented Assurance (SOAS)”
that enables providers to advertise their security, allows customers to monitor the ac-
tual security of a service, and provides well-defined recourse for violations of promised
security features. SOAS provides a framework to express and validate assurances. An
assuranceis essentially a statement about the properties of a component or service, typ-
ically made by the producer of the component or the provider of the service. Besides

Part Arch - APPENDIX [Karjoth et al. 2006] p 1



the specification of the security properties of the component, it adds a definition of how
these properties are to be measured and by whom, and a recourse for the case that the
promised property does not hold.Assurance verificationis done by determining the ex-
istence or absence of the above properties. Enterprises can then link the required level
of security of their IT systems and their business requirements, namely, the level of risk
that the enterprise is willing to accept. In conclusion, SOAS empowers enterprises to
provide security in dynamic service-oriented architectures while automatically procur-
ing services that offer the right level of security.

This paper first presents the taxonomy concepts of SOAS, the use of SOAS for Web
Services, and a basic architecture for monitoring assurances (§2). Next, it describes the
actual use of SOAS (§3) and illustrates the concept of assurances by means of some
example scenarios, putting particular emphasis on the separation of the assurance from
the security mechanisms that achieve the assured property (§4). Finally, it discusses
related work (§5) and concludes (§6).

2 Service-oriented Assurance

SOAS is a new paradigm defining security as an integral part of service-oriented archi-
tectures. It enables services to formalize and advertise their security assurances. Based
on these declarations, services can address the core challenges of secure and flexible
service composition:

– What are the security properties of a given service?
– How can the actual security be measured?
– What are the assumptions, failure possibilities, and dependencies of a given ser-

vice?
– What evidence can be given that a service will or does indeed meet its security

promise?
– Which remedies will be taken if a service does not provide the promised security?

In the remainder of this section, we outline the use of SOAS for Web Services, the
taxonomy concepts of SOAS, and a basic architecture for monitoring SOAS assurances.

2.1 From Service Level Agreements to SOAS

Web Services are the preferred way of describing services in a service-oriented ar-
chitecture. If a component needs a certain service, it discovers potential providers via
directories and brokers, e.g., using UDDI, WSDL, and WS-Resource descriptions, and
then engages with a specific service provider. In particular in cross-domain scenarios,
this engagement is governed by a Service Level Agreement (SLA), e.g., expressed in
WS-Agreement, which summarizes the requester’s and provider’s agreement on what
the service is supposed to do. An SLA defines the quality of service, how and by whom
that quality is measured, and what has to happen if the service quality is insufficient.
Today SLAs are often implicit (in particular for services within one organization) and
in most cases fairly static and pre-negotiated. But this is expected to change – in the fu-
ture service providers will be selected more dynamically and hence SLAs will be more
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pervasive and negotiated in real time. This negotiation will become part of the overall
process and of the overall Web Services stack.

Service-oriented Assurance adds security to this picture: Before two components
engage in a service, they provide each other with assurances, i.e., security guarantees,
as part of the SLA negotiation process. Examples are promises to provide certain pro-
cess or data isolation, to comply with a regulation, or to accept a certain risk, or also
statements of identity, etc., together with arguments why these properties hold, such as
certificates for Common Criteria security evaluations, hardware-based integrity state-
ments, or identity certificates and digital signatures.

Depending on how the SLA defines the manner in which security quality is mea-
sured, components may gather evidence during operation, i.e., information that docu-
ments and maybe even proves the state of transactions or the security posture of the
component. This information can be security alarms, entries in log files, authenticated
messages received from other components, hardware-based integrity measurements,
etc. If something goes wrong, this information becomes the basis for fault diagnosis
and forensics. Once a problem has been identified, the assurances will point to the
components responsible for solving the problem and for covering damages. This is par-
ticularly important in a cross-domain scenario involving different organizations, where
the result may be an actual financial recourse.

Fig. 1.Service-oriented Assurance

Figure 1 summarizes the use of assurances. We mainly consider the gray component
on the left, e.g., a business process. It uses the service of another component (process),
which may be in another domain, and of local sub-components. In a service-oriented
architecture, there is no great difference between these two uses, except that there is by
necessity a stronger dependency on some local components, e.g., the underlying operat-
ing system. In a first step, the processes negotiate an SLA with assurances. This is done
in the context of the processes’ own service assurances to their users. Secondly, during
normal service, both processes may gather evidence of their own correct operation and
of the operation of their partner; some of this evidence may be exchanged explicitly.
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In case of problems, diagnosis and forensics should be possible based on the evidence
gathered, and the SLA will provide procedures for a potential cross-domain recourse.

2.2 High-level Model

To enable the formalization of statements that express the security promised for a given
service, SOAS defines a model as shown in Figure 2. In theoretical terms, this is in
essence a meta-model of service descriptions.1 Note that SOAS only formalizes the
structure of security statements and that properties must not necessarily be expressed
in a formal way; they may simply denote a certification such as a security label like
EAL-4 or a privacy seal like TRUSTe having a precise meaning given from outside the
SOAS model. The figure is drawn in UML, a widely used graphical design language.

Fig. 2.Assurances on SOA components

The security of a SOA component is established by the properties it is expected to
implement. Thus, declaring (security)propertiesis the foundation of the SOAS model.
Properties of SOA components can be written texts (like contracts) but will often be
machine-readable to enable automation and comparison beyond equality tests. Simple
properties may define the I/O syntax of a service by, e.g., promising to adhere to a
WSDL schema. Properties may also make statements about the actual behavior of a
service stating, for example, the privacy of personal data. More examples are given in
§4. This can be done using formal specifications or textual descriptions of the expected
services.

1 A meta model of SOA exists in [1], but it does not classify service descriptions or service
properties. Given a meta model, corresponding models can be serialized either automatically,
i.e., a “language” is defined implicitly by the UML model, or manually, e.g., into extensions
of existing Web Services specification languages.
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Properties either hold unconditionally or are qualified. Aqualifier augments or re-
stricts a given property. In an augmenting qualifier such as availability or performance,
the resulting qualified property always implies the original property. Restricting qual-
ifiers are key to modeling security. Typically they express environmental assumptions
needed, e.g., a trust model specifying entities that are assumed to be correct, failure
probabilities, or validation methods.

An assuranceis a statement about a property of aSOA componentor service, made
by a principal such as the producer of the component or the provider of the service.
Assurances define the evidence the component has to deliver to show it indeed provides
the desired properties, and a specification of recourse if the component fails to provide
these properties.

Evidencedescribes the information provided by the service to support the assurance,
typically by enhancing the credibility of other elements. Mostly provided in the form
of credentials, evidence may corroborate that the principal builds good components
by customer references or a formal certification. Or it may corroborate the component
properties, e.g., by supplying a certificate of a claimed Common Criteria evaluation or
by describing the procedure used for determining the mean time between failures. Or
it may corroborate a recourse, e.g., by showing that the principal has reserved funds.
Evidence also defines how the property can be measured and by whom. For instance,
it can be the retrieval of a log file by the service provider, a third-party audit, or a
measurement signed by secure hardware included in the platform [10].

A recourseconsists of a decision procedure and possible compensations. For dis-
pute resolution, agreement on the interpretation of the measurement is essential to en-
able the parties to agree whether a property is fulfilled. Adecision procedureprovides
instructions on how to deal with cases where, for example, some properties are not
immediately measurable because, for instance, probabilities depend on how long one
measures, or secrecy violations may not be noticed at once. If neither party fully trusts
the other’s measurements, the decision procedure may require that both sides measure
in parallel or may even state that in case of conflicts additional proofs are provided by
third parties [4].

Whenever the stated security property does not hold or can no longer be guaran-
teed, acompensationstates a penalty, e.g., a sum of money, or defines a remediation
process that re-instates security and is considered to be sufficient to satisfy the property.
Whereas a penalty does not necessarily require the assurance to be re-established, re-
mediation on the other hand is a well-defined process how a violation can be removed
and how the system is guaranteed to reach a state that provides the given asurance. An
example of the latter is the property of absence of viruses. The provider can guarantee
that once a virus is discovered during a regular check, the virus is removed within 1 h
and integrity of the installation is re-verified.

2.3 Monitoring Security Properties

Besides givingexplicit security assurancesas outlined above, SOAS must also support
the verifiability of these assurances. Whereas the first challenge requires a language
for specifying the assurances to be included into SLAs, verifiability of these assurances

5

Part Arch - APPENDIX [Karjoth et al. 2006] p 5



may be achieved by providing measurements supporting the evidence in the stated prop-
erties. Figure 3 outlines possible interactions between measurement components of a
SOAS-enabled service. The interactions are structured into two phases. Before actually
providing a service, the provider and requester agree on the Security SLA that describes
the desired security. Once an agreement is reached, the service will be provided and its
security can be monitored. Depending on the trust model, an optional observer can act
as a referee to decide whether the properties are indeed met.

Fig. 3.Run-time monitoring of Service-oriented Assurance

To enable security monitoring, both the service and the client are instrumented.
This instrumentation measures the security parameters of the service, input to a SOAS
Management component verifying the given security assurance.

2.4 Types of Security Evidence

For assessing the security properties, data from various sources are needed. Both parties
may evaluate system states – including security policies in place – and events that are
provided through instrumentation as well as certificates, and other context from third

6

Part Arch - APPENDIX [Karjoth et al. 2006] p 6



parties. Examples are certificates of acceptable software as well as events that represent
newly discovered vulnerabilities of the installed code base.

In principle, we distinguish three main types of security measurements depending
on the time period addressed:

– An audit logmakes it possible to verify whether a system has privided the assurance
in the past. Examples include log files of past virus scans, an execution history
listing the executables loaded in memory [10], and access records for confidential
data.

– The currentstateenables one to prove statements about a given moment in time.
This can include ownership proofs about the provider implemented by certificates
or the absence of a virus at this point by a virus scan.

– Convincing a verifier that certainpoliciesare enforced enables a system to indi-
cate that a security property is likely to hold in the future. Examples are training
programs, access-control policies, and policies for remediating specific failures.

Depending on the trust model, additional evidence may be needed to convince the ver-
ifier that the given data is accurate. In particular for policies, it is essential to convince
the verifier that they will not be replaced with inappropriate ones. A similar challenge
exists for state and audit logs. If the verifier does not trust the systems providing the ser-
vice, additional evidence such as audits at random times may be needed. Furthermore,
evidence of insecurity may turn up in various ways, e.g., by finding confidential data on
the Internet or via whistle blowers.

Properties and thus their measurements may be qualitative or quantitative. Whereas
the former simply determine whether a property holds, the latter measurements deter-
mine how strong the property is. Quantative security is not yet common-place but there
are example properties such as quantative information flow or measures like the number
of known vulnerabilities and k-anonymity.

3 Applying SOAS

To gain security addressed consistently and naturally at the right places, SOAS should
be integrated in the overall software architectures and tooling. However, SOAS can to
some extent also be retrofitted to legacy systems by documenting and exposing their
known security properties and publishing corresponding security assurances. This ex-
plicit expression of security enables service selectors to consider security as a criterion
for service selection, which in turn creates a reward for security. This reward will enable
appropriate economic mechanisms that lead to the highest levels of security where this
is most beneficial, and allows security to increase in economically cost-effective steps.

To implement fine-grained assurance statements, security assurances must be prop-
agated and implemented along the software stack. As a consequence, software compo-
nents would either implement their own security mechanisms (e.g., a banking applica-
tion using one-time passwords), use security mechanisms from lower layers (e.g., SSL
encryption), or use a security infrastructure for transparent protection (e.g., anti-virus
or isolation services).
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Propagating explicit assurances of components requires explicit exposure of as-
sumptions as well as a more active security management in each component. Accord-
ingly, components need to identify their assurances based on the assurances offered
by sub-components. Another important aspect is that in order to enable its use in an
open environment where not all components trust each other, SOAS creates an incen-
tive that components enable verifiability of their security properties. This means that
components can produce evidence that the claimed properties are actually true. A (sim-
ple) example is ownership: A service can use attribute certificates to prove that it is
owned by a certain entity. This enables higher-layer services to measure and validate
the assurances provided by lower-layer services. More complex scenarios include com-
ponents that guarantee to report their security status honestly based on a well-defined
measurement method.

Another important application of SOAS is to use security assurances to select ap-
propriate services and to compose services. Once sub-components declare their service
guarantees, services can factor security into the decision which sub-service to select.
Loosely speaking, SOAS enables a service to discover the sub-service with the right
level of security and the best cost/risk trade-off. Based on the assured security proper-
ties including potential qualifiers, a service may decide which tasks to entrust to each
particular service. If a sub-service does not provide the full guarantees that are needed,
a service can decide to augment the guarantees, e.g., by running replicas or obtaining
additional recourses that remedy the losses in case of failure.

4 Example: Security of an Outsourced Business Process

In this section we illustrate the concept of assurances based on a larger example where a
bank outsources a business process to an external provider. We first identify the overall
assurances and then elaborate on two specific properties.

4.1 Overall Security Agreement

The overall goal is to manage the security of a business process by identifying and veri-
fying the security properties of its sub-processes. In practice, this initial usage of SOAS
is possible without automatic verifiability of the security properties. Instead, assurance
can be achieved by signed statements of the service provider containing sufficient com-
pensation in case well-defined security measurements indicate that the promised secu-
rity cannot be or has not been achieved.

Let us consider a bank that outsources a sub-process such as payment processing to
an outsourcing company. As is currently done, the bank and the outsourcing provider
establish a service-level agreement for the outsourced process. This SLA defines the
actual service as well as key performance indicators such as availability and throughput.
This SLA can be negotiated and fixed using WS-Agreement. It will also define the
WSDL interfaces to the service.

Because the sub-process is critical to the business of the bank, security requirements
have to be added. Using SOAS, the bank and the outsourcing provider agree upon the
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actual security to be provided by the sub-process, how it is measured, and what compen-
sation will be offered in case of failure. These security guarantees may cover different
aspects of the outsourcing infrastructure and can be structured into distinct properties:

Basic integrity properties. The provider assures integrity properties on the input and
the output data. In addition, it may state that input data of any kind will not lead to
buffer overflows.

User management.The provider defines how users are authenticated and how access
to the sub-process is restricted to the appropriate applications in the bank.

Basic infrastructure. The provider defines which availability is guaranteed and how
it will be achieved, e.g., by replication, backups, and disaster recovery measures.

Isolation. The provider guarantees that this business process is completely isolated
from other business. In particular, isolation holds even if processes are executed on
behalf of other banks.

Application quality control. The provider defines how applications are tested and how
quality is achieved. In particular, the provider guarantees that only applications that
have passed a well-defined test-suite will be used to provide the service.

Security policies. The provider guarantees that the process is managed according to
well-defined security policies. These policies include staff education, proper se-
curity zoning and boundary control, as well as emergency response for the corre-
sponding services. The security policies also include virus protection and intrusion
detection and response measurements.

All these properties are declared using signed statements. Because they are difficult to
be verified automatically, validation can still be achieved by external auditors or audit
teams from the bank or from the provider. Once the provider fails to comply, appropriate
recourses from the initial assurance are used to remedy or compensate a failure.

4.2 Security Management – Customer Isolation

In an outsourcing environment, data owned by different customers must be isolated;
i.e., no information may flow between customers except through well-defined business
processes. This causes no problem in today’s outsourcing environment, where most
resources and applications are dedicated to one customer. In the case of shared applica-
tions or resources, however, they must be certified to provide appropriate isolation. As
a consequence, a property promised may be that “there is no information flow between
all services of this customer and any service provided to another customer”.

To securely implement above guarantees, the provider either has to provide ded-
icated resources for each customer or to guarantee that no shared resource leaks any
information between customers. This guarantee for shared applications can be done by
means of an evaluation and certification. An alternative is the provision of virtualized
resources (such as logical partitions) that are dedicated to each customer, enabling dif-
ferent customers to share one machine but still providing guaranteed separation. How-
ever, as it is hard to analyze whether a shared application allows information flow or
not, both parties may have to accept some level of risk.
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Depending on the trust the bank puts into the provider, the actual mechanisms that
are used as well as their verifiability will differ. One way to provide assurance is to pro-
vide a signed statement of the provider or an auditor. If the trust in the provider or the
auditor was unjustified, the customer may notice a violation only if the undesired infor-
mation flow has visible effects, e.g., secret data clearly being used by competitors. For
these cases, there must be compensation. The decision procedure may be aided by wa-
termarking techniques. However, mechanisms where the service provider is trusted to
notify someone of security violations are known and can be effective, as the experience
with the California Senate Bill No. 1386 shows.2

Property qualifiers can be used to define limitations of virtualization including the
requirement that certain services be not virtualized, virtualized on a dedicated resource,
or hosted on machines satisfying certain criteria such as physical security protection or
location [2]. An example of the latter are the concerns that Canadian personal data will
fall under the US Patriot Act once they are hosted on machines that are physically in
the USA [8].

4.3 Security Management – Virus Protection

Service users require that machines hosting critical services follow basic security guide-
lines. The property that is promised by a service is that the machine providing a service
is managed according to well-known security guidelines. Such guidelines usually re-
quire sound patch management, firewalls, and appropriate virus protection.

Assurance of appropriate virus protection, for example, can be implemented in dif-
fent ways. Using certification and recourse, the service provider promises to manage
the machines according to the guidelines and certifies this including recourse. As virus
attacks are usually quite visible by loss of availability, the bank may not require spe-
cific measurements in the assurance if the recourse is sufficient to cover potential losses.
Alternatively, sound virus protection may be indicated by means of an audit trail of re-
cent virus scans to convince a verifier that no virus activity was detected while a given
service was being provided. Moreover, assurance for this property can be provided by
means of integrity-based computing (IBC) mechanisms. For virus protection, IBC can
prove at regular intervals that a virus scanner has been resident in memory and not been
invalidated.

5 Related Work

Several models and languages formalize agreements (contracts) on electronic services
[4, 11, 12], covering agreement specification as well as system architecture. However,
they mainly focus on specific aspects of services. For example, WSLA is a language for
the specification of quality-of-service agreements for Web services. Besides providing
a type system for SLA artifacts, WSLA identifies the contractual parties, specifies the

2 Summaries of incidents cataloged on PIPEDA and Canadian Privacy Law
can be found at http://www.privacylawyer.ca/blog/2005/02/
summaries-of-incidents-cataloged-on.html .
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characteristics of the service and its observable parameters, and defines the guarantees
and constraints that may be imposed on the SLA parameters [4].

WS-Agreement is a standardization effort defining an agreement format, an agree-
ment establishment protocol, and a runtime agreement monitoring interface. Agree-
ment terms represent contractual obligations, including specific guarantees given [5].
Guarantee terms specify service level objectives, a qualifying condition under which
objectives are to be met, and a business value giving the importance of meeting these
objectives.

The Composite Assurance Mapping Language (CAML) provides a notation for
claim trees for the assurance arguments related to enterprise security objectives, provid-
ing causalities, relationships, vulnerabilities, threats, and other system- and environment-
related issues [6]. A CAML specification hierarchically refines security claims about the
system into sub-claims that, eventually, are linked with the evidence that a claim is sat-
isfied. Refinement is supported by the general strategy, assumptions, and dependencies,
justifying reasons, and contextual models.

Security properties of components can be measured and verified by using products
such as Symantec Enterprise Security Manager or IBM Tivoli Security Compliance
Manager (SCM). SCM gathers information from multiple computer systems, such as
registry and application information, analyzes the data, and produces reports to reveal
adherence to security policies. Collectors retrieve specific data by reading files or run-
ning an executable program. Data collected on client systems is stored in a database
on the server. Conditions are expressed as SQL statements that analyze data from the
database tables to provide a list of client machines violating the conditions.

Also trusted computing allows one to verify the integrity of a platform (attesta-
tion), whereby secure boot and strong isolation guarantee integrity. Remote attestation
authenticates software to remote parties. However, attestation based only on the con-
figuration of software and hardware components entails the problem of managing the
multitude of possible configurations, system updates, and backups [3, 7, 9]. A trusted
virtual machine, as for example proposed by Haldar et al [3], can execute platform-
independent code to attest programs, thus certifying various properties of code running
under it by explicitly deriving or enforcing them. SOAS assurances may provide the
language to express these properties and the way they should be verified.

6 Conclusion

Service-oriented Assurance enables products and services to provide well-specified
security guarantees, which can be monitored and validated. These assurances enable
enterprises to select services that offer the right level of security. Our example illus-
trates that it is feasible to specify important security properties in a vendor-agnostic
and platform-independent way. As a consequence, we believe that SOAS is the logical
future of security in service-oriented architectures.

Our proposal is only a first step in this direction. Further work is required in the for-
malization of a broad range of specific security properties and on assurance verification
as well as on service composition. There is still a long way to go before security risks
are comprehensively managed and become normal economic factors on the business
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layer. Nevertheless we have demonstrated a framework that shows how the objectives
stated above can be achieved and that first meaningful ways exist to instantiate this
framework based on current software and hardware capabilities.
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Etat de l’art des paradigmes de communication pour

terminaux mobiles communicants

Résumé : Lors de la construction de services utilisant des réseaux sans-fils, la mobilité
des terminaux est souvent un problème à prendre en considération. En effet, la qualité
des connexions influent sur les fonctionnalités que le service peut offrir. Dans un contexte
mobile, les connexions sont temporaires et leur qualité est très variables.

Dans cet état de l’art, nous présentons les différents problèmes survenant dans ce genre
de réseaux ainsi que les différentes solutions existantes.
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1 Introduction

Wireless interfaces usually support only short-range communications. Thus, wireless appli-
ances can only communicate with close neighbors and messages require to be retransmitted
to attain the whole network. Moreover, mobility of appliances leads to regular changes of
neighbors and of network capabilities.

Several proposals have been made to address these issues. Adaptive approaches con-
centrate on simulating classical networks by palliating disconnection, bandwidth decrease
and limited communication range using quality of service and routing mechanisms. On the
contrary, ubiquitous approaches address only neighbor devices and use wireless limitations
and mobility as information for the services.

In this survey, section 2 presents mainstream wireless technologies and their limitations.
Section 3 presents the adaptive approaches and section 4 the ubiquitous ones. Finally, after
underlining the retained solutions for the MoSAIC project [14] in section 5, we conclude in
section 6.
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2 Wireless network technologies

IEEE 802.11 and BlueTooth are the main communication technologies that exist today.
In this section, we will present these technologies and some new ones that are starting to
appear.

2.1 IEEE 802.11

IEEE 802.11 [24, 8], often nicknamed WiFi, is a standard for wireless local area networks
(WLAN). It was designed to remove cables in short-range local area networks. Its commu-
nication range is about 50 meters in an open office environment for a bandwidth from 10 to
54 Mbps per channel. It has two main communication modes: infrastructure and ad hoc.

In the infrastructure mode, IEEE 802.11 uses access points to act as routers between
peers (and the possible wired network). In this mode, access to other terminals is similar
to Ethernet. Each wireless interface has a unique identifier (its MAC address) which is
used when addressing another interface. All messages pass through the access point which
redirects them to the corresponding interface (if it has registered to the access point).

In the ad hoc mode, every interface uses the same network parameters can communicate
directly with the others.

2.2 BlueTooth

BlueTooth [12] is the name for the IEEE 802.15.1 [4] standard for wireless personal area
networks. It has been designed for energy efficient communications in very short range (less
than 10 meters). It has a 1 Mbps bandwidth. Contrary to the IEEE 802.11 ad hoc mode,
BlueTooth relies on a master-slave communication paradigm where each message between
two peers passes through a node called the piconet master1.

To enter a network, BlueTooth uses a discovery mode (Inquiry Scan) during which it can
detect new nodes but the scan requires 1,28 seconds per node minimum. Moreover, during
the discovery mode, the interface cannot be reached for other activities. The very slow
discovery time and the invisibility during the discovery are real problems to when it comes
to handling mobility. Therefore, BlueTooth is generally used for communication between
fairly static sets of BlueTooth capable appliances (like a PC and a BlueTooth mouse).

2.3 Other technologies

Several other technologies have started to appear. ZigBee (IEEE 802.15.4) is a more energy
and memory efficient technology than BlueTooth for close range networks. Unfortunately,
it suffers from a lower bandwidth (250 kbps) and discovery time. ZigBee is aimed mainly
at networks of non-mobile sensor nodes.

WiMax or IEEE 802.16 [23] is a standard for wide area wireless networks and provides a
network similar to the the infrastructure mode of IEEE 802.11. It can provide a bandwidth

1A piconet is defined as a small BlueTooth network including a master and several slaves.

Irisa
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from 4.5 Mbps to 21 Mbps per channel in a range of 1 to 15 kilometers. Thus, it is mainly
designed for a large-scale cellular service.

3 Adaptive approaches

The usual approaches to handle mobility in wireless networks are the adaptive ones. These
approaches rely on implicit mechanisms to emulate a continuous connectivity in a mobile
environment.

3.1 Handover handling in infrastructured networks

WIRED NETWORK

IS3 IS4 IS5
IS6

IS2IS1

mobile

IS: Info-Station mobile

Figure 1: Infrastructured network.
Multiple linked cells (IS1 to IS6) cover the area and the mobile terminal can move between
them.

In an infrastructured wireless network, each cell is covered by a wireless antenna (e.g., a
HotSpot or an InfoStation [10]) like in figure 1. Mobile terminals move between those cells
and thus suffer from bandwidth variations (loss of network and decrease of bandwidth). To
address this issue, QoS (Quality of Service) and caching mechanisms are generally used.

QoS mechanisms decrease or increase the bit-rate of the data sent to the terminal de-
pending on the network capabilities. For a video stream for instance, the encoding bit-rate
of the video can be modified to match the network bandwidth. Caching mechanisms send
data that will be of use later when the bandwidth of the network is high. In disconnected
or poor bandwidth zones, the mobile terminal can work on pre-loaded data.

3.2 Ad hoc routing

In mobile ad hoc networks (MANETs) [13], each terminal can act as a router (see figure 2)
like in peer to peer networks [5]. Protocols like LAR [15] or DREAM [2] use flooding like

PI n˚—
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Figure 2: A Mobile Ad Hoc Network.
Each nodes can only communicate with some others (6 can only talk to 4 and 5). To talk to
other nodes, messages must be re-transmitted by intermediary nodes (a message from 6 to 2
must be routed by nodes 4 and 3). The links between nodes change during the evolution of
the network (nodes are mobile).

methods to construct routes. LAR sends a request to a certain area (the expected zone)
when a route needs to be constructed to send a message: it is a reactive protocol. On the
other hand, DREAM is proactive: it regularly reconstructs its routes by sending discovery
messages in a precise zone (similar to the expected zone of LAR). The expected zones of LAR
and DREAM are both computed using cinematic information although the computations
are different. These expected zones successfully reduce the bandwidth and generally scale
correctly with the mobility.

3.3 Predicting handover and change of cell

The knowledge of the way a terminal moves is a key point for handling mobility in wireless
networks. If the system is able to know where and when a terminal will switch cells or will be
disconnected then it can anticipate mobility by sending data to the next cell, authenticating
the terminal in the next cell, etc...

Abowd et al. [1] and Narendran et al. [16] have proposed mechanisms to predict the
minimum time before a terminal leaves the coverage zone. It can be done using regular
measurement of the received signal power. This power is proportional to the inverse of the
square of the distance ( 1

d2 ) in short range and to 1
d4 in long range. Thus, using regular

Irisa
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acquisitions of the received signal power, one can compute the variation of the distance
and the probable time when the terminal will leave the cell. In practice, we only estimate
if the signal power will be high enough during the transmission time using its measured
variation. Furthermore, the IEEE 802.11F [24] standard proposes with the Inter Access
Point Protocol to learn paths between different cells to predict where to send the data after
the disconnection from the first cell. When a terminal moves from a cell to another, a new
path is created between those two cells and data for terminals will be sent to the second cell
when they start to leave the first one.

4 Ubiquitous approach

Figure 3: A ubiquitous service.
Each node provides information in its range of communication. Node 4 can currently access
to the information of node 2 and will be able to access to the information of node 1 and 3
during its trip. The accessible information is related to its position.

Contrary to adaptive approaches, the ubiquitous approach based on the Mark Weiser’s
vision [22] considers that each wireless terminal is an information system that has to be
available only in close range (figure 3). For example, electronic tags provide informations
on each painting of a museum and a visitor’s handled computer can read those tags and so
act as a virtual guide.

PI n˚—
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4.1 Spontaneous communications

The underlying concept in ubiquitous computing is spontaneous communications. As ubiq-
uitous computing’s main principle is that of invisible embedded computers that enable users
to seamlessly interact with a dynamic environment. For example, CoolTown [20] associates
everyday objects with wireless appliances that contain information in the HTML format.
They beacon identifiers to mobile terminals. The terminal can then display the related
HTML information automatically when passing near the object. In this system, locality is
a way to address information.

SPREAD [6] is a middleware for ubiquitous applications. It interprets the physical space
as an addressing space. Each terminal can provide information in a tuple form and accesses
information by selecting tuples of a certain form (like in Linda [11]). Those tuples are
accessible only to terminals in communication range. Thus, a mobile terminal can access only
neighbor information. An example of an application built using SPREAD is UbiBus, which
is aimed at helping visually-impaired persons. A bus equipped with a wireless appliance
using UbiBus spreads a tuple indicating the line number. User appliances that are close to
the bus can acquire this information. The user is then alerted when the bus arrives.

Persend [21] is another system that uses physical space as a parameter for the addressing
mechanism. It proposes to establish continuous database requests that are linked to locality.
Consider the example of a terminal B that publishes a list of music albums he wants to sell
and a terminal A that wants to know the list of music albums for less than ten euros. A’s
list evolves during the time: if A goes near B then he gets the list of B’s albums that are
for sale for less than ten euros, if B changes the price of an album, the request is modified
accordingly and if A leaves B neighborhood, then B’s albums are removed from A’s list.

4.2 Communication atomicity

For some applications like taxi reservation, there is a need for transactions (e.g., atomicity of
communications). Unfortunately, in presence of data loss and disconnection, the atomicity
of a transaction cannot be guaranteed. However, Pauty et al. [17] have proposed a protocol
to approach atomicity in the context of spontaneous communications.

They propose to add a take operation in SPREAD which removes a tuple from available
ones. This operation is based on a four-way handshake to acknowledge the transaction as
shown in figure 4. This handshake can only be started in a restricted area that can be
determined either by using GPS or the strength of the radio signal used to communicate.
This restricted area is calculated so that the communication time will be enough for the take
operation to be completed as shown in figure 5.

Such a mechanism reduces the number of failures during atomic operations in sponta-
neous communications almost to null if the restricted area is small enough. The size of the
ideal restricted area can be easily computed using the effective bandwidth, and the speed of
change of signal (which depends on the speed of the user).

Irisa
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Figure 4: The take operation handshake.

Figure 5: A geometric constraint guarantees a minimum communication time for the take
operation.

4.3 Improving resource discovery

Discovery of hosts and resources can be quite long as seen in section 2.2. In the context of
high mobility, this discovery time can be a heavy burden for spontaneous communication

PI n˚—
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applications. Le Bourdon et al. [3] have proposed to create spontaneous HotSpots that will
register nearby terminals and their resources and propagate the information.

Figure 6: Propagation of resources in spontaneous HotSpots.

Figure 6 shows how a terminal B can transmit informations about its neighbor to a
terminal A. The terminal A can then detect C without using the discovery mode of the
BlueTooth interface. Of course, resources proposed by terminal C can also be given to
terminal A so the latter does not have to discover them by asking C when they meet but
may use them directly

Others solutions exist to improve the discovery mode of the BlueTooth protocol but they
rely on other hardware like IrDA, visual tags or dedicated devices.

5 Retained solutions for the MoSAIC project

The MoSAIC project is aiming at creating a collaborative backup for mobile appliances.
Therefore, it needs a network layer providing spontaneous communications. The IEEE
802.11 standard was chosen for wireless communications because of its availability, band-
width and communication range. The general design of MoSAIC given by Courtes et al. [7]
asks for two mechanisms: a discovery and a transmission mechanisms. The figure 7 shows
the required interactions for the network layer.

First, a discovery mechanism is required. It should regularly broadcast a beacon message
to neighbor terminals. A neighbor terminal receiving this beacon can then acknowledge his
availability for backup. The discovery mechanism receiving an acknowledgement to the
beacon will signal to the other layers of MoSAIC that there is a terminal ready to save

Irisa
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Figure 7: Interactions of the network layer in the MoSAIC project.
A terminal A tries to backup its data and a terminal B accept to save A’s data.

our data. The rate of sending the beacon will change depending on the amount of data to
backup. Of course, the sending of the beacons will stop when all data have been backed-up.
Moreover, the wireless interface can stop listening when there is no more space available for
backups to avoid waste of energy. This discovery is similar to SPREAD discovery and can
be done using MAC address with IPv6 [9] and UDP [18] broadcast messages.

Second, a transmission mechanism is required. The other layers of MoSAIC ask the
network layer to put its data on a recently seen terminal. The network layer initiate a
transmission that need to be the more atomic we can. This transmission can be done using
a handshake and restricted zone like proposed by Pauty et al. However, MoSAIC only need
to know if the data was correctly transmitted. Thus, TCP [19] communications can handle
the required acknowledgements. The restricted zone can be determined by the power signal.
Unfortunately, most IEEE 802.11 cards do not support per link statistics but give you an
evaluation of the link quality of recent transmissions. So, the restricted zone will be a lower
bound for the received signal power; under that bound, transmissions will be refused to
avoid unnecessary energy consumption.
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6 Conclusion

In this survey, we have presented the two main wireless technologies used today and their
characteristics in section 2. We have seen that IEEE 802.11 is a good middle-range wireless
protocol but suffers from excessive power consumption compared to BlueTooth. On the
other hand, BlueTooth has a very slow discovery protocol which is a big disadvantage for
spontaneous communications.

Communication paradigms for wireless mobile appliances can be divided between the
adaptive and the ubiquitous approaches. Adaptive approaches try to reduce the disad-
vatanges of mobility by several mechanisms like caching and QoS for infrastructured net-
works and restricting discovery to expected zones in MANETs. Adaptive approaches also
use prediction techniques using power consumption and path learning to improve data dis-
tribution or discovery. On the contrary, ubiquistic approaches use locality as a means to
address data. CoolTown, SPREAD and Persend use the communication range as a way
to know if the information will be useful to the user. We have also seen ways to improve
spontaneous communications with atomic transactions in section 4.2 and discovery with
spontaneous hotspots in section 4.3. Finally, we have seen several mechanisms applied to the
specific case of the MoSAIC collaborative backup in section 5.
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Abstract

The real-estate industry is an interesting target for
service-oriented computing, for several reasons. The par-
ticipating parties are extremely diverse and there is a
high proportion of human activity and interaction in-
volved in traditional real-estate transactions. This im-
plies that (partial) automation of such processes must
be done in highly flexible and trusted manner, with nat-
ural inclusion of the human element. The most promis-
ing response computer science offers to these challenges is
found in service-oriented approaches. In this paper, we ar-
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¶ Jim Webber is with ThoughtWorks, Sydney, Australia,
jim@webber.name .

gue how service-oriented computing can potentially
disrupt the real-estate industry from a business perspec-
tive. We introduce SOAR, a service-oriented architecture
for the real-estate industry that embeds trust and se-
curity, allows for formal correctness proofs of service
interactions, and systematically addresses human interac-
tion capabilities through web-based user access to services.
We demonstrate the features of SOAR through a Deal-
Maker service that helps buyers and sellers semi-automate
the various steps in a real-estate transaction. This ser-
vice is a composed service, with message-based inter-
actions specified in SSDL, the SOAP service description
language. The implemented embedded trust and secu-
rity solution deals with the usual privacy and authoriza-
tion issues, but also establishes trust in ownership and
other claims of participants. We also demonstrate how for-
mal techniques can proof correctness of the service
interaction protocol specified in SSDL. From an implemen-
tation perspective, a main new contribution is a protocol
engine for SSDL. A proof-of-concept demonstration is ac-
cessible for try-out [4].

1. Introduction

The real-estate industry is slowly but surely moving to-
wards Internet-based solutions to support various aspects
of their business. The currently pursued approaches (e.g.,
[16]) utilise web sites to make it easier to share and dis-
cover information about properties for sale, or mortgage
rates offered. In addition, XML-based standards are emerg-
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Figure 1. SOAR services landscape.

ing [9, 12, 15, 17] that support the interaction between vari-
ous players (and the software packages they use), including
real estate agents and mortgage lenders (see for more de-
tails Appendix A.2). Although these are good initial steps,
the nature of real estate business is such that it could benefit
in novel and interesting ways from more advanced service-
oriented approaches to business-to-consumer and business-
to-business interactions.

The objective of our work is to demonstrate how busi-
nesses and individuals can rapidly create profitable real-
estate Internet services that are provably secure and cor-
rect. To that end we introduce SOAR, a Service-Oriented
Architecture for the Real-estate industry. Figure 1 depicts
SOAR at a high level. The main idea is that all participants
in various transactions are represented by services: seller
services, lawyer services, buyer services, surveyor services,
etc. Services can be accessed by non-expert users through
web pages for creation, configuration and termination. A
service portal creates service instances when requested by
users, and hosts these instances. New services can then be
introduced by defining service interaction protocols in the
SOAP Service Description Language and the resulting com-
posed service can be model-checked against various live-
ness and deadlock properties, and has embedded a trust and
security solution to assure privacy, identity and validity of
user claims.

This paper describes our work during the period of the
contest, from conception of the business case, to design of
SOAR and the implementation of the DealMaker service.
The following items are our main contributions:

• we created a business case for service-oriented com-
puting for the real-estate industry, both for SOAR por-
tals in general and for the DealMaker service in par-
ticular. We also argue for a possible role of standard-
isation bodies to successfully introduce SOAR in the
diverse real-estate industry (Section 2 and Appendix
A).

• we designed the SOAR architecture, with each service
configurable through a web site, and personalised ser-
vice instances hosted by a service provider, see Sec-
tion 2.

• we suggested, designed and implemented a potential
service supported by SOAR through the DealMaker
service (Section 2.1).

• we embedded a security solution within SOAR to
guarantee privacy, identity and validate user claims
(Section 3).

• we proved correctness (with respect to the absence of
starvation and race conditions) of the DealMaker ser-
vice using the sequence constraints approach to pro-
tocol specification in SSDL described in Section 4.

• we implemented the DealMaker services (Section 5)
and made it accessible through a demonstration web
site (Appendix C and [4]).

• we designed and implemented an important new tool
for the use of SSDL in managing service interaction
protocols, namely an SSDL protocol execution engine
(Section 5.2).

Finally, the appendices provide more details about the top-
ics listed above, in particular with respect to the business
case and the web site, and adds some reflections to our con-
test participation.

2. SOAR Basic Architecture

In this section we describe the main features of SOAR:
basic service design, service hosting portals and person-
alised service instances. We also introduce the DealMaker
service. First, we provide the following definitions used
throughout the paper:

• service instance(also justservice), see Figure 2: a
run-time accessible service representation adhering
to theabstract service definitionof a particularser-
vice type. Service instances contain accessibleservice
properties, which are stored as name-value pairs. Our
security solution will provide access control at the
property level.

• service instance creation(also justservice creation):
a service providerallows users tocreate(and subse-
quently parameterise and terminate) service instances,
for the service types the provider supports. (One can
think of this kind of service instance creation as the
service equivalent of ’myYahoo’ etc.)

• participant: any party involved in the system, such as
lawyers, surveyors, buyers and sellers, etc., as well
as the logical service representation of these parties
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within the system. In addition to participants,activ-
ities can also be represented by a service instance–
example activities are drafting a contract or setting up
a meeting.

In SOAR, every participant is represented by a service
instance. This service contains data about the participant,
and presents a messaging interface definition. The message
interface allows the data to be accessed, but also allows
more advanced interactions, such as ordering or stepping
through stages of a workflow. The specifics of the inter-
face definition are different for each service, and adhere to
the abstract services definition for the particular participant
type. Newly introduced composed services follow the same
architectural design as the core services representing par-
ticipants (depicted in Figure 2). That is, personalised ser-
vice instances can be created and there is web page based
user access to the service instances. To avoid inputting large
amounts of redundant data, each service can decide to ac-
cept parameterisation referring to other service instances.
For instance, a DealMaker service can be used by a buyer
to create an instance that is parameterised with the service
instances representing the buyer’s lawyer, etc.

Every service instance contains a web page representing
the service instance, and a set of message interfaces speci-
fied in SSDL (in the implementation this is translated into
WSDL documents, see Section 5). The service instance exe-
cutes within a run-time environment–by default, we assume
that the service instances are hosted by the service provider.
We imagine service providers for sellers, buyers, lawyers,
etc., or combinations thereof, see Figure 1. Alternatively,
participants host their own service instances, which adhere
to the message interface definition for the particular abstract
service.

Figure 1 gives an idea about the landscape of real-estate
services we envision. We envision portals to emerge for var-

ious participant types, for instance for lawyers, mortgage
companies, buyers, sellers, etc. It is very well possible that
one portal supports more than one participant type. For in-
stance, one can imagine a portal where sellers as well as
buyers register. As we discuss from the business angle in
Appendix A, the portal plays a key role in bootstrapping
the SOAR landscape. Participants register with their respec-
tive portals, and the portals create service instances for the
registrants. In Figure 1, we therefore include the box regis-
tration, which not only indicates an opportunity to register,
but also implies the ensuing process of service instance cre-
ation. The portal also provides the run-time environment to
host the service instances, as indicated by the instance boxes
at the various portals.

There is a number of services one can think of that ex-
ploits SOAR. In Appendix A.1 we discuss them in increas-
ing order of complexity. There we also discuss the business
case behind such services as well as behind SOAR itself.

2.1. The DealMaker Service

The DealMaker service is a complex service that demon-
strates the abilities of SSDL, its associated formal proof sys-
tem, and our security model. The DealMaker service helps
customers to go through the steps involved in buying and
selling real-estate. We have taken the process example from
[7]. The service can be instantiated by any party, but for
the sake of this explanation, we assume the buyer initiated
the creation of a DealMaker service instance. At initialisa-
tion, it will be parameterised with the necessary information
about parties involved in the deal making, such as lawyers,
mortgage providers, surveyors, etc. Then, it goes through
the process steps. To get an idea about the operation of
the DealMaker service, it is probably simplest to read the
SSDL specification of the DealMaker service given in Fig-
ure 3. The main protocol, namedBuy Sell Protocol ,
contains a sequence of steps, each referring to another pro-
tocol: organising the mortgage, organise property viewing,
add lawyer information, price negotiation protocol, etc. The
stages corresponding to valuation and surveying can be ex-
ecuted in parallel, as one can see in Figure 3. At the end of
the process, the contract gets exchanged.

We note that the DealMaker service does not attempt to
completelyautomate stages of a business process. On the
contrary, the assumption is that the human stays involved
at all time, and many of the individual protocol steps given
in Figure 3 contain status update messages sent to the right
parties at the right time to assure completion of the over-
all process. The human then has to act on these messages
for theBuy Sell Protocol to continue, and ultimately
complete. In Figure 4 we display the details of the mortgage
organisation protocol, as SSDL specification. It has two par-
ticipants involved, the buyer and the mortgage lender. When
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1 <?xml version =" 1.0 " encoding= " UTF-8 " ?>
2 <ssdl:protocol targetNamespace= " http: // www. ncl . ac . uk / DealMakingService / ContractExchange / protocol "

xmlns:msgs= " http: // www. ncl . ac . uk / DealMakingService / ContractExchange / messages " xmlns:sc= "
urn:ssdl:protocol:sc " xmlns:ssdl= " urn:ssdl:v1 " >

3 <sc:sc>
4 <! -- Message Exchange Protocol -- >
5 <sc:protocol name= " Buy_Sell_Protocol " >
6 <sc:sequence>
7 <sc:protocolref ref= " MortgageOrganiseProtocol " ></sc:protocolref>
8 <sc:protocolref ref= " ViewingOrganizeProtocol " ></sc:protocolref>
9 <sc:protocolref ref= " LawyerRegisterProtocol " ></sc:protocolref>

10 <sc:protocolref ref= " SearchProtocol " ></sc:protocolref>
11 <sc:protocolref ref= " PriceNegotiationProtocol " ></sc:protocolref>
12 <sc:parallel>
13 <sc:protocolref ref= " ValuationProtocol " ></sc:protocolref>
14 <sc:protocolref ref= " SurveyProtocol " ></sc:protocolref>
15 </sc:parallel>
16 <sc:protocolref ref= " LifeAssuranceProtocol " ></sc:protocolref>
17 <sc:protocolref ref= " MortgageConfirmationProtocol " ></sc:protocolref>
18 <sc:protocolref ref= " ContractExchangeProtocol " ></sc:protocolref>
19 </sc:sequence>
20 </sc:protocol>
21 </sc:sc>
22 </ssdl:protocol>

Figure 3. SSDL specification of the protocol followed by the DealMaker service.

the seller initiates the creation of a DealMaker service in-
stance, it parameterises the service instance by providing
buyer and lawyer information. Importantly, it does not just
provide a name, but a reference to the service representing
the buyer and lawyer.

The service provider that hosts DealMaker services man-
ages the interaction given in the SSDL specification of the
DealMaker service. To that end, an SSDL protocol en-
gine runs at the service provider. It tracks how far the
process is along, and initiated next steps as appropriate. The
SSDL protocol execution engine is further discussed in Sec-
tion 5.2.

3. Trust and Security Architecture

The SOAR architecture requires solutions for common
security issues such as authentication, privacy, etc., which
we discuss this in Section 3.1. However, of more specific in-
terest to SOAR is the issue of achieving trust about claims
of unknown participants in a transaction, such as about
home ownership or professional credentials. We designed
a SAML-based trust solution for participant claims, which
we discuss in Section 3.2.

3.1. Authorization, Confidentiality and Integrity

The communication among services and between ser-
vices and web users is done using SSL [6], providing ba-
sic security properties such as confidentiality and integrity.
The assumption is that all service providers have acquired
X.509 certificates [8], issued by a valid CA. However, SSL
alone is not sufficient for identification, authentication and

authorization within services instances. Therefore, our se-
curity model uses SAML assertions [10] to provide identity
as well as authenticity in message exchanges. The autho-
rization is done by role-based access control [5] mechanism,
where “roles” and “rights” are provided through SAML at-
tribute assertions. With SAML we establish a standardized
way to share credentials and an easy way to include new ser-
vices or users into the system.

Service instances may have various properties that need
to be protected. For instance, a seller may only be willing
to share information about his/her lawyer with participants
that are trying to close a deal, i.e., with services that are
in same DealMaker service instance. Hence, when a new
DealMaker service instance is created, each participant of
this instance will receive a SAML attribute assertion (a role,
e.g.,dmi:ID648s5e2:participant ), indicating that
they are allowed to access “protected properties”. The de-
fault access control policy defines restrictions to some ser-
vice properties, and this policy is then updated to reflect new
service instances. For illustration, Figure 5 presents a small
piece of our access control policy.

We also want to be able to hide the identity of the ‘real
person’ that is behind a SOAR participant. In our model, the
real identity of a person will be known only by the particu-
lar portal the service is created with. To other participants,
a person’s identity will always be obfuscated by referring to
the person through a service identifier.

3.2. Trusted Claims

In SOAR, individual participants could make unsubstan-
tiated claims about ownership of properties, etc. In real life
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1 <?xml version =" 1.0 " encoding= " UTF-8 " ?>
2 <ssdl:protocol targetNamespace= " http: // www. ncl . ac . uk / DealMakingService / MortgageOrganise / protocol "

xmlns:msgs= " http: // www. ncl . ac . uk / DealMakingService / MortgageOrganise / messages " xmlns:sc= "
urn:ssdl:protocol:sc " >

3 <sc:sc>
4 <! -- Parties In Mortgage Organise Protocol -- >
5 <sc:participant name= " Buyer " />
6 <sc:participant name= " MortgageLender " />
7 <! -- Message Exchange Protocol -- >
8 <sc:protocol name= " MortgageOrganiseProtocol " >
9 <sc:sequence>

10 <sc:choice>
11 <sc:sequence>
12 <ssdl:msgref ref= " msgs:MortgageRequestSubmission " direction= " in " sc:participant= "

Buyer " />
13 <ssdl:msgref ref= " msgs:MortgageRequestTemplate " direction= " out " sc:participant= "

MortgageLender " />
14 <ssdl:msgref ref= " msgs:MortgageRequestCompletedTemplate " direction= " in "

sc:participant= " Buyer " />
15 <sc:choice>
16 <sc:sequence>
17 <ssdl:msgref ref= " msgs:MortgageRequestAccepted " direction= " out " sc:participant=

" MortgageLender " />
18 </sc:sequence>
19 <sc:sequence>
20 <ssdl:msgref ref= " msgs:MortgageRequestRejected " direction= " out " sc:participant=

" MortgageLender " />
21 </sc:sequence>
22 </sc:choice>
23 </sc:sequence>
24 <sc:nothing />
25 </sc:choice>
26 </sc:sequence>
27 </sc:protocol>
28 </sc:sc>
29 </ssdl:protocol>

Figure 4. SSDL specification of the protocol followed in the mortgage organisation step.

1 <policy>
2 <resource id= " lawyer " defaultAction= " deny " >
3 <allow>
4 <role id= " dmi:ID648s5e2:participant " />
5 <role id= " dmi:ID24n256s:participant " />
6 </allow>
7 </resource>
8 </policy>

Figure 5. Access control policy.

we can often easily enhance trust in such claims (such as
ownership of a house) by paying a personal visit or search
government archives to check if the supplied claim is true
or not. However, in the virtual world of SOAR, services
are often not in a position to make judgement calls about
a claim of a participant is valid, possibly simply because
no humans are available with the right expertise. To pro-
tect SOAR from illegitimate entrees, we use a Trusted Third
Party (TTP) that is able to corroborate the claim of a partic-
ipant. We can think for instance of a government institution
being able to issueclaim tokensthat substantiate the claims
about the ownership of a real-estate property made by a par-
ticular seller.

For example, before the creation of a service instance
that offers a house for sale to all SOAR participants, the
seller needs to supply house details and a claim token is-
sued by some claim-issuing institution, indicating that the
house details can be trusted. Let us assume that the seller
goes in person to a government institution to show a “legal
document” indicating ownership of his/her house. The gov-
ernment then gives the seller a claim token that the seller can
forward to other SOAR participants, who then can check the
validity of the claim token at the claim issuer web service.

In the demo we apply the idea of claim tokens to proper-
ties associated with a potential buyer that chooses to make
use of the DealMaker service. Our implementation, based

Part Arch - APPENDIX [Mello et al. 2006] p 8



on SAML assertions, provides a flexible and user-friendly
way for participants to either obtain or check claim tokens.
We think that trusted claims provide a level of trust through-
out the SOAR architecture that may greatly enhance the
willingness of participants to carry out business interactions
through SOAR services.

4. SSDL and Formal Correctness
Proof

The DealMaker service constitutes of a particularly com-
plex orchestration of service interactions. The complex na-
ture of the interactions makes one question the correctness
of the overall process. In order to validate the correctness,
we derive aπ–calculus specification from the SSDL spec-
ification, and validate the resulting model formally. The
way this can be done has been described in [13], and we
briefly summarise the main points of this approach to cor-
rectness validation. First we introduce SSDL, closely fol-
lowing [13, 18].

The SOAP Service Description Language (SSDL) is a
SOAP-centric contract description language for Web Ser-
vices. The SOAP Service Description Language provides
the base framework for a range of protocol description
frameworks which at one end of the spectrum can be a sim-
pler, SOAP-focussed, direct replacement for WSDL mes-
sage exchange patterns while at the other end of the spec-
trum can enable formal validation and reasoning about the
protocols that a Web Service supports. SOAP is the stan-
dard message transfer protocol for Web Services. However,
the default description language for Web Services (WSDL)
does not explicitly target SOAP but, instead, provides a
generic framework for the description of network-exposed
software artefacts. Another important feature of SSDL is
the ability to specify multi-party protocols that are consider-
ably more complex than the simple message exchange pat-
terns allowed in WSDL. In SOAR we utilise the sequenc-
ing constraint manner of specifying protocols, which makes
the ensuing protocol amenable to formal correctness verifi-
cation.

Figure 3 and Figure 4 illustrate the use of the sequenc-
ing constraint protocol definition (the sequencing constraint
schema is specified in the namespace ending withsc ). The
use of sequencing constraints results in a protocol that can
be formally expressed in terms ofπ–calculus, thus allow-
ing for model-checking tools to demonstrate correctness.
The formal correctness proof considers the following prop-
erties: race conditions and starvation. One can also con-
sider if an agreed-upon termination state will be reached,
but we did not pursue this in this project. A race condition
emerges if different participants observe different paths for-
ward, for instance when a sender knows a message has been

portal service

xslt

wsdd

wsdl

DB

Figure 6. Service instantiation process.

sent out, while the receiver assumes no message has been
sent out since it has not arrived yet. In this case, sender and
receiver might take different next steps in the protocol. Star-
vation occurs when contracts are incompatible because cer-
tain message assumed by a receiver are not part of the pro-
tocol of the assumed sender.

We used SSDL to validate the lack of race conditions in
an early version of the DealMaker service protocol specifi-
cation given in Figure 3. Further details are provided in Ap-
pendix B.4.

5. Implementation and Run-Time En-
vironment

In this section we discuss two major elements of our
implementation, the service run-time environment in Sec-
tion 5.1 and the SSDL protocol execution engine in Sec-
tion 5.2. Extended versions of both sections can be found in
Appendix B.

5.1. Service Run-Time Environment

We subsequently discuss instantiation, deployment and
invocation of services.

5.1.1. Service InstantiationThe concept of a portal in
our architecture facilitates participants in the real-estate in-
dustry to create service instance representing them and their
constituent properties. The functionality behind each of the
service instances is analogous, and the sole distinguishing
factor in each is the data “contained” within in. To provide a
replicated service implementation for each service instance
would be inefficient. We pursued a more elegant and effi-
cient solution to this issue by providing a specialised inter-
face to a generic service, enabling reuse of the service im-
plementation, yet retaining the notion of distinct service in-
stances.
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Figure 7. Service deployment process.

The production of the specialised interface, and thus ser-
vice instantiation is performed by an operation at the portal
service. This operation receives the instance-specific data
in XML format, within a SOAP envelope, from the invok-
ing party, be it another service or a front-end to the por-
tal service. We use XSLT [19] to process the data received
since it offers a highly effective means of focused data ex-
traction and template incorporation. In the production of the
specialised interface we wish to create for each service in-
stance, we simply plug the instance-specific data into spaces
left within a WSDL template. Within the WSDL template,
the transformation simply customizes the name of the ser-
vice, and endpoint at which this service was deployed.

Buyers and sellers (and other participants) can state,
when registering at the appropriate portal, the service rep-
resenting their lawyer, surveyor etc, for use in the deal-
making process. This statement is made in the form of
the URL to the given service WSDL, resulting in a list
of WSDL URLs behind each buyer and seller service in-
stance. In collecting a number of services together and mak-
ing them available through a single interface, we have cre-
ated a very straightforward form of service composition.
Figure 6 depicts the various aspects of service instantiation.

5.1.2. Service DeploymentThe final output of the above
instantiation process is the WSDD document. It is within
this document that we compose our service instance, sta-
ting the generated WSDL as the service interface and the
generic service as the implementation. Figure 7 shows how
each of the created service instances is linked to the generic
service implementation. With these details we have a com-
plete description of the service instance, and therefore this
service may be deployed. A tool within Axis is then used
to deploy the service and enable its invocation by relevant
parties. Figure 8 shows an example deployment file for the
buyer and seller services.

generic service1

handler

Figure 9. Service invocation process.

5.1.3. Service InvocationDeployment in above de-
scribed way requires that the appropriate context be
forwarded to the generic service, to enable it to distin-
guish invocations for different service instances. That
is, given invocation of service instance A, we con-
vey to the generic service implementation I, that context
should relate to A. Therefore, all messages sent to the end-
point of a given service instance, must first pass through
a handler, before being forwarded on to the generic ser-
vice implementation (see Figure 9). The handler, on receipt
of a message directed at a service instance endpoint in-
spects the message destination, that is, the endpoint of
the service instance. With the use of a unique identi-
fier for each service instance (incorporated into the instance
endpoint URL), the context for a message can be de-
rived from the message destination. This context is then
added into the message body, by the handler, provid-
ing the necessary context to the generic service implemen-
tation. With this context in place, the message is safely
forwarded on to the service implementation for process-
ing. This approach shows how context for service invoca-
tion can be made implicit from the service instance end-
point rather than being included explicitly within the
message. This enables the creation of replicated service in-
stances, linked to the same service implementation, which
behave as if a stand alone service with specific implemen-
tations.

5.2. SSDL Protocol Execution Engine

SSDL fully describes the state space of a composed ser-
vice as well as the sequence of service interactions (message
exchanges) required to reach each state. We can thus view
a composed service whose description is given in SSDL
as a state machine, with message exchanges providing the
transitions between states, and states implicitly defined as
points between these exchanges. Starting from this premise,
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1 <deployment xmlns= " http: // xml . apache . org / axis / wsdd/ " xmlns:java= " http: // xml . apache . org / axis / wsdd/
providers / java " >

2 <service name= " Package_n " provider= " java:RPC " style= " rpc " use= " encoded " >
3 <parameter name= " className " value= " scc2006 . packages . PackageService " />
4 <wsdlFile> wsdl / Package_n . wsdl </wsdlFile>
5 <parameter name= " allowedMethods " value= " * " />
6 <requestFlow>
7 <handlertype= " java:scc2006 . packages . PackageHandler " />
8 </requestFlow>
9 </service>

10 </deployment>

Figure 8. Sample service instance deployment file.

data
basedeal-making service
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protocol
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sequence
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Figure 10. The SSDL Protocol Execution En-
gine within the DealMaker service.

we developed an SSDL Protocol Execution Engine that di-
rectly executes the state machine defined by the SSDL de-
scription.

SSDL documents describe the state space in the form of
a tree whose leaf nodes are<msgref > elements. These
specify that the type of message referenced in theirref at-
tribute be sent or received. Other elements (sequence, par-
allel, branch, loop) define the order in which message ex-
changes in their subtrees need to occur. The protocol en-
gine must correctly implement the semantic of the different
elements. How this is done is discussed in detail in Appen-
dix B.2.

The general architecture of the engine is shown in Fig-
ure 10. Based on the state reported by the SSDL Process Ex-
ecution Engine, the DealMaker invokes actions tied to each
state. In addition, it offers facilities to keep the internal ma-
chine state consistent with the deal’s real-world status. If a
user request so, based on the machine state, the DealMaker
service retrieves an explanatory, pre-generated HTML page
from the database and delivers it to the user.

5.2.1. State-keeping in a stateless environmentWeb
Services that use Axis RPC wrappers are inherently state-
less. Every service invocation starts with a freshly-loaded

executable. One way to keep state is by storing the input se-
quence that was encountered previous to reaching the cur-
rent state. To restore state, the engine then steps through
this sequence, ignoring actions tied to the states it tra-
verses.

In regard to reaching the current state after startup, this
method is clearly less efficient than explicit state-keeping,
because all steps of the machine have to be executed again
before the actual action invoked can be taken. However,
we used it because (a) it is more flexible, and (b) helps to
implement fault-tolerant applications (see Appendix B.2).
Higher flexibility results from the fact that the state ma-
chine description (the SSDL document) can be modified
between service invocations, without necessarily invalidat-
ing any partially-completed processes. This is of particu-
lar importance with long-term processes such as that imple-
mented by the DealMaker, where one process instance may
be running for several months before all steps have been
completed.

6. Conclusion

This paper reports on two and a half months of team
work on service-oriented computing, which included con-
ceiving the idea of the DealMaker service, researching the
real-estate business domain, designing the SOAR architec-
ture including extensive security and trust solutions, imple-
menting the DealMaker service and the supporting SSDL
protocol execution engine, and applying model checking to
a version of our protocol. The work combines state-of-the-
art fundamental computer science approaches with practical
implementation and with the business and standardisation
side of such work. It leverages deep skills of the team mem-
bers in security, protocol specification, formal methods and
service-oriented software engineering, as well as the busi-
ness experience of the senior team members. We believe
that the current work provides a useful exploration in ap-
plying service-oriented computing technologies in the real-
estate industry, with some exciting ideas and challenges we
hope to continue working on in the future.
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Appendices

The appendices to the above paper complete the overall
contest report. In these appendices we provide more details
about the following topics:

• Appendix A: the real estate problem domain and
value proposition behind our SOAR and SOAR ser-
vices

• Appendix B: report on implementation experiences
and lessons learned, including the service run time in
Appendix B.1, the SSDL execution engine in Appen-
dix B.2, the security solution implementation in Ap-
pendix B.3, and the formal validation of SSDL in Ap-
pendix B.4

• Appendix C: explains the idea behind the demo web
site in [4]

• Appendix D: a result analysis and reflection on the
project

A. Problem Domain and Value Propo-
sition

We discuss in Appendix A.1 the business case behind
SOAR and individual services such as the DealMaker ser-
vices, and we review in Appendix A.2 the state-of-the-art of
computing technologies used in the real-estate industry.

A.1. Value Proposition

In this section we discuss the business case be-
hind SOAR as well as individual services. It will turn
out that the dynamic nature of the real-estate indus-
try may make introduction of SOAR technologies through
a winner-take-all portal relatively difficult. As a con-
sequence, we argue that there is a role for standardisa-
tion bodies within the real-estate industry to expand their
work into defining industry-wide service-oriented mes-
sage interfaces.

The real-estate industry is a particularly diverse and dy-
namic industry. As an industry, it is not only concerned with
sales and purchases of individual properties, but also of in-
dustrial properties and in response to requests for proposals
in larger real-estate deals. Many parties are involved, indi-
viduals as well as businesses, with buyers and sellers contin-
uously changing, and with a high amount of novices partici-
pating. Many steps in a real-estate transaction are tradition-
ally human-intensive, such as viewing, decision-making,
negotiating, etc. There is a continuous concern about trust
and security: trust in other parties, security concerns about
identity and privacy. Moreover, there is a concern of trust

in automation as well as trepidation of new buyers and sell-
ers to step into the unknown world of real-estate. Regional
knowledge is important to be a successful real-estate agent,
and laws and regulations are different in every country or
state, and are subject to change from time to time. Because
of this diversity and dynamism in the real-estate industry, it
is perhaps not surprising that automation and Internet-based
cooperation are relatively slow to emerge. Compared with
supply-chains or resource planning, the domain is much less
straightforward to automate. However, it is exactly for these
reasons that service-oriented computing solutions are re-
quired to answer the domain challenges of the real-estate
business.

We believe that service-oriented computing has the po-
tential to disrupt the real-estate industry by enabling new
business practices that alter the role of current players. As
an example, the role of a real-estate agent might change
because of match-making and information-sharing capa-
bilities of Internet technologies. This is already true with
plain web sites, but becomes even more apparent if service-
oriented solutions arise. Instead of considering this disrup-
tion a threat, we look at this as an opportunity. By adding
service-oriented capabilities, new businesses can be con-
ceived that increase the effectiveness and abilities of an ex-
isting real-estate agent. For instance, agents might rapidly
create services for specific geographic areas–these service
include, but are not limited to, the brochure service and list-
ing services mentioned in the introduction.

Potential Real-Estate Services in SOARWe illustrate
the potential of SOAR by describing some example appli-
cations, one of which we implemented (the ‘DealMaker ser-
vice’). As a first example, assume the service to be hosted
on the Internet, and assume that there is a SOAR portal that
hosts information from sellers, including information about
their properties, and from real-estate agents (including in-
formation about their company). Using the message inter-
faces of the services, one can then relatively easily create
new services.

For instance, one can create a ‘brochure service’, which
at the request of a buyer or agent selects a set of houses,
prints them out including personalised logo and other infor-
mation from a real-estate agent, and mails them to selected
customers of the real-estate agent using e-mail as well as
regular mail. Clearly, if such a service would have to be built
using information from web sites without agreed-upon mes-
saging interfaces, it is very difficult to build at best. There
is potential for many other information-centric services that
utilise the message interfaces of the portals, such as listings
dependent on geographic areas, generation of targeted ad-
vertisements, etc.

Things get even more interesting when the messages not
only access information, but initiate actions, such as draft-
ing a contract or setting up a house viewing. This is illus-
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trated by the DealMaker service in Figure 1. It provides the
same service instance creation possibilities as the other ser-
vices, but when executing, the service utilises other services
to complete its process of closing a deal. Messages may for
instance start the process of drafting a contract. All together,
the DealMaker service does as many automatable process
steps as possible to close a real-estate deal: arranging view-
ing dates, contacting surveyors, exchanging mortgage in-
formation, providing information for the contract, etc. The
DealMaker service is described at length in Section 2.1.

Business Case for SOAR.With respect to the SOAR
service architecture we introduce in this paper, there are dif-
ferent perspectives that one can take in judging the business
validity of the approach. First, one can consider SOAR in
business-to-business and even Intranet setting. In that case,
one does not need to consider the difficult to control dy-
namics that individual customers introduce to SOAR. This
greatly simplifies the bootstrapping challenge of SOAR (see
below in this section for a detailed discussion of the boot-
strapping issue). After all, large companies or collaborating
companies can simply choose to use SOAR, because of in-
creased efficiency and flexibility over web sites, XML in-
terchange formats and also object-oriented methods. The
trade-offs in choosing a particular architecture are simi-
lar to any other industry: ease of use, legacy issues, etc.
To truly advance the state of the art, standardisation of
message interfaces is necessary, either in de facto man-
ner or through standardisation bodies such as OSCRE and
PISCES [12, 15].

Although there certainly is ample reason to intro-
duce SOAR-style architectures in business-to-business or
Intranet settings, we designed SOAR with the open Inter-
net in mind. Customers can be private individuals or busi-
nesses, thus leading to business-to-consumer as well
as business-to-business scenarios. Newly provided ser-
vices would be expected to aim at attracting private cus-
tomer as well as small and medium businesses like
lawyers, real-estate agents, surveyors, etc. All these par-
ticipants will be represented by a service, which they per-
sonalise themselves through a web site. In this set-up there
are two major business issues: how can SOAR be boot-
strapped, and how can one make money out of starting
individual added-value services such as the DealMaker ser-
vice? We discuss both.

Bootstrapping SOAR. The Achilles heal of SOAR is
gaining initial sustainable acceptance of the portals and the
service interface definitions. We refer to this as the boot-
strapping problem. The dilemma is that to start a success-
ful portal one needs customer, and to attract customers one
needs a successful portal. One obvious solution to this is to
advocate the emergence of a dominating, winner-take-all,
service portal–this could be a portal for each type of partic-
ipant (lawyer, seller, buyer, etc.), or a portal that covers all

participants. Once the portal emerges, it can introduce de
facto standards for interoperability along the lines of SOAR.
This model mimics e-Bay, amazon and ‘vertical portals’
such as in the car or high-tech industry. At first sight, one
might think it is a matter of time until a major real-estate
portal will assume such a winner-take-all position. How-
ever, we doubt if a winner-take-all solution is likely to ma-
terialise in the real-estate industry. The real-estate industry
is much more diverse than the publishing or music indus-
try, and local cultural as well as legal aspects are different
in every geographic zone. It then becomes very challeng-
ing to create a portal that is attractive for a large customer
base.

If a dominant portal does not emerge, an important role
arise for the standardisation bodies that represent the real-
estate industry [12, 15]. Without a dominant players, de fac-
tor standardisation of interfaces is not likely to happen, and
a standardisation organisation can fill the void. The organ-
isation can also venture in creating initial portals, this re-
solving the SOAR bootstrapping issue. Commercial, local
portals can then be expected to emerge, and creation of new
value-added services would start and significantly improve
the position of the real-estate industry.

Business Case for the DealMaker ServiceThe Deal-
Maker service is just one example of a service that can be
created within the SOAR landscape. The business case be-
hind these added services can be manifold: it can be based
on charging for transactions, it can use subscription-based
charging of its customers, or it could target advertisements.
And, of course, a combination of these is possible. For
added-value services to emerge, portals must allow mes-
sages to be sent to their hosted services, and the interfaces
must be stable, preferably standardised. Here again one sees
the value of standardisation, either de jure through a stan-
dardisation body, or de facto through winner-take-all por-
tals.

A.2. Real Estate and Internet: State of the Art

As many other industries, the real estate industry is pur-
suing standardisation efforts to facilitate interoperability
among various participants. Arguably, the real-estate indus-
try is somewhat behind various other industries in such ar-
eas as high tech supply chains, automobile portals, etc. (the
real-estate industry itself admits so in [14]). It is not un-
likely that the challenges we recognised in terms of making
interoperability work have something to do with the rea-
son standards are relatively slow to take off: many different
player, many different role, many different regulations, dif-
ferent in every geographical region. However, some serious
interoperability efforts have been started, of which we men-
tion a few.
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Other obvious utilisation of the Internet is through web
sites that provide information about real estate properties,
allows people to advertise their property, etc. Such web sites
are emerging in many countries (for some example in Ger-
many, see [16]), states and cities, again demonstrating the
dependence on geographics. These web site are a good start,
but tailor to mass markets and do not provide additional in-
teraction capabilities for software packages.

Directly related to the real-estate industry are the not-for-
profit organisation Property Information System Common
Exchange Standard (PISCES [15]) in Europe and the Open
Standards Consortium for Real Estate (OSCRE [12]) in
the United States. These organisations are publishing XML
standards for interoperability between real-estate agents and
possibly other parties. The agreed-upon XML formats for
describing real estate related information can directly be
plugged into our SOAR architecture to hook our work into
existing developments. However, both PISCES and OSCRE
are less concerned with the software architecture needed to
deliver on some of the automation promises mentioned in
the vision the expose to the world [14]. Discussions are un-
derway what type of transport to use (e.g., ebXML or other
web service technologies), but that stops far short from a
service-oriented solution.

Many other standardisation efforts are of interest, to
name a few, the Mortgage Industry Standards Maintenance
Organization (MISMO [9]) for the mortgage industry or
the Real Estate Transaction Standard (RETS [17]. The lat-
ter is centred around a server platform solution, but in gen-
eral these organisations propose standardised formatting of
data in XML, so that software programs can easily inter-
operate. We have argued in this paper that new opportu-
nities arise if one goes beyond format and looks towards
flexible ways of enriching the interaction between partici-
pants. Nevertheless, a very important role could be in store
for the standardisation bodies to push the XML standardis-
ation of message-based interactions. The creation of XML
standards for the message interchanges by standards bod-
ies would be an alternative to the emergence of large por-
tals that create their own message interchange definitions
which will turn into de facto standards. Because of the di-
versity for the industry, large commercial players may be
slow to emerge, in which case there is a role for standardis-
ation bodies to push SOAR like solutions for the real-estate
industry.

B. Implementation Experiences and
Lessons Learned

We implemented our solution using Java technologies,
a choice motivated by the familiarity with the technologies
and the existence of diverse tool support. The demo runs

on a web server hosted at The University of Newcastle, re-
lying on Axis and on a mySQL database. Axis and related
software runs in VMWare virtual server on Linux (offer-
ing a Linux guest OS for our use), connected to the data-
base hosted on another machine meant for student projects.
Note that our service implementation is not distributed over
many hosts but are web service all on the same host (identi-
fied by URLs). The choice of individual development envi-
ronments were left to each developer in the team. We made
limited use of UML techniques to describe and share de-
signs, without any particular tool support in that area. The
web site was implemented by relatively standard means: dy-
namic web pages, using ‘AJAX’-style interaction through
Javascript and passing of XML documents.

B.1. Service Run-Time Environment

This subsection is an extended version of Section 5.1.
The SOAR implementation necessitates a run-time envi-

ronment capable of supporting the characteristics synony-
mous with the service-oriented paradigm. The architecture
used to support service-orientation characteristics is web
services, and principally the SOAP-based implementation
of this architecture. Numerous tools supporting the devel-
opment of web services have been born out of this posi-
tion at the forefront of service-orientation, and the SOAR
implementation takes advantage of one such tool, namely
Apache Axis [AXIS]. Axis provides a sound basis for web
service development with, most notably, the provision of a
SOAP processing and transport framework and flexible ser-
vice deployment options. This utilisation of Axis enabled
a certain degree of abstraction to be achieved in the devel-
opment process, with focus shifting, as far as possible, to
higher level and more conceptual notions.

Standard techniques for web service instantiation, de-
ployment and invocation are ubiquitous, as the adoption of
the service-oriented paradigm and web services architec-
ture gains ever-increasing momentum. Consequently, this
section places focus on the innovative, non-standard tech-
niques used in our implementation approach in relation to
service instantiation, deployment and invocation.

B.1.1. Service Instantiation One fundamental requisite
of a web service is the decoupling of interface from imple-
mentation, facilitating opaque invocation of web services
and a focus on what functionality is provided not how it
is provided. The interface states the operations and mes-
sage formats supported by the service, and the endpoint
at which this service resides. The service consumer is ab-
stracted away from service implementation details, and con-
cerns himself with only matters prior to message dispatch
to the endpoint. Such abstraction provides a high degree
of flexibility to the service provider, allowing service im-
plementation to be arbitrarily complex whilst maintaining a
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consistent and abstract interface. In the SOAR implemen-
tation we capitalise on the flexibility offered by this decou-
pling, and exploit the power of this technique for service in-
stance creation at run-time.

The concept of a portal in our architecture facilitates par-
ticipants in the real-estate industry to create service instance
representing them and their constituent properties. One can
view this creation as a factory-style process, a participant
registers at the portal, and portal creates a service instance
for them representing their particular participant type, for
instance the buyer portal would create a service instance for
a buyer. The functionality behind each of these service in-
stances is analogous, and the sole distinguishing factor in
each is the data contained within in. To provide a replicated
service implementation for each service instance would not
only be highly inefficient, it would also be contradictory to
the core principles of service-orientation; replicating rather
than reusing functionality. A more elegant and efficient so-
lution to this issue would be to provide a specialised inter-
face to a generic service, enabling reuse of the service im-
plementation, yet retaining the notion of distinct service in-
stances.

The production of the specialised interface, and thus ser-
vice instantiation is performed by an operation at the portal
service. This operation receives the instance-specific data
in XML format, within a SOAP envelope, from the invok-
ing party, be it another service or a front-end to the portal
service. Contrary to all other service operations within the
SOAR implementation, this operation utilised document-
style, literally encoded SOAP messages. The justification
for this stems from our wish to use XSLT [19] to effectively
and concisely process the data received. RPC encoded mes-
sages would not be suitable for this purpose, as their com-
ponent data is isolated on receipt and made accessible as
atomic data items.

XSLT offers a highly effective means of focused data ex-
traction and template incorporation. This makes it highly
effective in the production of the specialised interface we
wish to create for each service instance simply plugging the
instance-specific data into spaces left within a WSDL tem-
plate. The functionally analogous nature of the service in-
stances meant that a set WSDL template contained all the
pre-defined operations and message formats, and the trans-
formation simply customized the name of the service, and
endpoint at which this service was deployed. The instance-
specific data “behind” the service instance must be stored
in a database to enable its retrieval and amendment by sub-
sequent instance invocations. Each service instance is as-
signed a unique identifier and the data is linked to this iden-
tifier within the database. We again perform the task of data
extraction with the aid of XSLT, which plugs the extracted
data into a pre-formed SQL statement and updates the data-
base accordingly. Use of templates in this way offers a high

degree of flexibility to change, as new templates can be
plugged in as requirements evolve.

The final output of the instantiation process is the WSDD
document, generated using precisely the same method as the
WSDL document, through use of a template in XSLT. Axis
offers flexible deployment through customizable options
with this WSDD document, enabling the definition of nu-
merous service-specific details including the interface and
implementation corresponding to this service. It is within
this document that we compose our service instance, sta-
ting the generated WSDL as the service interface and the
generic service as the implementation. Further explanation
of the deployment process is left to the next section.

Worthy of further discussion is the instantiation of buyer
and seller service instances. Buyers and sellers can state,
when registering at the appropriate portal, the service rep-
resenting their lawyer, surveyor etc, for use in the deal-
making process. This statement is made in the form of
the URL to the given service WSDL, resulting in a list of
WSDL URLs behind each buyer and seller service instance.
These addresses are stored within the database along with
any other instance-specific data and can be extracted for use
in the deal-making process. In collecting a number of ser-
vices together and making them available through a single
interface, we have created a very straightforward form of
service composition.

One may, of course, provide a specialised, custom im-
plementation for a given service instance, as would most
likely be the case for mortgage lenders, lawyers etc. For
the case of buyers and sellers though, it is unlikely that the
resources and knowledge available would enable them to
configure a specific web service for themselves. Our ap-
proach, therefore, strives to illustrate the elegance and effi-
ciency with which functionally analogous service instances
can be created by services at run time, using pluggable tem-
plates. This holds many opportunities both within and out-
side of the real-estate industry.

B.1.2. Service DeploymentAs discussed in the previous
section, one output of the instantiation process is a WSDD
document, enabling the custom deployment of created ser-
vice instances. The document generated is used by Axis to
correctly deploy the service, and to route service invoca-
tions to the appropriate service implementation.

Figure 7 shows how each of the created service instances
is linked to the generic service implementation. We estab-
lish this configuration in the WSDD document, stating the
generic service implementation as the implementation of
the service instances, and the generated WSDL as the in-
terface for this service. With these details we have a com-
plete description of the service instance, and therefore this
service may be deployed. A tool within Axis is then used
to deploy the service and enable its invocation by relevant
parties. Figure 8 shows an example deployment file for the
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buyer and seller services. Deployment in this way requires
that the appropriate context be forwarded to the generic ser-
vice, to enable it to distinguish invocations for different ser-
vice instances. We discuss this notion of context with regard
to service invocations in the next section.

B.1.3. Service InvocationThis invocation model of web
services can be extended with the notion of handlers. Han-
dlers enable web services to define a functional interme-
diary in the invocation process to intercept all incoming
and/or outgoing messages, execute some functionality, and
on completion forward the message on. This functionality is
commonly used to enforce security or trust procedures be-
fore the invocation of a web service, but within the service
instance creation process we use these handlers to convey
context.

Our use of a generic service implementation for mul-
tiple service instances requires that context be conveyed.
That is, given invocation of service instance A, we must
convey to the generic service implementation I, that con-
text should relate to A. Of course, this could simply be in-
cluded in the SOAP communication to the service instance,
but this is contradictory to the idea of generating a specific
service instance. In such a case, we could simply have one
generic service interface and implementation, and pass in-
stance context as a parameter to this service, in the form of
the instance identifier. The SOAR implementation endeav-
oured to create a more elegant ad useful approach to this
context communication, and found such an approach in the
use of handlers.

Our context for each instance was the instance identi-
fier, and it was this identifier we required to be conveyed
to the generic implementation. Messages arriving at the ser-
vice instance endpoint had no containing context, that is, the
context was implicit from the endpoint at which the mes-
sage was directed. For instance if we dispatch a message to
the endpoint of service instance A, we do not include within
the body of that message any reference to service instance
A. If such a message was then simply forwarded on, with-
out amendment, to the generic implementation, we would
be unable to derive the message context, that is, the instance
to which this message relates.

To deal with this notion of context we introduced a han-
dler to the invocation process. All messages sent to the end-
point of a given service instance, must first pass through this
handler, before being forwarded on to the generic service
implementation. The handler itself is generic, and the same
handler is utilised by all service instances, and in essence
this handler can be seen as part of the generic implemen-
tation. The handler, on receipt of a message directed at a
service instance endpoint inspects the message destination,
that is, the endpoint of the service instance. With the use of
a unique identifier for each service instance (incorporated
into the instance endpoint URL), the context for a message

can be derived from the message destination. This context is
then added into the message body, by the handler, providing
the necessary context to the generic service implementation.
With this context in place, the message is safely forwarded
on to the service implementation for processing. Such an
approach has shown how context for service invocation can
be made implicit from the service instance endpoint rather
than being included explicitly within the message. This en-
ables the creation of replicated service instances, linked to
the same service implementation, which behave as if a stand
alone service with specific implementations.

B.2. SSDL Protocol Execution Engine

This section is an extended version of Section 5.2.
There already exist various tools to support the use of

SSDL in the development of new web services. These tools
provide facilities for correctness-checking SSDL descrip-
tions and for the automated creation of .Net stubs from
SSDL. As with most similar approaches throughout the
field of computer science, however, a gap opens between
formally checked descriptions and their actual implementa-
tion, because the components involved must still be devel-
oped manually Hence, mistakes during the implementation
could re-introduce protocol errors easily found (and fixed)
in the formal description; and consequently deployed ser-
vices are still prone to these kinds of errors.

On the other hand, SSDL fully describes the state space
of a composed service as well as the sequence of service in-
teractions (message exchanges) required to reach each state.
We can thus view a composed service whose description is
given in SSDL as a state machine, with message exchanges
providing the transitions between states, and states implic-
itly defined as points between these exchanges.

Starting from this premise, we developed an SSDL Pro-
tocol Execution Engine that bridges the aforementioned gap
between description and implementation by directly execut-
ing the state machine defined by the formal description. For
each message exchange observed, the machine’s state is ad-
vanced to the state specified in the description. Then, an ac-
tion tied to this state can be invoked. This action leads to
another message exchange, which in turn advances the state
machine to the next state.

B.2.1. Implementation of SSDL ElementsSSDL docu-
ments describe the state space in the form of a tree whose
leaf nodes are<msgref > elements. These specify that the
type of message referenced in theirref attribute be sent or
received. Other elements define the order in which message
exchanges in their subtrees need to occur. In respect to their
influence on the state machine’s behaviour, these fall into
four classes:
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Sequential Execution All child nodes must be executed
sequentially, i.e. in the order they are given in by
the SSDL document. A node with sequential execu-
tion is considered completed when all message ex-
changes required by its children have taken place.
This class comprises the<sc >, <protocol > and
<sequence > elements.

Parallel Execution The order in which child nodes are ex-
ecuted does not matter, but as with sequential execu-
tion all message exchanges must be completed before
a parallel execution node is complete. This class is
made up of the<parallel > element.

Branches Exactly one of the child elements must be com-
pleted. If the special<nothing > element is
present, a branch may be skipped. I.e., execu-
tion of the<nothing > element implies that none
of the other child nodes must be visited, hence none
of the messages specified in their<msgref > de-
scendants must be observed before the branch can
be completed. The<choice > element is the only
member of this class.

Loops All child nodes can be executed multiple times and
in parallel, i.e. one loop need not be finished before
the next starts. Loops are specified by the use of the
<multiple > element. We do not support loops in
our current implementation.

Our SSDL Protocol Execution Engine recursively visits and
marks completed nodes according to the order of message
exchanges observed and required by the SSDL description.

B.2.2. State-keeping in a stateless environmentWe de-
veloped the DealMaker service within an Axis environment.
Web Services that use Axis RPC wrappers are inherently
state-less: Every service invocation starts with a freshly-
loaded executable. Services that need to keep their process-
ing state between invocations have to save and restore the
information necessary to do so to/from an external storage
system (e.g. a database).

We distinguish two ways of keeping state. First, the state
itself can be saved explicitly. With our engine implementa-
tion, this corresponds to saving the current state space tree,
whose configuration of completed and uncompleted nodes
represents the state machine’s state. In an implementation,
this provides a reasonably efficient method to reach the cur-
rent state before continuing work.

Second, with a state machine that is driven solely by ex-
ternal input, state can also be kept by storing the input se-
quence that was encountered previous to reaching the cur-
rent state. To restore state, the engine then steps through this
sequence, ignoring actions tied to the states it traverses. In
regard to reaching the current state after startup, this method
is clearly less efficient than explicit state-keeping, because

all steps of the machine have to be executed again before
the actual action invoked can be taken. However, we favour
it because (a) it is more flexible, and (b) helps to implement
fault-tolerant applications. Higher flexibility results from
the fact that the state machine description (the SSDL docu-
ment) can be modified between service invocations, without
necessarily invalidating any partially-completed processes.
This is of particular importance with long-term processes
such as that implemented by the DealMaker, where one
process instance may be running for several months before
all steps have been completed.

Furthermore, storing and re-reading the input sequence
offers an obvious starting point for the application of fault-
tolerance (FT) measures. N-Version Programming (NVP)
as a means to improve the reliability of the SSDL Proto-
col Execution Engine itself illustrates this best. In short,
NVP entails the use of several different implementations of
the same component to eliminate errors introduced during
the programming process. With input sequences stored and
available in the same format to each version, individual im-
plementers can concentrate on improving the core engine,
and avoid inter-version dependencies in the state-keeping
code.

B.2.3. Setting-specific implementation detailsWe pre-
viously described the SSDL Process Execution Engine on
an abstract level, considering message sequences as its in-
put and unspecified ‘actions’ as what happens in the single
states. In the following, we will point out several details of
the implementation as part of the DealMaker service.

The general architecture is shown in Figure 10: Based on
the state reported by the SSDL Process Execution Engine,
the DealMaker invokes actions tied to each state. In addi-
tion, it offers facilities to keep the internal machine state
consistent with the deal’s real-world status.

At the moment, our implementation only performs one
type of action: The user is presented with the state of
the deal and with his options to progress it. Based on the
machine state, we retrieve an explanatory, pre-generated
HTML page from the database and deliver it to the user.
While limited in its general applicability, this choice is ad-
equate for the human-centric interactions that dominate our
business case. In the future, invocations of services that help
the user complete his deal could be tied to some states; e.g.
a service that negotiates between schedules might help buy-
ers and sellers set a date for the viewing of a property.

To keep the internal machine state consistent with the
real-world status of the deal, the DealMaker must be aware
of any message exchange that takes place between par-
ties within the protocol. The most straight-forward way to
achieve this is to implement the DealMaker as a message
broker for all messages sent during the deal. However, this
does not only involve privacy issues and performance con-
siderations that may both hamper acceptance of the service,
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but also reduces service flexibility by tying parties to one
central entity.

We therefore chose to simply offer an interface for the
user to notify the DealMaker that they have sent (or re-
ceived) a specific type of message, i.e. that a message ex-
change has occurred. Note that the actual message contents
are not of importance here; the DealMaker needs to know
only the type of message that was sent. As we keep state
solely through the sequence of messages encountered, the
DealMaker only has to store the kind of message it received
into the database.

At the core, both ways in which the DealMaker inter-
acts with the outside world are implemented as Web Ser-
vices using SOAP. External parties can both query and up-
date the current deal state through the DealMaker. Access
to these methods is possible in the standard Web Services
fashion (i.e. by sending and receiving SOAP messages). The
WS interface simplifies the creation of external services that
make use of the DealMaker’s functionality. In fact, our web
interface, which hides these technical details from the hu-
man user, is implemented as an in-browser WS client send-
ing/receiving SOAP messages.

B.3. Security and Trust Implementation

Messages between services carry security information,
like identification or rights. In SOAR we express this kind
of information using SAML authentication and attribute as-
sertions. To make sure that the application layer does not
need to understand about security information, the secu-
rity solution is based on Axis handlers [3], that intercept
in a transparent way SOAP messages exchanged among
service instances. SAML assertion can be inserted and
checked without interaction with applications (or, in fact,
with users). The security implementation was done using
the follow open source libraries: Apache XML Security–an
implementation of XMLEncryption and XMLDigitalSigna-
ture [1]; WSS4J–a WS-Security implementation [2]; and
OpenSAML–a SAML implementation [11].

B.4. Model Checking SSDL

SSDL was chosen as protocol and message exchange de-
finition language to utilise the proving capabilities of the se-
quence constrains form of protocol specification. There is
no automated tool support yet for model checking SSDL
protocols, so we translated the specification by hand in the
form of aπ–calculus. In this way we were able to validate an
earlier version of our protocol for correctness–the final ver-
sion of our protocol should be checked again. Obviously,
there is a great need for SSDL-related model-checking tool
support to make it practical to check SSDL specification
throughout the design phase, especially in light of the fact

Figure 11. The demo welcome page.

that these specification may be altered at various time, for
instance because of implementation decisions that alter or
limit the protocol behaviour.

The need for tool support for SSDL is prevalent through-
out the design phase. Existing tool support [18] creates
typed representations of messages, supporting both C# and
Visual basic code generation, as in addition validates the
specification for consistency. However, the tools do not take
the protocol framework of SSDL into consideration. There-
fore, the most important novel implementation task in our
system was the design and implementation of the SSDL
protocol engine, which we described in detail in Section 5.2.

Because of time pressure, we were not able to validate
the final version of our DealMaker service, as given in Fig-
ure 3. In SOAR interesting issues arise with respect to deter-
mining the state of multiple service instances concurrently.
Each service instance itself runs a copy of the DealMaker
protocol, but customers as well as the device run-time can
be interested in multiple service instances at the same time.
For instance, in the demo, we would like to check that at
most one of the instances of each customer gets into the fi-
nal phase–otherwise, the buyer would end up with multiple
properties. Or, we would like to make sure real-estate prop-
erties are not sold twice, an even harder problem because
it not only goes across multiple instance, but also multiple
customer (i.e., buyers). Other states defined across multiple
service instances could be thought of, and it would there-
fore be of interest to identify ways to express states of in-
terests and execute the model checking in efficient manner
across multiple instances at once. We have had to leave this
for further research.

C. The Demonstration Web Site

Note that this description might be subject to change in
some of the specifics.
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In this section we detail the intend behind the demon-
stration web site (see Figure 11), and provide a manual of
the actions one can execute on the web site. The focus of
the web site is on demonstrating the viability of the tech-
nologies we applied–we have made no concerted effort to
make a product-quality web site. It should be noted that the
web site has mostly been tested for the Firefox browser–we
strongly suggest one to use the Firefox browser, since we
cannot provide any guarantee about correct operation for
other browsers.

The purpose of the web interface is to demonstrate how
a potential buyer would utilise the ‘Close The Deal’ real es-
tate closing service to help with the process of buying real
estate property. In what follows, we use ‘user’, ‘buyer’ and
‘customer’ to mean the same thing: the person who logged
into the web site. The fact that we focus on the buyer has
one immediate consequence: the user interface is limited to
a view for the buyer, even though the service design support
activities of other participants as well (the seller in particu-
lar). It should also be noted that the buyer is not aware of the
fact that it uses a service-oriented computing architecture–
on the contrary, this remains hidden. The only way in which
a buyer would notice that the supporting implementation
uses advanced technologies is through the advanced func-
tionality the web site delivers.

Note that every time you log in to the web site, you start
in the same process state!

A buyer that uses the Close The Deal web site needs to
do two administrative steps (or one, in case of a returning
customer), and then is guided through the process of clos-
ing real estate deals, for as many deals as the user desires.
The two administrative steps are:

1. Logging in. Every time a user enters the web site,
he/she needs to log in. This can all be implemented
by standard means. We only use it to limit concurrent
and ill-fated access to the web site, and support only
one user, namedclose with passwordthedeal .
Please use this account to view our web site.

2. Provide buyer details.A regular form needs to be
filled out with information about the buyer. The inter-
esting aspect of this is that one can fill in data that cor-
responds to a service instance in the SOAR architec-
ture. For instance, one chooses a lawyer from a list of
lawyer, each of which is represented by a service in-
stance in our system. Note again that the user does not
know it selects a service instance–the user only could
realise the efficiency of the architecture when he/she
realises there is no need to fill in any additional infor-
mation about the lawyer (or other participants) after
selecting it.

The interesting aspect for a customer comes when se-
lecting houses in which it is interested. The user therefore

must construct adeal, which the service then tracks. To con-
struct a deal, the customer browses potential offers, and se-
lects the one it is interested in. As a consequence of this
set-up, there are two ‘deal-making actions’ a customer can
select:

1. Browse and select real-estate properties.When the
customer clicks theBrowse Offers button, the
browser displays a list of properties, of which one at
a time can be selected. Selection of a property is sim-
ply done by clicking on the hyperlink located with the
property.

2. Check progress of the deal.When the customer clicks
the Check Status button, it provides the list of
deals in progress. Important in this list is thestatus
of each deal: how far along is the customer in closing
the deal. Each deal goes through the steps of the busi-
ness process, but the user is continuously involved in
providing feedback on whether and how a next step
needs to be carried out. The start state of out web site
provides the statusinitiate . Once you click that,
you are asked if you want to start the mortgage ap-
plication, for the amount given in your profile or the
asked price, which ever mount is larger (which, unbe-
known to the buyer, is a property of a service repre-
senting the buyer). If you agree, the Close The Deal
service will request mortgage lenders if they want to
provide a mortgage. In the demo, you will simply
have to wait for the process to finish (which in real
life could take hours or even days), so essentially the
demo stops here. However, this clearly demonstrates
how the buyer interacts with the Close The Deal ser-
vice to help getting through the process of buying a
house. Follow-up steps, which we in fact also imple-
mented the machinery for, include arranging a view-
ing meeting, contacting a surveyor and drafting a con-
tract with a lawyer, along the lines of the protocol in
Figure 3.

D. Reflection

The complete scenario and work described in this report
was conceived, designed and developed within an eleven
weeks time span. We briefly want to reflect on the main
challenges we faced during the project: conception of the
real-estate scenario, and the geographic distribution of the
team members. We also review the business as well as re-
search opportunities sprouting from the reported work.

D.1. Conception of SOAR

The open-ended nature of the contest brought a chal-
lenge as well as an opportunity to the work we would
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be able to do. The choice of application area (real-estate)
was partly motivated by existing contacts with the PISCES
real-estate standardisation organisation located in Newcas-
tle. However, the scenarios, business case and usage models
were all developed from scratch. We have tried to utilise the
industrial experience of the senior team member in creating
business models for SOAR and SOAR services, but were
mostly motivated by the technical questions ’why services’
and ’how to do services’. In terms of time, the scenario con-
ception took 40 percent, the design 20 percent, and the im-
plementation 40 percent, but obviously the boundaries be-
tween these phases are loosely defined. It would be of great
interest to us to continue some of the technical work, and a
future opportunity to work on the SOAR architecture with-
out a lengthy phase of conceiving scenarios would give us
an opportunity to show even more exciting technical results.
The sound technical skills and deeply developed intuition
for service-oriented computing that is present in the indus-
try advisors within our team was leveraged heavily, and is
at the heart of the work on SSDL and the associated pro-
tocol execution engine. This provides us with some unique
technologies that we feel are very much worth pursuing fur-
ther within the SOAR context.

D.2. Geographic Distribution of Team

Our team was assembled solely for this contest. Timing-
wise, the lucky opportunity arose for the people involved to
spend time on the contest (in varying amounts). We partici-
pated with the objective to use the contest as a learning ex-
perience, as well as a source of fun by working as a team to-
ward a common goal with a competitive element. In spirit
with the openness associated with service-oriented comput-
ing, our team is globally distributed: the six team members
are located in five different countries, four different con-
tinents. There are two industrial advisors (Jim and Savas)
with a lot of experience in service-oriented software–these
people also developed SSDL. Aad has close to a decade of
industry experience and brings in some domain knowledge
through contacts with the real-estate standardisation organ-
isation PISCES [15]. Emerson is a PhD student specialis-
ing in security, Chris a PhD student specialising in software
for distributed decision-making, and Philipp a master stu-
dent who has published on web service reliability. The lat-
ter three implemented the system.

The distributed nature of the team provided obvious
communication challenges we had to learn to deal with.
From our industry experiences, we were aware of the chal-
lenge in starting new projects when a team is geographically
dispersed, and it took us quite some effort to find a good
way of producing as a team. For the purpose of the contest,
we travelled to create periods in which all core members of
the team were in Newcastle to work full-time on the project.

This provided excellent results, and to our judgement peri-
ods of geographic collocation are a prerequisite for a team
development project that starts from scratch. It did become
clear, however, that technologically we still have a long way
to go before Internet communication tools effectively sup-
port (in cheap and robust way) the kind of communication
and interaction required for a high-pace concentrated team
effort like ours.

D.3. What is Next?

It would be exciting to continue the work we started for
this contest. There are opportunities to go after the busi-
ness ideas presented in this report, and there exist opportu-
nities to influence the standardisation bodies. From a tech-
nical perspective, the connection of human interaction and
web services has been an eye opener, and is of interest to
pursue further. The implementation ideas that relate to the
hosting of many personalised service instances in an effi-
cient manner need to be explored further. Possibly design
patterns can eventually be derived from our solutions. Fi-
nally, we have gained considerable insight in the working
of SSDL, which we would like to utilise to further improve
that technology. This also includes improving the abilities
to proof correctness of protocols with respect to concurrent
service instances.
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Abstract. Mobile devices are inherently scarce in resources, necessitating the 
need to cooperate among them for performing tasks that cannot be done alone. 
This cooperation is in the form of services that are offered by other devices in 
the network. To get benefit from the services offered by other devices, they 
have to be discovered. Service Discovery Protocols (SDPs) are used for this 
purpose. This is an important area of research in mobile and ubiquitous 
computing. In this paper twelve SDPs for multihop mobile ad hoc networks are 
analyzed with respect to their service discovery architectures, management of 
service information, search methods, service selection, methods for supporting 
mobility and service description techniques, Among these the most important 
aspect is the service discovery architecture as this affects other aspects of the 
service discovery. In this paper the service discovery architectures are 
categorized in four groups namely directory-based with overlay support 
architecture, directory-based without overlay support architecture, directory-
less with overlay support architecture and directory-less without overlay 
support architecture. The management of service information and search 
methods mainly depend on the type of service discovery architecture.  It is 
found that mobility support and service selection methods are independent of 
the SDP architecture. Also the description of services is found to be 
independent of the SDP architectures. Mostly the services are described using 
XML or the extensions of XML. At the end of the paper open issues and areas 
of further research are discussed. 
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1   Introduction 

A service can be any tangible or intangible thing that can be useful for someone. For 
example when a laborer works for building a house, he is giving his services for 
which he is paid. Similarly the act of teaching is a service provided by a teacher to his 
students. In our context of mobile ad hoc networks any facility provided by a device 
that can be useful for any other device is a service. A service in this context could be a 
software service like providing an implementation of some algorithm (for example, 
converting one audio file format to another) on a device so that when some device 
needs this service, it can contact that device and use it. A service can also be a 
hardware service like a printer that can be used by a mobile device to print a file.  To 
get benefit from these services a device must be able to locate them in the network 
and also have the ability to invoke these services. Here comes the role of service 
discovery protocols. 

In fixed and wired networks service discovery protocols simplify the 
interaction among users, devices and services [8]. Service discovery protocols allow 
devices to automatically discover network services thus making the task of network 
administration and configuration easy.  

In wireless mobile ad hoc networks devices are free to move. The 
characteristic limitation of a mobile device is that it has to be small in size and weight. 
Such devices inherently have few and limited number of resources as compared to 
fixed devices. So it becomes important to utilize the resources and services available 
in other devices to accomplish the tasks that cannot be done alone. For example a 
mobile device without a printing support will require a printer to fulfill the printing 
task. Thus forming ad hoc network between mobile devices and getting benefit of 
resources available in a network require knowledge of services available by other 
devices and how to interact with these services. The service discovery protocols aim 
at these aspects. More specifically the service discovery protocols not only provide 
mechanisms for locating a particular service but also mechanisms to advertise a 
service, invoke a service, select a service if there are more than one services of the 
same type available and to describe a particular service so as to make its searching 
easy. 

There is a lot of research work going in the field of service discovery. 
Basically there are three types of networks as far as the research in service discovery 
is concerned. First are the wired networks, second are single hop wireless networks 
and third are the multihop wireless mobile ad hoc networks. The service discovery 
protocols suggested for one type of network are not suitable for another type of 
network because each network is based on different assumptions, the most important 
being the mobility and rate of joining and leaving of devices from the network. In the 
first type devices do not move at all and there is no join/leave at all or the join and 
leaves are few and far between. In the second type the network formed is ad hoc with 
very restricted mobility and having low rate of join/leave. There are one or more 
nodes that are fixed. But in the third type of network the devices are assumed to have 
unrestricted mobility and these can join or leave the system at any rate. There may be 
no fixed node. Due to these assumptions the problem of service discovery is very 
challenging in the third type of networks. 
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In wired networks many service discovery protocols have being suggested, 
some of which have gained the status of industry standard. For example Jini [17] by 
Sun, Universal Plug and Play (UPnP) [18] by Microsoft, Salutation [19] by IBM and 
Service Location Protocol (SLP) [20] by IETF. Mainly the service discovery 
protocols for wired networks fall into one of the three categories. Some are directory-
based, like Jini that has a centralized place to store information about the services. 
Some are directory-less like UPnP that has a peer-to-peer (P2P) architecture and the 
service information is stored on each device. The third category is the hybrid of the 
above two. For example SLP can work in both modes, that is with or with out a 
directory depending on the situation.  

In single hop ad hoc networks there are also some mature protocols 
available.  For example Bluetooth SDP [22] and DEAPSpace [21]. Bluetooth’s SDP 
is an industry standard. These protocols may follow P2P architecture like DEAPSpace 
or a client-service approach like Bluetooth SDP. 

In multihop Mobile Ad hoc Networks (MANETs) a lot of research is going 
on but still it has not been mature enough to be used by industry. The main reason for 
this lack of mature research, in spite of lot of efforts by the research community, is the 
challenging issues due to the unrestricted mobility of devices. A lot of work has been 
done in the field of routing in MANETs. One can take advantage of this work for 
studying the service discovery problem. But essentially the service discovery problem 
is different from the routing problem. In routing we know the ID of a node, which is 
unique and data is only sent to that particular device, whereas in service discovery 
there is a service, which may not be unique and its multiple copies can reside on 
different devices. The task is to find that service, which best fits some given criteria. 
A service discovery protocol (SDP) may use an underlying routing protocol to invoke 
and get a reply from a particular service residing on a particular device. There are 
some SDPs that integrate the functionality of routing and service discovery. Thus 
service discovery and routing although are quite related to each other but specifically 
have distinct characteristics. One can take advantage of the research work going in 
one field for the benefit of other. 

There are some good surveys of the service discovery protocols that also 
include SDPs for MANETs. For example the surveys done by Cho and Lee [14], Zhu 
and Mutka [16] and Marin-Perianu, Hartel and Scholten [15]. These surveys survey 
the service discovery protocols for all of the three types of networks and none of the 
survey go deep into surveying service discovery protocols for only the multihop 
mobile ad hoc networks. In this paper we have focused on SDPs for MANETs only. 
For this purpose we selected twelve SDPs that have been referenced quite often by 
other authors. These are protocol by Cheng et al [1], GSD [2], Allia [3], Konark [4], 
Service Rings [5], Lanes [6], protocol by Kozart et al [7], Splendor [8], protocol by 
Varshavsky et al [9], protocol by Tyan et al [10], Field Theoretic Approach [11] and 
DSD [12]. We have selected six major components or aspects of any SDP and then 
analyzed the selected SDP with respect to these aspects. These aspects are service 
discovery architectures, management of service information, search methods, service 
selection methodologies, mobility support mechanisms and service description. From 
our point of view the most important aspect of any service discovery protocol is its 
architecture as other aspects may also depend on it. 
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The paper is organized as follows. In section 2 service discovery 
architectures are discussed. After discussing the existing two types of categorizations, 
another categorization is proposed that is a better representation of service discovery 
architectures of MANETs. It is also shown how different MANET SDPs fit in this 
categorization. In section 3 and section 4 the management of service information and 
search methods respectively are discussed. Service selection methodologies and the 
metrics used for algorithm based service selection are discussed in section 5. Section 
6 is devoted for describing methods for dealing with mobility in MANETs. First the 
conditions in which a system of mobile nodes need mobility support is explained and 
then three methods for supporting mobility in existing SDPs are presented. Section 7 
describes three different trends in service description techniques. Finally section 8 
presents the conclusions and areas of future work.  

 

2 Service discovery architectures 

Broadly speaking architecture specifies the layout of any structure and how major 
components of that structure are connected with each other. The SDP architecture 
mainly depends on having or not having a directory. A directory is an entity that 
stores information about services available in the network. It helps in the service 
discovery process [14].  With respect to the directory the architectures for any service 
discovery protocol could be directory-based, directory-less and hybrid of the two. 
C.K. Toh [13] has already categorized three possible service discovery architectures 
in MANETs. These architectures are service coordinator based, distributed query-
based and hybrid of these two. 

In service coordinator based architecture, which is similar to directory-based 
architecture or centralized directory as called by Cho and Lee [14], certain nodes in 
the MANET are chosen to be Service Coordinators (SCs), a role quite similar to the 
Directory Agent (DA) in SLP [20] or the lookup service in Jini [17]. SCs announce 
their presences to the network periodically by flooding SC announcement messages. 
The flooding is limited to a certain number of hops, determined by the SC 
announcement scope parameter. Directory-based protocols include Service rings [5], 
Splendor [8], protocols by Kozart and Tassiulas [7] and Tyan and Mahmoud. [10]. 

In distributed query-based architecture, which is same as the decentralized 
directory or directory-less as Cho and Lee [14] has called it; there are no such Service 
Coordinator nodes. Instead, a client floods the service discovery request throughout 
its surroundings in the network. The flooding is limited by the flooding scope 
parameter. Directory-less approach is used far more than directory-based approach in 
MANETs. Examples of this approach are GSD [2], Allia [3], Konark [4], Field 
theoretic approach [11], protocols by Cheng and Marsic [1], Varshavsky, Reid et. al. 
[9] and DSD [12] by Chakraborty, Joshi et. al. 

The hybrid architecture combines the above two architectures. Service 
providers register their available services to one or more available SCs. These SCs are 
also ready to respond to flooded service requests. When a client unicasts a service 
request to its affiliated SC according with the service coordinator based architecture, 
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the SC responds with a positive or negative service reply. However, if there is no SC 
in the client’s surroundings or if the affiliated SC returned a negative service reply, 
the client will simply fall back to the Distributed query based or directory-less 
architecture. Hybrid architecture is mostly found in wired networks and there is no 
real example of such type of SDP architecture in MANETs. 

The SDP architectures for MANETs can also be categorized by having an 
overlay network support or not having an overlay network support. An overlay 
network can be explained as follows. If a node, which is a part of an ad hoc network, 
knows the address of another node of the same network and can communicate with it, 
then we say that there is an overlay link between the two nodes [5]. An overlay link 
does not necessarily mean that the two nodes have a direct physical or wireless 
connection. Two nodes can form an overlay link even if they can communicate 
through many intermediate nodes. An overlay network is a collection of such overlay 
links and the nodes they connect. The overlay can be a structured overlay network 
when there is some organization between the nodes forming the network or it can 
unstructured in which there is no organization and the nodes are connected randomly. 
In both cases, that is structured or unstructured overlay networks there is a 
bootstrapping phase in which the nodes form the overlay network. Also there are 
special algorithms for joining and leaving of nodes from the overlay network. Note 
that there is a difference between unstructured overlay network and a network that 
does not have an overlay at all. In an unstructured overlay network firstly, a node 
forms overlay links to nodes, that is, it has the addresses of nodes beyond the 
neighbor nodes and can communicate with those nodes and secondly, these overlay 
links are randomly connected with the node.  In case of not having an overlay 
network, a node has only the addresses of its neighbors and does not have addresses 
of nodes beyond its neighbors. Thus a node can only communicate directly to its 
neighbor nodes. From neighbors we mean all nodes that are in the radio range of a 
node. 

Also note that whenever there is an overlay network support, it will always 
be a structured overlay and not an unstructured overlay. The reason for this is that the 
structured overlay network has the advantage of controlled multicast of service query 
or advertisement message. This controlled multicast restricts and greatly reduces the 
network traffic. Thus, although we pay for forming and maintaining the structure but 
also get an advantage of reduced network traffic. In case of having unstructured 
overlay networks in MANETs there is no such advantage of reduced network traffic 
but the cost of forming and maintaining the overlay is always there, although it may 
be less than the previous case. We thus have to pay but without getting any advantage.  
Therefore it does not make any sense to use unstructured overlay networks in 
MANETs. Examples of protocols forming overlay networks (which are structured) 
are Allia [3], Service rings [5], Lanes [6], protocols by Kozart and Tassiulas [7] and 
Tyan and Mahmoud [10]. 

The SDPs that do not form overlay, do not have a bootstrapping phase or 
special algorithms to maintain the overlay structure. Thus nodes may show low 
latency in forming a network and during join and leave operation. But on the other 
hand the multicast cannot be controlled. The only way to restrict the service query or 
advertisement message is by specifying the Time To Live (TTL) parameter of the 
messages. Example of protocols that do not form an overlay network are GSD [2], 
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DSD [12], Konark [4], Splendor [8], Field theoretic approach [11] and protocols by 
Cheng and Marsic [1] and Varshavsky, Reid et. al. [9]. 

If we combine the existing ways of classifying the service discovery 
architectures, we get a classification that is a better representative of SDP 
architectures in MANETs. On this basis we categorize the SDP architectures in four 
categories, as given below. 

 
(i) directory-based with overlay support architecture 
(ii) directory-based without overlay support architecture 
(iii) directory-less with overlay support architecture 
(iv) directory-less without overlay support architecture 

 
On the basis of above classification we give a brief overview of the SDPs in each 

of the category. One of the protocols in directory-based with overlay network support 
is Service rings [5]. It forms an overlay structure by grouping of nodes that are 
physically close and offer similar services. This overlay is formed on top of transport 
layer of ad hoc networks. The structure is called service ring. Each service ring has a 
designated service access point (SAP) through which the nodes within the ring can be 
accessed as it has all the information about the services offered within the ring. These 
SAPs are also connected with SAPs of other service rings thus forming a hierarchical 
structure. The directory information is kept in chosen edges that are dynamically 
selected. Similarly the protocol Lanes [6] also falls in the same category. It is inspired 
by Content Addressable Network (CAN) protocol, which is used for service discovery 
in wired peer-to-peer networks. Some nodes are grouped together to form an overlay 
network forming lanes of nodes. Each group is called a lane. Nodes in the same lane 
have the same directory replicated in each node cache. There are different lanes in a 
network that are loosely coupled with each other. The protocol given by Kozart and 
Tassiulas [7] forms a dominating set, also called virtual backbone from a subset of the 
network nodes. The nodes in the virtual backbones keep the directory, which stores 
the advertised information about other services in the network. The protocol given by 
Tyan and Mahmoud [10] forms cluster of mobile nodes in which each cluster has a 
gateway node. This gateway node is used for routing and keeping the directory. 

The work in the field of directory-based without overlay network support is not 
much. Here we just have the protocol Splendor [8] by Zhu, Mutka et al. Even in this 
protocol the emphasis is on security aspect. It has four components, which are clients, 
services, directories and proxies. The directories are used for caching the service 
information and answering the client service requests. The proxies are used to 
authenticate the mobile services. 

Similarly we have just one example of the work done in the directory-less with 
overlay network support architecture. Allia [3] is the only example. It follows a 
decentralized directory-less approach in which the nodes, which are geographically 
close form groups called alliances. 

In the category of directory-less without overlay network support we have many 
SDPs as this architecture seems most obvious for the mobile ad hoc systems. For 
example the protocol by Cheng and Marsic [1] is directory-less P2P based on on-
demand multicast routing protocol (ODMRP). GSD [2] and DSD [12] protocols are 
also P2P based and has a decentralized approach. Similarly an interesting approach is 

Part Arch - APPENDIX [Mian et al. 2006] p 6



a Field theoretic [11] suggested by Lenders, May et. al. This approach is inspired by 
electric field concept and uses a simple and distributed mechanism to find the best 
route to the closest service instance. It is totally a decentralized protocol without any 
central server. Konark [4] is also a completely distributed protocol and assumes IP 
connectivity between ad hoc nodes. Each device runs a stack of Konark application, 
SDP managers and registry. Another protocol that is directory-less and do not form 
overlay is proposed by Varshavsky, Reid et. al. [9]. It has two main components. A 
routing protocol independent Service Discovery Library (SDL) and Routing Layer 
Driver (RDL). SDL function is to store information about the service providers. RLD, 
which is closely coupled with the MANET routing mechanism, is used to disseminate 
service discovery requests and advertisements. Each node has the stack containing 
SDL and RLD to form a P2P networking or a directory-less architecture. 

The categorization of protocols in different SDPs architectures is shown below. 
 

Table 1. Categorization of SDPs Architectures 

 
Directory-based 

 
Directory-less 

 
 
 

Overlay 

• Service Rings [5] 
• Lanes [6] 
• Kozart et al [7] 
• Tyan et al [10] 

 
 
 

• Allia [3] 
 
 
 
 

 
 
 

No overlay 

• Splendor [8] 
 
 
 

• Cheng et al [1] 
• GSD [2] 
• Konark [4] 
• Varshavsky et al [9] 
• Field Appr. [11] 
• DSD [12] 

 
 

 

3 Management of service information 

Service information includes any information about a service that is provided by a 
service provider in the advertisement. This information is used to describe, identify 
and discover a service in a network. The information may include name of the 
service, ID of the service, IP address of the service provider, port number of service 
point, protocol that server and a client may use to invoke a service [1], etc. The 
information about services must be stored somewhere so that other nodes can contact 
this node to discover a particular service. Management of service information include 
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aspects like where to store service information, time duration for which the 
information will be stored, distance in number of hops the information will travel as 
advertised by the service provider, etc. There are different ways different SDPs 
manage service information.  Some protocols select a particular node among a group 
of nodes and store this information in a directory that resides on that particular node. 
Some store only on their local cache. The service information, depending on a 
particular advertisement policy, can be made to travel far or the advertisements can 
just be stored on neighbors. Some protocols require the service providers to refresh 
the service information before being deleted from the storage place. The exact 
mechanism how different SDP manages the service information is explained below. 

First let us describe the mechanism of management of service information in 
protocols that do not have a centralized directory of storing service information. For 
example in Cheng and Marsic [1] protocol service information is stored on every node 
that is interested in the service. Each service provider multicasts advertisements about 
the services it can provide to the ad hoc network. Each server and its possible 
consumer make a multicast group. Any node that is interested in a particular service 
or services stores the advertisement in its local service registry and may send a service 
awareness reply to the service provider. Once some clients send back service 
awareness replies, the server sends its updated services advertisements by 
multicasting them to only those clients. With a similar idea in GSD [2] and Field 
theoretic approach [11] every node caches advertisement to maximum N hops (called 
the advertisement diameter). The service cache in each node thus contains a list of the 
local as well as remote services that this node has seen through advertisements. In this 
way each node in its local cache, contains the description of services that are within 
the advertisement diameter. By restricting the advertisement hops these protocols 
achieves better local memory utilization and also the probability of discovering a 
service in its vicinity. In Allia [3] the difference is that each node advertises its 
services only to the immediate neighbors, that is, the advertisement diameter is just 
one hop. Some nodes according to a local policy cache these advertisements. These 
nodes form an alliance with the advertising node. Thus every node stores, in its local 
cache, the advertisements from nodes in its alliances. As in Allia, DSD [12] also 
advertises its service information to all nodes in its radio range but here each node in 
addition to storing the service information may also forward the advertisement to 
other nodes, depending on the forwarding policy. Similarly in Konark [4] service 
information is stored on each node. This protocol has a special structure called service 
registry that is present on every device. It is used to store all the local service 
descriptions as well as the service descriptions that a node comes across through 
advertisements. In Varshavsky, Reid et. al. [9] scheme there is a service discovery 
library (SDL) on top of routing layer on  every node. SDL maintains a service table 
that keeps record of service information. 

The following explain the mechanism of management of service information 
in protocols that keep a centralized directory for storing the service information. For 
example Service rings [5] forms groups of nodes that are physically close to each 
other. Each group called “service ring” has a designated node called the “service 
access point” which keeps record of the services present in the ring. Similarly Tyan 
and Mahmoud [10] scheme form groups of mobile nodes based on their location. A 
node is chosen as a gateway that contains the directory. Lanes [6] also form group of 
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nodes called lanes in which each node knows it predecessor and successors. There is 
an anycast address of each lane in which all nodes share the same anycast address. 
The services advertised are sent to an anycast address of a lane. All nodes within a 
lane have the same directory replicated and thus have the same information stored. 
Kozart and Tassiulas [7] scheme is also not very different from the previous protocols 
as this protocol also selects a particular node for storing the service information. This 
protocol forms virtual backbone from some of the mobile nodes. When a particular 
node advertises its services, these are stored on the directories located on the virtual 
backbone nodes in case the service provider is itself not a backbone node. If the 
service provider is itself a backbone node then it registers services on the same node. 
Splendor  [8] is a little different as in this protocol the service information is stored in 
special nodes called directories that are pre-assigned the task of storing service 
information and are not selected by the SDP.  

4 Search methods 

Searches can be used either to find the node having the directory or to find the 
services. The exact purpose of search depends on the type of storage method and the 
SDP architecture [15]. The search method depends on the type of network in which 
the search is made.  Mainly there are two ways to search for information about the 
services available in the network.  

 
(i) The first method is used in networks that have directories for 

storing service information. The directory nodes keep 
information about the services available in a group and clients 
query these directories. 

 
(ii) The second method is used when there are no directories. 

Service providers advertise the services to all of the nodes.  
When a node is in need of a particular service, it searches its 
local cache for the presence of the service. If the service is not 
found query messages is sent to all nodes. 

 
Service rings [5] is an example of SDPs in which searching is done using 

directories. It has special nodes called Service Access Points (SAP) that keep all the 
information about the services within the ring. When a node wants to search for a 
service, the query is routed through the ring structure, passing through SAPs of other 
rings and reaching only to those subrings that can possibly offer the service. This use 
of special overlay network with SAPs restricts the query flooding to only the selected 
nodes. Similarly in the protocol presented by Kozart and Tassiulas [7] the client 
forwards the service request to a virtual access point. These virtual access points, also 
called the Virtual Backbone Node (VBN) broadcast or multicast the query message to 
all the other VBNs. Only flooding the backbone nodes instead of all nodes in the 
network thus reduces the overhead of broadcasting a query. In Splendor [8] 
directories are first discovered by sending queries by the clients or the directories 
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themselves announce their presence periodically in the network. Clients after knowing 
the directory addresses, query the directories for services.  In the SDP by Tyan and 
Mahmoud [10] the gateway of each cell provides the directory services containing 
information about the services of other gateways. When a client wants to search for a 
service, it sends a service request to its local gateway. The gateway searches its 
service advertisement cache and in turn gets a list of advertisements that corresponds 
to the service. In Lanes [6] the case is a little different. It has directories but the same 
directory is replicated throughout the lane overlay nodes. The service announcements 
are sent through a lane and service requests are sent through other lanes. These 
messages are sent through lanes by anycast routing. 

The protocol given by Cheng and Marsic [1] does not have directories. When 
an appliance needs a service, it sends a query to service query multicast group. This 
group consists of a service provider and its possible consumers formed during the 
bootstrapping phase. In GSD [2] first the search is done in the local cache as it 
contains information about all the services within the advertisement diameter. When 
service is not found in the local cache then query request is selectively forwarded to a 
set of nodes based on semantic information. Similarly Allia [3] first checks the local 
cache for service information and if it is not available then active discovery is done by 
multicasting query request to the members of its alliance. If the service is still not 
available then the query request is broadcasted to other alliances in its vicinity. In 
Konark [4] and the protocol given by Varshavsky, Reid et. al. [9], the services are 
searched by first looking at the local cache and then, if not found, multicasting the 
service request to a fixed group of nodes in the network. Those nodes respond to the 
query message that can provide the service. In field theoretic approach [11] service 
advertisements are flooded through the network within a limited scope. Each node 
temporarily stores the advertisement and calculates the potential. When a client wants 
to search for a service, it forms a service query containing the service type of the 
desired service. This query is routed to the neighbor with a higher potential for that 
service, eventually reaching the service. In DSD [12] a service request based on 
ontology-based description is formed. The request is first matched with the services in 
the local cache and if services are not found, the request is selectively forwarded to 
other nodes based on the ontology descriptions. When the node does not have enough 
information to selectively forward a request, then a broadcast is made to the 
neighboring nodes. 

5 Service Selection Methodologies 

The query request from a client node to the network can result in many responses of 
matching services. Although there are many service discovery protocols that do not 
deal with the selection issue but for a service discovery protocol to be complete, 
handling of multiple responses of the same services should be taken care of and it 
should be part of the of service discovery protocol to select one of the available 
services for invocation. There can be different ways to select a service. For example it 
could be done manually or the selection procedure can be automated using some 
algorithm based on some criteria. The criteria or the metrics for service selection have 
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been defined differently by different protocols. For example the lowest hop count, 
current load of a service provider, bandwidth available of the communication channel 
between the service provider and the client, velocity of the service provider are some 
of the criteria.  

Varshavsky, Reid et. al. [9]  protocol integrates the service discovery and 
selection feature with the underlying routing protocol. They have demonstrated that 
proper service selection improves the overall network performance, by localizing the 
network communication. The mechanism used for service selection is simple. When 
multiple entries in the service table match the request, the client selects with the 
lowest hop count. 

In Tyan and Mahmoud [10] proposal mobile agents are used for the service 
selection. When the mobile agents receive a list of advertisements from the service 
discovery phase, these agents move to different nodes while selecting the services 
according to some criteria. For example the user can specify the mobile agent to 
choose services with highest rating returned or services having some index values 
higher than user specified index value or the user can specify the mobile agent to just 
return the first available service. 

In Field theoretic approach [11] client selects services using two metrics, one 
is the network distance, that is, the number of hops and other is the capacity of service 
(CoS). The algorithm for service selection is distributed and does not involve direct 
interaction with the client. 

Splendor [8] specifies that the service selection will occur at client end but 
does not give detail of the algorithm used for service selection and also does not tell 
about the selection criteria. The protocols by Kozart and Tassiulas [7] and by Cheng 
and Marsic [1], GSD [2], Allia [3], Konark [4], Service rings [5], Lanes [6], DSD [12] 
do not tell any thing about selection mechanism. 

6 Mechanisms for Mobility Support 

In a system of mobile ad hoc network nodes keep on moving and changing their 
position with respect to each other. In a system in which the all of the nodes just keep 
information about their own services and not of the other nodes, mobility is not a big 
issue as searching is done by multicasting a query message to all nodes in the system. 
But the limitation of such a system is that it is not scalable. For example in [1] the 
mobility support is implicitly provided by the multicast mechanism. On the other 
hand, systems that: 

 
(i) have directory nodes that keep all of the information about other 

services in the network or  
(ii) have nodes that keep partial information about the services, for example 

services present in the neighbor node or  
(iii) form structured overlay networks  

 
mobility is a real issue that has to be taken care by a SDP if the protocol has to 
function properly. 
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Mobility support implies that the information about services in the directory 
nodes is up-to-date under mobility. That is if a directory node is supposed to keep 
information about the all nodes in a group then it must have that correct information. 
If that node changes it position with respect to the group, the directory information 
should also be updated quickly. Only by this way the SDP can search the services in a 
timely manner. Mainly there are three different ways to support the mobility.  

 
(i) Updating service information 

a. Event driven updating of service information 
b. Periodical updating of service information 

 
(ii) Advertisement controls 

a. Changing the rate of advertisement 
b. Changing the diameter of advertisement 

 
(iii) Algorithms that maintain the structure of overlay network in SDPs that 

form structured overlay networks 
 

Service information can be updated mainly by two ways. One is to update the 
service whenever there is any event occurring. For example when there is no route 
available to the service provider, the service information should be updated. The other 
way is to update the service information on regular basis for example by periodical 
advertisements as done by Konark [4], Splendor [8], DSD [12], Field theoretic 
approach [11], protocols by Kozart and Tassiulas [7] and by Tyan and Mahmoud [10]. 
The protocol by Varshavsky, Reid et. al. [9] uses both methods. 

Some protocols change the rate and diameter of advertisements as the mobility of 
node changes. If the nodes are moving faster then rate of advertisement is increased 
and the diameter, that is the number of hops an advertisement can travel, is reduced. 
This type of mechanism is done in GSD [2] and Allia [3]. 

Some protocols form overlay structures and can only search correctly for services 
if that overlay structure is maintained. Due to mobility the overlay structure may get 
faulty. In this case there are special algorithms that try to maintain the overlay 
network structure. For example Service rings [5], Lanes [6], protocols by Kozart and 
Tassiulas [7] and by Tyan and Mahmoud [10].A brief description of how mobility is 
managed in each protocol is given below. 

Let us briefly describe how different protocols support mobility. The protocol by 
Cheng and Marsic [1] supports mobility by using multicasting for discovery of 
services in the networks. The mobility support is thus not explicitly provided by any 
special mechanism but it implicit in the multicasting the service requests [15]. 

In GSD [2] there are two parameters that can be adjusted for different mobility 
scenarios: the advertisement diameter and advertisement time interval. Advertisement 
diameter is the number of hops that an advertisement is expected to travel in the 
network and advertisement time interval is the time interval after which every nodes 
sends a list of services it has to all the nodes in its radio range. In high mobility 
scenarios, for example, the advertisement time interval can be reduced to cater for the 
rapidly changing vicinity. Similarly the advertisement diameter can be regulated with 
the dynamism of the network. In DSD [12], in addition to the mechanism discussed in 
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GSD [2], this protocol takes care of the effects of the mobility of nodes in the 
following way. The services announce when they enter the network and the neighbour 
nodes cache this information. If the advertisement is not refreshed after a specified 
time the information about the service will be removed from the cache of other nodes.  

Allia [3] takes care of mobility by adjusting the advertisement rates and alliance 
diameter based on the mobility of the nodes.  Regarding the advertisement rates one 
of the three methods can be employed.  First is simply use a constant frequency rate 
for advertisements. This can be used for relatively stable networks. Second method is 
to use Multiplicative Increase Linear Decrease (MILD) algorithm or a Binary 
Exponential Back-off (BEB) Mechanism to vary the advertisement frequency. The 
advertisement frequency would be higher for more dynamic networks and low for less 
dynamic networks. Third possibility is sending out and advertisement only when it 
receives a new advertisement. The alliance diameter is the number of hops the 
advertisement may propagate in the network. Any node within the diameter would be 
able to cache the advertisement. For highly dynamic networks small advertisement 
diameter is adjusted and vice versa. 

In Service rings [5] the overlay network is corrected which gets faulty due to the 
mobility of nodes. Each ring member only knows its successor and it predecessor. 
RingCheck messages, initiated periodically by the appropriate Service Access Points 
(SAP), circle through each ring to check its consistency. Every ring member receiving 
the message puts its predecessor information and forwards it to its successor. If a node 
does not receive such a message in one of its rings for a certain time it checks for a 
link breakage or a partition in the network. If any of these cases is detected then an 
appropriate algorithm is initiated to repair the ring. 

In Lanes [6] the lane structure of the overlay network is maintained by different 
algorithms. Each node pings its upper neighbor and receives pings from its lower 
neighbor to maintain the lane. If any of the pings is missing either a node is detected 
to be vanished or the network is detected to be partitioned. In any case there are 
appropriate algorithms that are initiated to build a regular overlay structure according 
to the lane protocol specifications. Also there are algorithms for node logging in and 
logging off that keep the regular overlay structure. 

In the protocol by Kozart and Tassiulas [7] the service registrations are done on 
periodic basis. In this protocol a virtual backbone is formed. To take care of frequent 
topology changes due to mobility or nodes vanishing, the dominating set feature of 
the backbone is maintained with the help of specific algorithms. 

Splendor [8] and Konark [4] store service information as a soft state. When a 
service advertises itself, it also announces its lifespan. Before a service expires, it has 
to announce again. The proxies cache the information about the mobile services. Thus 
regular advertisements keep the information updated. 

Due to mobility some of the service providers may not be accessible and some 
new ones may be in range. Reselection and rediscover are two mechanisms through 
which the protocol given by Varshavsky, Reid et. al. [9] takes care of the mobility of 
nodes. In reselection the services based only on the current entries in the service table 
are reconsidered. The policy when reselection should occur could be different. For 
example one reselection policy could be that reselection should occur when there is 
any change in the service table. Another policy could be to reselect the services when 
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there is no route to the server. In rediscovery the network is probed for up-to-date 
information about the available service providers. 

In the protocol by Tyan and Mahmoud [10] mobility is supported by two 
mechanisms. First when a gateway node moves to another cell, it broadcast the 
service registry tree to the nodes in its previous cell. These nodes elect another 
gateway node. This gateway then starts using the service registry information. The 
second mechanism is by specifying time to live parameter, which is the physical clock 
time after which a service has to refresh its advertisement. 

Field theoretic approach [11] protocol also uses periodical advertisements. The 
nodes can be disconnected from their neighbors due to mobility. This is determined 
by listening to the periodic update message from the neighbor node. If a node does 
not receive such a message for a long time it assumes a broken link and removes the 
neighbors from its table.  

7 Service Description techniques 

Service description is an abstraction of the facilities and characteristics of a service. 
The description of a service is necessary if it is to be utilized by other devices or 
services. The nodes in a network search for services by only looking at the 
descriptions of the services advertised by the service provider. A service, not properly 
described, may remain completely unknown to other devices in the network, thus 
defeating the objectives for which a service was formed. For these reasons SDPs 
usually describe the way services are described and the languages used for 
description. In MANETs SDPs we find three trends with regard to service description.  

 
(i) Most commonly used language for service description is 

eXtensible Markup Language (XML) and its extensions like 
DAML (DARPA Markup Language) [23] and Web Ontology 
Language (OWL) [24]. For example GSD [2], Konark [4], 
Service rings [5] and DSD [12]. 

 
(ii) Some SDPs are independent of any description language. Any 

language or description method can be used in these protocols. 
For example one is free to use simple text attribute-value 
schemes or XML for describing services. For example Allia 
[3], Lanes [6] and the protocol presented by Varshavsky, Reid 
et. al. [9]. 

 
(iii) In SDPs the issue of description is not discussed. These 

protocol are usually concerned only with the searching of a 
service and do not go into the details of other aspects of SDP. 
The authers by Kozart and Tassiulas [7], Zhu, Mutka et al in 
Splendor [8], Lenders, May et. al. in their Field theoretic 
approach [11] and Cheng and Marsic. [1] do not touch the issue 
of description of services in their protocols. 
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The details of describing a service in different protocols are following.  

Konark [4] protocol defines an eXtensible Markup Language (XML) based service 
descriptions. The description file is a plain text file that has all the information about 
the characteristic and functions of the service. GSD [2] use DAML (DARPA Markup 
Language) and OIL (Ontology Interference Layer) to define ontology to describe the 
services in mobile ad hoc networks. DAML + OIL is based on XML and the Resource 
Description Framework (RDF) [25]. The semantic capabilities of DAML make it a 
good choice for the description of services. The service requests are also expressed in 
DAML that are matched with the service description during the discovery process.  
The services are classified into groups based on class-subclass hierarchy present in 
DAML. The semantic features of DAML are used to reduce the network flooding. 
Web Ontology Language (OWL) is used in DSD [12] to describe services. OWL is 
also based on XML and RDF and is used in wired networks to describe services. The 
semantic class-subclass hierarchy present in OWL is used to described service groups. 
This also helps in selectively forwarding the service request. 

In Allia [3] framework services can be described using any method, for 
example using XML or any other alternative. During the service discovery 
mechanism no description mechanism is specified, thus making Allia independent of 
any descriptions of services. Also the protocol presented by Varshavsky, Reid et. al. 
[9] is independent of any service description. To make the protocol [9] independent of 
any service description language, a matching of service advertisements by the service 
providers and service requests are handled by a pluggable matching module. The 
approach given in Lanes [6] is also independent of the service description. Similarly 
Service rings [5] will work with all the descriptions that satisfy the two conditions. 
First, there should be a distance function that allow to compare different service 
descriptions and second, there should be a summarize function which should produce 
a single new description if it is given a set of service descriptions. For example on 
simple taxonomies of services, both these functions can be defined. Another example 
is DAML-S language. 

8 Conclusions and Future Work 

In this paper we have surveyed SDPs for multihop MANETs. We selected twelve 
SDPs for MANETs and compared these protocols with respect to six important 
aspects. These aspects, which we chose for evaluating the protocols, are service 
discovery architectures, service information storage, search methods, service 
selection, mobility support and service description. There are many other aspects from 
which any SDP (for wired or wireless) can be evaluated, for example one of these is 
security, but these aspects are either not important with regards to MANETs or most 
of the protocols at present do not discuss these aspects. We have found a clear 
categorization that is a better representation of SDPs in MANETs. This categorization 
based on the service discovery architectures is given below. 
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(i) directory-based with overlay support architecture 
(ii) directory-based without overlay support architecture 
(iii) directory-less with overlay support architecture 
(iv) directory-less without overlay support architecture 

 
Most of the SDPs are in the category (iv), which seems natural for wireless 

mobile ad hoc networks. In spite of lot of research work most of the protocols are still 
in their initial phase of research and have only been verified using simulation studies. 
Very few have been implemented but just using a couple of devices. We strongly feel 
that there is a lot of potential in category (i), the directory-based with overlay support 
architecture for having scalable practicable real implementation of SDPs in MANETs. 
The reason being that in real world there are mobile nodes with varying degrees of 
mobility and with varying degrees of resources. A real world mobile ad hoc network 
may consist of mobile phones, PDAs, laptops and even we can include desktops, 
which are most of the time immobile and just can leave or enter a system. We observe 
an inverse relation between the mobility of a device and resources it has and the 
services it can offer. A mobile phone although less in resources or services to offer is 
much more mobile as compared to a laptop which is less mobile but has much more 
services to offer and also have lot of resources. Normally the protocols in the category 
(iv) consider all nodes having very few resources and therefore propose solution that 
does not pose any overheads on the protocols that is, having a directory-less without 
overlay support architecture. But this architecture has not been successful in 
providing a scalable and a practicable solution. Our position is that a more practicable 
solution for large scalable mobile ad hoc networks is only possible with directory-
based and forming some sort of overlay structure. Presence of directory decreases the 
latency time for service discovery and service invocation. An overlay structure is 
helpful for having controlled multicast, thus helping in developing scalable protocol. 
SDPs with directories and also having an overlay structure clearly require more 
resources and may not be as lightweight as SDPs in category (iv). We can get rid of 
these limitations if we also include nodes that have more resources like laptops and 
even desktops (which although are not mobile but can be included in ad hoc category 
as they can join and leave the system).  

We found that there are not many protocols that discuss the security aspect 
of SDP. Any SDP if it has to be practicable cannot ignore the security aspect. This is 
another area of research that can be pursued in the domain of SDP for MANETs. 

Mobility is an important dimension in SDP. We found that there are mainly 
three ways that are used to handle mobility. These are: 

 
(i) Updating service information 
(ii) Advertisement controls 
(iii) Algorithms that maintain the structure of overlay network  

 
Most of the protocols use either one of these methods. We think this is another area of 
research that can be probed into for finding ways to improve the mobility support by 
using some intelligent technique based on all these three methods and even some 
other method. 
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Service discovery is an important and an active field of research. Especially in 
the domain of Mobile ad hoc networks, which is also a very active field of research, 
the importance of service discovery protocols is even more.  Still there are many open 
problems that need to be addressed before SDPs can be made practicable. 
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Abstract: Web Services provide a new approach for the development of distributed applications, 
namely the Service Oriented Architectures (SOA) based on “service” contracts. Currently contracts 
do not address in deep dependability aspects of Web Services implementation. In addition, Web 
Services providers do not pay very much attention to dependability attributes, their objective being to 
maximize the number of customers for non-critical applications. As far as more critical applications 
are concerned, dependability mechanisms are highly required. The support infrastructure proposed in 
this paper enables both clients and providers to add dependability mechanisms to web services used to 
build large scale applications. As this approach provides separation of concerns, such dependability 
mechanisms can easily be adapted to the needs. To this aim, a dedicated language (a DSL, Domain 
Specific Language) has been designed to simplify the description of dependability mechanisms and 
make them more robust. We show that this approach enables the implementation of adaptive 
dependability mechanisms. A platform for implementing dependable applications based on Web 
Services has been developed (services and tools) and used with various Web Services on the Net.  

Keywords: Web Services, Service Oriented Architectures, Domain Specific Language, Fault tolerance. 

1 Introduction 

Service Oriented Architectures (SOA) [1] enable the development of loosely-coupled and dynamic 

applications. Such applications are based on a core notion, the notion of service, and on a contract 

linking a client and a service provider. This type of architecture is currently used for large-scale 

applications like e-commerce, but should be of interest in the future for applications having stronger 

dependability requirements.  

Today, Web Services are the only way available to realize service-oriented applications. From a pure 

“marketing” viewpoint, Web Services are developed to satisfy client needs from a functional 

viewpoint, to be easy to maintain, and also to provide some high level of quality of service. Web 

Service providers must also take care of the reliability and availability of their individual Web Service 

implementation. However, the provider cannot take into account all possible client needs and 

constraints for the development of a given application. This means that additional mechanisms must 

be developed and tailored for a particular context of usage.  

This is exactly the kind of problem we tackle in this paper. Application developers look at Web 

Services as OTS (Off-The-Shelf) components and thus they ignore their implementation and their 
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behavior in the presence of faults. In a sense, clients need a support infrastructure to implement fault 

tolerance mechanisms that can be dynamically attached to a given Web Service. The same Web 

Service can be used in several service-oriented applications and thus with different dependability 

constraints by different clients. In addition, a given client may want to apply different fault tolerance 

strategies regarding a given Web Service over the lifetime of its application. 

To this aim, we propose a framework to help clients making so-called Specific Fault Tolerance 

Connectors (SFTC) that implement filtering and other robustness and error detection techniques (e.g. 

runtime assertions) together with recovery mechanisms that are triggered when the WS does not 

satisfy anymore the dependability specifications (see figure 1). The same Web Service can be used in 

several service-oriented applications with different dependability constraints and thus taking 

advantage of several connectors. 

 
Figure 1: The Specific Fault Tolerance Connectors concept 

The problem is indeed similar to the use of COTS components in safety critical systems, and previous 

work showed that mechanisms like fault containment wrappers were a possible solution [2]. In the 

SOA context, the objective is to satisfy all possible clients’ dependability needs. The approach must be 

more adaptive and enable dependability mechanisms to be 1) defined on a case-by-case basis and 2) 

highly dynamic, i.e. changed according to the needs. To this aim we propose: 

1) a language support (DeWel) to describe the dependability features of a connector and,  

2) a support infrastructure to dynamically manage and run connectors in real applications.  

The paper is organized as follows. Section 2 summarizes our motivations and the basic principles of 

the work. Section 3 describes the organization of the support infrastructure to develop, execute and 

manage user-defined connectors to unreliable web services.  Section 4 describes the main features of 

the language defined to make reliable specific fault tolerance connectors. Section 5 focuses on 

connector provided error detection mechanisms, whereas Section 6 discusses the recovery strategies. 

Section 7 summarizes our first experiments. Related work is addressed in Section 8 and section 9 

concludes the paper. 

 

2 Motivations and basic principles 
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As far as dependability is concerned, we have to consider the failures that can occur in operation, and 

which can be due to a number of different types of faults. Just to be convinced, we have performed 

some experiments with different Web Services during a short period of time (72 hours) and we 

observed that some failures are quite frequent (see Table 1). The observed failures are mostly due to 

transient interaction faults and do not reflect the QoS of each target service. Consequently, the 

observed failure rate can change very much over a long period of time. This shows the kind of 

impairments to consider when developing large-scale applications on top of Web Services. 
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BabelFish 3423 2 0 2 0 0 0 0 0 0 0 
FedEx 3406 3 0 0 3 0 0 0 0 0 0 
Google 3308 28 28 0 0 0 0 0 0 0 0 
MSN Search 3327 0 0 0 0 0 0 0 0 0 0 
Amazon – US 2350 0 0 0 0 0 0 0 0 0 0 
FraudLabsWebService 3501 1 0 0 0 1 0 0 0 0 0 
Temperature ConvertService 3362 260 0 0 7 8 2 202 40 1 0 
TimeService 178 1 0 0 0 0 0 0 0 0 1 

Table 1: Example of Web Services errors collected over a 72-hour period 

Companion works [3, 4] showed that many faults can impair Web Services in operation. Beyond basic 

physical faults that may affect the nodes running the services, it has been observed that 

communication faults was a significant source of errors in large scale applications on the Net [5, 6]. 

More importantly, due to the complexity of the WS multi-layer runtime support, software faults have 

to be considered as a first class type of problems. Among the various software components and just to 

give an example, the SOAP parser has a prime importance and can be subject to development faults 

like incorrect parsing of request messages or mapping of data types, bad catching of error codes 

returned by the operating system. In summary, the development of critical applications over Web 

Services must take care of many fault sources: 

1) Physical faults affecting the computers and the networking hardware infrastructure; 

2) Software faults affecting the software components of WS runtime support (OS, application 

servers, SOAP engines, etc.); 

3) Evolution faults related to inconsistencies between current WSDL versions and existing 

stubs generated from older versions; 

4) Interaction faults dealing with the service access point, like access point unreachable, non 

existent or changed; 
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5) Communication faults leading to message lost, duplication and/or omission; 

Our idea is first to provide the user with means to equip individual WS with customized and efficient 

error detection mechanisms, i.e. to transform a WS into a self-checking software component [7, 8]. In 

a second step, we propose some partially built-in replication techniques to perform error recovery. 

Depending of the coverage of the fail-silent assumption of the self-checking WS, the recovery 

procedure can range from simple switch to a spare component to error masking strategies.  

The core element of the proposed framework is the notion of user-defined fault tolerance connector 

between clients and providers. The user can be a client, a web service provider or any third party user 

interested by dependability mechanisms. A connector is defined as such:  

- A connector is a software component able to capture Web Service interactions and able to perform 

partially built-in fault tolerance related actions.  

- Its role is two-fold (see Figure 2): it performs i) runtime assertions by applying checks to 

input/output requests for error confinement and ii) recovery actions for fault tolerance, according to 

a given failure model and depending on state management features of the target WS. 

  
Figure 2: Role of Connectors  

The dependability features that can be implemented in this way depend on several parameters, 

including the specific features of the Web Service that is under control. Checking interaction might be 

different for a client who aims at protecting himself from corrupted information returned from a 

service, or conversely, for a provider to protect the service against erroneous clients. To describe these 

different and specific fault tolerant mechanisms, we propose a Domain-Specific Language (DSL) 

named DeWel (Dependable WS language). DeWel aims at making more reliable the development of 

specific fault tolerance connectors between clients and providers on a case-by-case basis. This is 

addressed in Section 4. 

Regarding recovery, it is very much dependent on the nature of the provider, stateful or stateless, and 

obviously on the considered fault model. Although such fault tolerance mechanisms can be tailored to 

the target service, it is however possible to design an overall framework providing separation of 

concerns between applications and dependability mechanisms. This is discussed in Section 6.  

3 Overview of the IWSD framework  
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The management and the execution of connectors rely on a specific platform that is a third-party 

infrastructure between clients and providers. The storage, look-up, delivery, loading and execution of 

Specific Fault Tolerance Connectors are supported by the IWSD platform, an Infrastructure for Web 

Services Dependability. The framework provides fault tolerance mechanisms without being intrusive 

both for clients and providers of Web Services. Connectors are generated by the DeWel compilation 

tools suite (i.e. as a dynamic library) and stored into the SFTC Repository of the platform. At runtime, 

the platform provides support to perform the fault tolerance mechanisms requested by the user and 

implemented as a Specific Fault-Tolerance Connector.  

The IWSD platform (see Figure 3) is composed of the following services: 

– The Dependability Server (DS) is responsible for the interception of SOAP messages directed 

to a given WS, the loading and the execution of the corresponding Specific Fault-Tolerance 

Connector. The DS can be perceived as a sort of virtual machine running connectors, and 

includes an authentication module, HTTP and SOAP parsers and a loader of connector;  

– The Management Server (MS) provides i) the compilation tool suite of DeWel programs and 

the storage of corresponding connectors into the SFTC Repository, ii) the management of user 

accounts and configuration information (e.g. communication endpoints for a given service); 

– The Health Monitor (HM) is in charge of collecting all failure information and error reports 

from each component to evaluate the current level of dependability of the Dependability 

Server. The Health Monitor is also in charge of supervising the runtime status of Web 

Services in operation by collecting errors reported by the active connectors. 

 
Figure 3: IWSD, an Infrastructure for Web Services Dependability 

As shown in Figure 3, the Dependability Server itself can be made fault tolerant using conventional 

techniques, for instance using a duplex architecture to tolerate crash faults or any other strategy to 

improve its reliability and availability. As we consider world-wide applications based on web services, 

many instances of Fault Tolerant Dependability Servers should be available on the Net. Making the 

Part Arch - APPENDIX [Salatge and Fabre 2006] p 5



 6

DS highly dependable is attained using conventional fault tolerance techniques and is thus out of the 

scope of this paper. 

4 A language support to implement connectors 

The notion of the connector is the corner stone of the approach developed in this work and can be 

perceived as a single point of failure in the overall architecture. This means that its development must 

target reliable code and its support infrastructure must ensure reliability in operation. In other words, 

the connector must be a self-checking component running on top of a fault tolerant platform. 

4.1 Specification of the language 

The development process of the connector must prevent faults to be introduced. This can be achieved 

by several means, and in particular using the principle of Domain Specific Languages. The design of 

the DeWeL language should have two major objectives: 

• prevent software faults that usually appear in operational software using static (compilation) and 

dynamic (on-line) verification; 

• provide a finite set of language construct to declare recovery strategies and write runtime 

assertions. 

Field software development faults have been classified by several industrial companies (e.g. IBM, HP, 

etc.). For instance, in ODC (Orthogonal Defect Classification) from IBM [9], fault types are classified 

as follows: assignments, incorrect data/parameter checking, algorithm correctness problems, 

timing/serialization of resources, incorrect functions. This kind of faults can be prevented at least 

partially by reducing the possibilities of the language in terms of data types and algorithmic constructs. 

This is exactly what is enforced by design and coding standards for safety critical software, like 

CENELEC 50128 for railways (i.e. “avoidance of language constructs like dynamic objects, dynamic 

data, recursion, pointers, exits etc.”) or recommended in the Software Code Standards section of the 

DO-178/EUROCAE standard for avionics. This justifies the restrictions imposed by the language. In 

spite of these restrictions, the basic language features must be used to realize a connector: 

• Defensive programming: The first objective is to make sure that the user is able to write assertions 

on input and output requests, i.e. the restrictions do not impair the expressiveness. 

• Exception handling: communication errors and service errors must be captured and processed 

within the connector using the restricted expressions allowed by the language or forwarded back 

to the client for processing at an upper abstraction level. 

• Recovery strategy selection: Regarding recovery strategies only declarative statements are 

allowed; within a connector, the user sees recovery strategies as built-in software components that 

can only be parameterized. The implementation of these “partially” built-in strategies is discussed 
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in section 6. The errors detected by assertions and exceptions trigger the recovery procedure if 

any. 

Language restrictions  Specific features to be used instead Error avoidance Checked 
property 

- No dynamic allocation  
- No pointers  Segmentation fault, 

Not enough memory 

- No files A fixed size log file attached to a 
connector Not enough memory 

- No indexed access to arrays Controlled loop (foreach) Table overflow 

Resources and 
memory control 

- No standard loops (while, for)  

- No functions 
- No method overriding 

- pre-defined functions 
- specific objects methods 

- No recursive construct  

Service hang Termination 

- No external access to other users 
data space or system resources   Data corruption Non-interference 

Table 2: Essential characteristics of DeWel 

Table 2 shows the restrictions enforced in DeWel, the type of errors they prevent, and the type of 

critical property targeted by this DSL. Some specific recommendations are proposed to overcome such 

restriction in practice, i.e. specific programming features to enhance connectors’ robustness. Thanks to 

such restrictions, it is possible to perform efficient static verification at compile time and provide 

automatic code generation including the dynamic verification of SOAP messages parameters.  

4.2 Template of a DeWel program 

To avoid learning a new language and, more importantly, to simplify its use and understanding, DeWel 

borrows its syntax from C (for conditional actions, arithmetic and logic expressions, etc.). However, 

DeWel differs very much from general purpose programming languages like C. It can be seen as a 

declarative language, in particular regarding recovery strategies that are only parameterized, and as a 

restricted imperative language for the expression of runtime assertions. The later correspond in pre and 

post conditions that encapsulate the execution of the service (like Before, After, Around advices in 

Aspect Oriented Programming [10]). As shown in Figure 4, a DeWel program is in fact developed from 

a pre-defined template composed of several sections: 

- Declaration and parameterization of the RecoveryStrategy selected; 

- Definition of assertions: 

o Pre-Processing assertions to check the validity of input requests; 

o Post-Processing assertions to check the validity of WS responses; 

- Definition of error handlers: 

o CommunicationException handlers processing communication errors; 

o ServiceException handlers processing the target Web Service errors; 

The template is automatically generated from the WSDL document describing the target Web Service. 

All service operations using the SOAP protocol and described in this document are imported into the 

template (see Figure 4). In practice, the pre-processing assertions check the validity of some input 
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parameters and the post-processing assertions filters both unacceptable replies and, for instance, upper 

bounds on return attributes of SOAP messages1.  

 
Figure 4. Example of a DeWel Program Template  Figure 5. Code Generation Process 

4.3 Code Generation Process 

This section describes the code generation process that produces Specific Fault Tolerance Connectors 

from WSDL contracts. As show in Figure 5, this code generation process is composed of four steps, 

each of them supported by a tool. Four tools contribute to the implementation of this code generation 

process, and three have been developed on purpose. These tools are involved in the three first steps of 

the process to produce robust connectors: 

Step 1 – WSDL Document Analysis and Template Generation: First, the validity of the WSDL 

document is checked together with the internal operations provided by the Web Service. A DeWel 

template contains the signature of Web Service operations extracted from the WSDL document. The 

user can then insert appropriate fault tolerance mechanisms in the corresponding sections of the 

template (recovery strategy, pre-processing, post-processing, communication and service exception 

handlers). This step is assisted by the Template Generator tool. 

Step 2 – XML Schema Analysis and type generation: This second step is only required when the 

WDSL document includes specific XML schema to describe data types defined by the Web Service. In 

this case, a particular data structure (named TypeStructure) is produced to simplify the manipulation of 

such data types in the template.  This type structure is the result of the translation of complex XML 

types into DeWel data types (e.g. C++ style). These data types are used to perform checks on service 

request parameters in assertions. The Schema Parser tool has been developed for this step. 

                                                      
1 Dewel programs can be found at the url: http://www.laas.fr/~nalatge/IWSD (DeWeL examples) 
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Step 3 - Compilation of DeWel programs: The compilation process has two inputs: (i) the template 

that has been updated by the user with fault tolerance mechanisms (recovery strategies and assertions) 

and (ii) the TypeStructure provided by the Schema Parser. The compilation verifies the consistency of 

the user’s source code and the data type information contained in the TypeStructure. The output of the 

compilation process is a set of C++ files corresponding to the user-defined fault tolerance mechanisms 

of the connector and the specific data types of the service. The DeWel Compiler that is currently 

available is responsible for this step. 

Step 4 - Creation of a connector as a dynamic library: This is the last step of the process in which a 

conventional C++ compiler is used to produce the final SFTC that will be used at runtime. A dynamic 

library is obtained from the C++ files generated in step 3. The connectors are then registrered into a 

repository of the platform. This step is assisted by the GNU/C++ compilation suite in our case. 

4.4 Concluding remarks on language issues 

Together with its IWSD supporting infrastructure, the aim of the language is to simplify the 

implementation of reliable connectors in order to make error confinement areas around unreliable Web 

Services. Reliable connectors can be developed by a user thanks to a template extracted from the Web 

Service WSDL document. As a consequence, a new service is obtained with better and, more 

importantly, user-defined fault tolerance features. This enhanced version is described as a new WSDL 

document and a new access point. This new access point is registered into IWSD. Each connector is 

thus visible as a WSDL document on the Web2. 

Some recent works have used advanced reflective language features to include non-functional 

mechanisms into the implementation of Web Services (in [11] and [12]). This was performed with 

Java and AspectJ. To do this, the Web Service must be implemented in Java and the code must be 

available. The main advantage of DeWel is its independence with respect to WS implementation 

details, only the WSDL document is needed. Its supporting platform IWSD is independent from any 

client or provider and thus can be easily inserted in any application. 

5 Error detection mechanisms 

The IWSD framework provides an effective support for programming and executing Web Service 

Connectors for fault tolerance. In this Section we discuss the different kind of connectors and some 

aspects of their behavior in operation. A comprehensive description of the connectors in action can be 

summarized as follows. Provided the pre-processing assertion is passed, the target WS executes and 

produces output results. When an error is detected by the post processing assertion or when an 

exception is returned to the connector, two cases are possible: 

                                                      
2 The WSDL document of the connector for Google is available to the following URL:  
"http://www.laas.fr/~nsalatge/IWSD/" (see WSDL connector of Google). 
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- When no recovery procedure is defined in the connector, then an exception is returned to 

the client. 

- When a recovery procedure is defined, an exception is returned to the client only if all spare 

replicas have been used and the recovery procedure fails. 

5.1 Assertions  

The Connector foresees two types of assertions, implicit assertions that are automatically performed 

by a tool, or explicit assertions, which are user-defined thanks to the DeWel language. The implicit 

assertions are done by default when a message (request or response) is analyzed by request parsers that 

perform syntactic verifications (e.g. badly formed or corrupted SOAP messages). 

The explicit assertions are tailored to each operation of a service and written by the user in DeWel. 

They are able to control for instance the validity of a typical data value. User-defined assertions can be 

much more complex and based on some formal expressions composed of several parameters. It is 

worth noting that assertions can take advantage of connector local variables to keep track of the some 

history of the WS connection. Some assertions can thus be implemented using this recorded 

information. The violation of such assertions can thus signal an error to the client by means of 

exceptions.  

5.2 Exceptions 

Some specific high-level exceptions are strongly related to the proposed framework in operation. They 

can be also implicit or explicit. For instance, an exception can be returned when a SOAP request 

cannot be analyzed by the parsers (implicit exception). A specific error defined by the user in the pre 

and post-processing assertions may also lead to an exception (explicit exception). Two exceptions 

mechanisms are provided to the user: 

– Generation of an exception. The user can define and generate an exception when an assertion is 

false. A user-defined exception can be directly returned to the client, e.g. return SOAPException 

(“Invalid Value”); 

– Catch of an exception. The user can catch and process two types of exceptions: Communication 

Exceptions and Service Exceptions. The processing of the exceptions is defined in the corresponding 

sections of the DeWel program template (see. Figure 4). 

A Communication Exception is returned when the request cannot be sent by the Dependability Server 

to the targeted Web Service. A Service Exception is returned when the targeted service returns an error 

as a SOAP message. Within the connector, the catch of an exception is implicit but the handler code to 

process the exception can be complex and defined by the user. As an example, a very simple exception 

handler can just be the logging of error information for later analysis.  
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6 Recovery Strategies and replication 

The principles of Web Services naturally provide possible replicas on the Internet since several 

implementations of the same services (i.e. same WSDL document) can be available. This natural 

redundancy can be used to improve the dependability of an application based on Web Services. One 

can think that some similar services can also be found. Similar means that they can provide an 

acceptable service instead the original one, a sort of degraded service (see section 6.1). Various 

replication strategies can be used depending of the nature of the target WS and the dependability 

requirements of the client application (see section 6.2). However, by definition replication means that 

state management cannot be ignored (see. Section 6.3) which is a difficult issue with OTS components. 

6.1 Various sorts of replicas 

We have thus to consider two types of services which can be used to implement recovery mechanisms. 

First of all, Identical services correspond to a unique WSDL document, but the access point is different 

(e.g replicas for Amazon: JP, US, FR, …etc.). Different implementations of the service help to 

tolerance transient faults of the WS runtime support but also design faults of the WS. A simple switch 

to a different replica is done in this case.  

More importantly we have to consider so-called Equivalent Services: the WSDL documents are 

different but can be considered as providing a similar specification of the original service. In order to 

take advantage of Equivalent Services, we introduce the notion of Abstract Web Service (AWS). An 

AWS does not have any functional reality but have a WSDL document; it is an abstraction of several 

similar services. The connector associated to an Abstract Web Service must convert so-called 

“abstract requests” to concrete requests and vice-versa for the responses. To create such connector for 

equivalent services A and B, we have to consider four types of parameter (see. Figure 6): 

- Surjective parameters ( ): A parameter PA of service A is said to be surjective when there is at 

least one parameter PB in service B so that there exists a transformation function « strans » that 

satisfies « strans (PA)= PB ». 

- Injective parameters ( ): A parameter PA of service A is said to be injective when there is at 

most one parameter PB in service B so that there exists a transformation function « itrans » that 

satisfies « itrans (PB)= PA ». 

- Bijective parameters ( ): a bijective parameter is both surjective and injective. It signifies that a 

parameter of the service A has one only associated parameter in the service B (for example, the 

query string for search engine service such as Google or MSNSearch).  

- Local parameters ( ): these parameters are proper and mandatory to access one specific service. 

There is no possible mapping to convert a local parameter of service A to a local parameter of 

service B (for example, authentification parameters). 
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An Abstract Request is not the union of concrete requests. We can define an abstract request as 

composed of all necessary and sufficient parameters to derive a request for concrete services, namely 

A and B in the example. The minimal abstract request is simply defined as composed of: 

1) Bijective parameters belonging to only one concrete request (A or B); 

2) Surjective parameters belonging to all concrete requests (A and B); 

3) The local parameters belonging to all concrete requests (A and B). 

 
Figure 6: Equivalence of WS  

It is worth noting that surjective parameters enable retrieving injective parameters of all concrete 

requests. For instance, in the example of Figure 6, PB7 is an injective parameter of service B that can 

be retrieved from the surjective parameter PA8 belonging to the abstract request, provided the strans 

function is known: « strans (PA8)= PB7 ». 

Conversely, an Abstract Response can be defined in the same way. Only bijective and injective 

parameters belong to abstract responses, surjective parameters are transformed into injective 

parameters, provided the itrans function is known: « itrans (PB1)= PA3 ». 

These abstract request and response represent one operation of the Abstract Web Service and so, can 

be defined in a WSDL document. The aggregation of transformation functions (“iTrans” or “sTrans”) 

associated to each parameter of the service corresponds to the mapping functions necessary to convert 

an abstract request to a concrete service request (dashed arrow) or a concrete response to an abstract 

service response (bold arrow)3. From a technical viewpoint, these mapping functions are XSLT scripts 

[13] which contain node transformations on SOAP requests and response.  

The above simple solution to address the equivalence of services on the Net can take advantage of 

more advanced research on Ontologies whose purpose is to add semantic to Internet resources and to 

classify them [16, 17]. This approach also called Web Semantic [14] should be able to help searching 

and classifying similar Web Services. Recent works have also addressed the matching between WS 

                                                      
3 The WSDL document of the Abstract Service for Google and MSN as well as mapping and unmapping scripts are available 
to the following URL:  "http://www.laas.fr/~nsalatge/IWSD/" (see WSDL connector of Generic Search Engine). 
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[15-17] just by searching similarities (e.g bijective, surjective or injective parameters) or 

incompatibilities (e.g local parameters) between WS operations. 

6.2 Replication strategies 

The DeWel section entitled RecoveryStrategy enables the user to select an appropriate replication 

strategy for a target service.  It is clear that fully implemented mechanisms cannot be provided. The 

provided mechanisms are partially built-in essentially because of state management issues. The final 

fault tolerance strategy to be used is the result of collaboration between the client, the connectors 

supported by the ISWD platform, and the provider when possible. 

The recovery strategies are defined using the private functions given in the table 2. For each DeWel 

function, this table summarizes the principles of the available recovery strategies and the role of each 

participant (connector, provider and client). Cloning a replica is not considered here. 

DeWel functions Recovery strategy  
Connector role 

vs. recovery strategy 
Provider role Client role 

1) BasicReplication 
Passive Replication 
with no state 
management  

Switch to another replica 
State 
recovery 
management 

 

2) StatefulReplication 

Passive Replication 
with WS state 
management using 
provider-defined state 
management functions 

Checkpointing using 
provider-defined state 
management functions 
Switch to another replica 

Provision of 
state 
management 
functions  

 

3) LogBasedReplication 

Passive Replication 
with state management 
using session 
mechanism (log and 
repetition)  

Logging of all the requests 
during a session. 
Re-execution of logged 
requests on another replica 

 

Invocation 
of Session 
Start and 
Session 
End. 

4) ActiveReplication Active Replication 
without vote  

Multicast requests to the set 
of replicas. 
Selection of the first 
acceptable response 

  

5) VotingReplication Active Replication with 
vote 

Multicast requests to the set 
of replicas. 
Performs the vote or a 
decision procedure among 
multiple responses 

  

Table 3: Recovery mode 

Passive Replication strategies (BasicReplication, StateFulReplication, LogBasedReplication) involve 

sending the request to only one replica that processes the request. In case of errors detected (by post-

processing assertions or exceptions), a spare replica is used to perform the request. The main 

difference between these strategies resides in the way state management is performed as discussed in 

the next section. In this case, beyond the execution of assertions, the connector provides the routing 

and failure detection (unreachable primary because of node crash, service crash, service hang).  

Regarding Active Replication strategies (ActiveReplication, VotingReplication), the connector 

multicasts the request to N Web Service replicas when the pre-processing assertion is passed. 

Curently, two configurations are available: 
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- No voting : the connector receives the N responses from the replicas, and sends to the client the 

first response which matches the post-processing assertion. This mechanism tolerates node crash, 

service crash or service hang. In practice, active replication has been used in our experiments with 

all registered Identical Service replicas of Amazon (see section 7). 

- With voting: the recovery mechanism with (majority) voting can tolerate value faults (data 

corruption). The connector receives responses provided by 2f+1 service replicas, up to f faults can 

be tolerated in this case. A library of voting algorithm variants (bitwise, average, median, etc.) can 

be provided to the user for the configuration of the vote in the connector.  

These recovery strategies can be customized by the user, i.e. they can be parameterized or variants can 

be derived from the existing ones (e.g. inspired by approaches like Recovery Blocks, N-Version 

Programming, N-Self-Checking Programming). Clearly, all of them have a list of replicas as a first 

parameter. Other parameters concern timer values, checkpointing variants, decision functions, etc. 

More advanced strategies can also be created to tackle other non-functional aspects, including 

application dependent recovery strategies. 

6.3 WS State Management  

When the provider is responsible of the state management (see row 1 on Table 2) the role of IWSD is 

limited, but at least very useful for stateless WS. BasicReplication provides redirection mechanisms, 

failure detection being done by means of assertions and exceptions. The delay to switch from one 

replica to another is defined by the provider as a parameter. It corresponds to the WCET (Worst Case 

Execution Time) of the state transfer to a backup replica.  

When the state management of the service is not delegated to the provider, two solutions are possible. 

In the first solution (second row in Table 2), the StateFulReplication performs checkpointing using 

state management functions (Save_State/Restore_State) developed by the provider. This kind of 

approach was used in object-oriented fault tolerant systems: an abstract StateManager class is 

provided to the developer who is responsible for the implementation of two virtual methods 

Save_State and Restore_State (see. [18]). In our context, these Save_State and Restore_State 

operations must be accessible to the ISWD platform to be triggered when appropriate. The WSDL 

contract can be extended with the signature of these state management operations that are 

implemented by the provider4. Clearly, such operations require authentication to be activated. The 

IWSD platform can remotely manage the state of WS replicas. 

The second solution LogBasedReplication relies on session management functions provided by the 

connector and used by the client (start_session and end_session). During a session defined by the 

                                                      
4 An example of a WSDL contract extended with state management operations can be found at:  
http://www.laas.fr/~nsalatge/IWSD 
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client (i.e. bracketed by start_session and end_session), the connector logs all operations in progress. 

When the primary replica fails, all the saved requests can be resent to a backup replica and replayed to 

reach a consistent state. This approach enables to undo operations to be performed thanks to 

information recorded into the logs. The WS-AtomicTransaction [19] and WS-Coordination [20] 

mechanisms can be used to this aim. 

With active replication strategies, the handling of state management issues can be performed in the 

same way as before, but is only required for cloning a replica. The most important problems concern 

the consistency of replicas execution, which essentially depends on inputs delivery and execution 

determinism of the WS replicas, the later being out of our control.  

In both active replication solutions (see row 4-5 on Table 2), the control of requests ordering at the 

replicate can be done by a connector. However this connector must be the only one able to contact the 

target WS replicas to ensure requests ordering using WS-Reliability [21]. This specification is indeed 

able to guarantee the delivery, the elimination of duplicates and the ordering of messages. 

Implementing atomic multicast at the connector level is however complex and costly and certainly 

need more investigations, because solutions that work “in the small” (group communications 

providing atomic multicast) do not work “in the large” for obvious performance reasons. 

7 Implementation issues and experiments 

From an implementation viewpoint, the core software development of this project has been realized 

with the Xerces-C library. It roughly represents 65000 codes lines corresponding to the 

implementation of the DeWel compiler and the connector support infrastructure IWSD. The IWSD 

platform has been installed on a rack of PCs running linux Debian 2.4. 

 Regarding DeWel, it is clear that the evaluation of a DSL is not always easy as it relates to testing 

compiler facilities. However, the well-recognized characteristics of a DSL are expressiveness, 

conciseness and performance, properties that must be enforced as discussed in [22]. The evaluation of 

expressiveness of a DSL in practice implies the use of a large set of applications. We have used DeWel 

to produce SFTCs for about 150 WS, and implemented an active replication connector with Amazon5. 

These experiments show that the DeWel expression is 18 times smaller that its counterpart in C++, for 

a program with empty assertions. We also measured the connector overhead without recovery strategy 

that is about 3,5% of the response time, which is acceptable for large-scale WS-based applications. 

 The IWSD platform can be used to perform other measurements. For instance, the availability of 

various Web Services was evaluated thanks to the error information collected by the Health Monitor. 

The results obtained are given in Figure 7. Although the Health Monitor provides other types of 

information (like session time, numbers of received requests, numbers of communicationException... 

                                                      
5 A full account of this example can be found at the url: http://www.laas.fr/~nalatge/IWSD (DeWeL examples)  
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etc), we only report here the availability ratio. Approximately 1000 requests were sent to each target 

service and we observed that the availability of the candidate services could vary a lot during the 

experiments. For instance, in our experiments, Google has the lowest availability ratio (about 82%) 

caused by 352 communication errors over 1913 requests sent. Among these errors, 64 are due to a 

very long response time latency and 288 due to a server unavailability (HTTP Error codes 502:  Bad 

Gateway). Among the 6 replicas of the Amazon WS, only one replica reached an availability ratio 

close to 100% (i.e. AmazonUK). The failures that occurred were mainly due to communication errors 

(communicationException), i.e. due to a too long latency. It is worth noting that this depends on a user-

defined temporal value representing a specific dependability constraint of the user.  
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Figure 7: Availability of Web Services 

 Regarding recovery strategies, we have created a connector selecting the active replication strategy 

with the various replicates of Amazon. Figure 8 shows the availability results obtained using such 

recovery strategy. As expected the availability ratio is close to 100%, although the availability of some 

replicas can be very low, e.g about 70% for AmazonJP. Because most of the faults observed in our 

experiments were “clean” communication faults, the observed availability was also about 100% with 

the basic passive replication. During one experiment with the connector using the basic passive 

replication, we observed that one transient error leading to the reboot of the router has caused the 

redirection of the request to four replicas in a row before returning a valid response!!!   

To measure the overhead of each recovery mechanisms, we have developed connectors using different 

recovery modes on a simulated StockQuotes WS with three replicas. We compared the overhead with 

a connector having no recovery mode. The voting replication have the highest overhead (9,66 %). The 

passive replication has an overhead of 2,18 % whereas the overhead for active replication is of 1,39 %. 

In the latter case, the response time corresponds to the first replica that transmits a correct response. 

 Finally, we also performed experiments with equivalent services, through the notion of Abstract 

Request to a Generic Web Service. Since Google exhibited a weak availability ratio in previous 

experiments carried out, we have developed a connector able to map requests to both WS of Google 

and MSN. These services are similar but not identical (different WSDL documents). The results of this 

experiment are presented in Figure 9. The target Generic Web Service has an availability ratio equal to 

100% through this connector. This availability level is reached thanks to the intrinsic availability of 
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the MSN WS compared to Google WS. Experiments with the basic passive replication strategy show 

that 6% of the requests have being redirected to the MSN server due to an unavailability of the Google 

server considered as a primary, this being of course totally transparent to the client. 
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Figure 8: Active Replication with Amazon               Figure 9:  Active Replication with abstract service   

8 Related work 

Dependability issues are the major topic limiting the deployment of service oriented application in 

critical domains [23]. The main founders of the Web Services technology (IBM et Microsoft) have 

spent huge efforts to develop specific WS protocols to guarantee security and safety properties [24]. 

This specification can be introduced in SOAP parser of the client, of the provider and of the IWSD 

platform to provide these specific characteristics.  

Concerning recovery strategies, the active [25] and passive [26] replication mechanism are already 

implemented in context of WS by introducing specific middleware respectively named FTWeb [25] 

and FT-SOAP [26]. These solutions are intrusive and affect the interoperability of WS because they 

require to install an applicative component on the server side and client side to implement the 

replication. In both cases, the state management is performed on the server side and the WS replicas 

must be developed by the same provider.  For the active replication with FTWeb, WS-Reliability [21] 

and [27] are also use to guarantee the determinism of the input requests delivery.  

The active replication strategy with vote has also been implemented in Thema [28] and in [29]. In 

[29], it is achieved on the client side in an ad-hoc way using the “equals” method of Java Objects. This 

approach strongly relies on the implementation language of the client, which is a restrictive 

assumption. In Thema, the vote is performed at the server side using a specific library. In our 

approach, the voting algorithm can be specialized by the users in a DeWel program. The DeWel 

compiler automatically generates specific objects containing an appropriate equal operator to easily 

perform the vote in the connector.     

The design of a connector for a composite WS (resulting from the aggregation of so-called atomic 

services, using tools such as BPEL [30], for example) is achieved in the same way. As the 

implementation of the WS is unknown to the client and so to the IWSD platform, there is no way to 

distinguish an atomic WS from a composite one. It is however important to mention here that recent 
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work focused on the reliability of composite Web Services. The idea consists in changing of an atomic 

service belonging to a composite service by a more recent version [4, 31]. In this work, the provider is 

in charge of state management issues or a specific active replication is used. 

Some related work may help us to perform the evaluation of IWSD. For example, WS-FIT [32], a fault-

injection tools for Web Service, can be used to assess the robustness of internal SOAP parser and 

connector. In a same way, the work realized in [33] inserts mutant in WSDL contract in order to 

generate mutated Web Service interfaces used to test Web Services. This approach could be used to 

generate mutated DeWeL templates and to verify the robustness of DeWeL compiler.    

9 Conclusion 

Although the implementation of WS can be reliable in some respects using conventional techniques, 

there is no way today to help the client making non-intrusive ad-hoc or customized fault tolerance 

mechanism for a given usage in a SOA. This is clearly of high interest since client’s strategies may 

change from one SOA to another (resources, networking devices, dependability constraints, evolution 

requirements, etc.) given that WS can be shared among applications with different dependability 

constraints. Clearly, guarantees of non-functional properties must be enforced in service contracts, and 

this work is indirectly a contribution to this aim. 

To address this issue and make fault tolerance mechanisms adaptable to clients’ needs, we propose an 

infrastructure enabling clients to develop, manage and execute Specific Fault Tolerance Connectors to 

Web Services. A key feature of this approach is to rely on a Domain Specific Language to develop 

connectors. DeWel aims at providing the necessary and sufficient language features to (1) declare and 

customize built-in fault tolerance strategies and (2) express runtime assertions for each individual 

operation of a service. The language is supported by a tool suite that applies checks at multiple levels 

in order to produce robust connectors. In addition, no specific protocol is needed to use DeWel 

connectors in practice. 

The main benefit of IWSD, the proposed framework and its tools suite, is to enable developers to 

improve the overall dependability of a Web application realized with existing Web Services, whatever 

their individual reliability is. Improving the dependability of individual services is of course welcome, 

this being implementation dependent for stateful Web Services. This framework and tools suite 

simplifies the adaptation of dependability mechanisms to user’s requirements (both clients and 

providers), because the solution is not intrusive and well integrated into the Web Services world. 

The Service Oriented Architecture concept brings the notion of large-scale application to reality, but 

Internet as a backbone introduces multiple sources of faults by construction. The virtues of this 

approach are to render applications as dynamic as possible, by picking Off-The-Net individual useful 

services. As a consequence, changes and evolution are core issues of SOA development. This novel 

situation must be taken into account as far as dependability is concerned, not only for today’s 
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application of these concepts, but also for the future since critical application domains are becoming 

more and more interested by this approach. We believe that traditional solutions to make individual 

WS platforms reliable are not sufficient. The language support presented in this paper together with its 

supporting infrastructure is a contribution to the dependability challenges we are faced today regarding 

SOA based applications in critical application domains. 
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Abstract 
 

Database replication is widely used to improve both 

fault tolerance and DBMS performance. Non-diverse 

database replication has a significant limitation - it is 

effective against crash failures only. Diverse 

redundancy is an effective mechanism of tolerating a 

wider range of failures, including many non-crash 

failures. However it has not been adopted in practice 

because many see DBMS performance as the main 

concern. 

In this paper we show experimental evidence that 

diverse redundancy (diverse replication) can bring 

benefits in terms of DBMS performance, too. We report 

on experimental results with an optimistic architecture 

built with two diverse DBMSs under a load derived 

from TPC-C benchmark, which show that a diverse 

pair performs faster not only than non-diverse pairs 

but also than the individual copies of the DBMSs used. 

This result is important because it shows potential for 

DBMS performance better than anything achievable 

with the available off-the-shelf servers. 

 

 

1. Introduction 
 

The most important non-functional requirements for 

a Database Management System (DBMS) are 

performance and dependability, which often require 

mutually exclusive mechanisms. Thus, a trade-off 

between the two is sought, which would be optimal for 

a specific system. 

Data replication has proved to be a viable method of 

enhancing both dependability and performance of 

DBMSs. Performance is improved by balancing the 

load between the deployed replicas, while fail-over 

mechanisms are normally used to re-distribute the load 

of a failed replica among the remaining operational 

ones. Crashes are commonly believed to be the main 

type of failure of DBMSs. Providing that only crashes 

occur, using several identical replicas provides 

appropriate protection. Under this assumption the 

replication scheme ROWAA (read once write all 

available) is adequate [1]. Unfortunately, this common 

belief is hard to justify. In a recent study, we presented 

overwhelming evidence against crash failures being the 

main concern [2]. Using the log of known bugs 

reported for four major DBMSs we observed for all 

four servers that more than 50% of the known bugs 

lead to non-crash failures, which will not be tolerated 

by a non-diverse replication. Only by deploying diverse 

redundancy, i.e. deploying diverse replicas, would we 

deliver an adequate protection against the non-crash 

failures of the DBMSs.  

A possible architecture for a fault-tolerant server 

employing (diverse) redundancy is depicted in  

Figure 1. The middleware propagates the statements 

generated by the client applications to both (all, in case 

of more than 2) diverse replicas for execution. The 

results from the replicas are collected by the 

middleware and in the case of a positive adjudication 

the middleware reports a result back to the client 

application(s). Clearly, this architecture differs from 

the ROWAA scheme. In the new architecture all 

statements (including the reads from the database) are 

executed multiple times by several diverse replicas, 

while in the ROWAA scheme all active replicas 

execute only the writes to the databases. 

While dependability gains from deploying diverse 

redundancy are beyond doubt, it is far from obvious 

what the implications of this architecture would be for 

system performance. From the known applications of 

design diversity in other areas, it is well known that 

© 2006 IEEE. Personal use of this material is permitted. 

Permission from IEEE must be obtained for all other uses, 

including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works for resale or 

redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works.  
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fault-tolerant mechanisms (failure detection, fault-

containment, state recovery, etc.) have their 

performance cost. Is diverse redundancy then 

necessarily a bad thing in terms of system 

performance?  

 

 

 
 

Figure 1. Fault-tolerant server node (FT-node) 

with two (possibly more) diverse DBMSs (SQL 

server 1 and SQL server 2). The middleware 

“hides” the servers from the clients (1 to n) for 

which the data storage appears as a single 

DBMS. 
 

The overall performance of the system shown in  

Figure 1 will depend on the performance of the 

diverse replicas deployed and on the performance 

characteristics of the middleware itself. For instance, 

the middleware can use different adjudication 

mechanisms. A few reasonable alternatives are listed 

below: 

- Slowest response. The middleware collects the 

results of the individual statements (a multitude of 

which constitute a whole transaction) executed by 

diverse replicas. Once a sufficient number of 

responses are collected, they are adjudicated and 

only if identical responses from all the replicas are 

observed a successful completion of the statement 

is reported back to the client application. 

- Fastest response. Alternatively, the middleware 

may buffer the statements coming from a client 

application and make them available to the diverse 

replicas as soon as the statements are placed in the 

respective buffers. Each diverse replica collects 

the next available statement from its respective 

buffer, executes it, marks it as being completed 

and makes the response from the statement 

available to the middleware. As soon as the 

middleware receives the first response to a 

statement from a replica, it is immediately passed 

on to the client application, thus letting the client 

application proceed with the other statements 

within the transaction. The fastest response comes 

from either of the DBMSs, depending on the SQL 

statement (Figure 2). Responses from the diverse 

replicas to the same statement are adjudicated 

later, when a sufficient number of responses are 

collected, but before the end of the transaction. 

Buffering the statements in the middleware allows 

the diverse replicas to work at a maximum speed 

within transactions, as shown in Figure 2 (DBMS1 

would start execution of the next SQL statement 

even though the DBMS2 has not finished the 

previous one as indicated with the dashed 

rectangle). The transactions are committed (or 

aborted) based on the outcome of adjudicating the 

results of the statements. Commit is only applied if 

all the replicas execute all the statements 

successfully and all the statement responses are 

positively adjudicated. Otherwise, the transaction 

is aborted. 

- Optimistic response. This is similar to the fastest 

response except: i) no adjudication of the 

responses from the diverse replicas is applied; ii) a 

skip feature is implemented in the middleware as 

follows. Before a replica, X, executes a read (i.e. 

SELECT) statement it checks if a response to this 

statement has already been received from another 

replica, Y≠X. If so then X does not execute the 

statement (i.e. skips it)1. The modifying SQL 

statements (DELETE, INSERT and UPDATE) are 

executed on all servers, i.e. they cannot be 

skipped. Clearly, this regime of operation does not 

offer the same level of protection as the previous 

ones. It may, however, be adequate in many cases, 

which we discuss later (see the Discussion 

section).  

We have already [3] on systematic differences 

between the times it takes diverse DBMSs to execute 

the same statement. This may be due, for example, to 

the respective execution plans being different, the 

concurrency control mechanisms being implemented 

differently, etc. When the slowest response regime is 

used such differences will lead to the fault-tolerant 

                                                           
1 The functionality of looking up the next statement and the ‘skip’ 

feature is, of course, implemented in the middleware, which relays to 

the DBMSs the statements for execution. If a read statement is to be 

skipped, then the middleware simply does not pass it to the 

respective DBMS for execution. 
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node (FT-node) being slower than the respective 

DBMSs it consists of. When the optimistic regime is 

used, however, the systematic difference might lead to 

improved performance. If the mix of statements within 

a transaction is such that both servers ‘skip’ statements, 

then the transaction will take the FT-node shorter than 

it would take each of the DBMSs it uses. When the 

‘skip’ feature is not used the best that the FT-node can 

do is process SQL statements as fast as the faster of the 

two servers can, thus diversity cannot bring any 

performance gains. 
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Figure 2. Timing diagram of a client 

communicating with two, possibly diverse, 

database servers and the middleware running 

in fastest response or optimistic regime. The 

meanings of the callouts are: 1 – the client 

sends an SQL statement to the middleware, 2 

– the middleware translates the request to the 

dialects of the servers and places the resulting 

SQL statements, or sequences of SQL 

statements, in the respective server buffers; 3 

– the fastest response is received by the 

middleware; 4 - the middleware sends the 

response to the client. The dashed rectangle 

indicates that DBMS2 will not be ready to start 

(n+1)
th
 SQL statement at the same time with 

DBMS1 
 

This paper, therefore, is focused on the empirical 

investigation of whether the potential performance 

gains with the optimistic regime of operation of the FT-

node can be achieved under a realistic load, such as the 

one defined by the TPC-C performance benchmark [4]. 

Whichever regime under the FT-node operates, data 

consistency between the diverse replicas must be 

guaranteed, which is typically defined as 1-copy 

serialisability between the transaction histories of the 

replicas [1].  

Should a level of replication be required that is 

higher than the number of diverse replicas used in a 

single FT-node, then the FT-node can be combined 

with any database replication scheme, which is 

considered adequate for a particular set of 

requirements. These can be schemes for eager database 

replication, e.g. based on group communication 

primitives [5], or even lazy replication [6]. In either 

case the FT-node will replace a replica of a particular 

DBMS used by the particular database replication 

scheme.  

This paper is structured as follows. In section 2 we 

describe the experimental setup. In section 3 we 

enumerate possible configurations of the FT-node. In 

section 4 we show consistency of the experimental 

results. In section 5 we present the performance 

comparison of different FT-node configurations. In 

section 6 we compare performance of the diverse pair 

and a non-diverse solution. In section 7 we discuss 

possible performance gains when diverse DBMSs are 

used and in section 8 we present conclusions made and 

describe provisions for future work. 

 

2. Experimental Setup 
 

In the empirical study we used our own 

implementation of the industry-standard benchmark for 

online transaction processing - TPC-C [4], to evaluate 

the potential for performance improvement. TPC-C 

defines five types of transactions: New-Order (NO), 

Payment (P), Order-Status (OS), Delivery (D) and 

Stock-Level (SL) and sets the probability of execution 

of each. The minimum probability of execution for 

each transaction type is as follows: NO – 43%, P – 

43%, OS – 4%, D – 4% and SL – 4%. The benchmark 

provides a mechanism for performance comparison of 

the DBMSs from different vendors, with different 

hardware configurations and operating systems. The 

specified measure of throughput is the number of NO 

transactions completed per minute (under the specified 

mix of transaction types). Our measurements were 

more detailed than those required by the standard. We 

recorded the response times of the individual SQL 

statements and transactions executed by the DBMSs 

used in the FT-node. The test harness consisted of three 

machines: 

- a client machine, which executes a JAVA 

implementation of the TPC-C standard (it uses 

JDBC to access the DBMSs); 

- two server machines, on which two diverse open-

source DBMSs are run, namely InterBase 6.0 and 

PostgreSQL 7.4.0 (referred to as IB and PG, 

respectively, in the rest of the paper).  
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The two DBMSs ran on Linux RedHat 6.0 (Hedwig) 

operating system, while the client machine ran under 

Windows 2000 Professional (sp4) operating system. 

The hardware specifications are as follows: 

- client machine: 1.5 GHz Intel Pentium 4 

processor, 640 MB RAMBUS RAM and 20GB 

HDD (Maxtor DiamondM) 

- server machines: 1.5 GHz Intel Pentium 4 

processor, 384 MB RAMBUS RAM and 20GB 

HDD (Seagate U Series). 

The implementation of the TPC-C application did 

not necessitate the use of any proprietary features from 

either IB or PG. The SQL statements were 

implemented using the common subset of the language. 

Nevertheless we have developed preliminary versions 

of our own SQL translator tool. In addition one could 

make use of commercial products for porting between 

different DBMSs such as Fyracle [7], Oracle-mode 

Firebird or its PostgreSQL counterpart EnterpriseDB 

[8]. 

 

3. FT-node Configurations 
 

We run a set of experiments with the following 

server configurations: 

- 1IB1PG, an FT-node with a copy of IB and PG. 

1IB,  

- a single replica of IB; 

- 1PG, a single replica of PG; 

- 2IB, an FT-node with two replicas of IB, and  

- 2PG, an FT-node with two replicas of PG.  

Each experiment comprises the same sequence of 

10,000 transactions and was repeated five times, for 

reasons detailed below. The server machines were 

restarted and databases restored between the 

repetitions.  

All the measurements were associated with a single 

TPC-C client under different server loads as follows: 

- no additional clients; 

- 10 additional clients, and  

- 50 additional clients. 

Whenever additional clients were deployed they 

executed a mix of read-only transactions (RO mix) 

instead of the mix of transactions recommended by the 

TPC-C2. The RO mix consists of the two read-only 

                                                           
2 We did run multiple concurrent TPC-C clients with our own 

implementation of 1-copy serialisability between the DBMSs. These 

experiments, however, did lead to a very large number of non-

serialisable transactions, which had to be aborted. Due to non-

determinism between the orders in which the servers serve the 

concurrent clients we could not achieve a repeatable set of 

transactions: Order-Status and Stock-Level of almost 

equal proportion. Thus, only one TPC-C compliant 

client modifies the database. The readers and writers 

do not conflict in the two DBMSs, since both IB and 

PG implement a type of MVCC (Multi-Version 

Concurrency Control). Hence data consistency between 

the replicas is guaranteed (experimentally confirmed by 

successfully running a comparison between the 

databases at the end of the experiments).  

The overhead that the test harness introduces 

(mainly due to using JAVA multi-threading for 

communication of the clients with the middleware and 

of the middleware with the different DBMSs) is the 

same irrespective whether a single or two replicas are 

used in the experiment. It has been measured to be 

negligible compared with the time taken by the 

respective DBMSs to process the 10,000 transactions. 

 

4. Confidence in the Results 
 

Each experimental setup (with a fixed configuration 

and load) was repeated five times so that we could 

detect significant variation between the observed 

results due to factors beyond our control (e.g. 

fragmentation of files on the servers). 

Figure 3 shows the mean transaction times for all 

transactions together and per transaction type in a 

10,000-transaction run, grouped by experiment 

repetitions when only a single TPC-C compliant client 

is deployed. There is no significant variation between 

the results across the repetitions. This is true for both a 

particular transaction type and all transactions together. 

 

                                                                                          
experiments to make a fair comparison between the different server 

configurations. Thus, we chose to restrict the results presented here 

to experiments with a single TPC-C compliant client while 

simulating the increased load by deploying an increasing number of 

read only clients.  
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Figure 3. Mean transaction times per 

transaction type and for all transactions 

together for 5 repetitions with each of the 

configurations (1IB, 1PG, 1IB1PG, 2IB, 2PG) 

with a load generated by a single TPC-C 

compliant client. 

 

A similar picture, consistent across the repetitions, 

was established for the increased load of 10 and 50 

additional clients (Figure 4). The only configuration 

with a noticeable variation between the repetitions was 

1IB. In particular, the first run is 25% faster than the 

remaining four in terms of the mean transaction time 

with all transaction types (represented by the first bar in 

each of the five groups above the “All 5” category). A 

noticeable variation also exists between the specific 

transaction types, for which the percentages vary 

between 20% and 25%. This variation, however, does 

not change the ordering between the configurations.  

In addition the ordering between the configurations 

does not change even if we execute a different 

sequence of transactions. This was experimentally 

confirmed by executing 10,000 transactions in different 

order with either a single TPC-C compliant client or 

with ten additional clients.  

Such consistency between the observations, in 

particular, the fact that the ordering between the 

configurations remains unchanged across the repeated 

experiments, is the reason why in the rest of the paper 

we compare the performances using a single run per 

configuration. 
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Figure 4. Mean transaction times per 

transaction type and for all transactions 

together for 5 repetitions of each experiment 

type (1IB, 1PG, 1IB1PG, 2IB, 2PG) under 

increased load with 50 additional read-only 

clients. 

 

5. Performance Comparison of Different 

DBMS Configurations 
 

To compare different DBMS configurations we used 

the following measures of interest: 

- mean transaction time (for all five transaction 

types); 

- mean transaction time for a particular type of 

transaction; 

- cumulative transaction time, i.e. experiment 

duration. 

Figure 5 depicts the response time when only a 

single TPC-C client communicates with the FT-node 

configurations. 1PG is on average the best 

configuration under this load, though transactions of 

type Delivery and Order-Status are faster on 1IB. The 

ranking changes when the load increases (Figure 6). 

Now the fastest configuration on average is the diverse 

pair, albeit not for all transaction types (1IB is the 

fastest for Order-Status and Payment, while 1PG is the 

fastest for Stock-Level). The figure indicates that the 

diverse DBMSs “complement” each other in the sense 

that when IB is slow to process a transaction then PG is 

fast (New-Order and Stock-Level) and vice versa 

(Payment, Order-Status and Delivery). These 

systematic differences illustrate why the 1IB1PG 

diverse pair is the best configuration on average. In 

addition the ‘skip’ feature enables the diverse pair to 
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augment this advantage by omitting the read (SELECT) 

SQL statements on the slower DBMS. 
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Figure 5. The mean transaction times for each 

transaction type and for all transactions 

together under a load generated by a single 

TPC-C compliant client. The configurations 

compared under this load are as follows: 

configurations with a single DBMS (1IB, 1PG), 

a configuration with a diverse pair of DBMSs 

(1IB1PG) and configurations with 

homogenous pairs of DBMSs (2IB, 2PG). 

 
Although a DBMS is fastest on average for a 

particular transaction type, within the transactions the 

fastest responses to SQL statements may come from 

different DBMSs. This fact is utilised in the diverse 

pair. Hence, it is not surprising that IB executes more 

SELECT statements in an experiment than PG when 

the two are employed as a diverse pair (IB executes 

70%, while PG executes 51%)3.  

Similar results were obtained under the load with 50 

additional clients. 

Figure 7 shows how the ordering changes between 

the configurations as a result of a load increase. An 

experiment comprising 10,000 transactions under the 

‘lightest’ load (0 additional clients) is fastest with 1PG. 

Under increased load, however, the diverse pair, 

1IB1PG, becomes the fastest configuration. The 

experiment duration with the diverse pair is shorter 

than with the individual DBMSs, or with either of the 

                                                           
3 There is nothing unusual in the fact that the sum 70% + 50% is 

greater than 100%. It simply means that there are statements which 

are executed by both servers. If the fastest server has not completed a 

statement by the time the slower is ready to start, then both will 

process the particular statement.  

non-diverse (homogenous) DBMS pairs. The diverse 

pair is 20% faster than the second best configuration 

(1PG) with 10 additional clients and more than 25% 

faster than the second best combination (2PG) with 50 

additional clients. The benefits of the systematic 

difference in transaction times between the diverse 

DBMSs and the efficiency of the ‘skip’ feature become 

more clearly pronounced when the load increases. 
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Figure 6. The mean transaction times for 

single DBMS configurations (1IB, 1PG), 

diverse DBMSs pair (1IB1PG) and 

homogenous DBMS pairs (2IB, 2PG) for each 

transaction type and for all transactions 

together under an increased load with 10 

additional read-only clients. 
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Figure 7. Cumulative transaction time 

(experiment duration) for the five DBMS 

configurations under different load (0, 10 and 

50 additional read-only clients). 
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6. Comparison of Diverse Pair and a Non-

Diverse Solution 
 

In this section we compare the performance of the 

diverse pair and of a well-known solution for eager 

data replication [9]. The solution uses non-diverse 

redundancy. It combines transactional concurrency 

control and group communication primitives in order to 

guarantee data consistency (referred to as TCC+GCP in 

the remainder of the document) among replicas. It 

provides both fault-tolerance and good performance.  

In order to guarantee a 1-copy serialisability, 

TCC+GCP relies on “totally ordered” [9] delivery of 

transactions using a reliable multicast protocol. It is 

based on the ROWAA (Read-Once Write All 

Available) protocol [1].  

Under this replication scheme the clients served by 

TCC+GCP connect to only one replica, called the local 

replica of the client. For this client the other replicas of 

the TCC+GCP are remote replicas. A read-only 

transaction generated by a client is executed by the 

local replica, only. A write transaction (i.e. one that 

includes write statements) is first executed by the local 

replica. The outcomes of the write statements are then 

broadcast (by the respective middleware) to the remote 

replicas of TCC+GCP in the form of write sets. The 

remote replicas install the write sets according to the 

total order of transactions established among the 

replicas used in TCC+GCP. 

Clearly, with TCC+GCP the read-only transactions 

are load-balanced between the replicas. Ideally, the 

clients should be fairly divided between the replicas. A 

fair performance comparison, thus, of TCC+GCP and 

an FT-node with two diverse DBMSs, would require 

the following arrangement:  

- a single DBMS working in TCC+GCP will be 

subjected to the write transactions load generated 

by all clients and half of the load generated by the 

read-only transactions generated by the clients; 

- the FT-node handles the entire load, both from 

write and read transactions, generated by all the 

clients.  

We ran experiments for loads generated by a single 

TPC-C client and additional read-only clients: 10 and 

50. To make a fair comparison between an FT-node 

and TCC+GCP, we used the results measured for the 

FT-node (see above) and run a new set of experiments 

with 5 and 25 read-only clients respectively with an 

FT-node. We simulated the performance of the 

TCC+GCP using the measurements obtained with the 

FT-node under the new loads (with 5 and 25 read-only 

clients).  

We calculated a lower and an upper bound on the 

TCC+GCP transaction times as follows. The lower 

bound is the actual transaction time measured in the 

new experiments with the individual DBMSs and the 

number of read-only clients equal to 5 and 25, 

respectively. This lower bound seems unattainable by 

TCC+GCP, because the installation of the write sets 

(especially the lock phase) [10] on the remote replicas, 

as well as on the local replicas is not accounted for in 

the lower bound. Installing the write sets is on the 

critical path – it is always done after the local replica 

creates the write sets. The upper bound is calculated 

from the experimental log (in which we record the start 

and completion times of the individual statements) by 

doubling the execution time of all write SQL 

statements (DELETE, INSERT and UPDATE) 

encountered during the experiment. Whether the bound 

is indeed an upper bound is moot since it is unclear 

whether the actual overhead due to group 

communication primitives and the actual installation of 

the write sets by all the replicas is greater or smaller 

than the time it takes the local replica to execute a write 

statement. The upper bound may be too pessimistic, if 

the mentioned overheads are negligible compared with 

the write statements execution times. On the other 

hand, however, a simplistic implementation of the write 

sets would be forwarding them to the remote replicas, 

which in turn will actually execute them. Under this 

simplistic scenario, our upper bound will be in fact too 

optimistic because it does not account for the overhead 

due to propagating the write sets to the remote replicas. 

In summary, the realism of the upper bound is 

questionable and should be scrutinised in the future, 

ideally by actually implementing TCC+GCP. Despite 

this problem, however, using the lower and the upper 

bounds allows us to get preliminary indications of how 

the performance of FT-node compares with 

TCC+GCP. 

Figure 8 presents the results of a fair comparison 

between the two replication schemes under a load with 

1 modifying and 50 additional read-only clients. 

Diverse pair performs clearly better than TCC+GCP if 

IB is used: the transaction times of the FT-node is 

lower than the lower bound (unattainable by 

TCC+GCP).  The diverse pair is also better (~ 15%) 

than the upper bound of TCC+GCP with PG. It is, 

however, worse than the lower bound of TCC+GCP 

with PG. The diverse pair is ~30% slower than the 

lower bound. Thus, it remains unclear whether 
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TCC+GCP with PG is faster than the FT-node. Similar 

results have been observed in all repetitions with this 

load.  

Similar ordering between the FT-node and the 

TCC+GCP has been observed with a lower load of 

only 10 additional read-only clients. Again, only the 

lower bound of the non-diverse replication with PG is 

faster than the diverse pair. However, the difference 

between the diverse pair and the upper bound is 

smaller. 

 

Diverse vs Non-Diverse Redundancy 
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Figure 8. Mean response times for diverse 

replication (1IB1PG) and calculated lower and 

upper bound of mean response times for a 

non-diverse replication schema when either 

1IB or 1PG is used. The lower bound is 

calculated using results from respective 

individual DBMS (IB or PG) experiment under 

the load with 1 modifying and 25 read-only 

clients. The number of read-only clients was 

halved because the non-diverse schema uses 

a load balancing approach where reads are 

executed at only one node.  To estimate the 

upper bound, mean response time of 

transactions’ write sets was added to the 

lower bound. 

 

7. Discussion 
 

Performance implications of using diverse 

redundancy in the context of database replication are 

the focus of this paper. Diverse redundancy is the only 

known realistic protection against design faults in 

complex software products. Once diverse redundancy 

is deployed there might exist performance implications, 

which we evaluated empirically. 

A standard fault-tolerant architecture (see Figure 1) 

would dictate adjudicating all the responses from (a 

sufficient number of) diverse replicas before a response 

is returned back to a client application, i.e. adjudication 

is applied at the level of individual statements. This 

adjudication, normally implemented by a specialised 

middleware, can be done as the responses are received 

(referred to as the slowest response) or postponed and 

completed before the end of the corresponding 

transaction (the fastest response regime). Either way, 

fault-tolerance will lead to performance penalty and the 

FT-node cannot be faster than the fastest of the 

deployed DBMSs.  

The schemes adopted for practical database 

replications provide no protection against design faults. 

A common assumption is made that node crashes are 

the main concern, an assumption under which various 

optimistic regimes of operations are used such as 

ROWAA. These do not require statement adjudication 

and as a result the adjudication overhead is simply 

avoided.  

Failures of DBMSs are rare. Most of the time the 

applications use statements that are handled correctly 

by the deployed DBMSs. Even if diverse DBMSs are 

deployed most of the statements will be handled 

correctly by all the diverse replicas. Thus, most of the 

time adjudicating the responses of diverse replicas will 

reveal no discrepancy, making the adjudication 

overhead a waste of time. The point, of course, is that 

we will never know which statement will turn out to 

trigger a fault in the DBMSs and revealing a 

discrepancy between the replica responses. In some 

extreme cases, however, one may know with certainty, 

that all the statements used by the application will be 

processed by the DBMSs correctly; hence one may be 

prepared to use regimes in which the adjudication is 

eliminated. One such example is the implementation of 

the optimistic regime. Its advantage compared with the 

well-known ROWAA regime of operation lies in the 

fact that under ROWAA the load is statically 

distributed between the replicas – in the ideal case a 

fair load-balancing between the replicas is sought. 

Instead, when the FT-node operates under the 

optimistic regime its diverse replicas naturally get the 

load that they are better at executing. As a result the 

optimistic mode has the potential of performing better 

than ROWAA. Unfortunately, our experiments did not 

provide a conclusive answer as to whether this 

potential can be materialised, but it did not refute it 

either. Further, more accurate measurements, possibly 
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using proper implementation of the replication schemes 

based on ROWAA will provide a definitive answer. 

It is worth pointing out that the 3 regimes of 

operation of the FT-node listed above (slowest 

response, fastest response and optimistic) are not 

mutually exclusive. In fact, they can be combined to 

offer configurable quality of service, as we argued 

elsewhere [3]. The clients mainly concerned with high 

dependability assurance can be served under the 

slowest response regime. The clients mainly interested 

in maximising the performance can be served under the 

optimistic regime of operation. Finally, by deploying 

learning capabilities, e.g. based on Bayesian inference, 

[11], the middleware may become capable of switching 

intelligently between the different regimes of operation: 

initially a new type of statement (e.g. SQL statement 

involving a complex and rarely executed JOIN 

operation) will be treated by the middleware with 

suspicion and the most conservative, slowest response, 

regime of adjudication will be applied. As more 

instances of the same statement are executed 

successfully (i.e. the adjudication is passed successfully 

in all the observed instances), then the middleware will 

switch from slowest response through the fastest 

response eventually to the optimistic regime of 

operation. Clearly, adjudication is simply impossible 

with ROWAA, thus the scope for trading-off 

intelligently performance for improved dependability 

assurance is very limited, if not impossible.    

 

8. Conclusions and Future Work 
 

The results presented here show an intriguing 

possibility to get a performance gain, in some cases 

very substantial, when diverse redundancy is used in 

the context of database replication. We compared 

diverse with non-diverse redundancy using an 

optimistic architecture, FT-node, in which the variation 

between the execution times of the diverse replicas is 

turned into a performance advantage. In this setup, 

diverse redundancy is clearly beneficial compared with 

non-diverse redundancy. 

We also compared non-replicated solutions (a single 

copy of a DBMS) with an FT-node, in which a diverse 

pair of DBMSs is deployed. Diverse pair performs 

significantly faster than the non-replicated solution.  

These two results seem very significant since they 

open up new ways of achieving high performance, 

especially when the main system concern is achieving 

as high a performance as possible. 

We also looked at how diversity performs against 

eager replication solutions based on total transaction 

order (TCC+GCP), which use load balancing for 

improved performance. The comparison, performed 

under various simplifying assumptions, is indecisive in 

the general case. Diverse redundancy is not guaranteed 

to always achieve a known lower bound of 

performance for those solutions, although we recorded 

that the diverse pair performed better than TCC+GCP 

implemented with replicas of Interbase 6.0. This lower 

bound, however, is unattainable for TCC+GCP too! 

The performance of diverse redundancy is better than 

the likely upper bound on the performance of 

TCC+GCP with replicas of PostgreSQL 7.4. In some 

cases of simple implementations of TCC+GCP, e.g. the 

write sets being propagated to the remote replicas in 

the form of full SQL statements, the upper bound will 

become a lower bound on the performance of 

TCC+GCP. For this implementation of TCC+GCP we 

have a decisive argument in favour of diverse 

redundancy: it is guaranteed to be faster than 

TCC+GCP.  

In the experiments we used a synthetic load (TPC-

C) mainly due to the wide acceptance of the benchmark 

for performance measurement studies. Although the 

reported effect is dependant on the mix of SQL 

statements used we expect similar results in favour of 

diverse redundancy to be observed for a wide range of 

real loads. In fact, TPC-C specifies a write intensive 

mix of statements, not ideal for the optimistic regime of 

an FT-node. Applications based towards read-only 

mixes of SQL statements are more suitable for the 

reported effect to make a bigger impact. 

A promising direction for future development is 

implementation of a configurable middleware, 

deployable on diverse DBMSs, which would allow the 

clients to request quality of service in line with their 

specific requirements for performance and 

dependability assurance.  
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Editor: O. Sami Saydjari, ssaydjari@cyberdefenseagency.com

from happening—by developing
systems without vulnerabilities, for
example, or by detecting attacks and
intrusions and deploying ad hoc
countermeasures before any part of
the system is damaged. But what if
we could address both faults and at-
tacks in a seamless manner, through a
common approach to security and
dependability? This is the proposal of
intrusion tolerance, which assumes that

• systems remain somewhat faulty
or vulnerable;

• attacks on components will some-
times be successful; and

• automatic mechanisms ensure that
the overall system nevertheless re-
mains secure and operational.

No large-scale computer network
can be completely protected from
attacks or intrusions. Just as chains
break at their weakest link, any in-
conspicuous vulnerability left be-
hind by firewall protection or any
subtle attack that goes unnoticed
by intrusion detection will be
enough to let a hacker defeat a
seemingly powerful defense. Using
ideas from fault tolerance that put
emphasis on automatically detect-
ing, containing, and recovering
from attacks, the European project
MAFTIA (Malicious-and Acci-
dental-Fault Tolerance for Internet

Applications; www.maftia.org) set
out to develop an architecture and
a comprehensive set of mechanisms
and protocols for tolerating both
accidental faults and malicious at-
tacks in complex systems. Here, we
report some of the advances made
by the several teams involved in this
project, which brought together
international expertise in the areas
of information security and fault
tolerance.

Intrusion tolerance 
in a nutshell
Building an intrusion-tolerant sys-
tem to arrive at some notion of in-
trusion-tolerant middleware for
application support presents multi-
ple challenges. Surprising as it might
seem, intrusion tolerance isn’t just
another instantiation of accidental
fault tolerance.

To capture the essence of intru-
sion tolerance, we must first con-
sider that an intrusion is in fact a
malicious fault that has two underly-
ing causes: a weakness, flaw, or vul-
nerability, or a malicious act or attack
that attempts to exploit the former.

Attacks, vulnerabilities,
and intrusions
Vulnerabilities are the primitive
faults within a system—in particu-
lar, design or configuration faults—

that can be introduced during the
system’s development or operation.
For example, as a step in an overall
plan of attack, an attacker might in-
troduce vulnerabilities in the form
of malware.

Attacks are malicious faults that
attempt to exploit one or more vul-
nerabilities. An attack that success-
fully exploits a vulnerability results
in an intrusion, which is normally
characterized by an erroneous sys-
tem state (for example, a system file
with unwarranted access permis-
sions for the attacker). If nothing is
done to handle these errors, a secu-
rity failure will probably occur. At-
tacks often assume the form of
inconsistent interactions with differ-
ent legitimate participants in order
to confuse them. Resilient systems
should be able to handle these so-
called Byzantine faults. 

Figure 1a represents a fundamen-
tal sequence: attack � vulnerability
� intrusion � error � failure. This
well-defined relationship is called
the AVI fault model.

Classical security methodologies
mainly focus—quite successfully—
on preventing intrusion. However,
as reality painfully proves every day,
it’s impossible, even infeasible, to
guarantee perfect prevention: sim-
ply put, we can’t handle all attacks
because they aren’t all known, and
new ones appear constantly. As a
consequence, a few inconspicuous
weaknesses are easy prey to hackers,
and what’s worse, the resulting in-
trusions that escape the intrusion-pre-
vention barrier, as Figure 1b suggests,
will go unnoticed and will likely
cause security failures.

The last resort is intrusion toler-
ance, which, as the name suggests, acts
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after intrusion and before failure. In-
trusion-tolerance techniques are in
essence automatic, relying on local
mechanisms and distributed proto-
cols, and assume combinations of de-
tection (of corrupted hosts or
tampered communications), recovery
(neutralization of intruder activity), or
masking (use of spare components or
replicas, such that the whole resists the
intrusion of a minority).

Trust and trustworthiness
The relationship between the no-
tions of trust and trustworthiness is im-
portant to understand how intrusion
tolerance can lead to secure designs.

Let’s consider trust to be a com-
ponent’s accepted dependence on a
set of (desirable) properties of an-
other component, subsystem, or sys-
tem.1 If A trusts B, then A accepts
that a violation of B’s properties
might compromise A’s correct oper-
ation. It might also happen that
those properties A trusts don’t corre-
spond quantitatively or qualitatively
to B’s actual properties. Thus trust-
worthiness is the measure in which a
component (say, B) meets a set of
properties. Clearly, a robust design
implies that trust in B should be
placed to the extent of B’s trustwor-
thiness—that is, the relation “A
trusts B” should imply A’s substanti-
ated belief that B is trustworthy in
the measure of B’s trustworthiness.

There is a separation of concerns
between how to make a component

trustworthy (constructing the com-
ponent) and what to do with the trust
placed in the component (building
fault-tolerant algorithms). These iter-
ative chains of trust–trustworthiness
relations, with the proper specifica-
tion and verification tools—lead to
very clear arguments about system se-
curity and dependability.2,3

MAFTIA architecture
The MAFTIA architecture selec-
tively uses intrusion-tolerance
mechanisms to build layers of pro-
gressively more trusted compo-
nents and middleware subsystems
from baseline untrusted compo-
nents (hosts and networks). This
leads to an automation of the

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 55

Related work in intrusion tolerance

One of the first architectural attempts to build a secure and

robust architecture was Delta-4, a system developed in a

European project in the 1980s.1 It provided distributed intrusion-

tolerant services for data storage, authentication, and authorization. 

More recently, several projects have also addressed this

problem, providing secure middleware,2 secure group or broadcast

communication,3 or secure authentication.4 Oasis is a large US

program on intrusion-tolerance research comparable to MAFTIA.5
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Figure 1. Intrusion sequence. In the (a) attack-vulnerability-intrusion (AVI) fault model,
an attack hits a vulnerability, causing an intrusion which, if not handled, will cause a
failure; (b) intrusion tolerance, the last resort for protection.
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process of building resilience: at
lower layers, a trustworthy commu-
nication subsystem is constructed
with basic intrusion-tolerance
mechanisms. Higher-layer distrib-
uted software can then trust this
subsystem for secure communica-
tion among participants without
worrying about network intrusion
threats. Alternatively, an even more
trustworthy higher layer can be
built on top of the communication
subsystem—by incrementally using
intrusion-tolerance mechanisms—
such as a replication management
protocol that’s resilient against both
network and host intrusions.

Architectural options
A MAFTIA host’s structure relies on
a few main architectural options,
some of which are natural conse-
quences of the discussions in the pre-
vious section:

• The notion of trusted—versus un-
trusted—hardware. Most of MAF-
TIA’s hardware is untrusted, but
small parts of it are trusted to the ex-
tent of some quantifiable measure of
trustworthiness—for example, being
tamper-proof by construction.

• The notion of trusted support soft-
ware that can execute a few functions
correctly, albeit in an environment
subjected to malicious faults.

• The notion of a runtime environ-
ment that extends operating system
capabilities and hides heterogeneity
among host operating systems by
offering a homogeneous API and
framework.

• The notion of trusted distributed
components, materialized by
MAFTIA middleware, which are
modular and multilayered. Each
layer overcomes lower layers’ faulty
behavior.

We can depict the MAFTIA ar-
chitecture in at least three different
dimensions (see Figure 2). The
hardware dimension includes the
host and networking devices that
compose the physical distributed
system. Within each node, the op-
erating system and runtime plat-
form (which can vary from host to
host) provide local support services.
Finally, MAFTIA provides distrib-
uted software: the layers of middle-
ware running on top of the runtime
support both the mechanisms that
each host provides and MAFTIA’s
native services—authorization, in-
trusion detection, and trusted third
parties. To operate securely across
several hosts even in the presence of
malicious faults, applications run-
ning on MAFTIA use the abstrac-
tions that the middleware and
application services provide.

Hardware
We assume that the hardware in indi-
vidual MAFTIA hosts is untrusted in
general. In fact, most of a host’s oper-
ations run on untrusted hardware—
such as the usual PC or workstation
machinery connected through the
normal networking infrastructure to
the Internet, which we call the pay-
load channel. However, some hosts
might have pieces of hardware that
are trusted to the extent of seeming
tamper-proof (that is, we assume in-
truders don’t have direct access to the
inside of these components). MAF-
TIA features two incarnations of
such hardware, both of which are
easy to incorporate in standard ma-
chines because they’re commercial-
off-the-shelf (COTS) products. One
is a smart card (actually a Java card),
connected to the machine’s hardware
and interfaced by the operating sys-
tem. The other is an appliance board,
which has a processor and an adapter
to a (trusted) control network. The
runtime support has specialized
functions provided by the trusted
support software and implemented
in two components, the Java Card
Module ( JCM) and the Trusted
Timely Computing Base (TTCB).
For less demanding configurations,
we also designed a software-imple-
mented TTCB.4

Local runtime support
The MAFTIA architecture’s run-
time support dimension essentially
consists of the operating system aug-
mented with appropriate extensions.
The middleware, service, and appli-
cation software modules run on the
Java virtual machine ( JVM) runtime
environment. The JCM assists the
operation of a reference monitor that
supports the MAFTIA authorization
service.5 This reference monitor
checks all accesses to local objects and
autonomously manages all access
rights for local objects. We trust the
Java card to be tamper-proof for ap-
plication services whose value is
much less than the effort—in means
or time—necessary to subvert it. 
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Figure 2. The MAFTIA architecture’s three dimensions. Hardware, local support, and
distributed software help applications operate securely across several hosts, even in the
presence of malicious faults.
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Distributed 
runtime support
The TTCB is a distributed trusted
component responsible for provid-
ing a basic set of trusted time and se-
curity services to middleware
protocols for communication and
activity support. The TTCB services
are accessed locally through runtime
support but can have global reach,
such as making a value known to all
local TTCB parts, thus limiting the
potential for Byzantine faults by ma-
licious protocol participants, as we
discuss later. We can assume that the
TTCB component is infeasible to
subvert, but it might be possible to
interfere with its software compo-
nent interactions through the JVM.
Although this exposes a local host to
compromise, it doesn’t undermine
the distributed TTCB operation.

Middleware
The middleware layers implement
functionality at different levels of ab-
straction and make it accessible at the
interfaces of several middleware
modules. These interactions occur
through the runtime environment
via predefined APIs.

As mentioned earlier, a middle-
ware layer can overcome the fault
severity at lower layers and provide
certain functions in a trustworthy
way. A (distributed) transactional
service, for example, trusts that a
(distributed) atomic multicast com-
ponent ensures typical properties
(agreement and total order), regard-
less of the fact that the underlying
environment can suffer malicious
Byzantine attacks.

MAFTIA’s intrusion-
tolerance strategies
Given the variety of possible MAF-
TIA applications, different archi-
tectural strategies should be
available to cope with different risk
scenarios. MAFTIA offers several
intrusion-tolerance strategies
through a versatile combination of
admissible failure assumptions. Sys-
tem designers can apply these

strategies at several levels of abstrac-
tion in the architecture and, most
important, in the implementation
of the middleware and application
services. An extended discussion
appears elsewhere.6

Ultimately, MAFTIA supplies
different solutions for different levels
of threats and criticality (depending
on the value of services or informa-
tion), keeping the best possible
performance-resilience trade-off.
However, anything less than “arbi-
trary behavior” as an assumption
raises eyebrows among many security
and cryptography experts, so this
statement deserves discussion.

A crucial aspect of any fault- or
intrusion-tolerant architecture is the
fault model on which the system ar-
chitecture is conceived and compo-
nent interactions are defined.
Classically, making assumptions
about hacker behavior isn’t very sen-
sible, which is why many system de-
signers tend to assume any behavior
is possible (asynchronous, arbitrary,
or Byzantine).

However, such weak assump-
tions limit the system’s power and
performance—for example, could it
still fulfill a service-level agreement
(SLA), which is a contract a service
provider makes with a client about
quality of service (QoS)? 

Architectural 
hybridization
Up until recently, increased system
performance or QoS have meant less
security. But MAFTIA has advanced
the state of the art, demonstrating
that it’s possible to build applications
that gather the best of both worlds:
high resilience at the level of arbi-
trary failure systems and high perfor-
mance at the level of controlled
failure systems.

Through the innovative concept
of architectural hybridization, the archi-
tecture simultaneously supports
components with different kinds and
severity of vulnerabilities, attacks,
and intrusions.7 For example, part of
the system might be assumed to be

subject to malicious attacks, whereas
other parts are specifically designed
in a different manner, to resist differ-
ent sets of attacks. These hybrid fail-
ure assumptions are in fact enforced
in specific parts of the architecture,
by system component construction,
and are thus substantiated. That is, in
MAFTIA, trusting an architectural
component doesn’t mean making
possibly naive assumptions about
what a hacker can or can’t do to that
component. Instead, the component
is specifically constructed to resist a
well-defined set of attacks. 

Wormholes model
Architecture isn’t enough to solve
the resilience problem, though. The
correctness arguments of the algo-
rithms and protocols rely on the
wormholes model, a hybrid distrib-
uted-systems model that postulates
the existence of enhanced parts (or
wormholes) of a distributed system
capable of providing stronger behav-
ior than is assumed for the rest of the
system. MAFTIA perfected this hy-
brid distributed-system model
specifically for Byzantine faults.7

Protocol participants exchange
messages in a world full of threats. If
some of them are malicious and
cheat, a wormhole can implement a
degree of trust for low-level opera-
tions: as a local oracle whose infor-
mation can be trusted, as a channel
that participants can use to get in
touch with each other securely
(even for rare moments and for
scarce bits of information), or as a
processor that reliably executes a few
specific functions or synchroniza-
tion actions. Systems using strands of
this model have received increasing
amounts of attention lately.

A wormhole in the particular
use of a trusted security component
might look like a trusted comput-
ing base with a reference monitor.
In fact, the concept is more general
in two senses. First, trusted com-
puting base’s philosophy was based
on system-level prevention of in-
trusions, whereas wormhole mod-
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els have intrusion tolerance in
mind: they would allow (and toler-
ate) intrusions even in the re-
ference-monitor-protected part,
significantly reducing the part of
the system about which strong
claims of tamper-proofness are
made. Second, a wormhole can im-
plement any semantics, including a
reference monitor, but also simpler
mechanisms, such as random num-
ber generators or key distribution,
or innovative distributed agree-
ment microprotocols.8

Real wormholes
The wormholes model can be real-
istically implemented via the
notion of architectural hybridiza-
tion.7 MAFTIA implements each
wormhole as a trusted–trustworthy
component—a component that
can be trusted because it’s “better”
by construction.

Figure 3 shows a snapshot of a
real system that uses TTCB worm-
holes. The general, or payload, sub-
systems are the normal machines and
networks depicted in dark shading in
the figure. Each host contains the
typical software layers such as the op-
erating system, runtime environ-
ment, and middleware. Think of a
small appliance board connected to
the machine bus (these boards exist

as COTS components), implement-
ing a set of useful functions in a pro-
tected manner. This is the MAFTIA
TTCB wormhole, depicted with
light shading in Figure 3. This proof-
of-concept prototype was built
using simple prevention techniques.
However, adequately designed
MAFTIA wormholes can withstand
extreme attack levels, even life-cycle
attacks (insertion of malicious code
during development), by resorting
to recursive design: a wormhole can
itself be a modular or distributed
subsystem designed with intrusion-
tolerance techniques (replication,
diversity, obfuscation, rejuvenation),
to substantiate trustworthiness
claims as firmly as desired, such as
eliminating single points of failure.

As we mentioned earlier, worm-
holes can be local or distributed.
The TTCB is distributed through a
control channel, which is a private
network. As a practical example,
consider a Web server farm in a data
center that’s tolerant to intrusions
from the Internet: servers are con-
nected through the payload Ether-
net to the Internet, but the local
wormhole boards are isolated from
the directly attackable servers. The
boards are interconnected through a
secondary Ethernet that’s com-
pletely isolated from the payload

Ethernet or Internet—this is the pri-
vate control channel. Even if the ma-
chine is corrupted, the hacker can’t
tamper with the local wormhole
board or with the control channel.

Trusted–trustworthy 
components
MAFTIA assumes a fairly severe
fault model, assuming that hosts and
the communication environment
are asynchronous and can all be in-
truded upon. However, hosts can
have local trusted components im-
plementing certain functions (such
as random number generation, sig-
nature, and time) that can be in-
voked at certain steps of the
MAFTIA software’s operation and
whose result can be trusted as always
correct, regardless of intrusions in
the rest of the system. The construc-
tion of the MAFTIA authorization
service followed this local trusted
components strategy, which is im-
plemented around Java cards fitted in
some hosts.5

The distributed trusted compo-
nents strategy amplifies the scope of
trust. As such, certain global actions
can be trusted (such as global time
and block agreement), despite gen-
erally malicious communication and
host environments. MAFTIA im-
plements this strategy through the
TTCB, which is in effect a security
kernel distributed across several
hosts. Several of the MAFTIA mid-
dleware protocols follow this strat-
egy, and in fact these protocols
support the MAFTIA intrusion-
tolerant transactional service.6

Arbitrary failure 
assumptions 
The hybrid failure approach, how-
ever resilient, relies on trusted
component assumptions, or trust-
worthiness. Several operations will
have a value or criticality such that
the risk of failure due to possible
violation of these assumptions,
however small, can’t be incurred.

The only way to lower the risk
even further is by resorting to arbi-
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Figure 3. Architecture with a Trusted Timely Computing Base (TTCB) wormhole. The
general systems are depicted in dark shading, and the wormhole is in light shading.
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trary failure modes, in which noth-
ing is assumed about the way com-
ponents could fail. Consequently,
this is another strategy pursued in
MAFTIA—arbitrary-failure-re-
silient components—namely, com-
munication protocols of the
Byzantine class that don’t make as-
sumptions about the existence of
trusted components. Some of the
protocols the MAFTIA middleware
uses to follow this strategy are of the
probabilistic Byzantine class and
offer several qualities of service (bi-
nary and multivalued Byzantine
agreement and atomic broadcast).
Some MAFTIA trusted-third-party
services rely on them.9

MAFTIA middleware
Figure 4 shows the MAFTIA mid-
dleware’s layers. The lowest layer is
the multipoint network (MN), which
is created on the physical infra-
structure. Its main properties are
the provision of multipoint ad-
dressing, basic secure channels, and
management communications, all
of which hide the underlying net-
work’s specificities.

The communication support services
(CS) module implements basic
cryptographic primitives, Byzantine
agreement, group communication
with several reliability and ordering
guarantees, clock synchronization,
and other core services. The CS
module depends on the MN mod-
ule to access the network. The activ-
ity support services (AS) module
implements building blocks that as-
sist participant activity, such as repli-
cation management, leader election,
transactional management, autho-
rization, key management, and so
forth. It depends on the services the
CS module provides.

The block to the left of the fig-
ure implements failure detection
and membership management.
Failure detection assesses remote
hosts’ connectivity and correctness
and local processes’ liveness. Mem-
bership management, which de-
pends on failure information, helps

create and modify group member-
ships (registered members) and the
view (currently active, nonfailed,
or trusted members). Both the AS
and CS modules depend on this
information.

As discussed earlier, an estab-
lished way for achieving fault or in-
trusion tolerance is to distribute a
service among a set of servers and
then use replication algorithms for
masking faulty servers. No single
server has to be trusted completely,
and the overall system derives its in-
tegrity from a majority of correct
servers. Consequently, a very im-
portant part of the MAFTIA archi-
tecture is related to the algorithmic
suites that implement communica-
tion and agreement among processes
in different hosts.

Let’s look more closely at the two
main configurations of the MAF-
TIA middleware and algorithms.6

Byzantine agreement
in an arbitrary world
In this configuration, the system
model doesn’t include timing as-
sumptions and is characterized by a
static set of servers with point-to-
point communication and the use
of modern threshold cryptography.
There are no a priori trusted com-
ponents, and trusted applications
are implemented by deterministic

state machines replicated on all the
servers and initialized to the same
state. An atomic broadcast protocol
delivers client requests, imposing a
total order on all of them and guar-
anteeing that the servers perform
the same sequence of operations.
The atomic broadcast is built from
a randomized consensus proto-
col—that is, a protocol for Byzan-
tine agreement.

Model. This asynchronous model is
subject to Fischer, Lynch, and Pater-
son’s10 impossibility result of reach-
ing consensus by deterministic
protocols (FLP). Many developers of
practical systems seem to have
avoided this model in the past and
built systems that are weaker than
consensus and Byzantine agree-
ment. However, randomization can
solve Byzantine agreement in an ex-
pected constant number of rounds,
as MAFTIA does. We use Byzantine
agreement as a primitive for imple-
menting atomic broadcast, which in
turn guarantees a total ordering of all
delivered messages.

Cryptography. To protect keys, we
use threshold cryptography, an intru-
sion-tolerant form of secret sharing.
Secret sharing lets a group of nparties
share a secret such that t or fewer of
them have no information about it,
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Figure 4. Detail of the MAFTIA middleware, showing the different architectural blocks.
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but t + 1 or more can uniquely re-
construct it. However, someone
can’t simply share a cryptosystem’s
secret key and reconstruct it to de-
crypt a message because as soon as a
single corrupted party knows the
key, the cryptosystem becomes com-
pletely insecure and unusable.

In a threshold public-key cryptosys-
tem, for example, each party holds a
key share for decryption, which is
done in a distributed way. Given a ci-
phertext resulting from encrypting a
message, individual parties decrypt-
ing it output a decryption share. At
least t + 1 valid decryption shares are
required to recover the message. An-
other important cryptographic algo-
rithm is the threshold coin-tossing
scheme, which provides a source of
unpredictable random bits that only
a distributed protocol can query. It’s
the key to circumventing the FLP
impossibility result, and the ran-
domized Byzantine agreement pro-
tocol uses it in MAFTIA.

No timing assumptions. Working
in a completely asynchronous model
is attractive because the alternative of
specifying timeout values actually
constitutes a system’s vulnerability.
It’s sometimes easier, for example,
for a malicious attacker to simply
block communication with a server
than subvert it, but a system with
timeouts would nevertheless classify
the server as faulty.

This is how attackers can fool
time- or timeout-based failure de-
tectors into making an unlimited
number of wrong failure suspicions
about honest parties. The problem
arises because a crucial assumption
underlying the failure detector ap-
proach—namely, that the commu-
nication system is stable (failure
detection is accurate) for a suffi-
ciently long period to allow protocol
termination—doesn’t hold against a
malicious adversary.

Secure asynchronous agreement
and broadcast. Several protocols
are used in this architecture configu-

ration, such as reliable and consistent
broadcast, atomic broadcast, and se-
cure causal atomic broadcast. De-
tailed descriptions appear
elsewhere.9,11,12 These protocols
work under the optimal assumption
that fewer than one-third of the
processes become faulty at any time.
They’re implemented in a modular
and layered way.

Byzantine agreement requires all
parties to agree on a binary value
proposed by an honest party. Our
randomized protocol checks if the
proposal value is unanimous or else
adopts a random value.11 Multival-
ued Byzantine agreement is based
on the previously described protocol
and provides agreement on values
from large domains.12 A basic broad-
cast protocol in a distributed system
with failures is reliable broadcast,
which provides a way for a party to
send a message to all other parties. It
requires that all honest parties deliver
the same set of messages and that this
set includes all messages broadcast by
such parties, but makes no assump-
tions if a message’s sender is cor-
rupted. An atomic broadcast
guarantees a total order on messages
such that honest parties deliver mes-
sages in the same order. Any imple-
mentation of atomic broadcast must
implicitly reach agreement whether
to deliver a message sent by a cor-
rupted party, and, intuitively, this is
where the Byzantine agreement
module is needed: the parties pro-
ceed in global rounds and agree on a
set of messages to deliver via multi-
valued agreement.12 A secure causal
atomic broadcast ensures a causal
order among all broadcast messages.
It’s implemented by combining
atomic broadcast with a robust
threshold cryptosystem. Encryption
ensures that messages remain secret
up to the moment at which they’re
guaranteed to be delivered, prevent-
ing any violations of causal order by a
corrupted party.

Reliable communication
Other MAFTIA middleware con-

figurations follow a strategy based on
distributed trusted components and
architectural hybridization. In this
configuration we implemented sev-
eral distributed protocols, such as re-
liable multicast, atomic multicast,
and consensus. These protocols’
correctness arguments rely on the
wormholes model.

Model. In this configuration, a
group of processes executes a proto-
col, as Figure 3 suggests. Processes
run outside the wormhole (in the
dark part) and communicate by
sending messages through the pay-
load network. At certain points of
their execution, however, they can
request trusted services from the
wormhole by calling its interface.

The global system assumptions in
this configuration are weak: the sys-
tem is assumed to be asynchronous,
and processes and communication
can suffer Byzantine faults. Conse-
quently, this model is also bound to
the FLP impossibility result10 men-
tioned earlier. The wormholes
model lets processes invoke functions
that have enough power to circum-
vent the FLP impossibility, while still
maintaining a generically weak and
thus resilient model.7,13 In this case,
the TTCB and the control channel
provide timely (synchronous) execu-
tion and communication among
TTCB modules. In practical imple-
mentations, these synchrony guaran-
tees can be ensured (despite the rest
of the system being completely asyn-
chronous) because the wormhole
has complete control over its re-
sources. Furthermore, it’s assumed to
fail only by crashing: it either pro-
vides its services as expected, or it
simply stops running.

Example TTCB wormhole ser-
vices. In MAFTIA, the wormholes
metaphor is materialized by the
TTCB, whose most important ser-
vices are the local authentication ser-
vice, which makes the necessary
initializations and authenticates the
local wormhole component before
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the process; the trusted time-stamp-
ing service returns timestamps with
the current global time; and the
trusted block agreement service ap-
plies an agreement function to a set
of values and returns information
about who proposed what.

Designing wormhole-aware pro-
tocols. In the project, we designed
several protocols to form a coherent
Byzantine-resilient communication
suite, comprising reliable multi-
cast,14 atomic multicast, simple,8 and
vector consensus,13 and state ma-
chine replication management.15

A correct use of the wormholes
principle mandates that most of the
protocol execution occurs in the
payload subsystem. The wormhole
services are only invoked when
there is an obvious trade-off be-
tween what is obtained from the
wormhole service and the com-
plexity or cost of implementing it in
the payload subsystem.

As a quick example, let’s assume a
reliable broadcast execution. The
protocol starts with the sender mul-
ticasting a message through the pay-
load channel; now the message’s
integrity and reception must be
checked. In classical protocols, this
entails some complexity or delay be-
cause the sender might be malicious
or the network might be attacked or
have omission failures. Wormholes
can help here: the sender and all re-
cipients send a hash of the message to
the wormhole, which runs a simple
agreement on the hashes in its pro-
tected environment, returning to
everyone the sender’s hash as a result.
If all goes well, the protocol termi-
nates in an extremely quick manner.
In case of faults, additional informa-
tion returned by the wormhole al-
lows fast termination after a few
additional interactions. 

One achievement related to our
model is that most of the protocols
have lowered known bounds on the
required total number n of processes
to tolerate a given number of Byzan-
tine faults f, from n > 3f to n > f + 1

for reliable multicast14 and n > 2 f for
state-machine replication.15

Another achievement concerns
performance and complexity. Despite
maintaining Byzantine resilience and
working on essentially weak arbitrary
and asynchronous settings, the proto-
cols—thanks to wormholes—exhibit
unusually high performance and low
complexity when compared to alter-
native implementations.

Y ou can find a detailed description
of MAFTIA’s history at http://

istresults.cordis.lu/index.cfm/section/
news/tpl/article/BrowsingType/
Features/ID/69871. 
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Fighting Erosion in Dynamic Large-Scale Overlay Networks

Abstract

Overlay management protocols have been introduced to
guarantee overlay network connectivity in dynamic large-
scale peer-to-peer systems. Some of these protocols have
been specifically designed to avoid the partitioning of the
overlay in large clusters (network breakage) despite mas-
sive node failures and the continuos arrivals/departures of
nodes (churn). In this paper we identify a second effect con-
nected to churn, namely network erosion. We show how
erosion affects overlay network connectivity and point out
that even a strongly connected overlay network, when ex-
posed to continuous churn, can be disgregated in a rela-
tively short time. More specifically the consequences of
erosion are shown, through an experimental study, in the
context of overlay management protocols based on view-
exchange. We finally propose a connection recovery mech-
anism to be endowed at each node which is able to collab-
oratively detect node isolation and the presence of small
clusters. This mechanism is shown to be effective in reduc-
ing the erosion of an overlay network exposed to continu-
ous churn and to quickly recover its connectivity as soon as
churn ends.

1. Introduction

In the last decade the advent of peer-to-peer (p2p) com-
puting introduced a new model of distributed computation
where (i) the scale of the system can be very large, compris-
ing up to million of users (peers), (ii) each peer acts inde-
pendently from all the others, actually precluding any form
of centralized network-wide administration or management,
(iii) each peer acts as a client of the service and cooperates
with other peers to enable services for other participants,
and (iv) the system, due to its size and the autonomy of each
peer, is intrinsically dynamic as peers can join in or leave at
any time.

In this context the basic problem that must be solved in
order to build distributed applications is how to guarantee
connectivity among participants. Connectivity is, in fact,
the basic building block to enable network communications
among peers. Modern p2p systems use, to this aim, an

overlay network, i.e. a logical network connecting all the
participants, whose maintenance is demanded to a specific
protocol, namely anOverlay Management Protocol(OMP).

Motivation. When p2p systems grow up to very large
scales, phenomena connected to the dynamic behaviour of
nodes grow in importance: the continuous arrival and de-
parture of nodes, usually known aschurn, can cause, if not
properly addressed,overlay network partitioning.

To this regard, OMPs based on gossip approaches [5, 6,
3, 8] revealed to be very effective in the prevention oflarge
overlay network breakages, i.e. the partitioning of the over-
lay network in two (or more) clusters of approximately the
same size. Overlay network breakages can be considered
as catastrophic events that affect the system with a large
and abrupt reduction of the overlay network connectivity.
These protocols aim to build and maintain, through some
lightweight mechanisms, an overlay network with a random
topology; the random topology is used to guarantee a low
probability of overlay network breakage even when a very
large portion of nodes is abruptly removed.

However overlay network partitioning can also take the
form of a second distinct effect (beside network breakage):
network erosion. Network erosion is a subtler, endemic
phenomenon, caused even by low churn rates, which
progressively remove single nodes or tiny clusters from
the frontier of the main overlay network cluster. This
frontier is constituted by those nodes whose neighbors
have been removed, and whose views contain dangling
edges. These nodes are indeed weakly connected to the
network and further node removals can bring them to a state
of complete isolation. Contrarily to network breakages,
erosion progressively affects overlay network connectivity.

Contribution. Many OMPs underestimate this problem
simply assuming that an isolated node could eventually re-
join the overlay [3] but without employing specific mech-
anisms. In this paperwe point out that fighting network
erosion deserves the same attention as network breakages.
Erosion can be indeed so disruptive that a strongly con-
nected overlay network exposed to continuous churn can
be quickly led to its complete disgregation. More specif-
ically we show through an experimental study how badly
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network erosion affects view-exchange based overlay man-
agement protocols, like Cyclon [8] and ADH [3]. Over-
lay networks built through these protocols are, in fact, pro-
gressively eroded till their complete disgregation, regardless
of the actual churn rate, as long as the churn period lasts
enough (i.e. severe churn rates for short periods of time
show the same erosion effect as lower rates for longer pe-
riods). Our study thus confirms that these OMPs were not
designed to take erosion into account, and are thus not able
to face its effects.

To fight erosion we propose aconnection recovery
mechanism, whose goal is twofold: (i) increase robustness
of the overlay network during long periods characterized
by churn and (ii) recover connectivity during periods when
churn is absent. To reach these goals we exploit an intel-
ligent re-join method that locally detects a status isolation
from the network’s main cluster. The presence of small
clusters is also recognized and addressed by leveraging
collaboration among nodes. Our experimental studies
show how the connectivity recovery mechanism is able to
reduce the effects of network erosion during long periods
of time characterized by churn, increasing the capacity
of the OMPs to quickly react to topology changes; the
experiments also show that, through this mechanism, the
overlay network is able to quickly regain full connectivity
when the system undergoes a stability period without churn.

Related work. The effects of network erosion have never
emerged clearly in other works on OMPs [3, 8, 5, 6]. This
is due to the fact that each OMP has focussed on different
goals, like obtaining a good tradeoff between network
size and view size or building overlay networks with low
diameters. Nevertheless, none of them has been exposed
to continuous churn. For example Voulgaris et al. in [8]
and Ganesh et al. in [6] analyzed protocols’ behaviour
only in a static setting without churn. Allavena et al. in
[3] and Eugster et al. in [5] addressed the overlay network
partition problem considering prevention and recovery
from large network breakages. Specifically the former pro-
vides a completely decentralized solution while the latter
assumes the presence of a set of fixed nodes in the system.
Nevertheless both solutions have not been experimentally
evaluated, thus the effects of overlay network erosion did
not came out. Finally the first analysis of the behaviour of
two different OMPs, namely SCAMP [6] and Cyclon [8],
under continuous churn has been presented in [4]. In that
work some problems related to continuous churn have been
pointed out, but the paper did not provide any solution to
address them.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the reader to the details of two OMPs: Cy-
clon and ADH. Section 3 shows how these two OMPs are

brought to their knees from continuous churn. Section 4 in-
troduces theconnection recovery mechanism, while Section
5 shows its effectiveness through an experimental study. Fi-
nally Section 6 concludes the paper.

2. View Exchange-Based Overlay Maintenance
Protocols

An overlay network is a logical network built on top of
a physical one (usually the Internet), by connecting a set
of nodes through some links. A distributed algorithm run-
ning on nodes, known as the Overlay Maintenance Protocol
(OMP), takes care of the overlay “healthiness” managing
these logical links. The common characteristic of all OPMs
is that each node maintains links to other nodes in the sys-
tem. This set of links is limited in its size in order to favour
system scalability and it is usually known as theviewof the
node. Views construction and maintenance should be such
that the graph, obtained by interpreting links in views as
arcs and nodes as vertexes, is connected, as this is a neces-
sary condition to enable communication from each node to
all the others.

OMPs differentiate among themselves with respect to the
technique they employ to build and maintain views. They
can be divided in two broad groups basing on the strategy
used to manage node leaves:

Reactive Protocols- are run only when a node decides to
leave the system [6].

Proactive Protocols - continuously adjust the network
topology in order to allow nodes to leave without exe-
cuting any specific algorithm [8, 3].

In this paper we refer to the latter group as OMPs per-
taining to it are considered more suited to dynamic envi-
ronments like the one we refer to. In the following we will
analyze the two cited OMPs. Both are based on a technique
known asview exchangethat requires node to continuously
exchange part of their views in order to keep the overlay
topology as close as possible to arandom graph. Random
graphs are characterized by strong connectivity, a property
that is exploited to avoid network partitioning: node leaves
and faults can, in fact, be simply ignored by the OMP as the
random topology is supposed to remain connected despite
node removals.

2.1. Cyclon

Cyclon [8] follows a proactive approach where nodes
perform a continuous periodic view exchange activity with
their neighbors in the overlay. The view exchange phase
(named in this case “shuffle cycle”) aims at randomly mix-
ing views between neighbor nodes. Joins are managed in a
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reactive manner, through a join procedure, while voluntary
departures of nodes are handled like failures (no leave algo-
rithm is provided). A simple failure detection mechanism
is provided in order to clean views from failed nodes.
Data Structures - Each node maintains only a single view
of nodes it can exchange data with. The size of the view
is fixed and can be set arbitrarily. Each node in the view is
associated to a local age, indicating the number of shuffle
cycles during which the node was present in the view.
Join Algorithm - A nodeA joins by choosing one node
(bootstrap node) among those already present in the net-
work . The protocol starts then a set of independent ran-
dom walks from the bootstrap node. The number of ran-
dom walks is equal to the view size, while the number of
steps per each random walk is a parameter of the algorithm.
When each random walk terminates, the last visited node,
sayB, addsA to its view by replacing one node, sayC,
which is added toA’s view using an empty slot.
Shuffle Algorithm - The shuffle algorithm is executed peri-
odically at each node. A shuffle cycle is composed of three
phases. In the first phase a nodeA, after increasing the age
of all the nodes in its view, chooses its shuffle target,B, as
the node with higher age among those in its view. Then,A

sends toB a shuffle message containingl − 1 nodes ran-
domly chosen inA’s view, plus A itself. In the second
phase,B, once received the shuffle message fromA, re-
placesl− 1 nodes in its view (chosen at random) with thel

nodes received fromA and send them back toA. In the final
phaseA replaces the nodes previously sent toB with those
received from it. Overall, the result of one shuffle cycle is an
exchange ofl links betweenA andB. The link previously
connectingA to B is also reversed after the shuffle.
Handling Concurrency - In the specifications given in [8],
no action was defined in the scenario of two (or more)con-
currentshuffle cycles, e.g. when a nodeA, during a shuffle
cycle in progress withB, is selected as a target node by re-
ceiving a shuffle message fromC. If concurrency is consid-
ered, the nodes sent byA to B can be modified by the con-
current shuffle involvingA andC. To analyze the behaviour
of Cyclon in concurrent scenarios we extended the original
specification in order to address this situation: when nodes
that should be replaced byA are no longer present in its
cache,A replaces some nodes chosen at random.

2.2. ADH

The OMP proposed in [3], to which we will refer with
the name ADH, employs a slightly different strategy to
maintain views. Each node periodically substitutes its
whole view with a new one, which is built basing on in-
formation collected since the last view change. Even in
this case joins are managed in a reactive manner, through
a join procedure, while voluntary departures of nodes are

handled like failures. Failure detection techniques are not
used because crashed nodes are automatically discarded by
the view change algorithm as time passes by.
Data Structures and Parameters- As Cyclon, also ADH
employs a single view for each node. The size of the viewk

is fixed and can be set arbitrarily. Two more parameters are
used: thefanoutf and theweight of reinforcementw. Both
are detailed later in this section.
Join Algorithm - Nodes joining the overlay network fill
their initially empty views with the view of one of the nodes
already in the system. ADH does not prescribe any specific
method to choose thisbootstrap node, as the OMP should
be always able to balance the network (approximating a ran-
dom topology). This is an important characteristic because
a non-random choice of the bootstrap node is a problem
that, if not addressed, can potentially lead to the construc-
tion of networks whose topologies are far from being ran-
dom [7].
View Change Algorithm - Each node updates its view pe-
riodically, at the end of everyround1. During a round each
node collects:

• a listL1 comprising the local views off nodes chosen
at random from its view;

• a listL2 comprising those nodes that requested its view
during the round.

At the end of each round these two lists are used to cre-
ate the local view that will be used in the next round. The
new view is built by choosingk nodes from bothL1 and
L2. The weight of reinforcementw (w ∈ [0,∞]) is used
to decide from which list a node must be picked: ifw = 0
then all nodes are selected inL1, if w = 1 nodes are se-
lected with equal probability inL1 andL2, and, finally, if
w = ∞ then all nodes are selected inL2. This mecha-
nism is used to keep the network “clean” of crashed nodes
(that surely will not appear inL2), while mixing views. For
these reasons the authors of [3], with respect to the value of
w, suggest “Larger is better and will be either 1 or∞ on a
typical implementation”.

3. Overlay Robustness Under Continuous
Churn

The protocols presented in Section 2 are able to build
overlay networks whose topology approximates a random
graph [8, 3]. Thanks to this property, systems built with
these OMPs are supposed to be highly resilient to node re-
movals. In a dynamic p2p scenario participants can enter or

1In [3] the protocol is introduced in a synchronous environment where
the notion ifround is clearly defined. In an asynchronous setting, like the
one we used to test the algorithm, the notion of round can be approximated
with the time lapse between two consequent view change operations. In
our setting rounds pertaining to different nodes are not synchronized.
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(a) Cyclon: evolution ofR with different churn rates.
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(b) ADH: evolution ofR with different churn rates.
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(c) Cyclon: evolution of overlay clustering withC = 8.
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(d) ADH: evolution of overlay clustering withC = 8.

Figure 1. Evaluation of Cyclon and ADH under continuous churn.

leave the system at their will, at any time. The global rate at
wich these actions occur is called thechurn rate. Node re-
movals happen continuously during some time periods, i.e.
churn is not an instantaneous phenomenon but its effects
are rather durable in time. During churn periods charac-
terized by sustained rates the time available to the OMP to
repair the overlay network after a node departure, substitut-
ing dangling edges with valid ones, can become too short.
Continuous churn can in these cases lead tooverlay network
partitioning, an event that manifests itself in two ways:ma-
jor network breakagesandnetwork erosion.

Network breakages are caused by the removal of one or
more nodes which form the common frontier of two oth-
erwise independent large clusters. When these nodes are

removed no valid link exists that connects two clusters,
thus nodes pertaining to distinct clusters cannot commu-
nicate. The net effect of a large network breakage is an
abrupt and dramatic diminish of the overlay network con-
nectivity. OMPs based on gossip approaches like Cyclon
and ADH revealed to be very effective in the prevention of
such events. The random graphs they build and maintain,
in fact, guarantee that, even when a very large number of
nodes are removed (independently from the speed at which
these removal happens), the probability of a major network
breakage is extremely low. This result is clearly stated in
[8], where it is actually tested only in static scenarios where
nodes are removed all at once, and in [3].

Network erosion is a subtler phenomenon, endemic in
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systems affected by continuous churn, which progressively
removes single nodes or tiny clusters from the frontier of
the main network cluster. This frontier is constituted by
those nodes whose neighbors have been progressively re-
moved, and whose views contain dangling edges. These
nodes are indeed weakly connected to the main cluster and
further neighbor removals can quickly bring them to a state
of complete isolation. It’s important to note that erosion,
contrarily to network breakages, is a phenomenon which
affects progressively the overlay network, but whose effects
are nevertheless dramatic. If not properly addressed erosion
can, in fact, lead to the complete disgregation of the overlay
network, quickly reducing a strongly connected cluster to a
“dust” of isolated nodes.

To analyze the network erosion effect and how OMPs
behave when it is present, we implemented and tested in a
simulated environment (provided by Peersim [1]) both Cy-
clon and ADH. A run of each protocol was divided in three
distinct periods:creation, churn andstability. During the
creation period nodes join the system until a predefined net-
work sizeN is reached. Neither leaves nor overlapped join
operations occur during this phase. During the churn pe-
riod, nodes continuously join and leave the network at a
givenchurn rateC, i.e. at each unit of time,C new nodes
invoke the join operation whileC nodes in the overlay in-
voke the leave operation2. The churn period ends after 1500
time units. At the end of this period the number of nodes
in the overlay network is stillN , while the total number
of nodes that joined/left the system depends on the spe-
cific churn rateC. N was set to 1000 in all experiments3.
Message transmission delay varies uniformly at random be-
tween 1 and 10 time units. 10 independent runs were made
for each experiment.

Figures 1(a) and 1(b) shows overall reachabilityR, i.e.
the average percentage of nodes that can be reached from
any node in the overlay. This metric is strictly related to
the connectivity of the overlay network, as any value lower
than 100% indicates that at least one node cannot be reached
by at least one other node. We evaluated the effect of the
variation of the churn rateC (C=2,4,8,16) onR along the
time (contiguous sampled points are separated by 100 join
and 100 leave invocations). Both protocols have been eval-
uated with leaving nodes chosen uniformly at random in
all the experiments. The curves show that reachability is
strongly affected during the churn period. At the begin-
ning the curves undergo a steep descending slope that is
mainly due to the join of new nodes that are immediately
considered as part of the system even if their views are ini-
tially empty; these nodes will affect negativelyR until their

2This rather simple churn model was chosen to maintain the system at
a constant size during tests.

3Further experiments, not reported here, show that the totalnumberN
of nodes in the system does not influence the final results as long as the
ratio C/N is kept constant.

join procedures end filling their views. During the churn
period network erosion continuously affect the overlay net-
work isolating single nodes: this effect causes the contin-
uous diminishment ofR. It is important to note that this
continuous diminishment ofR is present even when the
churn rate is relatively low (i.e.C = 2). At the end of
the churn period the system regains a small percentage of
reachability: the effect is mainly due to join procedures that
end correctly after during the first part of the stability pe-
riod. The interesting point is that, nevertheless, both OMPs
are not able to regain full connectivity after the churn pe-
riod ends: after a short period of time, used by the OMP
to “heal” what remains of the original network, the system
stabilizes to a constant reachability value that is always un-
der 100%. This problem can be clearly imputed to isolated
nodes whose messages are unable to reach any destination.

Figure 1(c) and 1(d) confirm this result showing the evo-
lution of node clustering for experiments conducted with
C = 8. The curves represent percentage of nodes pertain-
ing to the largest cluster (dark grey area), to clusters smaller
than 6% of the whole network (light grey area), and iso-
lated nodes (white area). As the curves show a strong role
is played by nodes that become isolated due to churn. What
the curves do not show is that the great majority of small
clusters are actually formed by new nodes that join the over-
lay starting from an isolated bootstrap node. From this point
of view is fair to say that the analyzed OMPs are actually
able to avoid large network breakages (we did not detect
any massive network breakage during our tests), but node
isolation, due to progressive network erosion, occurs very
frequently.

4. Connection Recovery

As we showed in the previous section, node isolation oc-
curs quite frequently when the overlay network experiences
erosion due to continuous churn. The authors of [8] and
[3] did not addressed explicitly this problem, but without
any intervention isolated nodes will remain endlessly in this
state.

In this section we introduce aconnection recoverymech-
anism that can be added to both OMPs (and, generally
speaking, to every OMP for unstructured overlay networks).
Aim of this mechanism is to let nodes detect their isola-
tion state and act consequently in order to regain connec-
tion to the main cluster of the overlay network. Moreover
our mechanism exploits cooperation among nodes to detect
the presence of tiny clusters.

The basic idea of the connection recovery mechanism is
simple: when a node detects that all the links in its partial
view represent dangling edges, it triggers a new join proce-
dure to regain connection to the system. In this way, iso-
lated nodes will eventually re-join the system. Dead link
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(a) Cyclon with connection recovery: evolution ofR along
time with different churn rates.
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(c) Cyclon with connection recovery: evolution of re-joins.
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(d) Cyclon with connection recovery: indegree distribution
at the end of the simulation.

Figure 2. Evaluation of Cyclon with connection recovery.

detection is not done through some active mechanism but it
is rather an indirect result of failed view exchanges (shuf-
fles) with nodes that left the system. To treat also nodes
pertaining to small clusters (that will not satisfy the condi-
tion expressed above), we added a cooperative aspect to the
basic mechanism. When a noden tries to re-join the system
it is assigned4 a bootstrapnoden′, that is initially pinged
to know the amount of links it has in its partial view. If
this amount is under a predefined constantP , n rejectsn′

as a bootstrap node, asking for a new one. Nevertheless,n

putsn′ in a low-connection list: as soon asn encounters a
noden∗ which is able to guarantee a number of links larger

4This assignment can be realized exploiting the same method used for
the plain Cyclon implementation.

thanP , n warns all the nodes in its low-connection list that
such a node exists in the overlay network. Note thatn does
not inform nodes in the list about the identity ofn∗, other-
wise a local star-like topology would be created aroundn∗.
Nevertheless this sort of “signal” sent to some nodes will be
interpreted by them as a clue that they are possibly part of
either a small isolated cluster or a loosely connected part of
the overlay: in consequence of this fact each node can inde-
pendently decide to try a re-join even if its partial view is not
empty. This decision is taken just looking at the current sta-
tus of the view: if it contains a number of links still lower
thanP then the node will try to re-join the system. The
parameterP actually influences the speed at which nodes
re-join after detecting their isolation status. A possibleso-
lution to network partitioning based on connection recovery
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is also suggested in [3]. In this case the authors propose, to
detect the presence of small clusters, a completely local ap-
proach where each node just check the variance of nodes
in its view: if this variance is very low then the probabil-
ity of the node being stuck in an isolated small cluster is
high. This proposal was not evalutaed in [3], is thus hard
to compare its effectiveness versus our connection recovery
mechanism.

5. Evaluation

In this section we evaluate the connection recovery
mechanism applied to the Cyclon OMP. The simulation set-
ting is the one introduced in Section 3.

We first tested the evolution of reachabilityR and node
clustering, the same test whose results related to the plain
Cyclon OMP are reported in figures 1(a) and 1(c). Fig-
ure 2(a) shows that, thanks to our mechanism, reachabil-
ity R remains consistently higher with respect to the values
shown in figure 1(a). These curves point out a duplex effect
caused by the connection recovery mechanism: the overlay
network is maintained more connected during churn periods
(at least forC = 2, 4, 8), as proven by the higher level of
all the curves, and, as soon as the stability period starts, full
connectivity is quickly regained, regardless of theR’s val-
ues previously reached. It is worth noting that reachability
values forC = 2, 4, 8 remain almost constant (or raise) as
soon as the connection recovery mechanism starts to work
at its full potential. The time needed for this to happen is
proportional to bothP and the view size: the mechanism
will, in fact, take up toviewsize shuffle intervals before
starting the re-join for an isolated node. The same results
are confirmed by Figure 2(b) where the evolution of over-
lay clustering is shown. The curves highlight how the con-
nection recovery mechanism quickly pushes isolated nodes
to rejoin the system, increasing the size of the largest clus-
ter. Even the percentage of small clusters rapidly decreases
thanks to the cooperative mechanism previously described.

Given the self-healing capability brought in by the con-
nection recovery mechanism, an important aspect that must
be evaluated is the capability of the mechanism to converge
to a stable state when churn is absent. In order to show this,
we measured the evolution of the number of join operations
induced by connection recovery. As Figure 2(c) shows, the
rate of join operations remains almost constant during the
churn period, then immediately experiences a peak that is
mostly due to the remaining isolated nodes that altogether
try to re-join the system. As soon as the number of iso-
lated nodes falls to zero the join rate drops. This actually
means that the connection recovery mechanism remains ac-
tive only for a limited time frame that is mainly linked to the
length of the churn period, without causing further overhead
when the system is stable.

Finally we wanted to test if and how the addition of the
connection recovery mechanism can alter the behaviour of
the original OMP in terms of the type of network topology
built. Our mechanism actually only trigger automatically
node leave and join procedures, thus we expected no differ-
ences on the “quality” of the network built. This idea is con-
firmed by the curves shown in figure 2(d) where we report
the in-degree distribution of nodes at the end of the simula-
tion, for Cyclon with and without our connection recovery
mechanism. The tests for this latter version were conducted
in a scenario withC = 8. The curves clearly show that both
implementations are able to build overlay networks with the
same in-degree distribution, proving that connection recov-
ery does not alter in any way the fundamental characteristics
of the overlay.

6. Conclusion

This paper pointed out the importance of continuous
churn as the first class enemy that must be fought in order to
maintain an overlay network connected. This has been done
by analyzing two gossip-based overlay management proto-
cols based on view exchange, namely Cyclon and ADH.
While these protocols are effective in avoiding large net-
work breakages, under continuous churn we showed that
they suffer network erosion, i.e., sigle nodes or tiny clusters
that are progressively detached from the main component
of the overlay network.

Through an experimental study we showed how disrup-
tive network erosion can be, up to the point where an over-
lay network maintained by a specialized protocol can be
quickly digregated in a “dust” of isolated nodes or tiny clus-
ters. Thus we proposed a connection recovery mechanism
to be endowed at each node whose aim is to reduce the
effect of network erosion under continuous churn and to
completely recover overlay network connectivity as soon as
churn ceases (even starting from a completely disgregated
network).

Even though these results are encouraging there are still
various aspects that deserve further investigation. Firstof
all the experiments we conducted are based on a simplified
churn model: more realistic models, derived from real p2p
systems logs, needs to be defined. Moreover, the presented
connection recovery mechanism is based on collaboration
among nodes. Other approaches can be investigated to take
into account p2p environments where nodes behave self-
ishly.
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Appendix A

In this Appendix we show the results of the comparison
between our Cyclon and ADH implementations against the
original ones. For Cyclon we compared our implementation
with the one provided by the authors of [8]. The tests were
conducted as follows: starting from an initial regular ran-
dom graph of 1000 nodes we measured the in-degree distri-
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Figure 4. ADH: mean time until partitioning
versus view size in our implementation.

bution after 100 shuffle cycles without overlapping (cache
size 20 and shuffle lengthl =5). The tests (Figures 3) al-
ways returned the same distribution of nodes’ degree mean-
ing that our implementation is consistent with the protocol’s
original specification. For ADH we lack an original imple-
mentation thus we just compared curves returned by our im-
plementation with those provided in [2]. More specifically,
Figure 4 shows how the mean time needed from the over-
lay network to experience the first partitioning varies with
the view size. The same plot is shown as Figure 6.1 in [2].
While the reported values are completely different (mainly
due to the different scenarios used by the authors of [3, 2] to
test their OMP), our implementation shows the same overall
behaviour.
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Abstract

An overlay network is formed on top of – and generally in-
dependently from – the underlying physical computer net-
work, by the peers (nodes) of a P2P system. The dynamics
of peers is taken into account by devising appropriateover-
lay maintenance protocolsthat are able to join and leave
peers from the overlay. Due to the need for scaling in the
number of nodes, overlay maintenance protocols have been
simulated only in environments showing a very restricted
behavior with respect to the possible concurrent and inter-
leaved execution of join/leave operations.
In this paper we compare two overlay maintenance pro-
tocols well suited to unstructured P2P systems, namely
SCAMP and Cyclon, in an event-based simulation setting
including concurrent and interleaved join and leave opera-
tions as well as variable message transfer delay. This simu-
lation setting allows to point out surprising results for both
protocols. In particular, under a continuous and concurrent
replacement of nodes, permanent partitioning of the overlay
arises after a very small number of join/leave operations.

1. Introduction

P2P systems are at present a widespread technology as
well as a hot research topic. A P2P system is a highly dy-
namic distributed system in which nodes perpetually join
and leave. For these characteristics, a P2P system can reach
a potentially infinitely wide scale with a transient popula-
tion of nodes.

Overlay maintenance is a fundamental problem in peer-
to-peer (P2P) systems. An overlay is a logical network built
on top of – and generally independently from – the under-
lying physical computer network, by the peers (nodes) of
the P2P system. Any overlay should exhibit a topology
able to support a P2P application in an efficient and scal-
able manner maintaining a satisfactory level of reliability.
Unstructured overlay networks have emerged as a viable
solution to settle such issues [3, 4, 5, 8, 10] in order to
effectively support large scale dissemination and flooding-

based content searching. An unstructured overlay shows
good global properties like connectivity (for reliability), and
low-diameter and constant-degree (for scalability) without
relying on a deterministic topology. To cope with the in-
herent P2P dynamics, however, a so-calledoverlay main-
tenance protocol(OMP) is needed. The main goal of any
OMP is properly arranging the overlay to keep as much as
possible the desired global properties of the overlay over
the time, despite thecontinuous and interleaved process
of arrival/departure of nodes, i.e., churn. Amongst the
most popular OMPs that do not use a central server we cite
[3, 4, 5, 10].

All the above cited works include an experimental eval-
uation of the protocols in which basic topological proper-
ties of the overlay are evaluated, such as resilience to fail-
ures (reliability) and distribution of node degree (scalabil-
ity). However, at the best of our knowledge, the condi-
tions under which experiments are made only consider a
limited amount of possible dynamic behaviors. For exam-
ple one of such typical experimental scenarios (as consid-
ered in [5, 7, 10]) is divided in two phases where, firstly,
all nodes in the system join and, successively, a portion of
nodes leaves the system simultaneously. Moreover, each
phase is divided in rounds and each node executes at most
one join/leave operation atomically in a round, i.e. the ex-
ecution of two operations in the same round cannot inter-
leave. This type of experiments is intended to simplify the
computation of the simulation in order to scale the simula-
tion itself in the number of processes (usually these simula-
tions reach 100.000 nodes) and then to evaluate, for exam-
ple, the portion of nodes that can simultaneously leave the
overlay without creating a partition in the overlay topology.

We believe that a further step is required to analyze the
characteristics of OMPs in scenarios where more dynamic
behaviors are admitted that actually mimic the possible dy-
namics occurring in realistic P2P environments. The chal-
lenge is to check if reliability and scalability properties are
still preserved in this more severe setting. For example, a
high interleaving between joins and leaves couldperma-
nently spoil the overlay connectivity, leading to a higher
probability of node isolation and partitioning. Moreover,
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unpredictable message delays (typical in a wide-area net-
work), can provoke interleaving between messages sent
in different rounds of a protocol, causing inconsistency in
views at nodes that, again, has a negative effect on the over-
lay properties.

In this paper we present the results of a first attempt in
evaluating OMPs behavior under churn. In particular, the
focus is in evaluating the overall robustness of the proto-
cols over the time despitecontinuous overlay node replace-
mentsi.e., new nodes join the system while others leave. We
chose two particular protocols, namely SCAMP [5] and CY-
CLON [10] as representatives of two different approaches
to overlay maintenance, respectivelyreactive maintenance,
where the protocol undertakes actions in rearranging the
overlay only upon arrival of nodes, andproactive main-
tenance, where each node continuously gossips member-
ship information (i.e., its view) among its logical neighbors.
Proactive maintenance protocols allow a better resilience to
high churn in terms of concurrent join/leave operations per
time unit at the price of a persistent activity of nodes, induc-
ing a constant overhead on the network. Reactive mainte-
nance protocols are more suited to environments showing a
“moderate” number of concurrent operations per time unit,
where they eliminate the gossip overhead in period of inac-
tivity.

Protocols were implemented in the same simulation en-
vironment, namely Peersim [1]. Differently from other
works using the same tool [10, 7], where simulations were
performed following a round-based approach, here we use
an event-based approach, in order to introduce aspects such
as join/leave interleaving and unpredictable message de-
lays. All such elements induce a high degree of concurrency
in a run of a simulation, that was not present in the round-
based simulations. This simulation shift brings to reduce the
magnitude of the P2P systems to be analyzed (order of thou-
sands of nodes) due to the enormous resource consumption.
Nevertheless, P2P systems formed by thousands of nodes
are big enough to point out the main characteristic of each
OMP protocol under churn.

Starting from an ideal P2P overlay network, the results
of the simulations show the difficulty of the tested proto-
cols to face continuous node replacement. Permanent par-
titioning starts to occur when a low percentage of nodes
forming the initial P2P network has been replaced by new
joining nodes. This result is surprising when compared to
churn-free (i.e., no join/leave operation interleave) simula-
tions of the same protocols that showed partitioning only
when a high percentage of nodes left concurrently the sys-
tem. Though as expected the proactive approach of Cyclon
results more suitable to resist to churn than SCAMP, its abil-
ity to recover full connectivity strictly depends on the fre-
quency of gossiping. Concerning SCAMP, the resistance to
churn depends on the percentage of number of initial nodes

that remain in the system. If this percentage is below than
90%, the process of churn tends to disaggregate the overlay
topology quite early leaving connected only a very small
fraction of the nodes in the system.

We believe that this work, though not intended to rep-
resent a comprehensive simulation study, clearly indicates
that the impact of churn in OMPs deserves further study.

2. Protocols Description

The common characteristic of all OMPs is that each node
maintains a limited number of links to other nodes in the
system. We call this set of links theviewof the node. The
views should be such that the graph, resulting by interpret-
ing links in the view as arcs and nodes as vertexes, is con-
nected. OMPs differentiate among themselves with respect
to the techniques they use for building and maintaining the
views. We consider decentralized OMPs in which such pro-
tocols do not require a central coordination. In this Section
we describe in detail the two protocols that are subject of
our study.

2.1. SCAMP

SCAMP [5] is a gossip-based protocol whose main in-
novative feature is that the size of the view is adaptive w.r.t.
a-priori unknown size of the whole system. More precisely,
view size in SCAMP is logarithmic of the whole system
size. The protocol consists of mechanisms for nodes to join
and leave, and to recover from isolation. The following is a
brief description of these mechanisms.
Data Structures. Each node maintains two lists, a Par-
tialView of nodes it sends messages to, and an InView of
nodes that it receives messages from, namely nodes that
contain its node-id in their partial views.
Join Algorithm. New nodes join the overlay by sending
a join request to an arbitrary member, called acontact.
They start with a PartialView consisting of just their con-
tact. When a node receives a new join request, it forwards
the new node-id to all members of its own PartialView. It
also createsc additional copies of the new join request (c is a
design parameter that determines the proportion of failures
tolerated) and forwards them to randomly chosen nodes in
its PartialView. When a node receives a forwarded join re-
quest, provided the subscription is not already present in
its PartialView, it integrates the new node in its PartialView
with a probabilityp = 1/(1 + sizeofPartialV iewn). If
it decides not to keep the new node, it forwards the join re-
quest to a node randomly chosen from its PartialView. If a
nodei decides to keep the join request of nodej, it places
the id of nodej in its PartialView. It also sends a message
to nodej telling it to keep the node-id ofi in its InView.
Leave Algorithm. The leaving node orders the id’s in
its PartialView asi(1), i(2), ..., i(l) and the id’s in In-

2
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View asj(1), j(2), ..., j(l). The leaving node will inform
nodesj(1), j(2), ..., j(l − c − 1) to replace its id with
i(1), i(2), ..., i(l − c − 1) respectively (wrapping around if
(l − c − 1) > l). It will inform nodesj(l − c), ..., j(l) to
remove it from their lists without replacing it by any id.
Recovery from isolation.A node becomes isolated when
all nodes containing its identifier in their PartialViews have
either failed or left. In order to reconnect such nodes, a
heartbeat mechanism is used. Each node periodically sends
heartbeat messages to the nodes in its PartialView. A node
that has not received any heartbeat message in a long time
re-joins through an arbitrary node in its PartialView.

2.2. Cyclon

Cyclon [10] follows a proactive approach, where nodes
perform a continuous periodical gossiping activity with
their neighbors in the overlay. The periodical gossiping
phase (named “shuffle cycle”) has the aim of randomly mix-
ing the views between neighbor nodes. Clearly, joins are
managed in a reactive manner, while voluntary departures
of nodes are handled like failures (no leave algorithm is pro-
vided). A failure detection mechanism is provided in order
to clean views from failed nodes.
Data Structures. Each node maintains only a single view of
nodes it can gossip with (i.e., it corresponds to SCAMP’s
PartialView). The size of the view is fixed and it can be set
arbitrarily. Each node in the view is associated to a local
age, indicating the number of shuffle cycles during which
the node was present in the view.
Join Algorithm. A nodeA joins by choosing one node (con-
tact) at random among those already present in the network.
The contact starts then a set of independent random walks
from the contacted node. The number of random walks is
equal to the view size, while the number of steps per each
random walk is a parameter of the algorithm. When each
random walk terminates, the last visited node, sayB, adds
A to its view by replacing one node, sayC, which is added
to A’s view using an empty slot.
Shuffle Algorithm. The shuffle algorithm is executed peri-
odically at each node. A shuffle cycle is composed of three
phases. In the first phase a nodeA, after increasing the age
of all the nodes in its view, chooses its shuffle target,B, as
the one with higher age among those in its view. Then,A
sends toB a shuffle message containingl − 1 nodes ran-
domly chosen inA’s view, plus A itself. In the second
phase,B, once received the shuffle message fromA, re-
placesl− 1 nodes in its view (chosen at random) with thel
nodes received fromA and send them back toA. In the final
phaseA replaces the nodes previously sent toB with those
received from it. Overall, the result of one shuffle cycle is
an exchange ofl links betweenA andB. The link initially
present fromA to B is also reversed after the shuffle.
Handling Concurrency. In the specifications given in [10],

no action was defined in the scenario of two (or more)con-
currentshuffle cycles, e.g. when a nodeA, during a shuffle
cycle in progress withB, is selected as a target node by re-
ceiving a shuffle message fromC. If concurrency is consid-
ered, the nodes sent byA to B can be modified by the con-
current shuffle involvingA andC. In our implementation,
we extend the original specification in order to address this
situation: in case nodes to be replaced byA are no longer
in its cache, it replaces some nodes chosen at random.

3. Simulation Study

In this Section we present the details of our simulation
study. Results of the two protocols are presented sepa-
rately1. We point out that this work is not intended to be a
comparison between the two protocols, since they were de-
signed for different purposes2. The simulations aims only
at showing the behavior of these different protocols under
conditions of churn and concurrency.

3.1. Experimental Setting

The simulation study was carried out by developing the
two algorithms in Peersim [1]. The event-driven mode of
Peersim was used for both protocols. Event-driven simula-
tions in Peersim are based on a logical clock. At each time
unit t of the clock one or more events can be scheduled.
The scheduled events are:join invocation, leave invocation,
sendandreceiveof messages.

Differently from the cycle-driven mode of Peersim, the
event-driven mode allows to introduce concurrency. In par-
ticular, (i) the not synchronized execution of joins, leaves
and shuffle cycles, and (ii) the random delay between the
send and receive of a message, allows joins, leaves and shuf-
fle cycles to take a variable amount of time to execute, aug-
menting the possibility of overlapping.

Simulations for both protocols were carried out as fol-
lows. A run of a protocol is divided into three periods:
creation, churn andstability. During the creation period,
nodes join until reaching a given valueN . Neither leaves
nor overlapping of joins occur along this phase. During the
churn period, nodes continuously join and leave the network
at a givenchurn rateC, i.e. at each unit of time,C nodes
invoke the join andC nodes invoke the leave. The churn pe-
riod ends when 3000 joins and 3000 leaves have occurred.
Thus, the churn period duration varies in function of the
churn rate and, at the end of this period, the total number

1Both protocols implementations were validated comparing to the ones
presented in [10] and [5] respectively. This comparison is shown in the
Appendix A.

2SCAMP was originally targeted at the construction of overlays for
large-scale information dissemination, for which the reactive nature of the
protocol is more appropriate, while Cyclon is in general suited for applica-
tions requiring a constant sampling of nodes in the network, e.g. searching,
monitoring, etc.

3
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of nodes in the overlay is stillN . N was set to 1000 in all
experiments3. Message delay varies uniformly at random
between 1 and 10 time units. 10 independent runs were
made for each experiment.

The metrics we focus on are (i) the average percentage
of reached nodes (R) and (ii) the overlay clustering at the
end of the stability period.
Evaluating average reachability. This metric is defined as
the average number of nodes that can be reached from any
node in the overlay, with respect to the total number of
nodes. This metric is obviously related to the connectivity
of the overlay graph, as any value lower than 100% indi-
cates that at least one node cannot be reached by at least
one other node. We evaluated the effect of the variation of
the churn rateC (C=2,4,8,16,32,64) onR along the time
(each point in these experiments is taken every 100 join and
100 leave invocations). In order to facilitate the compari-
son between experiments resulting by simulating different
churn rates, the churn period has been made equal for any
churn rate by expressing the execution time as a normalized
time (τ = t∗C

3000 ∗ 100). Thus, a same value of normalized
time corresponds to a same number of invoked joins and
leaves for any churn rate. Both protocols have been evalu-
ated with leaving nodes chosen uniformly at random in all
experiments. Experimental results show that at the end of
the churn period the set of initial 1000 nodes are almost
completely replaced (in average, the 4% of the initial nodes
remains during the entire simulation). For SCAMP we have
also evaluated the impact onR of different policies in the
choice of the leaving nodes while for Cyclon the impact on
R of different shuffle frequencies.
Overlay clustering. In order to highlight the type of overlay
connectivity whenR is lower than 100%, we also show the
clustering of the overlay at the end of the stability period:
the percentage of nodes forming the maximum connected
component (main cluster), the percentage of isolated nodes
and the percentage of nodes forming clusters with dimen-
sion less than the 6% of the overlay4.

3.2. Evaluation of SCAMP

The results of experiments for SCAMP are presented in
figures 1(a), 1(c) and 1(e). For SCAMP we chose a heart-
beat period equal to 50 time units.

In the first experiment (Figure 1(a)) we tested the average
reachabilityR along the time under churn. The plot clearly
illustrates the dependence ofR from C, showing how churn
can permanently disrupt the overlay connectivity. For churn
rates higher than 4, at the end of each run,R is close to
0%, meaning that the topology is entirely fragmented into
small-sized partitions and many nodes become permanently

3In Appendix B is shown that changing the initial size with the same
ratio betweenN andC brings to obtain the same experimental results.

4As we will see later, no cluster of size higher than 6% is ever created.

isolated as showed in Figure 1(c). We remark the great dif-
ference with the results showed in [5], in whichR is equal to
99% even after 50% of the nodes have been removed from
the network. In our scenario,R starts to deviate from 99%
when only 10% of nodes have beenreplaced(for C = 2
after this substitution, i.e. forτ = 10/3, R = 98, 9%). The
main reason behind this behavior is the poor connectivity
of nodes replacing the old ones during churn period. Ini-
tially, the overlay is formed by 1000 well-connected nodes.
After the replacement of the 10% of nodes, forC = 2,
we have a degradation in connectivity since the new 10%
is poorly connected with respect the replaced 10%. The
reason lies in the fact that the old 10% was obtained in an
ideal manner during the creation period, while the new 10%
has been added to an overlay suffering from node departures
and simultaneous joins (nodes joining concurrently are con-
nected among them through the initial overlay disrupted by
the deletion of some nodes). During the churn period con-
nectivity keeps degrading with the progressive replacement
of nodes in the overlay. WhileR is greater then80%, the
more the velocity of replacement the worst the connectivity
shown by the replacing part of the overlay, e.g. forC = 2
after the replacement of 10% we haveR = 98, 9% while
with a higher churn rateC = 4 after the replacement of a
same 10% we haveR = 98%. However, for lower values
of R, the slope of different curves become almost the same,
pointing out a sub-linear degradation ofR with respect toC
and the dominating effect of the quantity of replaced nodes
versus the velocity of their replacement. Interestingly, af-
ter the churn stops (τ = 100) there is a small raise inR,
for the churn rates lower than8, witnessing the effect of the
heartbeat mechanism during the stability period.

It is clear that, under these conditions, it becomes criti-
cal for the protocol the presence of a well-connected cluster
of nodes not subject to replacement. For testing this effect,
in the second experiment we consider a variable percentage
of nodes to be “permanent”, i.e. nodes joining during the
creation period and never leaving the overlay, with a fixed
churn rate equal toC = 2. Figure 1(e) shows the results of
the experiment when changing the percentage of permanent
nodes. Values chosen were 0%, 10%, 50% and 90%. In the
“Random” curve, nodes leaving the overlay were chosen at
random, as in the previous experiment5. The plot shows
the positive effect of the permanent nodes overR. The per-
centage of reached nodes during the stability period is al-
ways higher than the number of permanent nodes, meaning
that the presence of a fixed connected cluster facilitates new
joining nodes to remain connected to the main cluster.

5Random performs better than 0% because some permanent nodes (in
average the 4%) are present

4
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(a) SCAMP: Variation ofR along time with different churn
rates

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

90

100

 C =   2
 C =   4
 C =   8
 C = 16
 C = 32
 C = 64

%
 R

ea
ch

ed
 N

od
es

(b) Cyclon: Variation ofR along time with different churn
rates
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(c) SCAMP: Overlay clustering at the end of the stability
period with different churn rates
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(d) Cyclon: Overlay clustering at the end of the stability pe-
riod with different churn rates
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(e) SCAMP: Variation ofR along time with different per-
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Figure 1. Experimental Results
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3.3. Evaluation of Cyclon

All experiments with Cyclon use a view size set to 7,
being the logarithm of the system size. The shuffle lengthl
is 2, while the length of random walks in the join is 5.

In the first experiment (Figure 1(b)), we tested the effect
of the variation of the churn rateC on R while Figure 1(d)
shows the clustering of the overlay in all cases. The shuffle
period is set to 20 time units. Again, a severe churn rate
permanently disrupts the overlay connectivity, with nodes
getting isolated from the largest partition. As a comparison
with the results presented in [10], whereR starts to decrease
when 75% of nodes are removed, in our experimentsR is
lower than 100% starting from the first point (10% of substi-
tuted nodes atτ = 10/3). There is an important difference
with SCAMP: the churn rate affects more significantly the
trend ofR: the overall number of replacements its unim-
portant (withC = 2, R remains almost 100% despite the
number of overall replacements), the dominating effect is
the velocity of the replacement since it impacts on the ef-
ficiency of the shuffle mechanism: a slower replacement
implies a higher number of shuffle cycles.

In Figure 1(f), we test the effect of varying the shuffling
period. The churn rate is fixed toC = 2 and the shuffling
timer varies from 20 to 320 time units. As expected,R de-
creases faster with higher shuffling periods. Also the con-
vergence in the stability period is slower. Finally, it is inter-
esting comparing results in Figures 1(b) and 1(f) focusing
on those curves where the number of operations between
two shuffle periods is the same. For instance, let us observe
the curve forC = 8 in Figure 1(b) (Shuffle Timer=20 and
C = 8) and the curve for Shuffle Timer=80 in Figure 1(f)
(Shuffle Timer = 80 andC = 2): in both experiments there
are approximately 160 join and 160 leave invocations be-
fore that a node shuffles. The fact thatR is always higher in
the first test, indicates that the velocity of replacement dom-
inates over the number of replacements, making the shuffle
less effective though it is performed more frequently.

4. Related Work

Different distributed OMPs supporting gossip-based dis-
semination have been proposed [4, 5, 3, 10, 2]. These proto-
cols provide each node with a small local view of the over-
lay membership at each node and membership information
spreads in an epidemic style [6]. However, [4, 5] do not take
into account the issue of the overlay changing rate explic-
itly. In [3] the authors express, through an analytical study,
the time expected for the overlay to partition as a function
of (i) the overlay size, (ii) the local view size and (ii) the
overlay changing rate (called churn rate). The local view
size needs to be larger than the churn rate for the expected
time until partitioning to be exponential in the square of the
local view size. The protocol proposed, however, has not

been evaluated through an event-based simulation study, i.e.
under concurrency and random message delays.

For completeness we also cite [2] since it is the algorithm
that first introduces the main features of Cyclon: shuffles
cycles and random walks. Cyclon is an improvement w.r.t.
to [2] obtained by using the aging mechanism.

This work extends and deepens the first results presented
in [9] in which we began to evaluate the SCAMP behavior
under churn with a very small overlay (only 100 nodes).

5. Concluding Remarks

The aim of the paper has been to test the robustness of the
overlays obtained from SCAMP and Cyclon protocols with
the precise intent to stress each protocol under severe churn
situations, in order to determine their breakdown behavior.

Other aspects need further investigation. For example,
in our experiments we assumed all nodes initially joining
the system are not “disturbed” by concurrent leaves. This
brings to the construction of an ideal initial overlay net-
work. Now the problem is how one can set up a network
with thousands of nodes in that way. A more realistic model
should take this into account to see the effect of operation
interleaving starting at a very early stage when the size of
the P2P system is in the order of a more realistic tens of
nodes.
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Appendix A

In this Appendix we show the results of the comparison
between our SCAMP and Cyclon implementations against
the original ones, respectively GKM implementation [5]
and VGvS implementation [10].

We made the comparison between the two implementa-
tions of Cyclon, using the original one provided in the Peer-
sim library [1]. We simulated the following: starting from
an initial regular random graph of 1000 nodes we measure
the in-degree distribution (in-degree for a node is the num-
ber of nodes that it receives messages from) after 100 shuf-
fle cycles without overlapping shuffle cycles (cache size 20
and shuffle lengthl =5).

For SCAMP, as we do not have the original implementa-
tion available, we made our simulations with the same pa-
rameters under which original results were obtained (degree
distribution of 100000 initial nodes after the removal of the
50% of nodes). Our experiments (Figures 2, 3) returned
the same distribution of nodes degree as the original exper-
iments meaning that our implementation is consistent with
the protocols’ original specifications.

Appendix B

In this Appendix we show the results ofR obtained start-
ing from differentN but maintaining the same ratio be-
tweenC andN . We compared the curve obtained with1000
andC = 2, with the results obtained doubling the param-
eters (N = 2000 andC = 4) and halving the parameters
(N = 500, C = 1). Figures 4 and 5 show how, both for Cy-
clon and SCAMP, maintaining unaltered the ratio between
N andC brings to the same impact onR.
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Abstract

In a large scale system with a potentially infinite number
of clients accessing a read/write shared object, persistency
of values written (i.e., a value written is always available if
no more write operations are issued) could be easily guar-
anteed by implementing the object through 2f + 1 servers
where up to f of them may crash. In this paper we explore a
different scenario, where processes implementing the object
may fail, join or leave at any time of the computation. The
paper on one hand points out that in such systems, objects
are naturally not persistent due to the continuous arrival
and departures of processes implementing the object but,
on the other hand, a so-called weak persistency could be
incorporated, i.e., the property of guaranteeing persistency
when a system becomes quiescent (arrivals and departures
subside).

Finally, an implementation of a weakly-persistent causal
object along with its correctness proof is given.

1. Introduction

This paper focuses on the problem of implementing
shared objects over an asynchronous message passing sys-
tem characterized by (i) infinitely many processes and (ii)
high dynamics: processes may join or leave the computa-
tion at any time. This dynamic distributed system model ab-
stracts continuously running systems like peer-to-peer sys-
tems.

In order to implement objects in this environment, we
adopt the client/server paradigm and the related failure
model proposed in [8]. More specifically, clients coordinate

the access to the object through servers and no communi-
cation among clients is assumed. Then, the set of clients
may be infinitely large. The object is implemented by a
fixed set of virtual servers. At any time a process incarnates
a virtual server. Upon the crash (or the leave) of such a
process, a new process replaces the old one in incarnating
the virtual server and the old state of the failed process is
completely lost. This demands a system model in which
processes crashes are associated with memory losses. To
model possible infinite alternation of peers, incarnating a
virtual server, these losses can be an infinite large number.
This dynamic system model nicely captures for example
the basic behavior of structured P2P systems, [?].

Motivation. As the object can be concurrently accessed by
read and write operations, clients must be provided with a
consistency criterion that defines object semantics. Atomic
consistency is recognized to be the most useful since it
provides the client processes with the illusion that they
access the memory one at a time [17]. However, our system
model does not allow atomic objects implementations.
In particular, in a crash prone system, atomicity may
be guaranteed provided that object state persistency is
ensured through crashes [13]. Due to the assumption of
an arbitrarily large number of memory losses, object state
persistency may not be ensured. Thus, we consider a
weaker consistency criterion, namely causal consistency
[3], which is proved to be implementable in such a system
as it can tolerate an infinite number of memory losses.

Contribution. The paper provides a protocol implementing
a causal object in a continually running and dynamic system
affected by an arbitrarily large number of memory losses.

A causal object ensures that values returned by read op-
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erations are consistent with the causality order relation. In
particular, if the write operation of a value a, namely w(x)a,
causally precedes the one of a value b, namely w(x)b, every
client process that reads both values, has to read a and then
b. Let us remember that w(x)a causally precedes w(x)b if i)
both writes are issued by the same client process and w(x)a
is issued before w(x)b, or ii) the client issuing w(x)b reads
the value written by w(x)a before issuing w(x)b or iii) be-
cause of transitivity.

After memory losses, new clients could miss completely
the computation already done due to lack of persistency of
written values. Under these circumstances, a protocol im-
plementing a causal object should not block any operation
(new clients never block waiting for lost values) while at
the same time guaranteing a safe behavior w.r.t. causal con-
sistency. However, let us remark that in this case, causal
consistency can be ensured by a trivial protocol that, for ev-
ery read operations, returns the initial value of the object.

To cope with this problem, the paper introduces a prop-
erty, called weak persistency that, on one hand, is strong
enough to rule out trivial implementations and on the other
hand, is weak enough to be implemented in our system
model. More specifically, in periods in which the sys-
tem is quiescent (each process incarnates a virtual server
forever) computation as perceived by a client continually
makes progress, that is clients are able to read the most re-
cent values.

We propose a protocol, along with its correctness proof,
implementing a so called weak-persistent causal object.
The protocol enjoys the desirable property of maintaining
causal consistency all the time regardless of periods affected
by high dynamics and of leveraging quiescent periods to
bring forward a computation perceived in the same way by
all clients joining the system along the time.

Road-Map The paper is structured into six sections. Sec-
tion 2 describes the object model and the consistency
model. Section 3 specifies the system model and our defi-
nition of weak persistency. In Section 4, we give the imple-
mentation of a weakly-persistent causal object along with
its correctness proofs. In Section 6, we consider the related
works and finally we present conclusions in Section 7.

2. Object Model

Client processes interact via a shared object x through
read and write operations. A write operation aims at storing
a new value in object x, while a read is supposed to return
the value stored in x. Object x is initialized to ⊥. Each
client process is univocally identified by a positive integer,
i.e. ci will denote the client process whose identity is i.
Thus, formally: we denote as wi(x)v a write operation in-
voked by a client process ci to store a value v in x and as

ri(x)v a read operation invoked by a client process ci and
that returns to ci the value v stored in x. We assume that
each write operation is univocally identifiable. In detail, a
write may be identified by the value written and the process
identifier provided that the client does not write more than
once the same value, otherwise, it is sufficient to addition-
ally consider a sequence number.

As the object can be concurrently accessed (by read and
write operations), clients must be provided with a consis-
tency criterion that precisely defines the semantics of the
shared object, that is the value each read operation has to
return. A consistency criterion defines correctness in terms
of histories.

History properties Since clients are sequential pro-
cesses, each client ci generates a sequence of operations
called local history and denoted hi. A history H , is the
union of all local histories, one for each client process.

Causality order relation Given a history H , let o1 and
o2 be two operations in H , o1 7→co o2 if and only if one of
the following cases holds:

• ∃ ci s.t. o1 precedes o2 in ci program order,

• ∃ ci, cj s.t. o1 = wi(x)v and o2 = rj(x)v (read-from
order),

• ∃ o3 ∈ H s.t. o1 7→co o3 and o3 7→co o2 (transitive
closure).

Two operations o1 and o2 are concurrent w.r.t. 7→co, de-
noted o1 ||co o2, if and only if ¬(o1 7→co o2) and ¬(o2 7→co

o1).

Causal Consistent Object A read/write causal consistent
shared object x is characterized by the following properties:

Definition 1 (Legality.). Given a history H , if it exists
a read operation r(x)v belonging to H , then i) there
must exist a write operation w(x)v ∈ H such that
w(x)v 7→co r(x)v and ii) there must not exist a write op-
eration w(x)v′ ∈ H such that w(x)v 7→co w(x)v′ and
w(x)v′ 7→co r(x)v.

Definition 2 (Causal Ordering.). Given a history H , let
w(x)v and w(x)v′ be two write operations belonging to H
and such that w(x)v 7→co w(x)v′. If a client process ci

reads both values written by such write operations, namely
v and v′, then ci first reads v and then v′.

3. System Model

We consider the infinite arrival model proposed in [1]:
the system consists of possibly infinitely many processes,

2
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runs can have infinitely many processes, but in each time in-
terval only finitely many processes take steps. The system
is asynchronous, that is there is no bound on the relative
process speeds, however, the time taken by each process
to execute a computational step is finite. Moreover, mes-
sage transfer delay is finite but unpredictable. As depicted
in Figure 1, components of the system are logically sep-
arated in: client processes, object entities
and object manager processes.

Object x is implemented by a finite number n
of virtual servers, also called object entities
{x1, x2, . . . , xn}. Each object entity is character-
ized by an univocal virtual identifier and a state. In par-
ticular, xj denotes the j − th object entity and its
state is its current value.

Each object entity xi is implemented by an object
manager process which is in charge of the actual
execution of read/write operations invoked by client
processes. An object manager process is identified by
the identity of the object entity it is in charge of. Since at
each time, each object entity is incarnated by a single ob-
ject manager process, sometimes we denote as xi both the
object entity and the corresponding object manager process.

Client processes communicate with object manager pro-
cesses exchanging messages over fair-loss point-to-point
channels [21]. There is no communication among object
manager processes.

Failure Model A process (client or object manager) may
crash, that is, it halts prematurely. A crashed process does
not recover. This means that from a practical point of view,
a process that crashes, can re-enter the system with a new
identity. A process that does not crash is correct otherwise
it is faulty.

We treat the deliberate leave of an object manager as a
crash. If an object manager leaves the system, delib-
erately or by crashing, if a new object manager will
replace that previous one it will assume the same virtual
identity. As an example, in Figure 1, the process i crashes
and it is replaced by process k. Moreover, the new object
manager process is not able to retrieve any state the crashed
process passed through during its execution. We assume
that each time an object manager process leaves the system,
there exists a new one that may replaces the previous one.
For what said, each object entity xi is characterized by a
sequence of object managers, denoted x̂i.

Let us remark that the mapping between object entities
and object manager processes can be realized through well-
known technologies such as Domain Name Server (DNS),
Distributed Hash Table (DHT) etc. This technologies in-
clude mechanisms providing a good support for maintain-
ing a stable set of server processes. Thanks to the possibil-
ity of having concurrent joins and leaves, the system model

object entities
(virtual servers)

object managers
(current servers)

object x

c1 c2 cj
… …

x2 xn
…

mapping

process 1 process 2 process i process k

x1

clients
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clients

object x

c1 c2 cj
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x2 xn
…

mapping

process 1 process 2 process i process k

x1

clients

Figure 1. An architecture of a weakly consis-
tent causal object.

is well-suited to represent an object implementation on the
top of a structured peer-to-peer system.

Weak persistency and Weakly-Persistent Causal Object
Intuitively, values are persistent if, in absence of new write
operations, subsequent reads may return the last value writ-
ten. But, for a causal object the concept of last value written
is not univocally determined, i.e. due to causally concurrent
write operations different clients may perceive as last writ-
ten value a different value.

Moreover, due to our failure model we propose a weak
form of persistency, i.e. persistency is only guaranteed for
values written in quiescent periods of the system, that is
when the set of processes incarnating object managers does
not leave the system deliberately or by crashing.

Formally,

Definition 3 (Weak Persistency). If a value v is written in-
finitely many times, then a client process that reads infinitely
many times, eventually reads v, a concurrently written value
or a subsequent one w.r.t. 7→co.

This property abstracts the fact that the object may suffer
a finite (and unknown) number of memory losses when the
set of processes incarnating the object frequently changes
but never loses memory during periods in which this set
does not change for a time long enough. According to
this, we define what we call weakly-persistent causal ob-
ject. Formally:

Definition 4 (Weakly-Persistent Causal Consistent Object).
A weakly-persistent causal consistent object is a causal
consistent object satisfying the property of weak persis-
tency.

3
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4. Weakly-Persistent Causal Consistent Object
Implementation

Client processes invoke operations by sending request
messages to the set of object entities. Since each object en-
tity xi is incarnated by an object manager process that may
change during time, we assume the existence of an under-
line routing system that is able to route request messages
to the object manager process that currently incarnates xi.
When an object entity receives a request of a client process
ci, it processes that request and then it sends the correspond-
ing response to ci. A correct implementation has to satisfy
the following properties:

Definition 5 (Termination). If a correct client process ci

invokes an operation, then ci eventually returns from the
invocation.

Definition 6 (Validity). If a read operation invoked by a
client process ci returns a value v, then there exists a client
process cj that invoked the write of v.

Finally, we make the following assumption:

Assumption 1. There are d2n + 1/3e object entities xi,
whose corresponding x̂i is finite.

4.1. Data Structures

Each client process ci has to manage: 1) ack[1..n]:
a vector of boolean, one for each object entity. Each entry
is initially set to false. It is used to track when f = d2n/3e
object entities have answered to a read request made by ci.
ack[k] = true means that ci has received from xk a re-
sponse to its current read request; 2) ack: an integer ini-
tially set to 0. It stores the number of ack received by ci

from object entities in order to track when an ack is received
by f object entities. Each object manager xi has to manage
a variable last, to track the client that invoked the write
operation corresponding to the last value stored at xi. This
information is used to check causal consistency.

Moreover, in order to guarantee causal consistency, pro-
cesses in the system, both clients and object managers, have
to manage a timestamping system to implement a plausible
clock t [5]. The plausible clock system we propose is an
adaptation of R-Entries vector clock system (REV) proposed
by Ahamad et al. in [5]. Each process stores a vector of in-
tegers of fixed size n, initially set to [0, . . . , 0]. This vector
is denoted ti[1..n] for a client process ci and txi[1..n] for
an object manager xi. Each client process ci is associated
to the i modulo n entry of the plausible clock t. According
to this and due to the fact that the number of client pro-
cesses in the system may be more than n at a given point
in time, several clients may share the same plausible clock

entry. Moreover, it must be noted that in general the size of
the plausible clock is independent of the number of client
and of object entities in the system.

Rules to manage ti/ txi:

R1 Each time a process sends a message, it timestamps
the message m with the current value of its plausible
clock, denoted m.t.

R2 Each time a client ci writes, it increments its plausible
clock entry ti[i modulo n], i.e. ti[i modulo n] :=
ti[i modulo n] + 1.

R3 Each time a client ci receives a response message m
to a read request, it updates its plausible clock with
the timestamp piggybacked by m, i.e. ∀ k ti[k] :=
max(ti[k],m.t[k]).

R4 Each time an object manager receives a write re-
quest message m from cj , if txi[j modulo n] <
m.t[j modulo n] then it updates its plausible clock txi,
i.e. ∀ k txi[k] := max(txi[k],m.t[k]).

4.2. Protocol Behavior

When a client ci wants to execute a write operation
wi(x)v, it increments its entry of the plausible clock ti and
sends an update message corresponding to wi(x)v to all ob-
ject entities. A message mwrite(v, t) corresponding to a
write operation, later sometimes referred as write message,
contains the value v to be written and the value t of the
plausible clock at ci at the time the message was sent.

WRITE(v)
1 ti[i modulo n] := ti[i modulo n] + 1;
2 repeat
3 for (1 ≤ j ≤ n) send [mwrite(v, t)] to xj

4 until [receipt(ackmwrite(v,t)) from f xj ];
5 cache := v

Figure 2. Write procedure performed by client
process ci

Moreover, because of fair-loss links, client process ci

sends mwrite(v, t) to all object entities until an ack is re-
ceived from f object entities, lines 2, 3 and 4 of write pro-
cedure in Figure 2. In this way, when ci completes its write
operation wi(x)v, at least f object entities have received
mwrite(v, t). The value written is then stored in ci’s cache,
line 5 of write procedure in Figure 2.

When a client ci wants to read, it repeatedly sends its
read request to all object entities until responses are col-
lected from f different object entities, lines 2-13 of read pro-
cedure in Figure 3. A message mread(numseq, t, cache),
corresponding to a read, later sometimes referred as read

4
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message, contains the sequence number of the request,
numseq , the current values of the plausible clock at ci,
namely t, and the current value of ci’s cache. Due to net-
work delays and retransmission, numseq is necessary to al-
low a client to discard old responses when received.

In detail, due to fair-loss links client ci repeatedly sends
a read request to all object entities until a response is re-
ceived, lines 3, 4, 5 of read procedure in Figure 3. When
a response is received from xh, ci checks if it already re-
ceived a response corresponding to the current request from
xh, line 6 of read procedure in Figure 3. If no responses for
the current request were previously received from xh, the
message is processed by ci: it tracks an ack more, line 7 of
read procedure in Figure 3; it checks if the value stored is a
new one w.r.t. to the one in ci’s cache and if so ci’s cache
and control structures are updated, lines 9-10 in Figure 3.
ci stops to send such a request when one of the following
conditions holds: it has received a response from f distinct
object entities or it has received a value different from the
one stored in its cache.

READ(x)
1 numseq := numseq + 1;
2 while (ack < f)
3 repeat
4 for (1 ≤ j ≤ n) send [mread(numseq, t, cache)] to xj

5 until [receipt(mres(numseq, txh, v)) from xh with h ∈ [1..n]];
6 if (ack[h] = false) then
7 ack[h] := true;
8 ack := ack + 1;
9 if (txh 6= t) then

10 cache := v;
11 ∀ k ti[k] := max(ti[k], txh[k]);
12 ack := f ;
13 end if
14 end if
15 end while
16 ack := 0;
17 for (1 ≤ j ≤ n) ack[j] := false;
18 return(cache)

Figure 3. Read procedure performed by client
process ci

Then, client ci waits for f response messages by the ob-
ject entities or to receive a message containing a value dif-
ferent from the one in ci’s cache. In this last case, it updates
its plausible clock ti in the following way: ∀ k ti[k] :=
max(ti[k],m.t[k]). It stores the new value read in its cache.
Finally, the value is return.

When an object manager xi receives a request of write
by a client cj , it verifies if the write operation has to be con-
sidered obsolete w.r.t. 7→co, line 2 of write thread in Figure
4. Then, if the write is considered obsolete, xi discards the
message otherwise it applies the value to its local memory
and it synchronizes its plausible clock with the one piggy-
backed by the write message, lines 3,4 and 5 of write thread
in Figure 4. The variable last stores the identifier of the
plausible clock entry that was last updated. In any case, it

sends back an ack to client process cj , line 7 of write thread
in Figure 4.

1 when (receipt(mwrite(v, t)) from cj) do
2 if ((t[j modulo n] > txi[j modulo n]))
3 then x := v;
4 ∀ k txi[k] := max(txi[k], t[k]);
5 last := j modulo n;
6 end if
7 send [ackmwrite(v,t)] to cj

Figure 4. xi’s write thread

When an object manager xi receives a request for a read
operation by client process cj , it has to check causal consis-
tency. If the value of the object manager is causally prece-
dent the one of the client, the object manager simply sends
back a response with the values previously sent by the cj in
the current read request, line 4 of read thread in Figure 5.
1 Otherwise, it replies with its value of x and the value of
its plausible clock, line 3 of read thread in Figure 5. In any
case, it finally answers to the request with a value that may
be the one sent by cj itself in the read request, or a more
recent one w.r.t. 7→co.

1 when (receipt(mread(numseq, t, val)) from cj) do
2 if (txi[last] > t[last])
3 then send [mres(numseq, txi, v)] to cj

4 else send [mres(numseq, t, val)] to cj

Figure 5. xi’s read thread

A response message mres(numseq, txi, v) for a read
contains: i) the sequence number of the read request ii) the
value of xi’s plausible clock at response time, txi, and iii)
the value v to be returned by the read operation.

Figure 6 depicts a simple scenario, where client process
c2 writes the value a subsequently read by another client c1.

In Figure 6, object entities values are depicted every time
they change and since in this scenario we do not consider
memory losses, a value stored is not lost. Notice that, the
scenario in Figure 6 also point out that some messages may
be lost. This is due to the fact that we consider fair-loss
links.

4.3. Correctness Proofs

In this section we first prove that t is a plausible clock
capturing 7→co and then we prove the correctness of the al-
gorithm we present in section 4.2 to implement a weakly-
persistent causal object.

1It must be noted that in such a case, a refresh purpose might be consid-
ered for a read operation, that is the object manager could update its local
structure, logical clock and cache, treating the read as a write. This may
improve the availability of values written.
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Figure 6. A scenario generated by the imple-
mentation of the causal object described in
Section 4.

t is a plausible clock capturing 7→co Given a write op-
eration wi(x)v, according to line 2 of write procedure in
Figure 2, such a write operation is associated with a log-
ical clock t, denoted t.wi(x)v. We have to prove that
given two write operations wi(x)v and wj(x)v′ such that
wi(x)v 7→co wj(x)v′, then t.wi(x)v < t.wj(x)v′. On the
other hand, according to the properties of plausible clocks,
t.wi(x)v < t.wj(x)v′ means that one of the following case
arises: 1) wi(x)v||wj(x)v′ or 2) wi(x)v 7→co wj(x)v′.

Notation w 7→k
co w′ with k ≥ 1 means that there exists a

sequence of k 7→co relations w 7→co w1 7→co . . . wh 7→co

wh+1 7→co . . . wk−1 7→co wk 7→co w′ and for any relation
wh 7→co wh+1 does not exist a write operation w′′ such that
wh 7→co w′′ 7→co wh+1.

Observation 1. At each client ci, ti does not decrease.

Observation 2. w is the kth write operation invoked by the
client process ci ⇒ t[i modulo n].w(x)v ≥ k.

Proof. Let w(x)v be the kth write operation invoked by the
client process ci. Two possible cases arise:

1) at the time of w(x)v invocation, ci has not yet exe-
cuted a read operation. Thus t[i modulo n].w(x)v is equal
to k according to line 1 of write procedure in Figure 2 and
the fact that the initial value of the plausible clock at ci is
[0, .., 0].

2) at the time of w(x)v execution, ci has executed at least
one read operation. There are two possible cases: i) ci reads
a value written by itself, thus it does not update its plausible
clock and we are again in case 1); ii) ci reads a value writ-
ten by another client process. According to line 11 of read
procedure in Figure 3, ci synchronized its clock t with tx,
the one sent by the object manager in its response to such a
read request, lines 2,3 of read thread in Figure 5. Moreover,

for line 11 of the read procedure in Figure 3, the resulting
value of t is not minor than the value of t before such a syn-
chronization. Thus, since w(x)v is the kth write executed
by ci and due to line 1 of write procedure in Figure 2 and
to the fact that when a client reads, its plausible clock does
not decrease, we have that t[i modulo n].w(x)v ≥ k.

Now to prove that t is a plausible clock capturing 7→co,
we have to prove that: ∀ wi(x)v, wj(x)v′ : w 6=
w′, wi(x)v 7→co wj(x)v′⇒ t.wi(x)v < t.wj(x)v′.

Lemma 1. ∀ wi, wj ∈ H : wi 6= wj , (wi 7→co wj ⇒
t.wi < t.wj)

Proof. Let us consider the notation wi 7→k
co wj . The proof

is by induction on the value of k.
Basic step. Given two write operations wi and wj such that
wi 7→0

co wj ⇒ t.wi < t.wj . This means that wi 7→co wj

and @ a write w′ such that wi 7→co w′ and w′ 7→co wj .
We distinguish two cases:
(1) i = j. This means that wi and wj have been executed
by the same client process ci. Each time a client process
executes a write operation, it performs the write procedure
in Figure 2. According to line 1 of Figure 2, each time ci

executes a write operation, it increments its corresponding
entry of t. Due to Observation 1, if wi precedes wj in ci

program order then t.wi < t.wj . Therefore the claim fol-
lows.
(2) i 6= j. There exists a read operation invoked by the client
process cj , denoted rj(x), such that wi(x)v 7→ro rj(x)v
and rj(x)v 7→po wj(x)v′. In detail, cj can read the value
written by ci because i) ci has invoked wi(x)v and at least
a majority of object managers have applied wi(x)v and ii)
one of such object managers has answered to cj read re-
quest. Without loss of generality, let us assume that xk is
the object manager that implements points i) and ii). Then,
according to line 4 of the write thread in Figure 4, after hav-
ing applied wi(x)v, txk is ≥ than t.wi(x)v. Subsequently,
cj reads the value written by wi(x)v. This means that:

• when xk has received the read message m of cj ,
its local value of x was v, that is the value writ-
ten by wi(x)v. Then according to line 4 and 5 of
write thread in Figure 4 and to lines 2, 3 of read
thread in Figure 5, xk sends to cj a response message
mres(numseq, v, txk) with txk ≥ t.wi(x)v.

• when cj delivers mres(v, txk, numseq) according to
lines 10, 11, 12, 2 and 18 of read procedure in Figure
3, cj updates its tj and its cache with the corresponding
values piggybacked by mres(numseq, v, txk) and then
it returns the value to be read, that is v.

Then after the read operation tj ≥ txk that is tj ≥
t.wi(x)v. Moreover, it must be noted that i) for observa-
tion 1, tj never decreases and ii) when cj writes wj(x)v′,
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tj is incremented, (line 1 of write procedure in Figure 2).
Then since wj(x)v′ is executed by cj after the execution of
rj(x)v the claim follows, that is t.wi(x)v < t.wj(x)v′.
Inductive Step. wi 7→k>0

co wj then: (i) ∃ w
′
: wi 7→k−1

co w
′
.

By the inductive hypothesis we have: t.wi < t.w
′
, and (ii)

w
′ 7→1

co wj . Because of Basic Step t.w
′

< t.wj . From (i)
and (ii), it follows: t.wi < t.wj .

Object Correctness Proofs

Property 1 (Causal Ordering). Given two write operations
w(x)v and w(x)v′ if w(x)v 7→co w(x)v′, then a client pro-
cess ci that reads both values, executes ri(x)v and then
ri(x)v′.

Proof. Roughly speaking, we have to prove that given two
write operations w(x)v and w(x)v′ if w(x)v 7→co w(x)v′,
then a client process ci that reads both values, reads v and
then v′. Thus, let us assume that a client ci has executed
ri(x)v′. This means that for lines 4-6 of write thread in Fig-
ure 4 and line 11 of read procedure in Figure 3, the logical
clock of ci after the execution of the read is ti ≥ t.w(x)v′.
Then, when subsequently ci invokes another read operation,
for what said and for observation 1, ci inserts in the cor-
responding request message a timestamp ti ≥ t.w(x)v′.
By contradiction, assume that there is an object manager
xk that responds to that request with mres(v, txk), then ac-
cording to lines 2, 4 and 5 of write thread in Figure 4 and
line 3 of read thread in Figure 5, txk[last] = t.w(x)v[last].
But for lemma 1 w(x)v 7→co w(x)v′ implies t.w(x)v <
t.w(x)v′. This means that ∀ k t.w(x)v[k] ≤ t.w(x)v′[k].
This contradicts line 2 of read thread in Figure 5. Thus
when xk receives the read request of ci with timestamp
t.w(x)v′ it sends back the value of ci’s previous request,
that is v′ line 4 of read thread in Figure 5.

Property 2 (Weak Persistency). If a value v is written in-
finitely many times, then a client process that read infinitely
many times, eventually read v, a concurrently written value
or a subsequent one w.r.t. 7→co.

Proof. If a value v is written infinitely many times, due to
assumption 1, lines 2-4 of write procedure in Figure 2, line
1 of write thread in Figure 4 and the properties of the plau-
sible clock systems (lemma 1), there is a time after which
f ′ = d2n + 1/3e) object entities stop to lose their memory
and thus v or a value that is causally concurrent with v or
a more recent one is permanently stored. This means that a
client process that read infinitely many times, will read one
of such values due to lines 2-12 of read procedure in Figure
3 and to line 2 and 4 of read thread in Figure 5.

According to this, we have to prove that given n object
entities, if a value is stored by f = d2n/3e object entities,
provided that f’ = d2n + 1/3e object entities do not suf-
fer memory losses, the value written may be retrieved if not

overwritten. For sake of simplicity, let us consider the case
in which there are no concurrent or more recent value writ-
ten w.r.t. 7→co than the value v.

When the write w(x)v terminates, at least f object en-
tities have stored the value, for line 4 of write procedure
in Figure 2, line 2 of write thread in Figure 4 and for
the properties of the plausible clocks and the assumption
of no causally concurrent or more recent write operation.
Among these, at most n-f’ may lose its status and thus
value v, returning to the initial value ⊥. Notice that triv-
ially n− f ′ < f .

Let us now consider the worst case, that is the value is
stored by the n-f’ object entities that subsequently lose their
status. Thus summarizing, n-f object entities do not store
the value v, n-f’ object entities store and subsequently lose
value v and the remaining object entities permanently store
such a value.

When subsequently a client process ci invokes a read re-
quest, it waits for a response from f object entities. In the
worst case, ci receives a response by the 2n-f-f’ object en-
tities that do not have value v. But since it waits for f re-
sponses, we are sure that there is at least one response pig-
gybacking value v. In fact, let us notice that 2n− f − f ′ =
2n − d2n/3e − d2n + 1/3e ≤ 2n − 2n/3 − 2n + 1/3 =
2n − 1/3 < 2n/3 ≤ d2n/3e. Since f = d2n/3e, the proof
follows from the fact that 2n− f − f ′ < f . In other words,
in order to reach f responses, ci needs a response sent by an
object entity that does not belong to the 2n−f−f ′ without
the value v.

Property 3 (Termination). Each operation invoked by a
correct client eventually completes.

Proof. • Write. Let ci be a correct client that issues a
write operation wi(x)v. Then according to line 3 of write
procedure in Figure 2, wi(x)v completes when ci receives
an ack from f object entities, otherwise it loops into lines 2
and 3 of write procedure in Figure 2. Then we have to prove
that if a correct client ci invokes a write wi(x)v eventually
f ackmwrite(v,t) are received by ci. This is ensured by as-
sumption 1 and line 6 of write thread in Figure 4.
• Read. Let us now consider the case of a read operation.
A read operation completes if f response messages are re-
ceived, lines 2, 4,and 8 of read procedure in Figure 3. Then
we have to prove that if a correct client ci invokes a read
ri(x)v eventually an ack from f xk is received by ci. This
is ensured by assumption 1 and lines 3, 4 of read thread in
Figure 4.

Property 4 (Validity). If a read operation invoked by a
client process ci returns a value v, then there exists a client
process cj that invoked the write of v.

Proof. The proof follows by lines 1, 3 of write thread in
Figure 4, lines 3-5, 10 and 18 of read procedure in Figure
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3, to the read thread in Figure 5 and to the property of no
creation of fair loss channels, [21].

5. The case of sequential consistency

In this section we point out how we can adapt algorithm
presented in section 4 to implement a sequential consistent
shared object. A read/write shared object is sequential con-
sistent if for any generated history H , it is possible to find a
sequence S containing all the operations in H such that 1)
each read operation returns the last value written according
to S and 2) for every client process ci, for every pair of op-
erations o1 and o2 executed by ci such that o1 precedes o2

in ci program order than o1 precedes o2 in S.
In detail, instead of using a plausible clock, we use as

timestamps, pairs composed by a scalar clock, i.e. a Lam-
port clock, and process identity. We assume a total order
on client process identities. According to this, given two
timestamps t1 = (l1, id1) and t2 = (l2, id2), we have that
t1 < t2 if l1 < l2 or l1 = l2 and c1 < c2. In order to guar-
antee sequential consistency, we use a deterministic rule to
totally ordering concurrent write operations, e.g. operations
with the same scalar clock are ordered according to the pro-
cess identifier. As an example, let us consider the following
two write operations w1(x)a and w2(x)b whose timestamps
are respectively (1, 1) and (1, 2). We have that each object
entity applies before w1(x)a and then w2(x)b. This means
that an object manager that previously received w2(x)b, will
discard w1(x)a when received. We analogously impose the
ordering when a client process reads such values.

6. Related Works

Read/write objects are building blocks to implement sev-
eral distributed services, i.e. distributed shared memory,
distributed directory lookup services, shared boards and so
on. Many consistency criteria have been proposed in or-
der to the define objects semantics, e.g. from more to less
constraining ones: Atomic [17], Sequential [16], Causal [3]
and PRAM [18]. Read/write atomic objects (registers) have
been the most studied since they offer to processes the il-
lusion of accessing the object once at time. On the other
hand, atomic consistency requests object state persistency
thus making atomic object implementations more expen-
sive w.r.t. weaker consistency criteria. Attiya et al. in [6]
give the definition of persistency for a single writer/multi-
readers atomic register, that is: once a process reads a
particular value, then, unless the value of this register is
changed by a write, every future read of this register may
retrieve such a value, regardless of process slow-down or
failure. Herlihy et al. in [14] formalize the concept of per-
sistency for a multi-writer/multi-reader atomic object. In

a distributed message-passing system where processes may
fail by crashing, implementations of atomic objects have to
cope with the difficulty of providing object state continuity
when processes fail. Attiya et al. in [6] propose an im-
plementation for single-writer/multiple-reader register pro-
vided that a majority of processes do not crash. Lynch et al.
in [20], extend this last work to multiple-writer/multiple-
reader registers adopting a more general quorum-based ap-
proach. Their solution also tolerates quorums on-line re-
configurations. Some quorum-based solutions have been
also proposed to implement atomic objects in dynamic sys-
tems where participants may join, leave and crash during
the computation, [12, 22], [10]. Instead of using quorums,
in [9] Friedman implements an atomic object on top of a vir-
tually synchronous communication layer. In [9], Friedman
also investigates sequential and causal consistent shared ob-
jects.

On the other hand, in dynamic systems where processes
may join and leave at any time and arbitrarily fast, objects
implementations are not persistent by nature. To circum-
vent this problem, Lynch et al. [19] propose a solution to
implement atomic consistency when the system is quies-
cent. Friedman et al. in the context of peer-to-peer sys-
tems propose what they call a semi-reliable unified storage
abstraction [11].It is interestingly to notice that they imple-
ment a notion of atomic consistency restricted to uninter-
rupted partial execution. An uninterrupted partial execution
is a collection of sequences of read and write operations,
each one by a different process, such that during their ex-
ecution there are no failure and the set of processes do not
change. On the other hand, in order to guarantee consis-
tency all the time regardless the dynamism of processes, we
implement a shared object with a weaker semantics, that is
causal consistency [3]. Moreover, we guarantee persistency
of value written only during quiescent periods, through the
weak persistency.

To cope with the complexity of dynamic systems, we ex-
ploit the idea proposed by Chen et al. in [8] to solve fault-
tolerant mutual exclusion problem in dynamic systems. In
detail, the object is implemented by a fixed set of virtual
servers that may suffer memory losses. A memory loss ab-
stracts the fact that a virtual server is incarnated by a process
that may crash and be replaced by a new process that is not
able to retrieve any state the crashed process pass through. It
is like considering a fixed set of servers that may crash and
recover but such that after recovering completely lose their
previous state. Guerraoui et al. in [13], point out that atomic
registers may by implemented in a crash-recover model pro-
vided that i) a majority of processes never crash or eventu-
ally recover and never crash again and that ii) given a write
operation w(x)v, at least a majority of processes log (i.e.
store to stable storage) the value v before the write operation
returns. Thus, they extend the atomicity consistency criteria
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defined for multi-writer/multi-reader register in a crash-stop
model by providing two new criteria: persistent atomicity,
to capture the fact that traditional atomicity has to persist
through the crashes and transient atomicity that does not
guarantee atomicity in between crashes.

Finally, in order to track causality order relations be-
tween operations, we implement a plausible clock system
that is an adaptation of R-Entries vector clock system(REV)
proposed by Ahamad et al. in [5]. Plausible clocks were
also used by Ram et al. in [15] to implement a causal mem-
ory in a mobile environment. Their system model, however,
differs from our since they consider a fixed set of correct
physical master sites and a set of mobile hosts.

7. Conclusions

In this paper, we focused on the problem of implement-
ing shared objects over a highly dynamic asynchronous
message passing system characterized by infinitely many
processes. We implemented the object by a fixed set of vir-
tual servers, each one incarnated at each time by a single
process. A virtual server may suffer memory loss: when
the process currently incarnating a virtual server crashes (or
leaves), a new process replaces the old one but it is not able
to retrieve the states the crashed process passed through. To
capture a possible infinite sequence of processes incarnat-
ing a virtual server we have assumed a number of memory
losses arbitrarily large. Since this failure model is too weak
for implementing traditional atomic objects, we consider
a weaker consistency criterion, namely causal consistency
[3]. Differently from atomicity, causal consistency may tol-
erate an infinite number of memory losses, however it may
be useful provided that some form of values persistency is
ensured. According to this, we defined a persistency prop-
erty, namely weak persistency, and we proposed an algo-
rithm, implementing a so called weak-persistent causal ob-
ject. This object has the desirable property of not violating
causal consistency during the periods in which processes
that implement it continuously join and leave. Moreover,
the implementation does its best to provide the latest causal
consistent state to clients.

Finally, during quiescent periods (process joins and
leaves subside) persistency and causal consistency is pro-
vided to clients.
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Vivien Quéma1 and Sara Tucci Piergiovanni1

1DIS, Università di Roma “La Sapienza”, 00198 Roma, Italy
2LPD, EPFL, CH 1015 Lausanne, Switzerland

3CSAIL, MIT, Cambridge, MA 02139, USA

Abstract. We present an update ordering protocol based on gossiping
for geographically distributed replicas. We target large scale distributed
systems without central authority. Updates are disseminated epidemi-
cally and continuously applied to the replicas despite network partitions
and asynchrony. No two updates are ever performed in different orders,
but gaps might occur during periods of unreliable communication. These
gaps are filled whenever connectivity is provided: consistency is then
eventually ensured, but without any conscious commitment. This un-
consciousness is the key to tolerating perpetual asynchrony. A simulation
study shows that the protocol is scalable and achieves high throughput
under load.

1 Introduction

Background. A new class of so-called interactive distributed applications is
emerging : these include distributed virtual environments, multi-player games,
interactively steered scientific applications, collaborative design systems, etc [3].
These applications may need to run in a wide area asynchronous environment
with widely distributed users and resources and no central authority. On-line
games might for instance involve thousands of users [20]. In such settings it is
important for each user to have access to a local copy (replica) of every object
of interest. This is key to allowing local progress without constantly relying on
the network. The main technical challenge is then to maintain some form of
consistency among all replicas of the same object [17].

Traditionally, many systems running on local area networks provide so-called
single copy semantics (also referred to as atomicity). Single copy semantics gives
the user the illusion of accessing a single, highly available instance of an object.
Typical solutions require users to access a quorum of replicas, to acquire exclusive
locks on data they wish to update or to agree on a total order of updates to be
applied at each replica. Total ordering requires each update to be executed at
most once at each replica and any two updates to be executed in the same order
at all replicas. Unfortunately, maintaining single-copy semantics in a worldwide
deployed system is practically very expensive and theoretically impossible [9].

In the kind of wide-area settings we consider, it is necessary to use (weaker)
ways of ordering updates. This is precisely what eventual consistency [19] pro-
vides. It guarantees that whatever the current state of the replica, if no new
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updates are issued and replicas can communicate freely for a long enough pe-
riod, the contents of all replicas eventually become identical. This consistency
criterion was claimed to be very efficient in weakly connected environments such
as the one targeted by Bayou [19] and OceanStore [15]. From an implementation
point of view, the issues to solve in order to guarantee eventual consistency are
[17]: (1) update dissemination: each update must eventually reach all replicas,
and (2) update ordering: all updates must be eventually applied in the same
order at each replica to ensure that the last update is the same at all replicas.

In current solutions [15, 19], update dissemination is based on epidemic pro-
tocols. Update ordering [15, 19, 13, 21, 18] is achieved by having replicas deliver
updates locally in any order (tentative order) and using rollbacks to eventually
reach a total order. Total ordering is typically computed a posteriori using some
form of consensus. This requires a “synchrony island” where agreement can be
achieved to ensure that all replicas eventually agree on the exact update order.
When that happens, each replica is conscious of the fact that total order has
been reached.

Contributions. This paper presents a protocol for achieving eventual consis-
tency in large-scale distributed environments. Update dissemination is performed
using a classical gossip-based protocol [8]. Our protocol differs from others by
the fact that it does not use any form of consensus, even only eventual. Our pro-
tocol defines an a priori total order that is never explicitly agreed upon among
replicas. Updates are disseminated using gossips and subsequently delivered. In
the case that some old update arrives after already having delivered subsequent
messages, the replica has to roll back to the old state, apply the old update
and re-deliver all subsequent messages. This means that, in theory, each replica
should keep all delivered updates forever. However, in practice, it is possible to
reach consistency with high probability without keeping all delivered updates.

A fundamental aspect of our protocol is that replicas are unconscious of when
total order is reached, i.e. a replica cannot know of the existence of some old, as
of yet undelivered messages. This unconsciousness is the key to reaching eventual
consistency even if the network is permanently asynchronous. This characteristic
is particularly important for interactive applications based on continuous shared
data [3]. It is important for such applications to allow users to access replicas in
the face of frequent disconnections.

Our protocol has the following characteristics:

– Non-blocking : the protocol enables update delivery even during periods when
the network is asynchronous or partitioned.

– Stability : the protocol exploits periods of (even partial synchrony) and merg-
ing of partitions to reduce the number of rollbacks. (Note that the periods
of synchrony are not relied on to reach consistency).

– Scalability : the protocol encompasses an autonomic mechanism that guar-
antees high throughput when the number of broadcasters and/or the rate at
which they broadcast updates increase.
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Our simulations convey our claim: we show that our protocol achieves rea-
sonable latency during synchronous periods (due to a small number of rollbacks)
and achieves high throughput under high load.

Roadmap. This paper is organized as follows. Section 2 presents the rami-
fications underlying unconscious eventual consistency. Section 3 describes our
protocol. A performance evaluation is presented in Section 4. Finally, related
work is presented in Section 5, before concluding the paper in Section 6.

2 Ensuring Unconscious Eventual Consistency

Roughly speaking, eventual consistency stipulates that all replicas eventually
converge to the same state, i.e. deliver the same set of updates in the same
order. It is possible to achieve eventual consistency in an unconscious manner
by defining an a priori total order on updates. Replicas (called processes in the
rest of the paper) deliver updates in their order of arrival, thus not requiring
any coordination among processes. Consistency is eventually achieved by using
a rollback mechanism to re-order already delivered messages.

Note that eventual consistency requires that all updates eventually reach all
processes. Reliable communication is therefore necessary. However, in a large
scale environment, ensuring strong reliable communication can be very expen-
sive. Consequently, most solutions [15, 19] rely on epidemic dissemination [11, 4,
7], even if they do not provide strong reliability1. Therefore, just like [15, 19],
our protocol only provides eventual consistency with high probability.

In the rest of the section we discuss the ramifications underlying unconscious
eventual consistency with the aim of better understanding our protocol in the
next section. In particular, we discuss the ramifications underlying update roll-
backs.

2.1 Update Sequencing

Consider a finite and ordered set of processes {p1, . . . , pn}. Each process acts as a
sequencer; it keeps a local sequence number that is increased before broadcasting
a new message (update). Along with the sequence number, each process tags the
message m with its id. The resulting message (m, id, seq) is then disseminated
to all processes. A total order is defined on these messages using the sequence
number and id. More precisely: for any pair of messages m and m′, m precedes
m′ iff (i) seq < seq′ or (ii) seq = seq′ and id < id′.

Upon reception of a message, a process cannot possibly know if it will ever
receive another message preceding it in the total order. It therefore doesn’t
make sense for a process to wait for other messages. Consequently, processes
deliver messages upon reception. If a message m1 is received after a message m2

1 Note that several works such as [12, 14] focus on improving the reliability of epidemic
protocols.
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preceding it in the total order, a rollback is performed on m2. Subsequently, m1

and m2 are delivered in the correct (total) order.

Let us illustrate this naive implementation with a simple example. Con-
sider a system with three processes {p1, p2, p3}. Process p1 sends two messages
(m1, p1, 1), (m3, p1, 2) and p3 two messages (m2, p3, 1), (m4, p3, 2). No other mes-
sages are sent. In this case the totally ordered sequence {m1, m2, m3, m4} is not
consecutive in the sense that no messages with id p2 are ever sent. We say that
the missing messages are gaps. These gaps in the sequence lead to some uncer-
tainty. After a process pi receives all messages {m1, m2, m3, m4}, it still does not
know if it is missing a delayed message coming from p2 (to be delivered between
m2 and m3) or if this message does not exist at all.

2.2 Rollbacks

The drawback of the naive implementation is that there is no mechanism to
reduce the number of rollbacks. In particular, with a large number of sequencers,
the number of rollbacks in the system drastically increases. We show that the
more sequencers are present in the system, the more rollbacks are necessary.

In the naive implementation all processes give sequence numbers to messages.
Consider that there are N sequencers in the system identified by s1 < . . . < sN .
Each sequencer sequences k messages. For simplicity of presentation, consider
that messages are broadcast using a reliable FIFO broadcast primitive. If N = 1,
all messages are received in the correct order by all processes. Thus, no rollbacks
are necessary. However, with a larger number of sequencers, the number of pos-
sible rollbacks increases. Consider the case N = 2 with s1 and s2 starting to
broadcast at the same time and same rate. Moreover, consider that messages
sent by s2 are systematically received before messages sent by s1. Messages ar-
rive at each process in the following order: (m2, s2, 1), (m1, s1, 1), (m4, s2, 2),
(m3, s1, 2), etc. Consequently, each process needs to rollback k messages (those
sent by s2). Now, if we extend the previous example to a system with N = m

sequencers, it is trivial to demonstrate that each process performs (m − 1) ∗ k

rollbacks.

We describe in the next section our protocol and we discuss in particular how
we exploit merging of partitions and periods of synchrony to reduce the possible
number of sequencers and hence reduce the number of rollbacks. In particular,
our protocol seeks to ensure that there is only one sequencer in the system and
this is ensured if the network is “synchronous enough”.

3 Protocol

This section presents the protocol, starting with a general overview followed by
an in depth description.
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3.1 Overview

The protocol we propose combines a sequencing service with gossip based mes-
sage dissemination. Even though it would be easier to implement the sequencing
service using a single process, this is impossible for scalability reasons. Instead,
our protocol relies on a pool of processes organized in a coalition. As depicted in
Figure 2, a process wishing to ecBroadcast a message first requests a sequence
number from the coalition it relies on and then uses gossiping to disseminate the
message together with its sequence number.

(1)

(2)

(1)  sequence number request

(2)  gossip-based dissemination

process
coalition

Fig. 1. Basic behavior of the protocol.

Sequencing using coalitions. A coalition ck is a set of processes (called mem-
bers) acting as a common sequencer. Within a coalition, processes are sorted
using their identifiers. We note ck[x] the xth process in ck (x is called rank of
process ck[x]) and we note card(ck) the cardinality of coalition ck. Processes be-
longing to a coalition issue sequence numbers as follows: let ck be a coalition and
let pj be a process belonging to ck, pj = ck[x]. Process pj assigns monotonically
increasing sequence numbers belonging to the sequence SN ck[x] = (snn)n∈N with
snn = n ∗ card(ck) + x. Along with this sequence number, messages are tagged
with the id of the process that issued the sequence number.

Note that the above-described mechanism ensures that a coalition issues dis-
tinct sequence numbers. Nevertheless, there is no guarantee that these sequence
numbers will be consecutive. For instance, consider a coalition made of two pro-
cesses p1 and p2. Assume that p1 issues sequence numbers {0, 2, 4, 6}, and that
p2 issues sequence numbers {1, 3}. Finally, assume that p2 crashes; this implies
that the coalition will never issue sequence number 5.

Dissemination. We rely on a gossip-based protocol for message dissemina-
tion [8]. It has been shown that these protocols are able to ensure high delivery
ratios (almost all messages are received by all processes). Moreover, for im-
proving reliability during periods when the network is highly asynchronous or
partitioned, the protocol uses a pull mechanism that shares similarities with the
one proposed in Bayou [19].
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Message delivery. Processes try to deliver messages in sequence. This is done
by waiting until the preceding messages have been delivered before delivering
the current one. However, a process cannot possibly know about all preceding
messages for three reasons: (1) there might be other coalitions issuing sequence
numbers, (2) the sequence numbers issued by the coalition the process relies
on are not necessarily consecutive, and (3) the gossiping mechanism used for
dissemination is not reliable. Therefore, a process only waits for a given period
of time before delivering received messages. Consequently, a message can be
received after consecutive messages have already been delivered. In this case a
rollback mechanism is used to undeliver messages and re-deliver them in the
correct order. Our experiments show that in the case when only one coalition is
present in the system, the number of rollbacks is close to zero.

Coalition creation. If a process pi that does not rely on a coalition wants to
ecBroadcast a message, it first tries to discover an already existing coalition. If
it does not find one, it creates a new coalition. To do that, process pi includes
itself and some other processes (to get the desired size of the coalition) in a new
coalition.

Coalition merging. As explained above, it is desirable to have a single coalition
in the entire system. Members of different coalitions get to know each other
when they receive messages sequenced by a different coalition. As depicted in
Figure 2, if a member pi of a coalition A receives a message coming from another
coalition B, then it builds a new coalition C including all members of A and
B. As explained below, the size of the resulting coalition is readjusted after the
merger.

(1)

(2)

A
(1)

(2)

B
(1)

(2)

(1)

(2)

merging

p1

p2
p3

p4

p5

p6

p7

p8

p9

C
p1

p2
p3

p6 p9

p7

Fig. 2. Coalition merging.

Assuring eventual total order with changing coalitions. Each time a
coalition member switches to another coalition (e.g. after a merger) it starts
issuing new sequence numbers as explained above. Therefore a process could
reissue the same sequence number twice. This problem is solved by adding an

Part Algo - APPENDIX [Baldoni et al. 2006-11] p 6



epoch number to each sequenced message. When a process joins a coalition, it
associates an epoch number to this new coalition. This epoch number must be
greater than the epoch number of the last coalition the process was a member of.
For instance, if process pi was previously a member of c1 with epoch number e1,
then a member of c2 with e2 and then joins c3, the epoch e3 = max(e1, e2) + 1.

Epoch numbers do not change the way processes deliver messages. We just
need to change the way the total order on messages is defined such that the epoch
number takes precedence over the sequence number and finally the process id.

Self-sizing coalitions. Scalability of the sequencing service is obtained by
dynamically adjusting coalition size according to the load on coalition members.
The load on a coalition depends on the number of broadcasters in the system
and the rate at which they broadcast. These two parameters are often impossible
to determine a priori in the target environments. The self-sizing mechanism
described in Section 3.3 dynamically modifies the size of coalitions, based on
the average number of sequence number requests that coalition members receive
during a period of time.

It is important to note that the smaller the coalition, the smaller the proba-
bility of gaps appearing in the sequence numbers, and the bigger the coalition,
the higher the number of concurrent requests the coalition can handle. When
adding a new member to a coalition only the most stable processes are con-
sidered. Conversely, the least stable processes are removed first when reducing
the size of a coalition. Section 3.3 describes a mechanism that determines the
stability of processes according to the number of messages they have delivered.

3.2 Main Protocol

We start by explaining the basic behavior of the protocol. Then, we describe
the aging mechanism that allows the selection of stable processes. Finally, we
detail the self-sizing mechanism in charge of adjusting coalition size according
to system load.

Data structures. Each process p executing the algorithm contains the following
set of data structures. coalition represents the coalition process p relies on. It is
a list of processes. optimalSize is the size that the coalition must have. epoch

represents the epoch process p is in. nextSN is the next sequence number from
the coalition that p relies on and expects to deliver next. pending is the list
of messages that process p received but did not yet deliver. Each entry in the
pending list contains [m, sn, ts], where m is the message to be delivered, sn is
its sequence number (integrating the process id, epoch number and sequence
number attributed by the sequencing service), and ts the time at which message
m was received. The deliveryT imeout parameter indicates the time process p

should wait before delivering the first message in pending. All messages that
have been delivered so far are stored in the delivered list. Finally, nbOfRetries
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refers to the number of attempts to retrieve a coalition process p must do before
creating its own coalition.

Note that for the sake of clarity, some functions (resp. messages) that are
described below take a parameter, named info, that is a data structure carrying
various data on the process that called the function (resp. sent the message). For
instance info.coalition contains the coalition the process relies on; info.epoch

carries its epoch; etc.

The isNext() function. To ease the reading of the algorithm, we have isolated
the isNext() function (Figure 3), whose role is to indicate if a message must
be delivered (returns true) or if it must stay in the pending list. This function
enforces the following policy: the protocol can only wait for messages that are
sequenced by the coalition the process relies on and at the same epoch as the
one the process is currently in. All other messages are delivered as soon as they
are received. This choice is motivated by the fact that most of the time (i.e.
when the network is “synchronous enough”), there is only one coalition in the
system. Note that it would be easy to also wait for messages sequenced by other
coalitions simply by having one nextSN field per coalition.

1: function isNext(sn, ts)

2: if (sn.pid ∈ coalition) ∧ (sn.epoch = epoch) then

3: if (sn.number = nextSN) ∨ (ts + deliveryTimeout < getTime()) then

4: nextSN := sn.number + 1

5: return true

6: else

7: return false

8: return true

Fig. 3. The isNext() function.

Algorithm executed by any process. Figure 4 depicts the algorithm exe-
cuted by any process pi. The coalitionUpdate() aims at updating the knowledge pi

has about existing coalitions. It is called each time a new message is received. It
simply changes pi’s coalition if pi’s epoch is lower than the epoch of the coalition
given in parameter.

Process pi can use the ecBroadcast() function to initiate the broadcast of
a message m. This function first gets a sequence number using the getSN()
function; it then gossips the message together with its sequence number and
information about pi (coalition and epoch); finally, it adds message m to the
pending list. The getSN() function first tries to retrieve a coalition using the
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For each process pi

1: procedure ecBroadcast(m)

2: 〈sn〉 := getSN()

3: gossip 〈m, sn, info〉

4: pending.add([m, sn, getTime()])

5: function getSN()

6: repeat nbOfRetries times

7: 〈info〉 := getCoalition()
8: if info 6= ∅ then

9: coalitionUpdate(info)

10: return snRequest()
11: info.coalition = {pi}

12: info.epoch = epoch + 1

13: coalitionUpdate(info)

14: return snRequest()

15: upon gossip〈m, sn, info〉 from pj do

16: coalitionUpdate(info)

17: pending.add([m, sn, getTime()])

For each process pi

18: upon pending.first = [m, sn, ts]

with isNext(sn, ts) do

19: rolledback = ∅

20: while m ≺ delivered.last do

21: rollback(delivered.last)

22: rolledback.add(delivered.removeLast())
23: ecDeliver (m)

24: delivered.add(m)

25: while rolledback 6= ∅ do

26: ecDeliver (rolledback.removeFirst())
27: pending.remove([m, sn, ts])

28: procedure coalitionUpdate(info)

29: if info.epoch > epoch then

30: coalition := info.coalition

31: epoch := info.epoch

32: nextSN := 0

Fig. 4. Algorithm executed by any process pi.

getCoalition()2 function. Then, it uses the snRequest()3 function to get a sequence
number from the coalition returned by the getCoalition() function. Note that
after nbOfRetries unsuccessful tries, the getSN() function creates a coalition
(containing process pi).

When process pi receives a gossip message m, it first updates its coalition us-
ing the information contained in m; it then adds m to the pending list. Messages
stored in the pending list are delivered as soon as they are first in the list and
that the isNext() function returns true. Note that the delivery of a message may
require rolling back and re-delivering previously delivered messages (Lines 19-22
and 25-26).

Algorithm executed by coalition members. The algorithm executed by a
coalition member pi differs from the one described in the previous section by the
coalitionUpdate() function. The latter is depicted in figure 5. It encompasses a
merging mechanism that aims at reducing the number of concurrent coalitions
in order to lead, when the network is synchronous enough, to a system with only
one coalition. Its behavior is the following: when the coalition given in parameter
is the same as pi’s coalition, the function simply updates pi’s epoch if it is lower
than the one passed as a parameter. When coalitions differ, the function merges
the two coalitions and uses the size() function to try to reach the coalition’s

2 For space reasons, the getCoalition() function is not described. This function either
returns the coalition pi relies on (if such a coalition exists), or broadcasts a “coalition
request” message to discover a coalition.

3 For space reasons, the snRequest() function is not described. This function simply
requests a sequence number from one member of the coalition pi relies on. Note
that, each time this function is invoked, it sends the request to a different member
in order to balance the load over all coalition members.
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optimal size. This function either truncates the coalition using the truncate()
function, or adds processes returned by the getProcess() function. Several im-
plementations of the truncate() and getProcess() functions can be done. A basic
implementation of the truncate() function is to remove processes with highest
IDs. The getProcess() function can use a basic implementation that randomly
return processes chosen among the neighbors of pi. In section 3.3, we present
other implementations of these functions that aim at selecting stable processes.

For each coalition member pi

1: procedure coalitionUpdate(info)

2: if info.coalition = coalition then

3: if info.epoch > epoch then

4: epoch := info.epoch

5: nextSN := 0

6: else

7: merge(coalition, info.coalition)

8: size(coalition)

9: epoch := max(epoch, info.epoch) + 1

10: nextSN := 0

For each coalition member pi

11: procedure merge(c1, c2)

12: c1 := c1 ∪ c2

13: procedure size(c)
14: if card(c) > optimalSize then

15: truncate(c)
16: else

17: while (card(c) < optimalSize) ∧

hasMoreProcesses()
18: c := c ∪ getProcess()

Fig. 5. Algorithm executed by any coalition member pi.

3.3 Protocol Extensions

This section presents three extensions to the protocol. These extensions aim
at handling faults affecting coalition members, reaching stability, and ensuring
scalability.

Handling faults in coalitions. The protocol presented in the previous section
does not handle faulty coalition members. This does not affect the correctness of
the protocol, but it alters its latency. Indeed, faulty members are not removed
from coalitions4. The consequence is that some sequence numbers will never be
emitted (recall that each member assigns distinct sequence numbers based on its
rank in the coalition), thus leading to a frequent reliance on the deliveryT imeout

to deliver messages.
To solve this problem, we propose to run a heartbeat protocol among coalition

members (Figure 6). Each member periodically (δ) sends a PING message to
other members in the coalition. Members maintain two data structures: alive is
the list of processes from which a PING message has been received. This list is
reset periodically. suspected is the list of processes that the member suspects.
This list is built by adding members of the coalition that are not in alive after (2∗
δ) ms (Line 7), and by adding members suspected by other members (Line 12).

4 Faulty members remain in the coalition until all members fail, which leads to the
creation of a new coalition by the getSN() function.
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Processes that are in the suspected list of a process pi will no longer be added
by pi in a coalition5 (Line 17).

The above-described behavior requires some additional comments: the heart-
beat protocol does not prevent false suspicions. On the contrary, once a member is
suspected by some process pi, it will eventually be suspected by all other coali-
tion members (Line 12). Nevertheless, if suspected lists were not propagated,
coalitions would oscillate as long as one process falsely suspects another mem-
ber. Moreover, propagating suspected lists is not a real issue since (1) timeouts
can be set sufficiently large to prevent most cases of false suspicions and (2) it is
possible to remove processes from the suspected lists after some (long enough)
period of time, in order to allow falsely suspected processes to re-integrate coali-
tions.

For each coalition member pi

1: suspected := ∅

2: alive := ∅

3: task heartBeat every δ ms

4: send〈PING, info〉 to all pj ∈ coalition

5: upon receive〈PING, info〉 from pj do

6: alive := alive ∪ {pj}

7: suspected.add(info.suspected)

8: coalitionUpdate(info)

For each coalition member pi

9: task coalitionMaintenance every (2 ∗ δ) ms

10: info.epoch = epoch + 1

11: if alive 6= coalition then

12: suspected.add(coalition\alive)

13: info.coalition = alive

14: coalitionUpdate(info)

15: alive := ∅

16: procedure merge(c1, c2)

17: c1 := (c1 ∪ c2)\suspected

Fig. 6. Extension for handling coalition members faults.

Reaching stability with aging. This section describes how the protocol’s
stability can be improved by changing the way coalition members are selected.
The goal is to select the most stable members. A member is said to be stable
when it remains in the system for a long period of time6. Reaching stability is
important because it limits the number of concurrent coalitions that may be
created when coalition members fail, thus decreasing the number of required
rollbacks.

In the protocol described in the previous section, coalitions are truncated
based on members’ IDs. The main advantage of this mechanism lies in its deter-
minism: the execution of the truncate() function by different coalition members
on the same set of processes produces the same subset of processes. Neverthe-
less, this mechanism has a major drawback: it does not favor stable processes.
Indeed, all processes have an equal opportunity of becoming coalition members.

5 Note that this requires that the getProcess() function never returns suspected pro-
cesses.

6 Experimental studies have shown that stable processes are often present in large
scale systems such as peer-to-peer systems [10].

Part Algo - APPENDIX [Baldoni et al. 2006-11] p 11



This raises the following issue: consider the scenario in which a process p with
a very high IDs is “isolated” for some period of time. Process p will create its
own coalition (in the getSN() function). When other coalitions will discover p’s
coalition, they will merge using the truncate() function. Because of its very high
ID, p will be selected for staying in the truncated coalitions. As a consequence,
these coalitions will change, even if they were not affected by member crashes.
This behavior affects the protocol’s stability.

To improve the protocol’s stability, we propose to use an aging mechanism7

that shares similarities with the mechanism used to improve the reliability of
epidemic broadcast algorithms [8]. The basic idea underlying this mechanism
is that each process has an age that reflects the number of messages the pro-
cess delivered (the age is incremented every N deliveries). Each process stores
the age of coalition members and propagates them with each message (in the
coalition list). Then, the truncate() function selects the members with highest
age8. Eventually, stable processes will have a higher age than all other processes,
which guarantees that all coalition members will be stable.

Note that, contrarily to the previously described truncate() function, there
is no guarantee that two executions of this function by two different coalition
members will produce the same result. Indeed, this depends on the knowledge
that these two members have about the ages of all coalition members. Neverthe-
less, this is not an issue because the probability of having different knowledge
can be decreased by increasing N . Thus, this doesn’t affect the fact that stable
processes will eventually be older than all other processes.

Moreover, note that it is possible to increase the speed at which stability is
reached by ensuring that the getProcess() function returns “old” processes. Our
protocol achieves this by having each coalition member maintain a (short) list of
the oldest processes it knows. This list is propagated with each PING message.

Improving scalability using coalition self-sizing. In our context, ensuring
scalability consists in handling a large number of nodes and guaranteeing high
throughput in message deliveries under high load. The protocol described so
far already deals with scalability issues by (1) using a gossip protocol to dis-
seminate messages, (2) distributing the sequencer role among several processes
(coalition), and (3) balancing the load among coalition members by requesting
sequence numbers in a round-robin fashion. Nevertheless, one limitation of the
protocol is that it assumes a priori knowledge of the optimal coalition size. This
optimal size can only be computed if the system size and the broadcast rate are
(approximately) known in advance and only slightly vary over time, which is not
the general case.

This section describes an extension to the algorithm9 that aims at dynami-
cally computing the optimal coalition size. This self-sizing mechanism is based
on the fact that during a long enough period of time, all coalition members

7 For space reasons, we do not provide the pseudo-code of this mechanism.
8 In case of equal age, the truncate() function selects the member with the highest ID.
9 For space reasons, the pseudo-code of this extension is not shown.
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experience the same load (due to the round-robin load balancing mechanism).
Therefore, computing the optimal size can be done by a specific member (i.e. the
member that has rank 0, which we will call the “smallest member”), by simply
looking at the load it experienced during the last sizing period. If the node is
overloaded, it adds processes to the coalition; otherwise, it removes processes.
This is the responsibility of the application deployer to decide the maximal load
(in terms of request/seconds) a node in the system can support10.

When two coalitions merge, the optimal size is set to the sum of the opti-
mal sizes of both coalitions. This is the only case when the optimal size can be
changed by a member other than the smallest one. In such, it is necessary to
determine if the optimal size is the one set by the smallest member or by the pro-
cess that executed the merger. This decision can easily be done by propagating
a sizing number together with the optimal size sent in each message. The goal of
this sizing number is to easily know if a sizing decision succeeds or precedes an-
other one. This sizing number is incremented by the smallest member each time
it changes the optimal size. Moreover, when two coalitions with sizing numbers
n1 and n2 merge, the sizing number is set to max(n1, n2)+1. Coalition members
update their optimal size each time they receive a message with a sizing number
greater than the one they currently use.

4 Performance

In this section, we present the performance results obtained by simulating our
algorithm. We start by describing the simulation settings and then give the
actual performance measurements. The goal of the simulations is to show that
the protocol is (1) stable, (2) non-blocking, and (3) scalable.

4.1 Simulation Environment

We simulated our algorithm using the Peersim simulator [1]. Peersim allows
cycle-based simulations of distributed algorithms in large-scale environments.
Processes in peersim can be connected using arbitrarily complex topologies. In
all experiments described in this section, processes are connected using a ran-
dom graph topology: every process knows a fixed number of random processes.
Moreover, processes disseminate messages using an LPBCast-like broadcast pro-
tocol [8].

Note that we extended the simulator in order to be able to simulate asyn-
chrony. Incoming and outgoing message queues for inter-process communication
were added for this purpose. We can vary the time (i.e. number of cycles) it takes
for a message to be transferred from the outgoing queue of the sending process
to the incoming queue of the receiving process. In our experiments, this time is

10 This parameter must fit all nodes in the system. It is thus preferable not to over-
estimate it. Mechanisms might be added to the algorithm to allow some nodes to
handle more requests than others.
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bounded by maxLatency, and every message transfer takes a random number
of cycles ranging from 1 to maxLatency.

Finally, we model churn (i.e. continuous joining and leaving of processes) by
periodically replacing a percentage of processes. Replacing a node simply consists
in resetting all the data structures it contains (except the neighbor table) and
generating a new ID for this node. All experiments are run with 1000 processes,
with a PING period (δ) of 20 cycles and a sizing period of 40 cycles. All the
experiments start with a warm-up phase (first 100 cycles) in which processes
progressively join.

4.2 Stability

The first experiment illustrates the fact that the protocol selects stable processes.
It consists in simulating 1000 processes that randomly broadcast messages. The
self-sizing mechanism was disabled and the optimal coalition size was set to 8.
The goal of the experiment is to show how coalitions evolve (i.e. the average
number of stable members in each coalition). For the sake of clarity, the average
was only computed on coalitions that stayed in the system for longer than 20
cycles.
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Fig. 7. Stable processes selection.

Figure 7 depicts the average number of stable processes in each coalition as
a function of time (i.e. cycle number). We varied both the latency (through the
maxLatency parameter) and the churn rate. The maxLantecy parameter ranges
from 1 to 15; the churn rate ranges from 4% to 8% every 15 cycles. We observe
that without any aging mechanism, the protocol does not reach stability (last
plot). On the contrary, the aging mechanism ensures that stability is reached
(first four plots), i.e. that eventually there will be 8 stable processes in the
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coalition. Nevertheless, the speed at which stability is reached depends on the
level of asynchrony and churn.

– The stability time increases with asynchrony for two reasons: (1) more time
is necessary for coalitions to meet, and (2) asynchrony alters the knowledge
that processes have about the age of other processes. Therefore, the protocol
has a higher probability of selecting processes that are not stable.

– Increasing churn decreases the time it takes to reach stability. This result
might seem surprising, but it can easily be explained by the fact that: (1)
unstable members in the coalition have higher probability to fail (and thus
to be replaced), and (2) stable processes are proportionally older (and thus
have higher probability to be selected).

4.3 Non-Blocking Behavior

The second experiment illustrates the fact that our protocol is non-blocking. In
particular, we show that it still provides service during periods where the network
is partitioned. The experiment consists in simulating 1000 processes that ran-
domly broadcast messages. The maxLatency parameter is set to 10. Moreover,
there is no churn. In order to simulate 3 network partitions, we group processes
into 3 groups. The interconnection graph is built in such a way that each process
has an equal number of (randomly chosen) neighbors in each group. A network
partition is simulated by stopping message transfers involving processes that are
in different groups.
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Fig. 8. Average message latency.

Figure 8 plots the average latency of a message broadcast as a function
of the time at which the broadcast was initiated. The experiment starts with
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three network partitions that merge at cycle 300. As explained in Section 3.1,
messages that are not delivered by the gossip primitive are retrieved using a
pull mechanism. In the depicted experiment, this is the case of most messages
sent between cycles 0 and 300. Indeed, our protocol keeps providing service, but
the gossip primitive only delivers messages to processes belonging to the same
partition as the one the message’s broadcaster is in. Other processes wait until
the partitions have merged to retrieve these messages using the pull mechanism.
This behavior explains the high latency of message broadcasts initiated between
cycles 0 and 300. Messages broadcast after cycle 300 have an average latency
ranging from 5 to 40 cycles. This is reasonable considering that the maximum
latency of a point-to-point communication is equal to 10 cycles.
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Fig. 9. Average number of rolled-back messages.

Figure 9 plots the average number of rollbacks that were done before deliv-
ering a message as a function of the time at which the broadcast was initiated.
The experiment is the same as the previously described one. We observe that
messages broadcast between cycles 0 and 300 require rollbacks before being de-
livered. This can be explained by the fact that these messages were previously
delivered in the partition of their respective broadcasters. After the network
merger, these messages are retrieved using the pull mechanism. Their delivery
requires rolling-back part of messages that were delivered during the network
partition. We also observe that messages sent after cycle 300 do (almost) not
require any rollback before being delivered. This shows that our protocol be-
haves like a traditional total ordering protocol when the network is synchronous
enough.
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4.4 Scalability

The last experiment we present demonstrates that the protocol is scalable. In
particular, we show that the protocol ensures (almost) constant throughput even
during periods when the number of initiated broadcasts drastically increases.

The experiment consists in simulating 1000 processes that have a probability
to broadcast messages that varies over time. In this experiment, the maxLatency

parameter is set to 10 and there is no churn. Moreover, the warm-up phase is not
represented for the sake of clarity. Figure 10 plots both the average number of
sequence number (SN) requests received by each coalition member at the start
of each round (first Y axis) and the average number of broadcasts initiated at
the start of each round (second Y axis). Each “coalition X” plot depicts the
life cycle of a coalition (i.e. the cycle at which it is created/destroyed) and the
average number of SN requests received by each member.
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The self-sizing mechanism was parameterized to maintain the average num-
ber of SN requests by member between 30 and 40. From cycle 0 to cycle 300,
processes have a low probability to initiate a new broadcast at the start of each
round. During this period, messages are sequenced by coalition 1, which con-
tains 3 members that handle (on average) 32,5 SN requests per cycle. Then, the
broadcast rate significantly increases between cycles 300 and 600. Coalition 1 is
first replaced by coalition 2 that contains 6 members handling 64,7 SN requests
per cycle on average. Thus coalition 2 does not yet have enough members to
handle the load. Consequently, coalition 2 is replaced by coalition 3 after a short
period of time. The latter contains 12 members handling 38,5 SN requests per
cycle on average. At time 600, the broadcast rate suddenly decreases. Coalition
3 is first replaced by coalition 4 (7 members and 15 SN requests per cycle), and
then by coalition 5 (4 members and 31,3 SN requests per cycle).
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This experiment shows that the self-sizing mechanism allows keeping the
average number of SN requests within the desired range, thus ensuring that
coalitions can sustain a constant throughput, regardless of the broadcast rate.

5 Related Work

Update ordering for eventual consistency can be ensured by using total order
protocols like the ones described in [6]. However only optimistic total order
protocols can efficiently support eventual consistency in a large scale setting
[21, 18]. Other approaches to total ordering are too strong and would decrease
responsiveness.

Optimistic total order protocols distinguish between tentative delivery and
committed delivery of messages. This approach has been proposed by Kemme et
al. in [13] to improve the responsiveness of the system in a LAN. The optimistic
approach in this case is based on the spontaneous total ordering in LANs. The
protocol proposed by Vincente and Rodrigues in [21, 18] guarantees that the
tentative order is equal to the committed one during synchrony periods of the
network. During periods of asynchrony rollbacks might occur. Finally, the pro-
tocol proposed by Sousa et al in [18] does its best to guarantee that the tentative
order is equal to the committed by artificially delaying messages received at a
process before delivery through a mechanism called delay compensation. This
delay based approach aims at creating the right conditions for spontaneous total
ordering in WANs.

Note that optimistic total order protocols deterministically guarantee even-
tual consistency by relying on strong reliable update dissemination. However,
reliable information dissemination does not scale and cannot be employed in
weakly connected environments. This is why systems and protocols which target
those environments use epidemic dissemination, thus providing eventual consis-
tency with high probability [19, 15, 16, 2].

For instance, Bayou [19] is a storage system designed for a weakly connected
computing environment. In Bayou, one server, designated as the primary, takes
responsibility for totally ordering updates and thus for deciding the committed
order. Each secondary replica executes updates in a tentative order while the
committed order is being decided. Update propagation follows an anti-entropy [7]
mechanism: pairs of replicas periodically exchange information to update their
states. This pair-wise communication copes with arbitrary network connectivity
and after an arbitrary number of communication exchanges, replicas converge
to an identical state.

Oceanstore [15] targets extremely wide distributed environments with huge
numbers of users. Contrarily to our protocol, in Oceanstore, consistency is
achieved in a conscious manner. Indeed, consistency is reached using a two-tier
architecture: a specific small set of untrusted servers, called the inner ring of the
object, store the primary object replicas (primary tier). Other replicas, called
secondaries, are deployed on a large number of nodes, mostly for caching reasons
(secondary tier). The inner-ring totally orders updates coming from any node
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hosting a replica using a Byzantine agreement protocol [5]. To guarantee the ter-
mination of the Byzantine agreement, inner-ring servers form a sub-network with
high bandwidth and a fixed infrastructure. Updates are disseminated epidem-
ically. In particular, tentative updates are pushed through secondary replicas.
The committed updates dissemination follows two steps: (1) a best-effort multi-
cast using the dissemination tree connecting the primary-tier to the secondary-
tier and (2), secondary replicas pull missing information from parents and the
primary tier.

6 Concluding Remarks

This paper introduces the notion of unconscious eventual consistency. In contrast
to conscious eventual consistency, it can be implemented in permanently asyn-
chronous environments, while still supporting important classes of distributed
applications such as interactive applications based on continuous shared data.
The paper describes a protocol that implements unconscious eventual consis-
tency based on gossiping. The protocol is stable, non-blocking, and scalable. Our
simulations convey the reasonable latency of the protocol during synchronous
periods, and its high throughput under load.
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21. Pedro Vicente and Lúıs Rodrigues. An Indulgent Uniform Total Order Algorithm

with Optimistic Delivery. In 21st Symposium on Reliable Distributed Systems
(SRDS 2002), pages 92–101, Osaka, Japan, 2002.

Part Algo - APPENDIX [Baldoni et al. 2006-11] p 20



Improving Byzantine Protocols with Secure Computational

Components∗

Miguel Correia† Alysson N. Bessani‡ Nuno F. Neves† Lau C. Lung§ Paulo Verı́ssimo†

† Faculdade de Ciências da Universidade de Lisboa, Bloco C6, Campo Grande, 1749-016 Lisboa – Portugal

‡ Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina – Brazil
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Abstract

Byzantine-tolerant protocols are currently being used as building blocks for the construction of

secure applications, which means that a better understanding of their performance characteristics can

have an important practical impact. The paper investigates if these protocols can benefit performance-

wise with the inclusion in the nodes of a local secure computational component. Using this extended

model, the paper describes two simple protocols that solve respectively the multi-valued and vector

consensus problems. Then, it compares the behavior of the two protocols with several other similar

protocols from the literature, but for systems without secure components, in terms of the achieved

resilience, time and communication complexities. This analysis shows that the two novel protocols

have the best overall performance, which indicates that the proposed extended architecture can be an

attractive solution for some environments.

1 Introduction

The development of efficient distributed protocols has both theoretical and practical interest. Today,

Byzantine-tolerant protocols are being used as important building blocks for the construction of secure

applications based on a recent approach: intrusion tolerance [1, 18, 36]. This approach can be considered

to be part of the ongoing effort to make computing systems more secure, Internet included, vis-a-vis the

large number of security incidents permanently reported by entities like CERT/CC1.
∗This work was partially supported by the EU through NoE IST-4-026764-NOE (RESIST) and project IST-4-027513-

STP (CRUTIAL), and by the FCT through project POSI/EIA/60334/2004 (RITAS) and the Large-Scale Informatic Systems

Laboratory (LASIGE).
1http://www.cert.org/stats
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Figure 1: (a) Typical system architecture. (b) System architecture explored in the paper.

Research in message-passing distributed protocols typically considers a set of nodes interconnected

by a network, each one running a software component called a process (see Figure 1(a)). Works in this

area that aim intrusion tolerance have to assume that the system can suffer from Byzantine faults, in-

cluding malicious attacks [3–7, 11, 13–15, 25, 27, 30]. Therefore, processes can fail in a unconstrained

manner (i.e., they can violate the protocol specification in any possible way) and the network may corrupt

the communication, e.g., by dropping, modifying or repeating messages. Regarding timeliness, the sys-

tem is usually considered to be mostly asynchronous (to avoid time assumptions that could be violated,

e.g., through denial of service attacks). However, in order to circumvent the FLP impossibility result [17],

the system usually has to be extended with some oracle [3, 13, 14, 25] or time assumptions [15]. Another

approach that has been used to circumvent this result, and that we will use in the paper, is randomiza-

tion [4–7, 9, 27, 30].

The paper investigates the benefits for the performance of Byzantine-tolerant protocols of making

this picture slightly more complicated. Suppose each node now includes a second component w that

can communicate both with the process p (locally) and with similar components in other nodes (through

the network). The extended architecture, which includes the wormhole component w, is shown in Fig-

ure 1(b). Notice that nothing is being said at this stage about what w is – it might be either a hardware

or a software module. However, w has the important characteristic that it can only fail by crashing (fail-

stop), not in a Byzantine way, i.e., it is secure or tamperproof. Therefore, this assumption implies a

hybrid fault model where nodes have a part that can only fail by crashing (w) and the rest that can fail

arbitrarily (everything except w)2. Each of these components (wormholes) includes a random oracle,

i.e., a generator of random bits. We do not consider any other oracles or time assumptions.

Two concerns may reasonably be raised about this model. First: is it possible to implement such a
2This kind of fault model is clearly different from some previous work in hybrid fault models, starting in [26], in which

fault distributions are simply assumed. Here we design the secure component with the purpose of enforcing its fault model, an

obvious requirement in environments prone to malicious faults.

2
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model or is it of purely theoretical interest? The answer is simple: there are many ways of implement-

ing w. Most computers, either laptops, desktops or servers can be extended with some kind of secure

hardware that can be used to run w, e.g., USB tokens, smartcards, secure coprocessors and PC/104 appli-

ances3. Software solutions include running w as a special process in a security kernel (e.g., Perseus [32]).

The second question is: is this model relevant? Why cannot we just make p secure, i.e., p = w, and

end up with a fail-stop model? The first answer is that sometimes it is possible to do so and a system

designer should consider that possibility. However, in general p is part of a complex application with

millions of lines of code that cannot be put inside w (USB tokens and smartcards have very limited

resources) and cannot even be secured in that way because it has complex interactions with the environ-

ment, e.g., with human users, networks and files. If we want to make w secure or fail-stop, it has to

satisfy two properties derived from the classical reference monitor properties [20]4:

• Isolation. The wormhole must be tamperproof or secure. This is considered to be an assumption

throughout the paper, although it has to be enforced in an implementation.

• Verifiability. Its security has to be formally verifiable. This is true for the instances of w we present

in the paper, since they implement reasonably simple distributed protocols.

The issue explored in the paper is: what are the benefits for the performance of Byzantine-tolerant

protocols of the model in Figure 1(b)? Is there any interest for such protocols of having a secure compo-

nent in the nodes?

Context and related work. We have been exploring this kind of hybrid fault models by calling these

subsystems wormholes [34]. The metaphor comes from an astrophysics concept that some Science Fic-

tion has presented as shortcuts that might be used to travel fast to faraway places in the Universe5. The

idea we have been exploring is to take advantage of components with stronger properties to handle some

kind of uncertainty. The first work in this line used a distributed real-time wormhole to handle uncer-

tainty in terms of time [35]. Afterwards, a distributed real-time and secure wormhole was used to build

Byzantine fault-tolerant protocols, i.e., to handle uncertainty in terms of malicious faults [10, 12, 29].
3Several cryptographic modules that might be used with this purpose were validated for conformance to FIPS PUB 140-1

and FIPS PUB 140-2 (Security Requirements for Cryptographic Modules) by the National Institute of Standards and Technol-

ogy. A list is available at: http://csrc.nist.gov/cryptval/140-1/1401val.htm.
4The third property that a reference monitor must satisfy is specific for access control (completeness).
5See, e.g., http://en.wikipedia.org/wiki/Wormhole

3
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The present paper follows this work on wormholes but has an important difference. Our purpose here

is to compare protocols with/without wormholes that are as comparable as possible. More specifically,

we propose protocols as similar as possible to protocols that do not use wormholes, and we do not make

more time assumptions about the wormholes than about the rest of the system. The approach used in

this paper is to consider only randomized protocols since they do not rely on any time assumptions,

so we make no time assumptions about any part of the system or wormholes, i.e., the wormholes are

asynchronous. This is an interesting property since the wormholes can use the same network as the

processes to communicate without being vulnerable to attacks against time assumptions.

Several security protocols have been previously proposed that use different types of secure com-

ponents to prevent intrusions in critical modules. Tygar and Yee showed how a secure coprocessor

can be used, e.g., to guarantee the security of an electronic payment scheme [33]. Itoi and Honeyman

used smartcards for secure authentication with Kerberos [22]. Shoup and Rubin used also smartcards to

enhance the security of session key distribution [31]. Avoine and colleagues presented an algorithm for

deterministic fair exchange also based on secure components [2]. Several other examples might be listed.

However, all these works use secure components with the purpose of ensuring some of the security prop-

erties of the protocols. To the best of our knowledge this paper is the first that uses secure components

with the purpose of improving the performance of distributed systems algorithms like consensus6. Here

the purpose is not to prevent intrusions in certain components and ensure certain security properties, but

to improve the performance of protocols that tolerate intrusions in some of the nodes.

Paper results. The contributions of the paper are the following:

• it presents the first work with strictly asynchronous wormholes, using randomization to circumvent

the FLP impossibility; it also uses I/O automata to formalize a system with wormholes.

• it compares consensus protocols with and without wormholes as similar as possible, showing the

benefits of using these secure components; protocols for multi-valued and vector consensus are

also provided;
6There are secure hardware modules that are slow when compared to servers or even common PCs. If the wormholes were

implemented using that hardware, the performance of the protocols might become worse instead of better. We assume that

the wormholes are PC/104 appliances or other fast hardware modules, whose overhead would be low when compared with the

communication delay.

4
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2 System Model

The system considered in the paper has a set of n processes Π = {p1, p2, ...pn} and a set of n worm-

holes Υ = {w1, w2, ...wn}. A node i contains a process pi that can access the local wormhole wi (see

Figure 1(b)). Each wormhole includes a random oracle module. This oracle provides random numbers

uniformly distributed from a finite set U . We postpone the discussion about the content of U to Sec-

tion 2.2. The system is asynchronous, i.e., no bounds are assumed on processing and communication

delays.

We will model the system components using I/O automata, a formalism introduced by Lynch and

Tuttle [23, 24]. An automaton receives input actions and generates output and internal actions. A system

is represented by a composition of automata.

2.1 Fault Model

The architecture we are considering is more complex than what is commonly considered in message-

passing distributed algorithms so there is also more to be said about the fault model.

A process is said to be correct if it does not fail during the execution of the protocol, i.e., if it follows

the protocol. Otherwise, it is said to be corrupt or failed. Processes can fail in the usual Byzantine

ways, for instance: they can stop, delay the communication, send spurious messages, or transmit several

messages with the same identifier. Corrupt processes can also pursue a plan of breaking the properties of

the protocol alone or in collusion with other failed processes. We use the letter f to denote the maximum

number of processes that are allowed to fail during an execution of the protocol.

The extended architecture also introduces new failure modes. A wormhole is said to be correct if

it does not fail, i.e., if it does not crash. Otherwise it is said to be crashed or failed. In addition to the

situations listed above, a process pi can fail if wi crashes, if pi does not manage to communicate with wi

(e.g., because an attacker controls the node) or if its communication with wi is modified in some way.

Since our protocols do not require processes to communicate directly, but only through the worm-

holes, we will not make any statement about assumptions on the network channels of the processes. The

wormholes are fully-connected by private channels with three properties: if the sender and the recipient

of a message are both correct then (1) the message is eventually received; (2) the message is not modified

in the channel; and (3) the content of the message can only be disclosed by the sender or the recipient.

In other words, the communication can be delayed arbitrarily, but all messages are eventually delivered

correctly. In practice, these channels can be implemented in common LANs or the Internet using secure
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Figure 2: Automata composition for all protocols in the paper. The automaton pi models process pi,

automaton wi models wormhole wi, automaton FSB a fail-stop broadcast, and FSC a fail-stop multi-

valued consensus.

communication protocols such as the Secure Socket Layer [19]. Notice that the assumption of private

channels is a way of hiding (masking) the failures in the network, such as message modifications, replays,

omissions and spurious messages.

2.2 Formal System Model

Each process pi is modeled as an automaton with five actions (see Figure 2):

• input propose(v)i – invocation of the protocol by user Ui;

• output decide(v)i – response to user Ui with the value decided by the protocol;

• output w call(v)i – passage of a value to the wormhole wi;

• input w resp(v)i – response from the wormhole wi;

• input byz failurei – signals the Byzantine failure of the automaton.

The user Ui corresponds to the software component that calls process pi. The automata composition

in the figure represents the system that executes the protocols, therefore it does not include that user.

However, Ui might also be modeled as an automaton.

Wormhole wi is modeled as an automaton with several actions, some of which are (see the same

figure):
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• input w call(v)i – corresponds to the output with the same name in process pi;

• output w resp(v)i – corresponds to the input with the same name in process pi;

• input stopi – signals the crash of the wormhole.

The composition includes a broadcast channel FSB with a semantics equivalent to the sender worm-

hole individually sending the message to all wormholes in Υ (including itself) using the private channels

presented in the previous section. The primitive is used by the wormholes that are fail-stop, therefore all

recipients receive the same message unless a wormhole crashes. The signature is the following:

• input fs bcast(v)i – send the value v to every wormhole wj ∈ Υ;

• output fs receive(j, v)i – receive a value v from process j.

This signature includes two actions related to the fail-stop multi-valued consensus automaton FSC,

which we describe in the next section: fs propose(v)i and fs decide(v)i.

The failures of wormholes (crash) and processes (Byzantine) are modeled by inputs with distinct

meanings. The input stopi is the usual way of modeling the crash of an automaton [23] and is handled

explicitly in the code of the automaton (see Automaton 2). The use of an input byz failurei to model

Byzantine failures was first suggested in [8]. When this event occurs, the automaton is substituted by

another automaton with the same signature but with arbitrary behavior.

Consensus Among Wormholes

The protocols presented in the paper use as building block a multi-valued consensus protocol executed by

the wormholes. This protocol does not need to tolerate Byzantine faults since the wormholes are assumed

to be fail-stop and fully-connected by private channels (Section 2.1), which means that the protocol is

in essence a fail-stop consensus. In order to circumvent the FLP result, the protocol resorts to the above

mentioned random oracle modules.

The fail-stop consensus is modeled as a single automaton FSC (Figure 2). In terms of system

architecture, this automaton models part of the behavior of the wormholes (the fail-stop consensus) plus

the private channels connecting the wormholes. Therefore, in reality, any wormhole wi is modeled by

the automata wi and FSC. The objective of modeling the fail-stop consensus as a separate automaton was

to attain modularity, thus allowing us to plug-in different consensus modules into the wormholes.

Informally, consensus is the problem of making a set of entities (processes, wormholes) agree on

a common value. A wormhole wi is said to propose a value v ∈ V for an execution of the consensus
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protocol when an output action fs propose(v)i occurs in wi. The wormhole is said to decide on a value

v when an input action fs decide(v)i occurs in wi. Consensus is defined in terms of the following

properties:

• Validity-1: If a correct wormhole decides v, then v was proposed by some wormhole.

• Agreement: No two correct wormholes decide differently.

• Termination: Every correct wormhole eventually decides with probability 1.

In the paper we use two variants of consensus protocols: binary consensus (V ≡ {0, 1}) and multi-

valued consensus (V is a finite set of values). An example of a fail-stop binary consensus protocol is

presented in [4], while a fail-stop multi-valued consensus can be found in [16]. The random oracle

used in the former provides values in the set U ≡ {0, 1}, while in the latter provides values in U ≡
{1, 2, ..., n} (where n is the total number of processes). A transformation from binary to multi-valued

fail-stop consensus is presented in [28]. All these protocols tolerate the failure of at most half less one

processes/wormholes (f = bn−1
2 c).

3 Byzantine Consensus

Consensus is an important distributed systems problem since it can be used as the main building block

to solve several other agreement problems [11, 21]. Several protocols for Byzantine consensus in asyn-

chronous systems have been proposed, using several methods to circumvent FLP: randomization [4, 30],

failure detectors [3, 25], partial-synchrony [15] and distributed wormholes [10].

The resilience of a distributed protocol is the maximum number of failed processes it can tolerate.

The maximum resilience for Byzantine consensus in asynchronous systems is f = bn−1
3 c out of a total

of n processes [5, 11, 15], which is also the resilience of the protocols we propose in the paper.

3.1 Multi-Valued Consensus

The specification of multi-valued consensus for a system with Byzantine faults is similar to the definition

given in Section 2.2, but has a different Validity property [10, 15, 25]:

• Validity-2. If all correct processes propose the same value v, then any correct process that decides,

decides v.

• Agreement: No two correct processes decide differently.
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Automaton 1 Consensus protocol (process pi)
Signature:

Input: propose(v)i, w resp(V )i, byz failurei

Output: w call(v)i, decide(v)i, decide(⊥)i

v ∈ V , ⊥ /∈ V

State:

prop = ⊥, value proposed by the user

V ect = ⊥, vector with several proposed values

failed = false, true if the process is corrupt

Transitions:

1: input propose(v)i

2: Eff: prop ← v

3: input w resp(V )i

4: Eff: V ect ← V

5: input byz failurei

6: Eff: failed ← true

7: output w call(v)i

8: Pre: prop = v

9: Eff: prop ← ⊥

10: output decide(v)i

11: Pre: #v(V ect) ≥ f + 1

12: Eff: V ect ← v

13: output decide(⊥)i

14: Pre: ∀v, #v(V ect) < f + 1

15: Eff: V ect ← ⊥

• Termination: Every correct process eventually decides with probability 1.

Our protocol solves multi-valued consensus if FSC is instantiated with a multi-valued fail-stop con-

sensus. A direct consequence of the system architecture depicted in Figure 1(b) is that the protocol is

run both in the processes and the wormholes (respectively p and w). Automata 1 and 2 correspond re-

spectively to the code of the processes and wormholes. Recall that our objective is to compare protocols

that are as similar as possible. This is why the automata are very simple and leave most of the work to

the FSC.

The presentation of the protocol assumes a property of well-formedness, both for the users that call

the protocol (Ui) and for the processes (pi) [23]:

• Well-formedness. For any i, the interactions between Ui and pi, and the interactions between pi

and wi, are well-formed for i.

Let us consider the interaction between the user Ui and the automaton pi. A sequence of actions

propose(v)i and decide(v)i is said to be well-formed for i if it is some prefix of the cyclically ordered

sequence propose(v′)i, decide(v′′)i, propose(v′′′)i, decide(v′′′′)i, ... This property essentially excludes

the possibility of a user making two proposals before the decision of the protocol is returned. The ob-

jective of making this assumption is to make Automaton 1 simpler, by not having to consider explicitly
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Automaton 2 Consensus protocol (wormhole wi)
Signature:

Input: w call(v)i, fs receive(j, v)i, fs decide(v)i,

stopi

Output: fs propose(v)i, fs bcast(v)i, w resp(v)i

v ∈ V , ⊥ /∈ V

State:

prop = ⊥, value proposed by the process

dec = ⊥, vector decided by FSC

∀j ∈ Π : V ect[j] = ⊥, vector with values delivered by

FSB

stopped = false, true if the wormhole is stopped

Transitions:

1: input w call(v)i

2: Eff: prop ← v

3: input fs receive(j, v)i

4: Eff: V ect[j] ← v

5: input fs decide(V ect)i

6: Eff: dec ← V ect

7: input stopi

8: Eff: stopped ← true

9: output fs bcast(v)i

10: Pre: ¬stopped ∧ prop = v

11: Eff: prop ← ⊥

12: output fs propose(V ect)i

13: Pre: ¬stopped ∧#⊥(V ect) ≤ f

14: Eff: ∀j ∈ Π : V ect ← ⊥

15: output w resp(V ect)i

16: Pre: ¬stopped ∧ dec = V ect

17: Eff: dec ← ⊥

the case of ill-formed interactions. Nevertheless, this assumption might be discarded with simple mod-

ifications to the algorithm, like identifying each consensus execution with a consensus identifier (cid),

and substituting the variables prop and dec by sets containing tuples (cid, v) for the active consensuses.

Similar considerations might be done about the well-formedness of the interactions between pi and wi.

The protocol follows the typical structure of I/O automata protocols [23, 24]. Each automaton starts

with the declaration of its signature, i.e., its input and output actions. Then, it declares the state variables

and the transitions corresponding to each action, specified in terms of preconditions (Pre:) and effects

(Eff:).

In the protocol, vectors have one entry per process in Π (or wormhole in Υ) and are designated

by a uppercase letter. Function #x(V ect) counts the number of occurrences of x in vector V ect. In

Automaton 1, line 11, this function is used to select a value v that occurs at least f + 1 times in V ect. If

there are two values v1 and v2 in that condition, the function returns the one that appears first in V ect.

The protocol works as follows. It starts with an action propose(v)i in each process pi, which

sets prop = v (Aut.1:1-2)7, and causes an output action w call(v)i (Aut.1:7-9). This output action

7We use this abbreviated notation to reference Automaton 1, lines 1 to 2.
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corresponds to the input action with the same name in the wormhole automaton (recall Figure 2). In

other words, an action propose(v)i causes the value v to be passed to the wormhole wi. Then, wi

broadcasts v to all wormholes, including itself (Aut.2:1-2,9-11). When wi receives a value, it puts it in

a vector V ect (Aut.2:3-4). When wi has f or less empty values in V ect, it proposes the vector to the

fail-stop consensus (Aut.2:12-14). When this protocol terminates, wi returns the vector decided to the

process (Aut.2:5-6,15-17). If a value appears f + 1 times in the vector, or more, this is the value decided

to guarantee Validity-2, otherwise a default value is decided (Aut.1:10-15).

The correctness proof of the following Theorem is in Appendix A:

Theorem 1 If at most f = bn−1
3 c processes are failed, then the protocol specified by Automata 1 and 2

solves consensus as specified by properties Validity-2, Agreement and Termination.

3.2 Vector Consensus

Vector consensus is a variant of the problem of consensus, which is specially interesting when Byzantine

faults are considered [3, 14, 29]. A vector consensus protocol instead of deciding a value, returns a

vector. This vector has values proposed by a majority of correct processes, something that can be useful

to solve practical distributed system problems, like atomic multicast [11]. The problem is a variation of

interactive consistency for asynchronous systems, since in these systems it is not possible to guarantee

that the vector has values from all correct processes. The definition is the same as for the consensus

protocols above, except for the Validity property:

• Validity-VC. Every correct process decides on a vector V ect of size n, such that:

1. For every 1 ≤ i ≤ n, if process pi is correct, then V ect[i] is either the initial value of pi or

the value ⊥, and

2. at least f + 1 elements of the vector V ect are the initial values of correct processes.

• Agreement: No two correct wormholes decide differently.

• Termination: Every correct wormhole eventually decides with probability 1.

A protocol that solves vector consensus is presented in Automata 3 (process automaton) and 2

(wormhole automaton, same as for binary/multi-valued consensus). The protocol is a straightforward

modification of the previous multi-valued consensus. It simply returns the vector decided by the worm-

holes, instead of choosing the most frequent value in the vector. The automaton FSC has also to be

instantiated with a multi-valued fail-stop consensus.
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Automaton 3 Vector consensus protocol (process pi)

Everything identical to Algorithm 1 except lines 10-15 that are substituted by:

10: output decide(V ect)i

11: Pre: V ect 6= ⊥
12: Eff: V ect ← ⊥

Theorem 2 If at most f = bn−1
3 c processes are failed, then the protocol specified by Automata 3 and 2

solves vector consensus as specified by properties Validity-VC, Agreement and Termination.

The correctness proof of the Theorem is in Appendix A.

4 Evaluation of the Protocols

Randomized Byzantine agreement protocols are usually evaluated in terms of resilience, time and com-

munication complexities [9]. Time complexity in asynchronous systems is normally measured by count-

ing the number of asynchronous rounds. In this kind of protocols, an asynchronous round is defined in

the following way: a process broadcasts a message to all other processes, and then waits for (n − f)

messages broadcasted by the others in the same round; when it gets that number of replies, it either goes

to the next round or terminates. For randomized protocols, the metric is usually the expected number of

asynchronous rounds, since the number of rounds can only be defined probabilistically. We evaluate the

protocols in the situation where the failed processes do the best they can to delay the protocol and, for

multi-valued consensus, all correct processes have different initial values. Communication complexity

can be measured in number of bits sent (per round or protocol execution) or in number of transmitted

messages. Here we use the expected number of message broadcasts.

Table 1 compares our protocols with several other asynchronous randomized consensus protocols

that have been published previously. Each row has information about one protocol. The columns have the

obvious meanings except the last that contains a reference to the place where the algorithm is described:

a section of this paper (e.g., §3 denotes Section 3 and §B denotes Appendix B), another paper (e.g., [4]),

or a combination of more than one of those other types of references (indicated by the addition operator).

The top rows (1-5) of the table evaluate fail-stop consensus protocols, the middle rows (6-7) evaluate

Byzantine consensuses, and the bottom rows (8-9) our own protocols. Our protocols need a multi-valued

fail-stop consensus for the implementation of the FSC (Section 2.2). The fail-stop consensus protocol we

use is a combination of a binary consensus plus the ‘binary to multi-valued’ transformation in [28], since
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Consensus Fault Oracle Resilience Expected Time Expected Communication Reference

type model complexity complexity

1 binary crash random bn−1
2
c 2n−1 + 1 (2n−1 + 1)n [4]

2 binary crash random bn−1
3
c 1.5× 2n−f−1 + 2.5 (1.5× 2n−f−1 + 2.5)n §B

3 multi-val. crash random bn−1
2
c 2n−1 + 2 (2n−1 + 1)n + n2 [4]+[28]

4 multi-val. crash random bn−1
3
c 1.5× 2n−f−1 + 3.5 (1.5× 2n−f−1 + 2.5)n + n2 §B+[28]

5 multi-val. crash random bn−1
2
c nn−1 + 2 (nn−1 + 1)n + 2n2 [16]

6 binary Byz. random bn−1
5
c 2n−f−1 + 1 (2n−f−1 + 1)n [4]

7 binary Byz. random bn−1
3
c 4.5(2n−f−1 + 1) (2n−f−1 + 1)3n2 [5]

8 multi-val. Byz. wormh. bn−1
3
c 1.5× 2n−f−1 + 4.5 (1.5× 2n−f−1 + 4.5)n + n2 §3+§B+[28]

9 vector Byz. wormh. bn−1
3
c 1.5× 2n−f−1 + 4.5 (1.5× 2n−f−1 + 4.5)n + n2 §3.2+§B+[28]

Table 1: Comparison of several asynchronous randomized consensus protocols.

the only randomized (crash-tolerant) multi-valued consensus in the literature is quite inefficient (row

5) [16]. For reasons we explain below, instead of the binary protocol in [4] (row 1) we use a modified –

fail-stop – version of the Byzantine protocol in [5], which is presented in Appendix B.

The first conclusion we take from the table is that the time and message complexities of our protocols

are similar to the best complexities of fail-stop protocols. Even tough, we do not describe a binary

consensus protocol, notice that a multi-valued consensus also solves the binary consensus if we set

V = {0, 1}. Comparing the binary consensuses in rows 2 and the ‘binary’ consensus in row 8 (i.e., the

multi-valued consensus with V = {0, 1}) and the multi-valued consensuses in rows 4 and 8, we get to

that conclusion that the time/message complexities of our protocols are similar to the best of fail-stop

protocols.

The second conclusion is that these complexities are better than those of Byzantine resilient proto-

cols in the literature. Comparing our ‘binary’ protocol (row 8) to Bracha’s protocol [5] (row 7) we see

that the time complexities are both O(2n−f ) (although our multiplying constant is slightly lower) but

our communication complexity is clearly lower: O(2n−fn) against O(2n−fn2). The time and commu-

nication complexities of [4] (row 6) are apparently equal to ours, respectively O(2n−f ) and O(2n−fn).

However, the resilience of that protocol is suboptimal (only bn−1
5 c out of n) so if we wanted to toler-

ate the same number of faults the complexities would be considerably worse (exponential with a base

greater than 2). We did not find multi-valued or vector consensuses of the class we are considering in the

literature, so we cannot make a comparison for those protocols.

The reason why we used a modified version of Bracha’s protocol instead of Ben-Or’s protocol [4] to
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evaluate our protocols can now be understood. Ben-Or’s protocol tolerates f = bn−1
2 c crashes (row 1),

the optimal resilience for fail-stop protocols. The time and communication complexities are respectively

O(2n) and O(2nn). The resilience of the protocol is more than we need for our binary consensus

protocol, but its complexities would lead to similar complexities for our protocols. The problem is that a

time complexity of O(2n) is worse than the complexities of current Byzantine-resilient protocols (rows

6-7). The same is true for the communication complexity. Using the modified version of Bracha’s

protocol (Appendix B) we manage to have better complexities: O(2n−f ) and O(2n−fn). The resilience

of this modified protocol is suboptimal for fail-stop protocols but exactly what we need since it is used

to support a Byzantine protocol.

On the kind of protocols compared. Randomized consensus protocols are essentially of two kinds:

1. Those based on local random oracle modules, following Ben-Or’s seminal paper [4];

2. Those based on a shared coin that provides identical random numbers to all processes, starting

with Rabin’s work [30].

In the comparison and table below, we consider only protocols of the first kind because we are

interested in comparing protocols as similar as possible and there is nothing similar to Rabin’s type of

protocols for the fail-stop model.

Protocols of the second type typically have lower time complexities than protocols of the first. There

are even protocols of the second type that run in a constant expected number of rounds, while protocols

of the first have exponential expected time complexities. However, our point here is to compare protocols

with wormholes with protocols based on the usual architecture, so we do not want to use shared coins.

Moreover, some of us have recently shown that protocols of the second type run in a low number of

rounds under realistic faultloads, including Byzantine nodes [27].

5 Conclusion

The need for more secure distributed systems is raising a renewed interest in efficient Byzantine pro-

tocols. This paper investigates the contribution for that objective of including a secure component –

wormhole – inside the system nodes. The paper compares a set of Byzantine protocols based on the typ-

ical model (nodes interconnected by a network) with our model. For this comparison to make sense we

consider randomized protocols, only with local random oracles (i.e., following Ben-Or [4]), which have
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been recently shown to be efficient under realistic faultloads. The conclusion from that comparison is

that our approach manages to reduce the complexities of Byzantine protocols to complexities equivalent

to fail-stop protocols, which are considerably better than those of previous similar Byzantine protocols.

The protocols proposed are quite simple and most of the functionality ended up being put in the

wormholes. This seems to contradict our comment in the introduction that it is not possible to make

p = w, i.e., to put everything inside the wormholes. However, the contradiction does not exist because

consensus is only a component to be used in larger applications with complex interactions with users,

networks and files. Moreover recall that the reason why we put most of the functionality inside the

wormholes was to have similar protocols with and without wormholes, something that is no clear how

could be done if the functionality was divided between processes and wormholes, e.g., like in [10, 29].

The paper follows the line of research in systems extended with wormholes, but considers, for the

first time strictly asynchronous, randomized wormholes. The paper presents the first formalization of this

type of model with I/O automata, which shows to be an adequate formalism to model hybrid systems.
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A Correctness Proofs

A.1 Correctness proof for Theorem 1

Proof (sketch): The protocol is based on a consensus protocol executed by the wormholes. This proto-

col is defined in terms of the properties in Section 2.2. For a typical fail-stop consensus protocol, the

properties are satisfied if no more than bn−1
2 c out of n wormholes fail, an immediate consequence of the

assumption than no more than bn−1
3 c processes fail (Section 2.1).

Validity-2. When a value is proposed, process pi gives it to the wormhole wi (Aut.1:1-2,7-9) that

sends it to every other wormhole, including itself (Aut.2:1-2,9-11). Then, the wormhole waits for (n−f)

messages with values proposed by different wormholes (Aut.2:3-4,12-14). Wormholes are fail-stop so

they either send the message once, or do not send it at all. At most f processes can fail, therefore at

least f + 1 messages come from correct processes: (f = bn−1
3 c) ⇒ (n − 2f ≥ f + 1). The property

Validity-2 assumes all correct processes propose v, therefore all vectors given to FSC contain at least

f + 1 copies of v (Aut.2:12-14). The vector decided by FSC, which is one of the vectors proposed, is

returned to the process (Aut.2:5-6,15-17), which returns the value that appears at least f + 1 times in the

vector, i.e., v (Aut.1:3-4,12-14). When the correct processes do not propose the same value, the protocol

decides a default value ⊥ (Aut.1:13-15).

Agreement. The proof derives trivially from the fact that all non-crashed wormholes return the

same vector (Aut.2:5-6,15-17), which is used to decide deterministically the value returned (Aut.1:3-

4,10-15). Note that the function # is deterministic even if there are two values v1 and v2 such that

#v1(V ect) = #v2(V ect) ≥ f + 1. In that case, the value among v1 and v2 that appears first in V ect is

returned.

Termination. An inspection of the two algorithms shows that the protocol terminates if two condi-

tions are satisfied. The first is that at least n − f wormholes have to broadcast the values proposed by

the corresponding processes (Aut.2:13). This must happen since at least that number of processes are

correct. The second condition is that the FSC consensus has to terminate, something that is guaranteed

by the property of Termination of that protocol (Section 2.2). 2

A.2 Correctness proof for Theorem 2

Proof (sketch): The protocol is very similar to the consensus protocol, so the proofs of Agreement and

Termination are also the same as in Theorem 1.

Validity-VC. Property 1. If pi is correct then wi gets the initial value v (Aut.3:1-2,7-9; Aut.2:1-2),
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which it broadcasts to all wormholes in Υ (Aut.2:9-11). Every wormhole proposes to FSC a vector with

the default value (⊥) or the broadcasted value v in the entry corresponding to pi (Aut.2:3-4). FSC simply

decides on one of the vectors proposed by the wormholes, and this is the vector decided by the protocol

(Aut.2:5-6,15-17; Aut.3:3-4,10-12) therefore the property is satisfied.

Validity-VC. Property 2. We proved that the vector decided is one of the vectors proposed to FSC

by one of the wormholes. These vectors include at least n − f entries filled (Aut.2:12-14) and at most

f of these entries contain values from failed processes. The property is satisfied since f = bn−1
3 c ⇒

n− f − f ≥ f + 1. 2

B Fail-stop b(n− 1)/3c-Resilient Binary Consensus Protocol

This section presents a straightforward modification of Bracha’s Byzantine-resilient binary consensus

protocol [5] to tolerate b(n−1)/3c crash faults. This protocol is used in the evaluation of our Byzantine-

resilient consensus protocols (see Section 4). The modification is essentially the removal of the ‘reliable

broadcast’ primitive and the ‘correctness enforcement’ scheme used in [5] to constrain the behavior of

malicious processes. We also generalize Bracha’s assumption of n = 3f + 1 to f = b(n− 1)/3c.
The protocol is presented in Algorithm 1 following the original format. Also following the original

presentation, the algorithm does not terminate when a decision is made. This can be done by making the

processes that decided broadcast a halting message.

Theorem 3 If at most f = bn−1
3 c processes are stopped, then the protocol presented in Algorithm 1

solves consensus as specified by properties Validity-1, Agreement and Termination.

Proof (sketch):

Validity-1. The protocol is binary, therefore only two values can be proposed. The property would

be false only if all processes proposed 0 (resp. 1) and a correct process decided 1 (resp. 0). A simple

inspection of the protocol shows that this is impossible: if all processes propose the same value then all

decide it.

Agreement. Two processes cannot decide different values (0 and 1) in the same round since they

would need respectively n − f (d, 0) messages and n − f (d, 1) messages. This is clearly impossible

since each process can only send one message per round and step, and n− f + n− f > n.

Now, without loss of generality assume process p0 decides 0 in round k and process p1 decides 1

in round k′ > k. Process p0 must have received n − f (d, 0) messages in step 3 of round k so all other
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Algorithm 1 Fail-stop b(n− 1)/3c-Resilient Binary Consensus Protocol

ip is set to the value proposed by the process before the first round.

(d, v) is a special value that is used to try to decide v.

Round(k): (by process p)

1. Broadcast(ip) and wait for n− f messages.

ip := majority value of the messages.

2. Broadcast(ip) and wait for n− f messages.

If more than n/2 of the messages have the same value, then ip := (d, v).

3. Broadcast(ip) and wait for n− f messages.

If there are at least (n− f) (d, v) messages then Decide v.

If there are at least (n− 2f) (d, v) messages then ip := v.

Otherwise, ip := 1 or 0 with probability 1/2.

Go to step 1 of round k + 1.

processes received at most f (d, 1) messages in the same round/step. Therefore, all other processes set

their variable i to v since all received at least n − 2f (d, 0) messages (step 3). An inspection of the

protocol shows that if all processes set i to v in round k then in round k + 1 process p1 decides 0. A

contradiction.

Termination. An inspection shows that the protocol cannot deadlock. We just proved that if a process

decides v then all correct processes decide v not after the next round. If no process decides, there is an

increasing probability that eventually n − f processes set i to the same value v in step 3 (say, in round

k). When this happens, all processes receive at least n − 2f messages with v in step 1 of round k + 1

(since only f processes may broadcast a different value) and set i to v. In step 2, all processes broadcast

v and set i to (d, v). Finally, in step 3 all decide. 2
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Abstract

Mobile devices are increasingly relied on but are
used in contexts that put them at risk of physical dam-
age, loss or theft. We consider a fault-tolerance ap-
proach that exploits spontaneous interactions to imple-
ment a collaborative backup service. We define the con-
straints implied by the mobile environment,analyze how
they translate into the storage layer of such a backup
system and examine various design options. The paper
concludes with a presentation of our prototype imple-
mentation of the storage layer, an evaluation of the im-
pact of several compression methods,and directions for
future work.

1. Introduction
Embedded computers are becoming widely avail-

able, in various portable devices such as PDAs, digital
cameras, music players and laptops. Most of these de-
vices are now able to communicate using wireless net-
work technologies such as IEEE 802.11, Bluetooth, or
Zigbee. Users use such devices to capture more and
more data and are becoming increasingly dependent on
them. Backing up the data stored on these devices is of-
ten done in anad hocfashion: each protocol and/or appli-
cation has its own synchronization facilities that can be
used when a sister device, usually a desktop computer, is
reachable. However, newly created data may be held on
the mobile device for a long time before it can be copied.
This may be a serious issue since the contexts in which
mobile devices are used increase the risks of them being
lost, stolen or broken.

† This work was partially supported by the MoSAIC project (ACI
S&I, French national program for Security and Informatics; see
http://www.laas.fr/mosaic/) and the Hidenets project (EU-IST-
FP6-26979).

Our goal is to leverage the ubiquity of communicat-
ing mobile devices to implement acollaborativebackup
service. In such a system,devicesparticipating in the ser-
vice would be able to use other devices’storage to back
up their own data. Of course, each device would have to
contribute some of its own storage resources for others
to be able to benefit from the service.

Internet-based peer-to-peer systems paved the way
for such services. They showed that excess resources
available at the peer hosts could be leveraged to support
wide-scale resource sharing. Although the amount of
resources available on a mobile device is significantly
smaller than that of a desktop machine, we believe that
this is not a barrier to the creation of mobile peer-to-peer
services. They have also shown that wide-scale services
could be created without relying on any infrastructure
(other than the Internet itself), in a decentralized, self-ad-
ministered way. From a fault-tolerance viewpoint, peer-
to-peer systems provide a high diversity of nodes with
independent failure modes [13].

In a mobile context, we believe there are addition-
al reasons to use a collaborative service. For instance,
access to a cell phone communication infrastructure
(GPRS, UMTS, etc.) may be costly (especially for
non-productive data transmission “just” for the sake of
backup) while proximity communications are not (us-
ing 802.11, Bluetooth, etc.). Similarly, short-distance
communication technologies are often more efficient
than long-distance ones: they offer a higher through-
put and often require less energy. In some scenarios,
infrastructure-based networks are simply not available
but neighboring devices might be accessible using
single-hop communications, or byad hocrouting.

Our target service raises a number of interesting is-
sues, in particular relating to trust management, resource
accounting and cooperation incentives. It raises novel is-
sues due to, for instance, mostly-disconnected operation
and the consequent difficulty of resorting to centralized
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or on-line solutions. A preliminary analysis of these is-
sues may be found in [6,14]. In this paper, the focus is on
the mechanisms employed at the storage layer of such a
service. We investigate the various design options at this
layer and discuss potential trade-offs.

In Section 2, we will detail the requirements of the
cooperative backup service on the underlying storage
layer. Section 3 presents several design options for this
layer based on the current literature and the particular
needs that arise from the kind of devices we target. In
Section 4, using a prototype of this storage layer, we will
evaluate some storage layer algorithms and discuss the
necessary tradeoffs. Finally, we will conclude on our
current work and sketch future research directions.

2. Collaborative Backup for Mobile
Devices
This section gives an overview of the service envis-

aged and related work. Then we describe the require-
ments we have identified for the storage layer of the
service.

2.1. Design Overview and Related Work

Our goal is to design and implement a collaborative
backup system for communicating mobile devices. In
this model, mobile devices can play the role of acon-
tributor, i.e., a device that offers its storage resources to
store data on behalf of other nodes, and adata owner,
i.e.,a mobile device asking a contributor to store some of
its data on its behalf. Practically, nodes are expected to
contribute as much as they benefit from the system; there-
fore, they should play both roles at the same time.

For the service to effectively leverage the availabil-
ity of neighboring communicating devices, the service
has to be functional even in the presence ofmutually sus-
picious device users. We want users with no prior trust re-
lationships to be able to use the service and to contribute
to it harmlessly. This is in contrast with traditional habits
where users usually back up their mobile devices’ data
only on machines they trust, such as their workstation.

This goal also contrasts with previous work on col-
laborative backup for a personal area network (PAN),
such as FlashBack [19], where participating devices are
all trustworthy since they belong to the same user. How-
ever, censorship-resistant peer-to-peer file sharing sys-
tems such as GNUnet [2] have a similar approach to se-
curity in the presence of adversaries.

Recently, a large amount of research has gone into
the design and implementation of Internet-based peer-
to-peer backup systems that do not assume prior trust re-
lationships among participants [1,7,9]. There is, howev-
er, a significant difference between those Internet-based

systems and what we envision:connectivity. Although
these Internet-based collaborative backup systemsare de-
signed to tolerate disconnections, they do assume a high-
level of connectivity. Disconnections are assumed to be
mostly transient, whether they be non-malicious (a peer
goes off-line for a few days or crashes) or malicious (a
peer purposefully disconnects in order to try to benefit
from the system without actually contributing to it).

In the context of mobile devices interacting spon-
taneously, connections are by definition short-lived, un-
predictable, and very variable in bandwidth and reliabil-
ity. Worse than that, a pair of peers may have a chance
encounter and start exchanging data, and then never
meet again.

To tackle this issue, we assume that each mobile de-
vice can at leastintermittentlyaccess the Internet. The
backup software running in those mobile devices is ex-
pected to take advantage of such an opportunity by re-
establishing contacts with (proxies of) mobile devices en-
countered earlier. For instance, a contributor may wish
to send data stored on behalf of another node to some
sort of repositoryassociated with the owner of the data.
Contributors can thus asynchronouslypushdata back to
their owners. The repository itself can be implemented
in variousways: an emailmailbox,an FTP server,a fixed
peer-to-peer storage system, etc. Likewise, data owners
may sometimes need to query their repository as soon as
they can access the Internet in order topull back (i.e., re-
store) their data.

In the remainder of this paper, we will focus on the
design of the storage layer of this service on both the
data owner and contributor sides.

2.2. Requirements of the Storage Layer

We have identified the following requirements for
the mechanisms employed at the storage layer.

Storage efficiency.Backing up data should be as
efficient as possible. Data owners should neither ask
contributors to store more data than necessary nor send
excessive data over the wireless interface. Failing to do
so will waste energy and result in inefficient utilization
of the storage resources available in the node’s vicinity.
Inefficient storage may have a strong impact on energy
consumption since (i) storage costs translate into trans-
mission costs and (ii) energy consumption on mobile
devices is dominated by wireless communication costs,
which in turn increase as more data are transferred [28].
Compression techniquesare thus a key aspect of the stor-
age layer on the data owner side.

Small data blocks. Both the occurrence of encoun-
ters of a peer within radio range and the lifetime of the
resulting connections are unpredictable. Consequently,
the backup application running on a data owner’s device
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must be able to conveniently split the data to be backed
up into small pieces to ensure that it can actually be trans-
ferred to contributors. Ideally, data blocks should be
able to fit within the underlying network layer’s maxi-
mum transmission unit or MTU (2304 octets for IEEE
802.11); larger payloads get fragmented into several
packets, which introduces overhead at the MAC layer,
and possibly at the transport layer too.

Backup atomicity. Unpredictability and the poten-
tially short lifetime of connections, compounded with
the possible use of differential compression to save stor-
age resources, mean that it is unlikely to be practical to
store a set of files, or even one complete file, on a single
peer. Indeed, it may even be undesirable to do so in order
to protect data confidentiality [8].Furthermore, it may be
the case that files are modified before their previous ver-
sion has been completely backed up.

The dissemination of data chunks as well as the
coexistence of several versions of a file must not affect
backup consistency as perceived by the end-user: a file
should be either retrievableand correct, or unavailable.
Likewise, the distributed store that consists of various
contributors shall remain in a “legal” state after new data
are backed up onto it. This corresponds to theatomicity
andconsistencyproperties of the ACID properties com-
monly referred to in transactional database management
systems.

Error detection. Accidental modifications of the
data are assumed to be handled by the various lower-lev-
el software and hardware components involved, such as
the communication protocol stack, the storage devices
themselves, the operating system’sfile system implemen-
tation, etc. However, given that data owners are to hand
their data to untrusted peers, the storage layer must pro-
vide mechanisms to ensure thatmaliciousmodifications
to their data are detected with a high probability.

Encryption. Due to the lack of trust in contribu-
tors, data owners may wish to encrypt their data to en-
sure privacy. While there exist scenarios where there is
sufficient trust among the participants such that encryp-
tion is not compulsory (e.g., several people in the same
working group), encryption is a requirement in the gener-
al case.

Backup redundancy. Redundancy is theraison
d’êtreof any data backup system, but when the system
is based on cooperation, the backups themselvesmust be
made redundant. First, the cooperative backup software
must account for the fact that contributorsmay crash acci-
dently. Second, contributor availability is unpredictable
in a mobile environment without continuous Internet ac-
cess. Third, contributors are not fully trusted and may
behave maliciously. Indeed, the literature on Internet-
based peer-to-peer backup systems describes a range of

attacks against data availability, ranging from data reten-
tion (i.e., a contributor purposefully refuses to allow a
data owner to retrieve its data) to selfishness (i.e., a partic-
ipant refuses to spend energy and storage resources stor-
ing data on behalf of other nodes) [7,9]. All these uncer-
tainties make redundancy even more critical in a cooper-
ative backup service for mobile devices.

3. Design Options for the Storage Layer
In this section, we present design options able to

satisfy each of the requirements identified for above.

3.1. Storage Efficiency

In wired distributed cooperative services, storage
efficiency is often addressed by ensuring that a given
content is only stored once. This property is known as
single-instance storage[4]. It can be thought of as a
form of compression among several data units. In a file
system, where the “data unit” is the file, this means that
a given content stored under different file names will be
stored only once. On Unix-like systems,revision control
and backup tools implement this property by using hard
links [20,25]. It may also be provided at a sub-file granu-
larity, instead of at a whole file level, allowing reduction
of unnecessary duplication with a finer-grain.

Archival systems [23,35], peer-to-peer file sharing
systems [2], peer-to-peer backup systems [7], network
file systems [22], and remote synchronization tools [31]
have been demonstrated to benefit from single-instance
storage, either by improving storage efficiency or reduc-
ing bandwidth.

Compression based on resemblance detection, i.e.,
differential compression, or delta encoding, is unsuit-
able for our environment since (i) it requires access to
all the files already stored, (ii) it is CPU- and memory-
intensive,and (iii) the resultingdelta chainsweaken data
availability [15,35].

Traditional lossless compression (i.e.,zip variants),
allows the elimination of duplicationwithin single files.
As such, it naturally complements inter-file and inter-ver-
sion compression techniques [35]. Section 4 contains a
discussion of the combination of both techniques in the
framework of our proposed backup service. Lossless
compressors usually yield better compression when op-
erating on large input streams [15] so compressing con-
catenated files rather than individual files improves stor-
age efficiency [35]. However,we did not consider this ap-
proach suitable for mobile device backup since it may be
more efficient to backup only those files (or part of files)
that have changed.

There exist a number of application-specific com-
pression algorithms,such as thelosslessalgorithms used
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by the FLAC audio codec, the PNG image format, and
the XMill XML compressor [17].There isalso a plethora
of lossycompression algorithms for audio samples, im-
ages, videos, etc. While using such application-specific
algorithms might be beneficial in some cases, we have
focused instead on generic lossless compression.

3.2. Small Data Blocks
We now consider the options available to: (1) chop

input streams into small blocks, and (2) create appropri-
ate meta-data describing how those data blocks should
be reassembled to produce the original stream.

3.2.1. Chopping Algorithms

As stated in Section 2.2, the size of blocks that are
to be sent to contributors of the backup service has to be
bounded, and preferably small, to match the nature of
peer interactions in a mobile environment. There are sev-
eral ways to cut input streams into blocks. Which algo-
rithm is chosen has an impact on the improvement yield-
ed by single-instance storage applied at the block level.

Splitting input streams into fixed-size blocks is a nat-
ural solution. When used in conjunction with a single-in-
stance storage mechanism, it has been shown to improve
the compression across files or across file versions [23].
Manber proposed an alternative content-based stream
chopping algorithm [21] that yields better duplication
detection across files, a technique sometimes referred to
ascontent-defined blocks[15].The algorithm determines
block boundaries by computing Rabin fingerprints on
a sliding window of the input streams. Thus, it only al-
lows the specification of anaverageblock size (assum-
ing random input). Various applications such as archival
systems [35], network file systems [22] and backup sys-
tems [7] benefit from this algorithm. Section 4 provides
a comparison of both algorithms.

3.2.2. Stream Meta-Data

Placement of stream meta-data.Stream meta-
data is information that describes which blocks com-
prise the stream and how they should be reassembled
to produce the original stream. Such meta-data can ei-
ther be embedded along with each data block or stored
separately. The main evaluation criteria of a meta-data
structure are read efficiency (e.g., algorithmic complex-
ity of stream retrieval, number of accesses needed) and
size (e.g., how the amount of meta-data grows compared
to data).

We suggest a more flexible approach whereby
stream meta-data (i.e., which blocks comprise a stream)
is separated both from file meta-data (i.e., file name, per-
missions, etc.) and the file content. This has several ad-
vantages. First, it allows a data block to be referenced
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Figure 1. A tree structure for stream meta-
data. Leaves represent data blocks while high-
er blocks are meta-data blocks.

multiple times and hence allows for single-instance stor-
age at the block level. Second, it promotesseparation
of concerns. For instance, file-level meta-data (e.g., file
path, modification time, permissions) may change with-
out having to modify the underlying data blocks, which
is important in scenarios where propagating such up-
dates would be next to impossible. Separating meta-
data and data also leaves the possibility of applying the
same “filters” (e.g., compression, encryption), or to use
similar redundancy techniques for both data and meta-
data blocks. This will be illustrated in Section 4. This ap-
proach is different from the one used in Hydra [34] but
not unlike that of OpenCM [27].

Indexing individual blocks. The separation of
data and meta-data means that there must be a way for
meta-data blocks to refer to data blocks: data blocks
must be indexed ornamed1. The block naming scheme
must fulfill several requirements. First, it must not be
based on non-backed-up user state which would be lost
during a crash. Most importantly, the block naming
scheme must guarantee thatname clashesamong the
blocks of a data owner cannot occur. In particular,block
IDs must remain valid in time so that a given block ID is
not wrongfully re-used when a device restarts the back-
up software after a crash. Given that data blocks will
be disseminated among several peers and will ultimately
migrate to their owner’s repository, blocks IDs should re-
main valid in space, that is, they should be independent
of contributor names. This property also allows forpre-
computationof block IDs and meta-data blocks: stream
chopping and indexing do not need to be done upon a
contributor encounter, but can be performeda priori,
once for all. This savesCPU time and energy,and allows
data owners to immediately take advantage of a backup
opportunity. A practical naming scheme widely used in
the literature will be discussed in Section 3.4.

Indexing sequences of blocks.Byte streams (file
contents) can be thought of as sequences of blocks.

1In the sequel we use the terms “block ID”, “name”, and “key” inter-
changeably.
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Meta-data describing the list of blocks comprising a byte
stream need to be produced and stored. In their simplest
form, such meta-data are a vector of block IDs, or in oth-
er words,a byte stream. This means that this byte stream
can in turn be indexed, recursively,until a meta-data byte
stream is produced that fits the block size constraints.
This approach yields the meta-data structure shown in
Figure 1 which is comparable to that used by Venti and
GNUnet [2,23].

Contributor interface. With such a design,contrib-
utors do not need to know about the actual implementa-
tion of block and stream indexing used by their clients,
nor do they need to be aware of the data/meta-data dis-
tinction. All they need to do is to provide primitives of a
keyed block storage:

• put (key, data) inserts the data blockdata and
associates it withkey, a block ID chosen by the data
owner according to some naming scheme;

• get (key) returns the data associated withkey.

This simple interface suffices to implement, on the data
owner side, byte stream indexing and retrieval. Also, it
is suitable for an environment in which service providers
and users are mutually suspicious because it places as
little burden as possible on the contributor side. The
same approach was adopted by Venti [23] and by many
peer-to-peer systems [2,7].

3.3. Backup Atomicity

Distributed and mobile file systems such as Coda
[16] which support concurrent read-write access to the
data and do not have built-in support for revision control,
differ significantly from backup systems. Namely, they
are concerned about update propagation and reconcilia-
tion in the presence of concurrent updates. Not surpris-
ingly, a read-write approach does not adapt well to the
loosely connected scenarios we are targeting: data own-
ers are not guaranteed to meeteverycontributor storing
data on their behalf in a timely fashion, which makes
update propagation almost impossible. Additionally,
it does not offer the desired atomicity requirement dis-
cussed in Section 2.2.

Thewrite onceor append onlysemantics adopted
by archival [11,23], backup [7,25] and versioning sys-
tems [20,26,27] solve these problems. Data is always
appended to the storage system, and never modified in
place. This is achieved by assigning each piece of data
a unique identifier. Therefore, insertion of content (i.e.,
data blocks) into the storage mechanism (be it a peer ma-
chine, a local file system or data repository) is atomic.
Because data is only added, never modified, consistency
is also guaranteed: insertion of a block cannot result in
an inconsistent state of the storage mechanism.

A potential concern with this approach is its cost
in terms of storage resources. It has been argued, how-
ever, that the cost of storing subsequent revisions of
whole sets of files can be very low provided inter-ver-
sion compression techniques like those described earlier
are used [10,23,26]. In our case, once a contributor has
finally transferred data to their owner’s repository, it may
reclaim the corresponding storage resources, which fur-
ther limits the cost of this approach.

From an end-user viewpoint,being able to restore an
old copy of a file is more valuable than being unable to
restore the file at all. All these reasons make the write-
only approach suitable to the storage layer of our cooper-
ative backup service.

3.4. Error Detection
Error-detecting codes can be computed either at

the level of whole input streams or at the level of data
blocks. They must then be part of, respectively, the
stream meta-data, or the block meta-data. We argue the
case for cryptographic hash functions as a means of pro-
viding the required error detection and as a block-level
indexing scheme.

Cryptographic hash functions. The error-detect-
ing code we use must be able to detectmaliciousmodifi-
cations. Thismakeserror-detectingcodesdesigned to tol-
erate random, accidental faults inappropriate. We must
instead usecollision-resistantand preimage-resistant
hash functions, which are explicitly designed to detect
tampering [5].

Along with integrity,authenticityof the data must
also be guaranteed, otherwise a malicious contribu-
tor could deceive a data owner by producing fake data
blocks along with valid cryptographic hashes. Thus, dig-
ital signatures should be used to guarantee the authentici-
ty of the data blocks. Fortunately, not all blocks need to
be signed: signing a root meta-data block (as shown in
Figure 1) is sufficient. This is similar to the approach tak-
en by OpenCM [27]. Note, however, that while produc-
ing random data blocks and their hashes is easy, produc-
ing the corresponding meta-data blocks is next to impos-
sible without knowing what particular meta-data schema
is used by the data owner.

Content-based indexing.Collision-resistant hash
functions have been assumed to meet the requirements
of a data block naming scheme as defined in Section
3.2.2, and to be a tool allowing for efficient implemen-
tations of single-instance storage [7,22,23,29,31,35]. In
practice, these implementations assume that whenever
two data blocks yield the same cryptographic hash val-
ue, their contentsare identical. Given this assumption,
implementation of a single-instance store is straight-
forward: a block only needs to be stored if its hash val-
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ue was not found in the locally maintained block hash
table.

In [12], Henson argues that accidental collisions, al-
though extremely rare, do have a slight negative impact
on software reliability and yield silent errors. Given an
n-bit hash output produced by one of the functions listed
above, the expected workload to generate a collision out
of two randominputs is of the order of 2n/2 [5]. More pre-
cisely, if we are to store, say, 8 GiBof data in the form of
1 KiB blocks, we end up with 243 blocks, whereas SHA-
1, for instance, would require 280 blocks to be generated
on average before an accidental collision occurs. We con-
sider this to be reasonable in our application since it does
not impede the tolerance of faults in any significant way.
Also,Henson’s fear ofmaliciouscollisionsdoesnot hold
given the preimage-resistance property provided by the
commonly-used hash functions2.

Content-addressable storage (CAS) thus seems a vi-
able option for our software layer as it fulfills both the
error-detection and data block naming requirements. In
[29], the authors assume a block ID space shared across
all CAS users and providers. In our scenario, CAS
providers (contributors) do not trust their clients (data
owners) so they need either to enforce the block naming
scheme (i.e., make sure that the ID of each block is in-
deed the hash value of its content), or to maintain a per-
user name space.

3.5. Encryption

Data encryption may be performed either at the lev-
el of individual blocks, or at the level of input streams.
Encrypting the input streambeforeit is split into smaller
blocks breaks the single-instance storage property at the
level of individual blocks. This is because encryption
aims to ensure that the encrypted output of two similar
input streams will not be correlated.

Leaving input streams unencrypted and encrypting
individual blocks yielded by the chopping algorithm
does not have this disadvantage. More precisely, it pre-
serves single-instance storage at the level of blocks at
leastlocally, i.e.,on the client side. If asymmetriccipher-
ing algorithms are used, the single-instance storage prop-
erty is no longer ensuredacrosspeers, since each peer
encrypts data with its own private key. However, we do
not consider this a major drawback for the majority of
scenarios considered where little or no data are common
to several participants. Moreover, solutions to this prob-
lem exist, notablyconvergent encryption[7].

2The recent attacks found on SHA-1by Wang et al. [33] do not affect
the preimage-resistance of this function.

3.6. Backup Redundancy

Replication strategies.Redundancy management
in the context of our collaborative backup service for
mobile devices introduces a number of new challenges.
Peer-to-peer file sharing systems are not a good source
of inspiration in this respect given that they rely on re-
dundancy primarily as a means of reducing access time
to popular content [24].

For the purposes of fault-tolerance, statically-de-
fined redundancy strategies have been used in Internet-
based scenarios where the set of servers responsible for
holding replicas is knowna priori, and where servers
are usually assumed to be reachable “most of the time”
[8,34]. Internet-based peer-to-peer backup systems [7,9]
have relaxed these assumptions. However,although they
take into account the fact that contributors may become
unreachable, strong connectivity assumptions are still
made: the inability to reach a contributor is assumed to
be the exception, rather than the rule. As a consequence,
unavailability of a contributor is quickly interpreted as a
symptom of malicious behavior [7,9].

The connectivity assumption does not hold in our
case. Additionally, unlike with Internet-based systems,
the very encounter of a contributor is unpredictable.
Thishasa strong impact on the possible replicationstrate-
gies, and on the techniques used to implement redun-
dancy.

Erasure codeshave been used as a means to tolerate
failures of storage sites while being more storage-effi-
cient than simple replication [34]. Usually, (n,k) erasure
codes are defined as follows [18,34]:

• an (n,k) code maps ak-symbol block to ann-symbol
codeword;

• k + ε symbols suffice to recover the exact original
data; the code isoptimalwhenε = 0;

• optimal (n,k) schemes tolerate the loss of (n - k) sym-
bols and have an effective storage use ofk/n.

Such an approach seems very attractive to improve stor-
age efficiency while still maximizing data availability.

However, as argued in [3,18,32], an (n,k) scheme
with k > 1can hinder data availability because it requires
k peers to be available for data to be retrieved, instead of
just 1 with mirroring (i.e., an (n,1) scheme). Also, given
the unpredictability of contributor encounters, a scheme
with k > 1 is risky since a data owner may fail to storek
symbols on different contributors. On the other hand,
from a confidentiality viewpoint, increasing dissemina-
tion and purposefully placing less thank symbols on any
given untrusted contributor may be a good strategy [8].
Intermediate solutions can also be imagined, e.g., mirror-
ing blocks that have never been replicated and choosing
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k > 1 for blocks already mirrored at least once. This use
of different levels of dispersalwas also mentioned by
the authors of InterMemory [11] as a way to accommo-
date contradictory requirements. Finally, a dynamically
adaptive behavior of erasure coding may be considered
as [3] suggests.

Replica scheduling and dissemination.As stated
in Section 2.2, it is plausible that a file will be only part-
ly backed up when a newer version of this file enters the
backup creation pipeline. One could argue that the repli-
ca scheduler should finish distributing the data blocks
from the old version before distributing those of the new
version. This policy would guarantee, at least, availabili-
ty of the old version of the file. On the other hand, in cer-
tain scenarios, users might want to favor freshness over
availability, i.e., they might request that newer blocks are
scheduled first for replication.

This clearly illustrates that a wide range ofreplica
scheduling and dissemination policies and correspond-
ing algorithmscan be defended depending on the sce-
nario considered. At the core of a given replica schedul-
ing and dissemination algorithm is adispersal function
that decides on a level of dispersal for any given data
block. The algorithm must evolvedynamicallyto ac-
count for several changing factors. In FlashBack [19],
the authors identify a number of important factors that
they use to define adevice utility function. Those factors
include locality (i.e., the likelihood of encountering a
given device again later) as well aspower and storage
resourcesof the device.

In addition to those factors, our backup software
needs to account for the current level of trust in the con-
tributor at hand. If a data owner fully trusts a contribu-
tor, e.g., because it has proven to be well-behaved over a
given period of time, the data owner may choose to store
complete replicas (i.e., mirrors) on this contributor.

4. Preliminary Evaluation
This section presents our prototype implementation

of the storage layer of the envisaged backup system, as
well as a preliminary evaluation of key aspects.

4.1. Implementation Overview

We have implemented a prototype of the storage
layer discussed above, a basic building block of the co-
operative backup framework we are designing. This
layer is performance-critical and we implemented it in
C. The resulting library,libchop, consists of 7 K physi-
cal source lines of code. It was designed to be flexible
enough so that different techniques could be combined
and evaluated,by providinga few well-defined interfaces
as shown in Figure 2. The library itself is not concerned

zlib filter block indexer zlib filter

stream chopper stream indexer block store

Figure 2. Data flow in the libchop backup cre-
ation pipeline.

with the backup of file system-related meta-data such as
file paths, permissions, etc. Implementing this is left to
higher-level layers akin to OpenCM’s schemas [27].

Implementations of thechopper interface chop in-
put streams into small fixed-size blocks, or according to
Manber’s algorithm [21]. Block indexers name blocks
and store them in a keyed block store (e.g., an on-disk
database). Thestream_indexer interface provides a
method that iterates over the blocks yielded by the given
chopper, indexes them, produces corresponding meta-
data blocks, and stores them in a block store. In the pro-
posed cooperative backup service, chopping and index-
ing are to be performed on the data owner side, while the
block store itself will be realized by contributors. Final-
ly, libchop also providesfilters, such aszlibcompression
and decompression filters, which may be conveniently
reused in different places, for instance between a file-
based input stream and a chopper, or between a stream
indexer and a block store.

In the following experiments, the only stream index-
er used is a “tree indexer” as shown in Figure 1. We used
an on-disk block store that uses TDB as the underlying
database [30]. For each file set, we started with a new,
empty database.

4.2. Evaluation of Compression Techniques

Our implementation has allowed us to evaluate
more precisely some of the tradeoffs outlined in Section
3. After describing the methodology and workloads that
were used, we will comment the results obtained.

4.2.1. Methodology and Workloads

Methodology. The purpose of our evaluation is to
compare the various compression techniques described
earlier in order to better understand the tradeoffs that
must be made. We measured the storage efficiency and
computational cost of each method, both of which are
critical criteria for resource-constrained devices. The
measures were performed on a 500 MHz G4 Macintosh
running GNU/Linux (running them on, say, an ARM-
based mobile device would have resulted in lower
throughputs; however, since we are interested incompar-
ing throughputs, this would not make any significant dif-
ference).
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Name Size Files Avg. Size

Lout (versions 3.20 to 3.29) 76 MiB 5853 13 KiB

Ogg Vorbis files 69 MiB 17 4 MiB

mbox-formatted mailbox 7 MiB 1 7 MiB

Figure 3. File sets.

We chose several workloads and compared the re-
sults obtained using different configurations. These file
sets, shown in Figure 3, qualify assemi-syntheticwork-
loads because they are actual workloads, although they
were not taken from a real mobile device. The motiva-
tion for this choice was to purposefully target specific
file classes. The idea is that the results should remain
valid for any file of these classes.

File sets. In Figure 3, the first file set contains 10
successive versions of the source code of the Lout doc-
ument formatting system, i.e., low-density, textual in-
put (C and Lout code), spread across a number of small
files. Of course, this type of data is not typical of mo-
bile devices like PDAs and cell phones. Nevertheless,
the results obtained with this workload should be sim-
ilar to those obtained with widely-used textual data for-
mat such as XML. The second file set shown in Figure 3
consists of 17 Ogg Vorbis files, a high-density binary for-
mat (Ogg Vorbis is a lossy audio compression format),
typical of the kind of data that may be found on devices
equipped with sampling peripherals. The third file set
consists of a single, large file: a mailbox in the Unix
mbox format which is an append-only textual format.
Such data are likely to be found in a similar form on com-
municating devices.

Configurations. Figure 4 shows the storage config-
urations we have used in our experiments. For each con-
figuration, it indicates whether single-instance storage
was provided, which chopping algorithm was used and
what the expected block size was, as well as whether the
input stream or output blocks were compressed using a
lossless stream compression algorithm (zlib in our case).
Our intent is not to evaluate the outcome of each algo-
rithm independently, but rather that of whole configura-
tions. Thus, instead of experimenting with every possi-
ble combination, we chose to retain only those that (i)
made sense from an algorithmic viewpoint and (ii) were
helpful in understanding the tradeoffs at hand.

ConfigurationsA1 andA2 serve as baselines for the
overall compression ratio and computational cost. Com-
paring them is also helpful in determining the computa-
tional cost due to single-instance storage alone. Subse-
quent configurations all chop input streams into small
blocks whose size fits our requirements (1 KiB, which
should yield packets slightly smaller than IEEE 802.11’s

Config. Single
Instance?

Chopping
Algo.

Expected
Block
Size

Input
Zipped?

Blocks
Zipped?

A1 no — — yes —

A2 yes — — yes —

B1 yes Manber’s 1024 B no no

B2 yes Manber’s 1024 B no yes

B3 yes fixed-size 1024 B no yes

C yes fixed-size 1024 B yes no

Figure 4. Description of the configurations ex-
perimented.

MTU); they all implement single-instance storage of the
blocks produced.

Common octet sequences are unlikely to be found
within a zlib-compressed stream, by definition. Hence,
zipping the input precludes advantages to be gained by
block-level single-instance storage afterwards. Thus,
we did not include a configuration where a zipped input
stream would then be passed to a chopper implementing
Manber’s algorithm.

TheB configurations favor sub-file single-instance
storage by not compressing the input before chopping it.
B2 improves overB1 by adding the benefits ofzlib com-
pression at the block-level. Conversely, configuration
C favors traditional lossless compression over sub-file
single-instance storage since it applies lossless compres-
sion to the input stream.

Our implementation of Manber’s algorithm uses a
sliding window of 48 B which was reported to provide
good results [22]. All configurations butA1 use single-in-
stance storage, realized using thelibchop “hash” block
indexer that uses SHA-1 hashes as unique block identi-
fiers. ForA1,a block indexer that systematicallyprovides
unique IDs (per RFC 4122) was chosen.

The chosen configurations and file sets are quite
similar to those described in [15,35], except that, as as
explained in Section 3.1, we do not evaluate the storage
efficiency of the delta encoding technique proposed
therein.

4.2.2. Results
Figure 5 shows the compression ratios obtained

for each configuration and each file set. The bars show
the ratio of the size of the resulting blocks,including
meta-data (sequences of SHA-1 hashes), to the size of
the input data, for each configuration and each data set.
The lines represent the corresponding throughputs.

Impact of the data type. Not suprisingly, the set
of Vorbis files defeats all the compression techniques.
Most configurations incur a slight storage overhead due
to the amount of meta-data generated.

Part Algo - APPENDIX [Courtes et al., 2006] p 8



Lout Ogg Vorbis mbox
re

su
lt
in

g
si
ze

(%
)

A1 A2 B1 B2 B3 C
0

20

40

60

80

100

120

configuration

0

4

8

12

16

20

24

28

th
ro

u
gh

p
u
t
(K

iB
/s

)

Figure 5. Storage efficiency and computational
cost of several configurations.

Impact of single-instance storage.Comparing the
results obtained forA1 andA2 shows benefits only in the
case of the successive source code distributions,where it
halves the amount of data stored (13 % vs. 26 %). This
is due to the fact that successive versions of the software
have a lot of files in common. Furthermore, it shows that
single-instance storage implemented using cryptograph-
ic hashes does not degrade throughput, which is the rea-
son why we chose to use it in all configurations.

As expected, single-instance storage applied at the
block-level is mainly beneficial for the Lout file set
where it achieves noticeable inter-version compression,
comparable with that produced withzlib in A1. The best
compression ratio overall is obtained withB2 where in-
dividual blocks arezlib-compressed. However, the com-
pression ratios obtained withB2 are comparable to those
obtained withC, and only slightly better in the Lout case
(11%vs. 13%).Thus,we conclude that there is little stor-
age efficiency improvement to be gained from the combi-
nation of single-instance storage and Manber’schopping
algorithm compared to traditional lossless compression,
especially when applied to the input stream.

The results in [35] are slightly more optimistic re-
garding the storage efficiency of a configuration simi-
lar to B2, which may be due to the use a smaller block
(512 B) and a larger file set.

Computational cost. Comparing the computation-
al costs of theB configurations with that ofC provides
an important indication as to which kind of configura-
tion suits our needs best. Indeed, input zipping and
fixed-size chopping inC yield a processing throughput
three times higher than that ofB2 (except for the set of
Vorbis files). Thus,C is the configuration that offers the
best tradeoff between computational cost and storage ef-
ficiency for low-entropy data.

Additional conclusions can be drawn with respect
to throughput. First, the cost ofzlib-based compression
appears to be reasonable, particularly when performed
on the input stream rather than on individual blocks, as
evidenced, e.g., byB3 andC. Second, the input data type
has a noticeable impact on the computational cost. In
particular, applying lossless compression is more costly
for the Vorbis files than for low-entropy data. Therefore,
it would be worthwhile to disablezlib compression for
compressed data types.

5. Conclusion and Future Work
In this paper, we have considered the viability of col-

laboration between peer mobile devices to implement a
cooperativebackupservice. We have identified six essen-
tial requirements for the storage layer of such a service,
namely: (i) storage efficiency; (ii) small data blocks; (iii)
backup atomicity; (iv) error detection; (v) encryption;
(vi) backup redundancy. The various design options for
meeting these requirements have been reviewed and a
preliminary evaluation carried out using a prototype im-
plementation of the storage layer.

Our evaluation has allowed us to assess different
storage techniques, both in terms of storage efficiency
and computational cost. We conclude that the most suit-
able combination for our purposes combines the use of
lossless input compression with fixed-size chopping and
single-instance storage. Other techniques were rejected
for providing little storage efficiency improvement com-
pared to their CPU cost.

Future work on the optimization of the storage layer
concerns several aspects. First, the energy costs of the
various design options need to be assessed, especially
those related to the wireless transmission of backup data
between nodes. Second, the performance and depend-
ability impacts of various replica scheduling and dissem-
ination strategies need to be evaluated as a function, for
example, of the expected frequencies of data updates,
cooperative backup opportunities and infrastructure con-
nections. Third, it seems likely that no single configura-
tion of the backup service will be appropriate for all situ-
ations, so dynamic adaptation of the service to suit differ-
ent contexts needs to be investigated.

Finally, the issues relating to trust management, re-
source accounting and cooperation incentives need to be
addressed, especially insomuch as the envisaged mode
of mostly-disconnected operation imposes additional
constraints. Current research in this direction, in collabo-
ration with our partners in the MoSAIC project, is direct-
ed at evaluatingmechanismssuch asmicroeconomicand
reputation-based incentives.
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Abstract

The adaptive renaming problem consists in designing an algorithm that allows � processes (in a set
of � processes) to obtain new names despite asynchrony and process crashes, in such a way that the size
of the new renaming space � be as small as possible. It has been shown that ����������� is a lower
bound for that problem in asynchronous atomic read/write register systems.

This paper is an attempt to circumvent that lower bound. To that end, considering first that the system
is provided with a  -set object, the paper presents a surprisingly simple adaptive � -renaming wait-free
algorithm where �!�"�#�$�&%�' (*) . To attain this goal, the paper visits what we call Gafni’s reduction land,
namely, a set of reductions from one object to another object as advocated and investigated by Gafni.
Then, the paper shows how a  -set object can be implemented from a leader oracle (failure detector) of a
class denoted + ( . To our knowledge, this is the first time that the failure detector approach is investigated
to circumvent the �,�-�#����� lower bound associated with the adaptive renaming problem. In that sense,
the paper establishes a connection between renaming and failure detectors.

Keywords: Adaptive algorithm, Asynchronous system, Atomic register, Consensus, Divide and conquer,
Leader oracle, Renaming, Set agreement, Shared object, Wait-free algorithm.

1 Introduction

The renaming problem The renaming problem is a coordination problem initially introduced in the con-
text of asynchronous message-passing systems prone to process crashes [3]. Informally, it consists in the
following. Each of the . processes that define the system has an initial name taken from a very large domain/10324265&7

(usually, .98:8 5
). Initially, a process knows only its name, the value . , and the fact that no two

processes have the same initial name. The processes have to cooperate to choose new names from a name
space

/1032426;<7
such that

; 8:8 5
and no two processes obtain the same new name. The problem is then

called
;

-renaming.
Let = denote the upper bound on the number of processes that can crash. It has been shown that =>8?.A@3B

is a necessary and sufficient requirement for solving the renaming problem in an asynchronous message-
passing system [3]. That paper presents also a message-passing algorithm whose size of the renaming space
is
; C .EDF= .

The problem has then received a lot of attention in the context of asynchronous shared memory systems
made up of atomic read/write registers. Numerous wait-free renaming algorithms have been designed (e.g.,
[2, 4, 5, 7, 9, 21]). Wait-free means here that a process that does not crash has to obtain a new name in a
finite number of its own computation steps, regardless of the behavior of the other processes (they can be

1

Part Algo - APPENDIX [Mostefaoui et al. 2006] p 1



arbitrarily slow or even crash) [18]. Consequently, wait-free implies = C ."G 0 . An important result in
such a context, concerns the lower bound on the new name space. It has been shown in [19] that there is no
wait-free renaming algorithm when

; 8HB*.IG 0 . As wait-free JKB*.�G 0ML -renaming algorithms have been
designed, it follows that that

; C B*.NG 0 is a tight lower bound.
The previous discussion implicitly assumes the “worst case” scenario: all the processes participate in the

renaming, and some of them crash during the algorithm execution. The net effect of crashes and asynchrony
create “noise” that prevents the renaming space to be smaller than B*."G 0 . But it is not always the case
that all the processes want to obtain a new name. (A simple example is when some processes crash before
requiring a new name.) So, let O ,

0QP O P . , be the number of processes that actually participate in the
renaming. A renaming algorithm guarantees adaptive name space if the size of the new name space is a
function of O and not of . . Several adaptive wait-free algorithms have been proposed that are optimal as
they provide

;RC BSOTG 0 (e.g., [2, 4, 9]).

The question addressed in the paper Let us assume that we have a solution to the consensus problem.
In that case, it easy to design an adaptive renaming algorithm where

; C O (the number of participating
processes). The solution is as follows. From consensus objects, the processes build a concurrent queue
that provides them with two operations: a classical enqueue operation and a read operation that provides
its caller with the current content of the queue (without modifying the queue). Such a queue object has a
sequential specification and each operation can always be executed (they are total operations according to
the terminology of [18]), from which it follows that this queue object can be wait-free implemented from
atomic registers and consensus objects [18]. Now, a process that wants to obtain a new name does the
following: (1) it deposits its initial name in the queue, (2) then reads the content of the queue, and finally
(3) takes as its new name its position in the sequence of initial names read from queue. It is easy to see that
if O processes participate, they obtain the new names from

0
to O , which means that consensus objects are

powerful enough to obtain the smallest possible new name space.
The aim of the paper is to try circumventing the lower bound

; C BSOEG 0 associated with the adaptive
wait-free renaming problem, by enriching the underlying read/write register system with appropriate objects.
More precisely, given

;
with O PU; P BSO:G 0 , which objects (when added to a read/write register system)

allow designing an
;

-renaming wait-free algorithm (without allowing designing an J ; G 0ML
-renaming

algorithm). The previous discussion on consensus objects suggests to investigate V -set agreement objects
to attain this goal, and to study the tradeoff relating the value of V with the new renaming space. The V -set
agreement problem is a distributed coordination problem ( V defines the coordination degree it provides the
processes with) that generalizes the consensus problem: each process proposes a value, and any process that
does not crash must decide a value in such a way that at most V distinct values are decided and any decided
value is a proposed value. The smaller the coordination degree V , the more coordination imposed on the
participating processes: V C�0

is the more constrained version of the problem (it is consensus), while V C .
means no coordination at all.

From V -set to JKBSOWGYX�Z []\ L -renaming Assuming V -set agreement base objects, and O P . participating
processes, the paper presents an adaptive wait-free renaming algorithm providing a renaming space whose
size is

; C JKBSO^GYX Z [ \ L . Interestingly, when considering the two extreme cases we have the following:V C_0
(consensus) gives

; C O (the best that can be attained), while V C . (no additional coordination
power) gives

;`C BSOaG 0 , meeting the lower bound for adaptive renaming in read/write register systems.
The proposed algorithm follows Gafni’s reduction style [13]. It is inspired by the adaptive renaming

algorithm proposed by Borowsky and Gafni in [9]. In addition to V -set objects, it also uses simple variants
of base objects introduced in [9, 10, 15, 16], namely, strong V -set agreement [10], V -participating set [9,

2
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15, 16]. These objects can be incrementally built from base V -set objects as indicated in Figure 1 (an arrow
means “used by”, the reverse direction means “can be reduced to”). b

-renaming

b!c"dfe g9hji k�lm
-set agreement

(Strong) m
-participating set

Figure 1: From V -set to JKBSOTG�X Z [ \ L -renaming

The renaming algorithm is surprisingly simple. It is based on a very well-known basic strategy: decom-
pose a problem into independent subproblems, solve each subproblem separately, and finally piece together
the subproblem results to produce the final result. More precisely, the algorithm proceeds as follows:n Using a V -participating set object, the processes are partitioned into independent subsets of size at

most V .n In each partition, the processes compete in order to acquire new names from a small name space. Leto
be the number of processes that belong to a given partition.They obtain new names in the space/103242 B o G 0p7 .n Finally, the name spaces of all the partitions are concatenated in order to obtain a single name space/1032426;<7

.

The key of the algorithm is the way it uses a V -participating set object to partition the O participating
processes in such a way that, when the new names allocated in each partition are pieced together, the new
name space is upper bounded by

; C JKBSO-GqXrZ [ \ L (1). Interestingly, the processes that belong to the
same partition can use any wait-free adaptive renaming algorithm to obtain new names within their partition
(distinct partitions can even use different algorithms). This noteworthy modularity property adds a generic
dimension to the proposed algorithm.

From the oracle s [ to V -set objects Unfortunately, V -set agreement objects cannot be wait-free imple-
mented from atomic registers [10, 19, 23]. So, the paper investigates additional equipment the asynchronous
read/write register system has to be enriched with in order V -set agreement objects can be implemented. To
that aim, the paper investigates a family of leader oracles (denoted here J s:t Lru�v t vxw ), and presents a V -set
algorithm based on read/write registers and any oracle of such a class s [ .

So, the paper provides reductions showing that adaptive wait-free JKBSOTGyX Z [ \ L -renaming can be reduced
to the s [ leader oracle class. To our knowledge, this is the first time that oracles (failure detectors) are
proposed and used to circumvent the BSOzG 0 adaptive renaming space lower bound. Several problems remain
open. The most crucial is the statement of the minimal information on process crashes that are necessary
and sufficient for bypassing the lower bound BSO^G 0 . This seems to be related to the open problem that
consists in finding the minimal assumptions on failures that allow solving the V -set agreement problem.

Roadmap The paper is made up of 6 sections. Section 2 presents the asynchronous computation model.
Then, Section 3 describes the adaptive renaming algorithm. This algorithm is based on a V -participating set
object. Section 4 visits Gafni’s reduction land by showing how the V -participating set object can be built

1When we were designing that algorithm, we had in mind sequential sorting algorithms such as quicksort, mergesort and
heapsort, and were thinking to possible relations linking renaming and sorting.

3
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from a V -set object. Then, Section 5 describes an algorithm that constructs a V -set object in an asynchronous
read/write system equipped with a leader oracle of the class s [ . Finally, Section 6 provides a few concluding
remarks while presenting open problems.

2 Asynchronous system model

Process model The system consists of . processes that we denote O u|{|2|2|2A{ O w . The integer } is the index
of O�~ . Each process O�~ has an initial name }��]~ such that }���~z� /10324265&7 . Moreover, a process does not know
the initial names of the other processes; it only knows that no two processes have the same initial name. A
process can crash. Given an execution, a process that crashes is said to be faulty, otherwise it is correct in
that execution. Each process progresses at its own speed, which means that the system is asynchronous.

Coordination model The processes cooperate and communicate through two types of reliable objects:
atomic multi-reader/single-write registers, and V -set objects.

A V -set object ��� provides the processes with a single operation denoted �|����� �3����������� [ J L . It is a one-
shot object in the sense that each process can invoke ��� 2 �|����� �3����������� [ J L at most once. When a process O ~
invokes ��� 2 �|����� �3����������� [ Jj� L , we say that it “proposes � ” to the V -set object ��� . If O�~ does not crash during
that invocation, it obtains a value ��� (we then say “O�~ decides �]� ”). A V -set object guarantees the following
two properties: a decided value is a proposed value, and no more than V distinct values are decided.

Notation Identifiers with upper case letters are used to denote shared registers or shared objects. Lower
case letters are used to denote local variables; in that case the process index appears as a subscript. As an
example, �����]�M� ~ / �37 is a local variable of the process O ~ , while �A�����$� / ��7 is an atomic register.

3 An adaptive  |¡�¢¤£ ¥ �  §¦©¨ -renaming algorithm

This section presents an adaptive wait-free JKBSOaGªX Z [ \ L -renaming algorithm (where O is the number of pro-
cesses that participate in the algorithm). As announced previously, this algorithm is based on atomic registers
and V -set objects.

3.1 Non-triviality

Let us observe that the trivial renaming algorithm where O�~ takes } as its new name is not adaptive, as the
renaming space would always be

/103242¬«7
, where

«
is the greatest index of a participating process (as an

example consider the case where only O u and O w are participating in the renaming). To rule out this type of
ineffective solution, we consider the following requirement for a renaming algorithm [7]:n The code executed by process O�~ with initial name }�� is exactly the same as the code executed by

process O�® with initial name }�� .
This constraint imposes a form of anonymity with respect to the process initial names. It also means

that there is a strong distinction between the index } associated with OA~ and its original name }��]~ . The initial
name }���~ can be seen as a particular value defined in O§~ ’s initial context. Differently, the index } can be seen
as a pointer to the atomic registers that can be written only by O ~ . This means that the indexes define the
underlying “communication infrastructure”.

4
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3.2 � -participating set object

The renaming algorithm is based on a V -participating set object. Such an object generalizes the participating
set object first defined in [9]. The particular case V C B when . C°¯ has been introduced in [15, 16].

Definition A V -participating set object ±²� is a one-shot object that provides the processes with a single
operation denoted �3³3�´�Sµ ¶*µ·�3³¸�rµº¹¸» ����� [ J L . A process O�~ invokes that operation with its name }���~ as a parameter.
The invocation ±²� 2 �*³3�´�Sµ ¶*µº�*³¸�Sµ·¹¸» ����� [ Jj}���~ L returns a set ¼§~ to O�~ (if O�~ does not crash while executing that
operation). The semantics of the object is defined by the following properties [9, 15, 16]:n Self-membership: ½�} : }��¾~¿�^¼�~ .n Comparability: ½�} {�� : ¼§~ÁÀ9¼�®"ÂY¼�®ÃÀ9¼�~ .n Immediacy: ½�} {�� : Jj}��¾~¿�^¼�® L$Ä JÅ¼�~¿ÀÆ¼�® L .n Bounded simultaneity: ½ÈÇ�É 0:P Ç P . : ÊÌË � É�Ê¬¼È®]Ê C Ç*Í]Ê P V .

The set ¼�~ obtained by a process O�~ can be seen as the set of processes that, from its point of view, have
accessed or are accessing the V -participating set object. A process always sees itself (self-membership).
Moreover, such an object guarantees that the ¼©~ sets returned to the process invocations can be totally
ordered by inclusion (comparability). Additionally, this total order is not at all arbitrary: it ensures that, ifO ® sees O ~ (i.e., }�� ~ �I¼ ® ) it also sees all the processes seen by O ~ (Immediacy). As a consequence if }�� ~ �I¼ ®
and }��*®Î�Ï¼�~ , we have ¼�~ C ¼�® . Finally, the object guarantees that no more than V processes see the same
set of processes (Bounded simultaneity).

As we will see later (Section 3.2), such an object can be constructed from V -set objects. When V C . , the
bounded simultaneity requirement is always satisfied, and can consequently be omitted (then, the definition
boils down to the participating set definition introduced in [9]).

level stopped processes ÐxÑ sets�pÒ �]Ó ,�]Ô Ð�Ó$�ÏÐ�Ô$�ÖÕ×��ØpÙÚ�¾ÛMÙ��¾ÜMÙ��¾ÝMÙ��]Ó�ÙÚ�¾Þ�ÙÚ�¾ßMÙ��¾àMÙ��]Ô�Ù���ØKáMâã
empty levelä ��Ø , �]Ü�ÙÚ��ØÅá ÐÈØå�ÏÐ�Ü$�-Ð�ØKáæ�çÕ���ØpÙ��]Û�Ù��]Ü�ÙÚ��ÝMÙÚ�¾ÞMÙ��¾ßMÙ��]à�Ù���ØKáMâè
empty levelé
empty levelê �]Û , �]à Ð�Û$�-Ð�àæ�ÖÕ��¾ÛMÙ��¾ÝMÙ��]Þ�ÙÚ�¾ß�ÙÚ�¾à�âë
empty levelì �]ß Ð�ß$�çÕ��¾Ý�Ù��]Þ�ÙÚ�¾ß|â� � Ý , � Þ Ð Ý �-Ð Þ �ÖÕ×� Ý Ù�� Þ â� empty level

Table 1: An example of V -participating object (O Cí0|îÎP . , V Cï¯ )
Notation and properties Let ¼�® be the set returned to O�® after it has invoked �*³��´�rµ ¶*µ·�3³M�Sµ·¹*» ����� [ Jj}��¸® L , andÇ C Ê¬¼ ® Ê (notice that

î&P Ç P . ). The integer Ç is called the level of O ® , and we say “O ® is -or stopped- at
level Ç ”. If there is a process Ox® such that Ê¬¼x®�Ê C Ç , we say “the level Ç is not empty”, otherwise we say “the
level Ç is empty”. Let ð be the set of non-empty levels Ç , Ê ðÃÊ CY«ñP . . Let us order the

«
levels of ð

according to their values, i.e., Ç u 8UÇ�ò�8¤ó|ó|óÈ8UÇpô (this means that the levels in Ë 03{|2|2|2Á{ .¿Í>õöË|Ç u�{|2|2|2©{ Ç�ô:Í
are empty).
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Ê¬¼�®]Ê C Ç (O�® stopped at level Ç ) means that, from Ox® point of view, there are exactly Ç processes that (if
they do not crash) stop at the levels ÇM� such that

0ÃP Ç|� P Ç . Moreover, these processes are the processes that
define ¼x® . (It is possible that some of them have crashed before stopping at a level, but this fact cannot be
known by O�® .) We have the following properties:n If O processes invoke �*³��´�rµ ¶*µ·�3³M�Sµ·¹*» ����� [ J L , no process stops at a level higher than O .n J#Ê¬¼�~#Ê C Ê¬¼�®¾Ê C Ç LÁÄ JÅ¼¿} C ¼�® L (from the comparability property).n Let ¼ ~ and ¼ ® such that Ê¬¼ ~ Ê C Ç�÷ and Ê¬¼ ® Ê C Çpø with ù&8?ú .

– ¼�~Aû9¼x® (from Ç ÷ 8çÇ ø , and the comparability property).

– Ê¬¼x®æõü¼�~#Ê C Ê¬¼�®]Ê¸G9Ê¬¼�~#Ê C Ç ø G�Ç ÷ (consequence of the set inclusion ¼�~Áû9¼�® ).
A V -participating set object can be seen as “spreading” the O P . participating processes on at most O

levels Ç . This spreading is such that (1) there are at most V processes per level, and (2) each process has a
consistent view of the spreading (where “consistent” is defined by the self-membership, comparability and
immediacy properties). As an example, let us consider Table 1 that depicts the sets ¼ ~ returned to O Cq0|î
processes participating in a V -participating set object (with V Cï¯ ), in a failure-free run. As we can see some
levels are empty. Two processes, O§ò and O�ý , stopped at level þ ; their sets are equal and contain exactly five
processes, namely the processes that stopped at a level

P þ .
The following lemma captures an important property provided by a V -participating set object. Let�¿ÿ / Ç ÷ 7�C Ë � such that Ê¬¼x®]Ê C Ç ÷ Í (the processes that have stopped at the level Ç ÷ ). For consistency purpose,

let Ç�� C�î .
Lemma 1 ÊÌ�¿ÿ / Ç ÷ 7 Ê P������ JKV { Ç ÷ G�Ç ÷	� uSL .
Proof ÊÌ�åÿ / Ç ÷ 7 Ê P V follows immediately from the bounded simultaneity property. To show ÊÌ�¿ÿ / Ç ÷ 7 Ê PÇ ÷ GaÇ ÷	� u , let us consider two processes Ox® and O�~ such that O�® stops at the level Ç ÷ while OÈ~ stops at the levelÇ ÷	� u . We have:

1. Ê¬¼x®¾Ê C Ç ÷ and Ê¬¼�~#Ê C Ç ÷	� u (definition of “a process stops at a level”).

2. �¿ÿ / Ç ÷ 7 À9¼�® (from the self-membership and comparability properties),

3. �¿ÿ / Ç ÷ 7�
 ¼�~ C�
(from ¼x®��C ¼�~ and the immediacy and self-membership properties),

4. �¿ÿ / Ç ÷ 7 À9¼�®$õü¼�~ (from the items 2 and 3),

5. Ê¬¼ ® õü¼ ~ Ê C Ç�÷�G�Çp÷	� u (previous discussion),

6. ÊÌ�¿ÿ / Ç ÷ 7 Ê P Ç ÷ G�Ç ÷	� u (from the items 4 and 5).

����� ôæô�� u
Considering again Table 1, let us assume that the processes O u , O�� and O u � have crashed while they are

at level Ç C��
, and before determining their sets ¼ u , ¼�� and ¼ u � . The level Ç C��

is now empty (as no
process stops at that level), and the levels 10 and 5 are now consecutive non-empty levels. We have then�¿ÿ /10|î*7§C Ë�O�� { O��MÍ , �åÿ / þ 7�C Ë�O�ò { O�ý*Í , and ÊÌ�¿ÿ /10|î*7 Ê C B P������ JKV {�0|î GÏþ L .
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3.3 An adaptive renaming protocol

The adaptive renaming algorithm is described in Figure 2. When a process OA~ wants to acquire a new name,
it invokes ¹*� � ¹*³"!ö�¾Jj}���~ L . It then obtains a new name when it executes line 05. Remind that O denotes the
number of processes that participate in the algorithm.

Base objects The algorithm uses a V -participating set object denoted ±²� , and a size . array of adaptive
renaming objects, denoted #%$ /103242 . 7 .

Each base renaming object #&$ / ú 7 can be accessed by at most V processes. It provides them with an
operation denoted rename(). When accessed by

o P V processes, it allows them to acquire new names
within the renaming space

/103242 B o G 0p7 . Interestingly, such adaptive wait-free renaming objects can be built
from atomic registers, e.g., [2, 4, 9] (for completeness, one of them is described in appendix A). As noticed
in the introduction, this feature provides the proposed algorithm with a modularity dimension as #&$ / ú 7 and#&$ / ú¾� 7 can be implemented differently.

The algorithm: principles and description The algorithm is based on the following (well-known) prin-
ciple.n Part 1. Divide for conquer.

A process O�~ first invokes ±>� 2 �3³3�´�Sµ ¶*µ·�3³¸�rµº¹¸» ����� [ Jj}���~ L to obtain a set ¼§~ satisfying the self-membership,
comparability, immediacy and bounded simultaneity properties (line 01). It follows from these proper-
ties that (1) at most V processes obtain the same set ¼ (and consequently belong to the same partition),
and (2) there are at most O distinct partitions.

An easy and unambiguous way to identify the partition O�~ belongs to is to consider the level at whichO�~ stopped in the V -participating set object, namely, the level Ç C Ê¬¼A~#Ê . The
o P V processes in the

partition Ç C Ê¬¼�~rÊ compete then among themselves to acquire a new name. This is done by OA~ invoking
the appropriate renaming object, i.e., #&$('KÊ¬¼�~#Ê ) 2 ���3¹3³"!ö��Jj}���~ L (line 03). As indicated before, these
processes obtain new names in renaming space

/103242 B o G 0p7 .
operation *,+.- *,/102+ 354�687�9 :
(01) :;7�<>=@?�ACB,/EDGFIH JKHCB,/,FLHC*KM NO+.FIP1354�687�9 ;
(02) QLRTSVUIWX<Y3�Z�[�\ :]7.\,^`_ a bTcdaPfe 9 ;
(03) gOh�SiU.j W <>k2lnm�\ : 7 \ opAqDC+ *,/802+ 354�6 7 9 ;
(04) rts8u]v8rxw 7 <yQIRpSiU W ^zgOh�SVU.j W	{}| ;
(05) DC+.Fi~�D�*�35rts8u]v8rxw,7�9

Figure 2: Generic adaptive renaming algorithm (code for O�~ )n Part 2. Piece together the results of the subproblems.
The final name assignment is done according to very classical (base,offset) rule. A base is attributed
to each partition as follows. The partition Ç C Ê¬¼©~#Ê is attributed the base Bn�çÊ¬¼§~rÊ�GªX�� � 7 �[ \ (line 02).
Let us notice that no two partitions are attributed the same base. Then, a process OA~ in partition Ç
considers the new name obtained from #&$ / Ç 7 as an offset (notice that an offset in never equal to

î
). It

determines its final new name from the base and offset values it has been provided with, considering
the name space starting from the base and going down (line 04).

3.4 Proof of the algorithm

Lemma 2 The algorithm described in Figure 2 ensures that no two processes obtain the same new name.
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Proof Let O�~ be a process such that Ê¬¼§~�Ê C Ç ÷ . That process is one of the ÊÌ�¿ÿ / Ç ÷ 7 Ê processes that stop at the
level Ç ÷ and consequently use the underlying renaming object #&$ / Ç ÷ 7 . Due to the property of that renaming
object, O�~ computes a value �i���8���d� such that

0QP �i�����8�O� P B��UÊÌ�¿ÿ / Ç ÷ 7 Ê¾G 0 . Moreover, as ÊÌ�¿ÿ / Ç ÷ 7 Ê P����� JKV { Ç ÷ G�Ç ÷	� urL (Lemma 1), the previous relation becomes
0:P �i���8���I� P B�� ����� JKV { Ç ÷ GIÇ ÷	� uSL .

On another side, the renaming space attributed to the processes O ~ of �¿ÿ / Ç�÷ 7 starts at the base B¸Ç|÷åGÖX,�I�[ \
(included) and goes down until B¸Ç�÷	� u GyX � � �"�[ \ (excluded). Hence the size of this renaming space is

B�JÚÇ ÷ G�Ç ÷	� urL G��MX Ç ÷V \zGyX Ç ÷	� uV \1� 2
It follows from these observations that a sufficient condition for preventing conflict in name assignment

is to have B�� �f��� JKV { Ç ÷ GIÇ ÷	� uSL G 0ÃP B�JÚÇ ÷ G�Ç ÷	� uSL G��MX Ç�÷V \üGyX Ç�÷	� uV \1� 2
We prove that the algorithm satisfies the previous relation by considering two cases according to the mini-
mum between V and Ç ÷ G�Ç ÷	� u . Let

Ç ÷ C�� ÷ V�D�� ÷ with
î P � ÷ 8ÆV (i.e., X � ÷V \Ã��Ë î�{�0 Í L�LS{ and

Çp÷	� u C�� ÷	� u V�D���÷	� u with
îÎP ��÷	� u 8ÆV (i.e., X � ÷	� uV \:��Ë î�{�0 Í LS{ from which we haveÇ ÷ G�Ç ÷	� uæC J � ÷ G � ÷	� uSL V:DïJ�� ÷ G�� ÷	� uSLS2n Case Ç�÷�G�Ç�÷	� u P V .

In that case, the relation to prove simplifies and becomes X �I�[ \:G X � � ���[ \ P 0
, i.e., J � ÷ DqXT� �[ \ L GJ � ÷	� u DHX � � ���[ \ L²P<0 , that can be rewritten as J � ÷ G � ÷	� uSL DïJ�X � �[ \ GyX � � ���[ \ L²P<0 .

Moreover, from Ç ÷ GÎÇ ÷	� u$C J � ÷ G � ÷	� urL V�D�J�� ÷ G�� ÷	� urL and Ç ÷ GÎÇ ÷	� u P V , we have J � ÷ G � ÷	� urL V�DJ�� ÷ G�� ÷	� uSLæP V from which we can extract two subcases:

– Case
� ÷ G � ÷	� u$Cí0

and � ÷ C � ÷	� u .
In that case, it trivially follows from the previous formulas that J � ÷�G � ÷	� u L DÎJ�X � �[ \�GaX � � ���[ \ L²P<0 ,
which proves the lemma for that case.

– Case
� ÷ C�� ÷	� u and

î P � ÷ G�� ÷	� uüP V .
In that case we have to prove X � �[ \�GªX � � �"�[ \ P 0

. As X � �[ \ { X � � �"�[ \a�ÆË î�{�0 Í , we have X � �[ \ GX � � �"�[ \ P¤0 , which proves the lemma for that case.n Case Va8çÇ ÷ G�Ç ÷	� u .
After simple algebraic manipulations, the formula to prove becomes:

JKB�V G 0ML J � ÷ÃG � ÷	� u G 0ML DçB�J���÷ÃG���÷	� u L G��MX � ÷V \ G�X � ÷	� uV \1��� î�2
Moreover, we have now Ç�÷©G Ç�÷	� u C J � ÷AG � ÷	� u L V¿DIJ���÷©G���÷	� u L�� V , from which, as

îÎP �¸÷ { ��÷	� u 8V , we can conclude
� ÷ G � ÷	� u � 0

. We consider two cases.

–
� ÷ G � ÷	� uæC�0

.
The formula to prove becomes B�J�� ÷ G�� ÷	� uSL �YX � �[>\ GyX � � ���[Y\ .
From Ç ÷ G�Ç ÷	� u�� V we have:  � ÷ � � ÷	� u , from which (as � ÷ and � ÷	� u are integers) we conclude B�J�� ÷ G�� ÷	� uSL �9B .
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  0 �YXT� �[ \��YX � � �"�[ \�� î
, from which we conclude X�� �[ \ GyX � � ���[ \ P<0 .

By combining the previous relations we obtain B¡� 0
which proves the lemma for that case.

–
� ÷ G � ÷	� u��<0

. Let
� ÷ G � ÷	� u$C�0 D£¢ (where ¢ is an integer � 0

).
The formula to prove becomes

JKB�VÎG 0ML ¢&DçB�J�� ÷ G�� ÷	� uSL G � X � ÷V \zGyX � ÷	� uV \ � � î�2
As
îÎP � ÷ { � ÷	� u 8ÆV , the smallest value of � ÷ G�� ÷	� u is G JKVÎG 0ML . Similarly, the greatest value

of XT� �[>\ G�X � � ���[Y\ is
0
.

It follows that, the smallest value of the left side of the formula is JKB�VÎG 0ML ¢IGÏB�JKVÎG 0ML G 0 CB�VX¢-G°JKB�V D�¢ L D 0ÎC JKB�VTG 0ML JO¢"G 0ML . As V�� 0
and ¢� 0

, it follows that the left side is
never negative, which proves the lemma for that case.

� ��� ôæô���ò
Theorem 1 The algorithm described in Figure 2 is a wait-free adaptive JKBSO^G X|Z [ \ L -renaming algorithm
(where O P . is the number of processes that participate in the algorithm).

Proof The fact that the algorithm is wait-free is an immediate consequence of the fact that base V -set
participating set object and the base renaming objects are wait-free. The fact that no two processes obtain
the same new name is established in Lemma 2.

If O processes participate in the algorithm, the highest level at which a process stops is O (this follows
from the properties of the V -set participating set object). Consequently, the largest base that is used (line 02)
is BSOaGyXfZ [ \ , which establishes the upper bound on the renaming space.

�&¤�¥ �.¦ � � ô u
4 Visiting Gafni’s land: From § -set to § -participating set

This section presents a wait-free transformation from a V -set agreement object to a V -participating set object.
It can be seen as a guided visit to Gafni’s reduction land [9, 10, 15, 16].

Let us remind that a V -set object provides each process with an operation �|����� �3����������� [ J L that allows
it to propose and decide a value in such a way that at most V different values are decided and any decided
value is a value that has been proposed by a process. The construction proceeds in two steps: first from V -set
agreement to strong V -set agreement, and then from strong V -set agreement to V -participating set.

4.1 From set agreement to strong set agreement

Let us observe that, given a V -set object, it is possible that no process decides the value it has proposed.
This feature is the “added value” provided by a strong V -set agreement object: it is a V -set object such
that at least one process decides the value it has proposed [10]. The corresponding operation is denoted�f�p����¹¸» �|����� �3����������� [ J L .

In addition to a V -set object ��� , the processes cooperate by accessing an array ¨���© /103242 . 7 of one-
writer/multi-reader atomic registers. That array is initialized to

/«ª�{|2|2|2�{Tª 7
. ¨���© / } 7 can be written only

by O�~ . The array is provided with a ��¹3³��*�E¬¸�3�|J L operation. Such an operation returns a value of the whole
array as if that value has been obtained by atomically reading the whole array [1]. Let us remind that such
an operation can be wait-free implemented on top of atomic read/write base registers (the best snapshot
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operation N�FVD«�*KM ®VNd+.F BTD«�Bp Nd+,P1354�6 7 9 :
(01) ¯2°²±´³ 45µ;<(¶²?�AC®VNO+.F B D«�Bp NO+ P 354�687·9 ;
(02) 68wK¸ 7 ³ | A«A u¹µ;<ºNi*,/8BKNi»KpFi3·¯¼°½±¾³ | A«A u]µ¿9 ;
(03) if 3�À1ÁtÂ¹Ã�UdÄ 7 ³ ÁÅµ;Æ�4�6 7 9 then Ã�UdÄVÇÈSLÇ�gTÉ W <º4�6 7 else Ã�UdÄVÇÈSLÇ�gpÉ W <º68wK¸ 7 ³ 45µ end if;
(04) DC+.FV~�D�*�3568wK¸.4�Êi4�Ëpu 7 9

Figure 3: Strong V -set agreement algorithm (code for O ~ )
algorithm known so far costs ÌEJj.�Í5Î¹Ï�. L atomic register accesses [6]). This means that the base write
operations (on each array entry) and the snapshot operations are linearizable [18].

The construction (introduced in [10]) is described in Figure 3. A process OA~ first proposes its original
name to the underlying V -set object ��� , and writes the value it obtains (an original name) into ¨���© / } 7 (line
01). Then, O�~ atomically reads the whole array (line 02). Finally, if it observes that some process has decided
its original name }��¾~ , OÈ~ also decides }���~ , otherwise O�~ decides the original name it has been provided with
by the V -set object (lines 03-04).

Theorem 2 [10] The algorithm described in Figure 3 wait-free implements a strong V -set agreement object.

Proof Let us first observe that it trivially follows from the algorithm text that no process returns a name
that has not been decided by the V -set object ��� . So, only names of participating processes are decided. It
follows that the values decided from the strong V -set object ����� satisfy the V -set agreement properties.

If a process O�~ , whose original name is one of the names decided by the V -set object, crashes before
returning at line 04, it is always possible to consider that O©~ would have returned its name at line 04 and
crashed just after, which proves the theorem. So, let us consider that none of the processes, whose original
name has been decided by the V -set object ��� , crashes. If one of these processes OA~ is such that the predicateJLÐ o É�Ñ;�,ÒM~ / o 7�C }���~ L is true when O�~ evaluates it, the theorem follows.

So, let us suppose that no process O�~ (whose original name is decided by the V -set object) crashes
or finds the predicate JLÐ o ÉxÑ;�,Ò ~ / o 7ÃC }�� ~ L satisfied when it evaluates it. There is consequently a cycle�3u�{�� ò {|2|2|2©{�� ÷ {��3u on a subset of these processes defined as follows: }���®iÓ C ¨ �Ô© / ��u�7 , }��*®.Õ C ¨���© / � ò 7Å{|2|2|2 ,}��*® � C ¨��Ô© / � ÷ 7 . Among the processes of this cycle, let us consider the process O�®.Ö that is the last to update
its entry ¨���© / �1×�7 , thereby creating the cycle. (Let us observe that, as the write and snapshot operations that
access the array ¨���© are linearizable, such a “last” process O�®.Ö does exist.) But then, when O�®.Ö executes
line 03, the predicate JLÐ o É�Ñ;�,Ò ® Ö / o 7AC }�� ® Ö L is necessarily true (as O ® Ö completes the cycle and -due to the
snapshot operation- sees that cycle). It follows that O�® Ö decides its own original name at line 03-04, which
proves the theorem.

��¤�¥ �.¦ � � ô�ò
4.2 From strong set agreement to � -participating set

The specification of a V -participating set object has been defined in Section 3.2. The present section shows
how such an object ±²� can be wait-free implemented from an array of strong V -set agreement objects;
this array is denoted ����� /103242 . 7 . This construction generalizes the construction proposed in [15, 16] that
considers . C ¯

and V C B . In addition to the array ����� /10324265Q7 of strong V -set agreement objects, the
construction uses an array of one-writer/multi-reader atomic registers denoted �©�����$� /103242 . 7 . As before
only O ~ can write �©�E���æ� / } 7 . The array is initialized to

/ .TD 03{|2|2|2©{ .TD 0p7 .
The algorithm is based on what we call Borowski-Gafni’s ladder, a wait-free object strong V -set agree-

ment introduced in [9]. It combines such a ladder object with a V -set agreement object in order to guarantee
that no more than V processes, that do not crash, stop at the same step of the ladder.
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Borowsky-Gafni’s ladder Let us consider the array �A�����$� /103242 . 7 as a ladder. Initially, a process is at the
top of the ladder, namely, at level .aD 0 . Then it descends the ladder, one step after the other, according to
predefined rules until it stops at some level (or crashes). While descending the ladder, a process Oå~ registers
its current position in the ladder in the atomic register �A�����$� / } 7 .

After it has stepped down from one ladder level to the next one, a process O ~ computes a local view
(denoted �¾}���Øü~ ) of the progress of the other processes in their descent of the ladder. That view contains the
processes O�® seen by OÈ~ at the same or a lower ladder level (i.e., such that �K���]���K~ / ��7�P �A�����$� / } 7 ). Then, if
the current level Ç of O�~ is such that O�~ sees at least Ç processes in its view (i.e., processes that are at its level
or a lower level) it stops at the level Ç of the ladder. This behavior is described by the following algorithm
[9]:

repeat Ù�°�Ú	°�ÙÛ³ 45µ;<�Ù�°�Ú¹°ÜÙÜ³ 45µ	^ | ;
for Ý�Þ�ß | à AVAiA à uXá do â¿w,ã8w,â 7 ³ ÝTµ;<�Ù�°�Ú¹°ÜÙÜ³ ÝTµ end do;ã�4�w,äå7�<çæ,Ý�ÂEâ¿w,ã8w,âq7L³ ÝTµXèzÙ"°�Ú	°�ÙÛ³ 4�µÈá ;

until 3L\ ã�4�wKäå7I\8ézÙ�°�Ú¹°ÜÙÜ³ 45µ¿9 end repeat;
let : 7 Æ�ã�4�wKä 7 ; DC+.Fi~�D�*�3�: 7 9 .

This very elegant algorithm satisfies the following properties [9]. The sets ¼¿~ of the processes that
terminate the algorithm, satisfy the self-membership, comparability and immediacy properties of the V -
participating set object. Moreover, if Ê¬¼©~�Ê C Ç , then O�~ stopped at the level Ç , and there are Ç processes whose
current level is

P Ç .
From a ladder to a V -participating set object The construction, described in Figure 4, is nearly the same
as the construction given in [15, 16]. It uses the previous ladder algorithm as a skeleton to implement aV -participating set object. When it invokes �*³3���rµ ¶*µ·�*³¸�Sµ·¹*» ����� [ J L , a process O�~ provides its original name as
input parameter. This name will be used by the underlying strong V -participating set object. The arrayê $ ê ÿ $ìëtí&� /103242 . 7 is initialized to

/«ª�{|2|2|2©{Tªö7
.
ê $ ê ÿ $tëtí&� / } 7 can be written only by O§~ .

operation B,/EDGFIH J,HCB,/KFIHC*KM Nd+.F P 354�6 7 9
(01) îdl2îTï l¼ð2ñt°�³ 45µ;<º4�6 7 ;
(02) repeat Ù"°�Ú	°�ÙÛ³ 4�µ¹<>Ù"°�Ú	°�ÙÜ³ 45µ	^ | ;
(03) for Ý�Þòß | à AVAiA à uXá do â¿w,ã8w,â 7 ³ ÝTµ;<�Ù�°�Ú¹°ÜÙÜ³ ÝTµ end do;
(04) ã�4�wKä 7 <çæ,Ý�Â�âÈwKã8w,â 7 ³ ÝTµXèzÙ"°�Ú	°�ÙÛ³ 4�µÈá ;
(05) if ( Ù�°�Ú	°�ÙÛ³ 45µ"ózô ) õ ( \ ã�4�wKä 7 \ ÆöÙ"°�Ú	°ÜÙÜ³ 45µ )
(06) then let ÷åÆøÙ"°�Ú	°�ÙÜ³ 45µ ;
(07) v8u"Ê 7 <�?1¶´?�³ ÷.µ�A N�FVDCÅ*KM ®.Nd+.F BTDCÅBTTNd+,P1354�6 7 9 ;
(08) ËTô 7 <}35v8u�Ê 7 Æ�4�6 7 9
(09) else ËTô�7¡<ùOúpû¹w
(10) end if
(11) until 3L\ ã�4�wKä 7 \�ézÙ�°�Ú¹°ÜÙ�³ 45µ¿9�õ%ËTô 7 end repeat;
(12) let : 7 ÆüßK4�6�\,À Ý�Þxã�4�wKä 7 such that îdl¼îTï l2ð¼ñì°�³ ÝTµ]Æ}4�6Åá ;
(13) DC+.FV~�D�*�3�:]7�9

Figure 4: V -participating set algorithm (code for O ~ )
If, in the original Borowski-Gafni’s ladder, a process O�~ stops at a ladder level Ç P V , it can also stop at

the same level in the V -set participating object. This follows from the fact that, as Ê �¾}���Ø�~SÊ C Ç P V whenO ~ stops descending, we know from the ladder properties that at most Ç P V processes are at the level Ç (or
at a lower level). So, when �©�E���æ� / } 7åP V (line 05), O�~ sets ý�V�~ to �Oþ ÿÜ� (line 05). It consequently exits the
repeat loop (line 11) and we can affirm that no more than V processes do the same, thereby satisfying the
bounded simultaneity property.

So, the main issue of the algorithm is to satisfy the bounded simultaneity property when the level Ç at
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which O�~ should stop in the original Borowski-Gafni’s ladder is higher than V . In that case, OÁ~ uses the
underlying strong V -set agreement object ����� / Ç 7 to know if it can stop at that level (lines 07-08). ThisV -participating set object ensures that at least one (and at most V ) among the participating processes that
should stop at level Ç in the original Borowski-Gafni’s ladder, do actually stop. If a process OÁ~ is not allowed
to stop (we have then ý3V ~ C������ ��� at line 08), it is required to descend to the next step of the ladder (lines 11
and 01). When a process stops at a level Ç , there are exactly Ç processes at the levels Ç � P Ç . This property
is maintained when a process steps down from Ç to Ç G 0 (this follows from the fact that when a process is
required to step down from Ç � V to Ç>G 0 because Ç � V , at least one process remains at the level Ç due to
the V -set agreement object ����� / Ç 7 ).
5 From �  to § -set

This section shows that a V -set object can be built in a single-writer/multi-reader atomic register system,
equipped with an oracle (failure detector) of the class s [ .
5.1 The oracle class � [
A family of oracle classes J s t Lru�v t vxw has been introduced in [22]. That definition implicitly assumes that all
the processes are participating. We extend here this definition by making explicit the notion of participating
processes. More precisely, an oracle of the class s t provides the processes with an operation denoted� ��³
	¾�3�×J L that satisfies the following properties:n Output size: each time it is invoked,

� ��³�	¾�3�×J L provides the invoking process with a set of at most �
participating process identities (e.g., Ë�}�� ÷ � {|2|2|2A{ }�� ÷� Í ).n Eventual multiple leadership: There is a time after which all the

� ��³�	¾�3�×J L invocations return forever
the same set. Moreover, this set includes at least one correct participating process (if any).

It is important to notice that each instance of s [ is defined with respect to the context where it is used.
This context is defined by the participating processes. This means that if s [ is used to construct a given
object, say a V -set object ��� , the participating processes for that failure detector instance are the processes
that invoke ��� 2 �|����� �3����������� [ J L . Let us remark that, during an arbitrary long period, the participating
processes that invoke

� ��³
	��3�×J L can see different sets of leaders, and no process knows when this “anarchy”
period is over. It is also possible that some of the processes that are eventually elected as permanent leaders,
are faulty processes.

When all the processes are assumed to participate, s u is nothing else than the leader failure detector de-
noted s introduced in [12], where it is shown that it is the weakest failure detector for solving the consensus
problem in asynchronous systems2.

5.2 From � [ to � -set agreement

In addition to an oracle of the class s [ , the proposed V -set agreement algorithm is based on a variant, denoted�òë , of a round-based object introduced in [17] to capture the safety properties of Paxos-like consensus
algorithms [14, 20]. The leader oracle is used to ensure the liveness of the algorithm. �òë is used to abstract
away the safety properties of the V -set problem, namely, at most V values are decided, and the decided values
are have been proposed.

2So, the lower bound proved in [12], on the power of failure detectors, assumes that all the correct processes are participating.
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The �òë object This object provides the processes with an operation denoted ³ � �;¬*³ �*�Ú��������� [ Jj�3~ L . That
operation has two input parameters: the value �¾~ proposed by the invoking process O�~ (here its name }��¾~ ),
and a round number (that allows identifying the invocations). The �òë object assumes that no two processes
use the same round numbers, and successive invocations by the same process use increasing round numbers.
Given a �òë object, the invocations ³ � �;¬*³ �*�Ú��������� [ J L satisfy the following properties:n Validity: the value returned by any invocation ³ � �"¬*³ �3����������� [ J L is a proposed value or

ª
.n Agreement: At most V different non-

ª
values can be returned by the whole set of ³ � �"¬*³ �3����������� [ J L

invocations.n Convergence: If there is a time after which the operation ³ � �;¬3³ �3����������� [ J L is invoked infinitely often,
and these invocations are issued by an (unknown but fixed) set of at most V processes, then there is a
time after which none of these invocations returns

ª
.

The V -set algorithm The algorithm constructing a V -set object ��� (accessed by at most . processes3),
is described in Figure 5. As in previous algorithms, it uses an array ¨ �Ô© /103242 . 7 of one-writer/multi-reader
atomic registers. Only O�~ can write ¨���© / } 7 . The array is initialized to

/«ª�{|2|2|2©{Tª 7
. The algorithm is very

simple. If a value has already been decided ( Ð � É@¨��Ô© / ��7 �Cçª
), O§~ decides it. Otherwise, O�~ looks if it is

a leader. If it is not, it loops. If it is a leader ( }���~>� � ��³
	��3�fJ L ), OÈ~ invokes ³ � �"¬*³ �3����������� [ J���~ { �*~ L and writes
in ¨���© / } 7 the value it obtains (it follows from the specification of �òë that that value it writes is

ª
or a

proposed value).

operation ®.Nd+.F BTD«�Bp Nd+,P135ãT7·9 :
(01) ú 7 <Y354"^ u"9 ;
(02) while 3��8Ý�Â�¯¼°½±¾³ ÝTµ;Æ��¾9 do
(03) if ��4�687ÜÞ�� +i/���+ D·3�9�� then ú,7X< ú,7 { u ; ¯¼°½±�³ 45µ]<>¶½ð A /��GB�»,/ B D«�Bp Nd+ P 35ú,7 à ã 7·9 end if
(04) end while;
(05) let 68w,¸.4�68w,6 7 Æ any ¯¼°½±´³ ÝTµ��Æ�� ;
(06) DC+.FV~�D�*�3568wK¸.4�68wK6 7 9

Figure 5: An s [ -based V -set algorithm (code for O ~ )
It is easy to see that no two processes use the same round numbers, and each process uses increasing

round numbers. It follows directly from the agreement property of the �òë object, that at any time, the array¨���© /103242 . 7 contains at most V values different from
ª

. Moreover, due the validity property of �òë , these
values have been proposed.

It is easy to see that, as soon as a process has written a non-
ª

value in ¨���© /103242 . 7 , any ������� �*�Ú����������Jj� ~ L
invocation issued by a correct process terminates. So, in order to show that the algorithm is wait-free,
we have to show that at least one process writes a non-

ª
value in ¨��Ô© /103242 . 7 . Let us assume that no

process deposits a value in this array. Due to the eventual multiple leadership property of s [ , there is a
time � after which the same set of Vx� P V participating processes are elected as permanent leaders, and this
set includes at least one correct process. It follows from the algorithm that, after � , at most V processes
invoke �òë 2 ³ � �;¬*³ �*�Ú��������� [ J L , and one of them is correct. It follows from the convergence property of the�òë object, that there is a time �È�¡��� after which no invocation returns

ª
. Moreover, as at least one

correct process belongs to the set of elected processes, that process eventually obtains a non-
ª

value from
an invocation, and consequently deposits that non-

ª
value in ¨���© /103242 . 7 . The algorithm is consequently

wait-free.
3Let us remind that the construction of each ?8¶´?�³ ÷Iµ object used in Figure 4 is based on an underlying ô -set object ¶´? object.
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5.3 Implementing �! 
An algorithm constructing a �òë object is described in Figure 6. It uses an array of single-writer/multi-reader
atomic registers #z�#" /103242 . 7 . As previously, #ü�$" / } 7 can be written only by O�~ . A register #ü�#" / } 7 is made
up of three fields #z�#" / } 7Å2 ����� , #ü�$" / } 7Å2 ���	Ø%Ø and #z�#" / } 7Å2 �&%]� whose meaning is the following ( #ü�$" / } 7 is
initialized to 8 î�{#î�{Tª(�

):n #z�#" / } 7Å2 ����� stores the number of the � ast � ound � ntered by O§~ . It can be seen as the logical date of the
last invocation issued by O�~ .n #z�#" / } 7Å2 ���	Ø%Ø and #ü�#" / } 7Å2 �'%¾� constitute a pair of related values: #ü�$" / } 7Å2 ���	Ø%Ø stores the number
of the � ast � ound Ø ith a Ø rite of a value in the field #ü�#" / } 7Å2 �'%¾� . So, #ü�$" / } 7Å2 �·�	ØìØ is the logical date
of the last write in #ü�#" / } 7Å2 �&%]� .

(To simplify the writing of the algorithm, we consider that each field of a register can be written separately.
This poses no problem as each register is single writer. A writer can consequently keep a copy of the last
value it has written in each register field and rewrite it when that value is not modified.)

operation /��GB�»,/ B D«�Bp NO+ P 35ú à ã19 :
(01) (*),+�³ 45µ�A â¿úTw¼<�ú ;
(02) for Ý�Þòß |Tà AKAiA à uXá do úTw.-E7O³ ÝTµ;</(*),+�³ ÝTµ end do;
(03) let ã�vÅâqû¹w 7 be ú w.- 7 ³ ÝTµ�A ã�v1â where Ý is such that �10ìÂ¼úTw.- 7 ³ ÝTµ�A â¿úpä2ä énúTw.- 7 ³ 0�µ�A â¿úpä¼ä ;
(04) if 35ã�v1â¿û¹w 7 Æ2�´9 then ã�v1â¿û¹w 7 < ã end if;
(05) (*),+�³ 45µ�AC3�â¿úpä2ä à ã19Û<y35ú à ã�v1â¿û¹w,7�9 ;
(06) for Ý�Þòß |Tà AKAiA à uXá do úTw.-E7O³ ÝTµ;</(*),+�³ ÝTµ end do;
(07) if �433 ß.Ý	\ úTw4- 7 ³ ÝTµ�A â¿úTw¾éfúEá 33 ónô � then DC+.FV~�D�*�35�¾9
(08) else DC+.FV~�D�*�35ã�vÅâqû¹w 7 9 end if

Figure 6: A �òë object algorithm (code for O§~ )
The principle that underlies the algorithm is very simple: it consists in using a logical time frame (rep-

resented here by the round numbers) to timestamp the invocations, and answering
ª

when the timestamp of
the corresponding invocation does not lie within the V highest dates (registered in #z�#" /103242 . 7Å2 �·��� ). To that
end, the algorithm proceeds as follows:n Step 1 (lines 01-02): Access the shared registers.

- When a process O�~ invokes ³ � �"¬*³ �3����������� [ J�� { � L , it first informs the other processes that the �òë
object has attained (at least) the date � (line 01). Then O ~ reads all the registers in any order (line 02)
to know the last values (if any) written by the other processes.n Step 2 (lines 03-05): Determination and writing of a value.
Then, OÈ~ determines a value. In order not to violate the agreement property, it selects the last value
(“last” according to the round numbers/logical dates) that has been deposited in a register #ü�$" / �37 . If
there is no such value it considers its own value � . After this determination, OA~ writes in #z�#" / } 7 the
value it has determined, together with its round number (line 05.n Step 3 (lines 06-08): Commit or abort.
- O ~ reads again the shared registers to know the progress of the other processes (measured by their
round numbers), line 07. If it discovers it is “late”, O�~ aborts returning

ª
. (Let us observe that this

preserves the agreement property.) “To be late” means that the current date � of OA~ does not lie within
the window defined by the V highest dates (round numbers) currently entered by the processes (these
round numbers/dates are registered in the field �·��� of each entry of the array #ü�#" /103242 . 7 ).
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- Otherwise, O�~ is not late. It then returns (“commits”) �&%]�76��*~ (line 08). Let us observe that, as the
notion of “being late” is defined with respect to a window of V dates (round numbers), it is possible
that up to V processes are not late and return concurrently up to V distinct non-

ª
values.

It directly follows from the code that the algorithm is wait-free. Moreover, in order to expedite the³ � �"¬*³ �3����������� [ J L operation, it is possible to insert the statement
if ��88 Ë � Ê ����93~ / �37Å2 ����� � �]Í:88 � V � then �����<;���¹�J ª ) end if

between the line 02 and the line 03. This allows the invoking process to return
ª

when, just after entering
the ³ � �;¬*³ �*�Ú��������� [ J L operation, it discovers it is late.

5.4 Proof of the �! object

Theorem 3 The algorithm described in Figure 6 wait-free implements a �òë object.

Proof The wait-free property follows directly from the code of the algorithm.

Validity Let us observe that if a value � is written in =#>!? / } 7Å2 �&%]� , that value has been previously passed as
a parameter in an ³ � �"¬*³ �3����������� [ J L invocation. The validity property follows from this observation and the
fact that only

ª
or a value written in a register =#>@? / } 7 can be returned from an ³ � �;¬3³ �3����������� [ J L invocation.

Convergence Let � be a time after which there is a set of V�� P V processes such that each of them invokes³ � �"¬*³ �3����������� [ J L infinitely often. This means that, from � , the values of .WGUV�� registers =#>@? / ù 7 are no
longer modified. Consequently, as the V � processes O�® repeatedly invoke ³ � �"¬*³ �3����������� [ J L , there is a time
���ò�A� after which each =#>@? / �37Å2 ����� becomes greater than any =#>@? / ù 7Å2 ����� that is no longer modified.
There is consequently a time � � � �B� � after which the V � processes are such that their registers =#>!? / �37Å2 �����
contain forever the V greatest timestamp values. It follows from the test done at line 07 that, after �©� � ,
no ³ � �;¬3³ �3����������� [ J L invocation by one of these V � processes can be aborted. Consequently, each of them
returns a non-

ª
value at line 08.

Agreement If all invocations returns
ª

, the agreement property is trivially satisfied. So, let us consider an
execution in which at least one ³ � �"¬*³ �3����������� [ J L invocation returns a non-

ª
value. To prove the agreement

property we show that:n Before the first non-
ª

value is returned by an invocation, there is a time at which the algorithm has
determined a set C of at least one and at most V non-

ª
values4.n Any value �ö�C ª

returned by an invocation is a value of C .

To simplify the reasoning, and without loss of generality, we assume that a process that repeatedly
invokes ³ � �"¬*³ �3����������� [ J L , stops invoking that operation as soon as it returns a non-

ª
value at line 08.

1. Invariants. ½ � �"Ë 03{|2|2|2A{ .¿Í :n #z�#" / �37Å2 ����� is increasing (assumption on the successive round numbers used by O�® ).n #z�#" / �37Å2 ���	Ø%Ø P #ü�$" / ��7Å2 ����� (because O�® executes line 05 after line 01).

4According to the terminology introduced in [11], the set D defines the values that are locked. This means that from now on the
set of non- � values that can be returned is fixed forever: no value outside D can ever be returned.
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2. Among all the invocations that execute the test of line 07, let E be the subset of invocations for which
the predicate 88 Ë � Ê ����9*~ / ��7Å2 �·�������]Í:88 P V is true. (This means that any invocation of E either returns a
non-

ª
value -at line 08-, or crashes after it has evaluated the predicate at line 07, and before it executes

line 08.) Among the invocations of E , let F be the invocation with the smallest round number. Let O�® �
be the process that invoked F and � the corresponding round number.

3. Time instants (see Figure 7).n Let � be the time at which F executes line 05 (statement #ü�#" / �]u�7�G 8 � { � { � �
).n Let � � be the time just after F has finished reading the array #ü�#" /103242 . 7 . Without loss of gener-

ality, we consider that this is the time at which F locally evaluates the predicate of line 07.n Let � / �37 be the time at which F reads #ü�#" / �37 at line 06. We have �8H� / ��7 8H� � .
I,JLKNM OQP5RTSVUXW�YZW�YZ[]\

line 07line 06line 05

WQ^�_�`bacM O�R'SdI,JeK#M O�R ffhg Oji W�^�_<`7acM O�R:klW�mTff&nVo is satisfied

p M O�Rp prq

Figure 7: Time instants with respect to accesses to the registers #ü�#" /103242 . 7
4. From � / �37 8s��� , the fact that predicate 88 Ë � Ê ����9�® � / �37Å2 ������� �]Í 88 P V is true at ��� , and the monotonicity

of #ü�#" / �37Å2 ����� , we can conclude that a necessary requirement for the predicate #ü�$" / �37Å2 ������� � to be
true at � is that it is true at �È� .
Let t C Ë � u {|2|2|2©{�� ÷ {|2|2|2©{�� � Í be the set of processes O ® such that #ü�#" / �37Å2 ����� � � is true at � . As the
predicate 88 Ë � Ê ����93~ / �37Å2 ����� � �]Í 88 P V is true at � � , we have

0�P Ç C Ê t Ê P V .

5. From the previous item, we conclude that there are at least .-GUÇ�� .-GïV entries
�

of the array#z�#" /103242 . 7 such that #ü�#" / �37Å2 ����� 8�� at time � . Let t denote this set of processes ( t and t define a
partition of the whole set of processes).

6. Let the � -time invocation of Ox® be the invocation issued by Ox® whose round number is the value of#z�#" / �37Å2 ����� at time � (assuming a fictitious initial invocation if needed).

7. The � -time invocations of the processes OÈ® in t define a set, denoted C , including at most Ç P V
values, such that these values are written in #ü�$" /103242 . 7 with a write timestamp (value of the field#z�#" / �37Å2 ���	Ø%Ø ) that is � � . This claim follows from the following observation.n The � -time invocation by O�® � (namely F ) writes a value and the round number � in #ü�#" / �]u�7 .n Let O ® � �ut , O ® � �C O ® � . From the definition of t , it follows that the round number of the

� -time invocation issued by Ox® � is #ü�$" / � ÷ 7Å2 �·��� C � � � � . When it executes that invocation, OÈ® �
atomically executes #ü�$" / � ÷ 7vG 8 �3� { �3� { ��� � (if it does not crash before executing the line 05).n It is possible that, on one side, no process in t crashes before executing line 05, and, on another
side, all the values that are written are different. It consequently follows that up to Ç P V different
values (with a write timestamp ���	Ø%ØY� � ) can be written in #ü�$" /103242 . 7 . Hence, C can contain
up to V values.n Moreover, it is also possible that each process in t returns at line 08 the value it has selected
at line 05 (this depends on the value of the predicate evaluated at line 07). Consequently each
value of C can potentially be returned.
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8. Given an execution, the previous item has extracted a non-empty set C of at most V non-
ª

values that
can be returned. We now show that (1) from � , only values of C can be written in #ü�$" /103242 . 7 with a
timestamp field ( ����ØìØ ) greater than � , and (2) a non-

ª
value returned by an invocation is necessarily

a value of C .

(a) The � -time invocation issued by a process O ® � t has a round number #ü�$" / ��7Å2 ����� that is
smaller than #z�#" / ��u�7Å2 ����� C � (this follows from the definition of t ). As by definition, � is
the smallest round number during which a process finds true the predicate of line 07, it follows
that any process in t needs to issue an invocation with a round number greater than � to have a
chance to return a non-

ª
value.

(b) Let Eæ� be the set of all the invocations that have a round number greater than � . They are issued
by the processes of t or the processes of t whose � -time invocation has returned

ª
at line 07.

Let us observe that any invocation of E � starts after � .

Let F � be the first invocation of E � that executes 05. F � (issued by some process O�® ) selects (at line
03) a value �'%¾�76��p® from a register #z�#" / ú 7 such that #ü�#" / ú 7Å2 ���	Ø%Ø>� #ü�$" / ��u�7Å2 ���	Ø%Ø C � . As
up to now, only processes of t have written values in #ü�#" /103242 . 7 with a write timestamp ( �·�	ØìØ )�ç� , it follows that F¾� selects a value from C 5. Consequently, this invocation does not add a
new value to C .

Let F � � be the invocation of E � that is the second to execute line 05. The same reasoning (in-
cluding now F¾� ) applies. Etc. It follows from this induction that a value written at line 05 by an
invocation of E²� is a value of C , which proves that only values of C can be written in the array#z�#" /103242 . 7 with a write timestamp greater than � .

(c) Finally, an invocation that returns a value at line 08, returns the value it has written at line 05.
Due to the definition of � , its round number �¾� is �ç� . It follows that the non-

ª
value that is

returned is a value of C .

�´¤�¥ �.¦ � � ô��

6 Concluding remarks

What was the paper on This paper has presented a wait-free adaptive renaming algorithm whose renam-
ing space is

; C JKBSOQGHX Z [ \ L , where O is the number of participating processes. This algorithm relies on
an underlying V -set agreement object. It has also been shown how such an object can be built from atomic
read/write registers and a leader oracle of the class s [ . The construction is based on the reduction style
advocated by Gafni [13]. It uses several intermediate objects introduced in [9, 10, 15, 16].

To our knowledge, the proposed construction is the first that uses the (possibly unreliable) information
on failures provided by an oracle (failure detector) to circumvent the BSOQG 0 lower bound on the adaptive
renaming space. In that sense the paper establishes a connection between Gafni’s reductions and failure
detectors.

Open problems If V � = , there are trivial algorithms for implementing a V -set object in an asynchronous
read/write register systems. So, let us assume V P = . Instead of looking for a wait-free renaming algorithm,

5It is possible that, when w�x reads the array k�°zy´³ | A«A u¹µ at line 02, not all the values of D have yet been written in that ar-
ray. The important points are here that (1) at least one value of D has already been written in the array (namely, kå°*y´³ Ý � µ�A ã�v1â
with the timestamp k�°zy¾³ Ý � µ�A â¿úpä¼ä�Æºú ), and (2) any register k�°zy¾³ 0�µ that currently contains a value not in D , is such thatk�°zy¾³ 0�µ�A â¿úpä¼ä|{fú .
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we could be interested in a = -resilient adaptive algorithm, i.e., a renaming algorithm that works when the
number of crashes does not bypass the model parameter = (the wait-free case being the extreme case = C.NG 0 ).

We spent time looking for such an algorithm (without success until now). We nevertheless think that it
should be possible to design a = -resilient adaptive

;
-renaming algorithm from V -set objects, where; C .EDïJj=©D 0ML G¤X =©D 0V \ 2

Let us notice that this formula involves the total number of processes . , the resilience bound = , and the
parameter V that measures the additional power in presence of crashes -power provided by s [ -). When V � =
(i.e., when there is no additional power), we obtain

; C .QDÆ= (that is the lower bound in asynchronous
read/write systems.

Another interesting question concerns the implementation of the ³ � �"¬*³ �3����������� [ J L operation from a
Borowsky-Gafni’s ladder-like object. Is it possible? If the answer is “yes”, it would shed a new light on the
way the safety properties of à la Paxos shared memory consensus algorithms could be implemented.
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A Borowsky-Gafni’s adaptive  |¡z�ï£�� ¨ -renaming algorithm

This appendix describes an adaptive renaming algorithm that, given
o

participating processes in a set of�
processes (

o P �
), provides these processes with a renaming space whose size is

; C B o G 0 . As
indicated in the paper, several such algorithms have been proposed (e.g., [2, 4, 9]). We present here the
algorithm proposed by Borowski and Gafni [9] as it naturally belongs to Gafni’s reduction land.

Data structures The algorithm uses a set of ladder objects as defined in Section 4.2. Each ladder provides
an operation denoted �*³3�´�Sµ ¶*µº�*³¸�Sµ·¹¸» �����|J L that satisfies the self-membership, comparability and immediacy
properties defined in Section 3.2. As we have seen, these objects can be wait-free implemented in asyn-
chronous read/write atomic register systems.

Each ladder is identified �¼ëì¨x¨��¾# / =.%r9 7 where =.%r9 specifies a ladder among several ladders. A tag is
a sequence of integers, which means that the tags J î�{�0ML , J î�{ B L and J î�{�03{r¯�L are pointers to three different
ladders. More generally, the set of ladders has a tree structure, �2ët¨x¨ ��# / J î�L�7 denoting the root ladder
object. The operation � is used to define a new tag from a previous tag (line 04). As an example, the tagJ î�{�0ML �?þ is the sequence J î�{�03{ þ L . Moreover, �2ët¨t¨���# / J î�{�03{ þ L�7 is then a child of �2ët¨x¨ ��# / J î�{�0ML�7 .

Each process O�~ manages three local variables: ��}L�*~ , �M�Oý*=×~ and =.%r93~ ; ��}L��~¿��Ë�6�O { �;ý�Øz.¿Í (each one being
the opposite of the other); �¸�Oý¸=#~ü� / î�242 B � G 0p7 , and =.%r93~ is a sequence of integers that allows accessing a
ladder object. Initially, ��}L� ~ C 6�O , �¸�Oý*= ~ C�î and =.%r9 ~ C J î�L .
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operation �'� DC+ *,/102+ 3Èù�v�- 7�à ÊKâ¿Ë,ù 7Oà 6�4�ú 7Oà 4�6 7 9
(01) :;7"<>ÙXð2¯ ¯2°�k´³ ù�v�-E7Èµ�ACB,/ED«FLH J,HCB,/KFIH«*KM Nd+.FV354�687�9 ;
(02) if 356�4�ú 7 Æ�û��]9 then ÊKâ¿Ëpù 7 <>ÊKâ¿Ë,ù 7�{ 3�Z1\ : 7 \p^ | 9 else Ê,âqËpù 7 <>ÊKâ¿Ë,ù 7 ^z3�Z1\ : 7 \T^ | 9 end if;
(03) if ��4�6 7 Æ������]3·ß,4�6]\ 4�6%Þò: 7 áp9�� then DC+.Fi~�D�*E3�ÊKâ¿Ë,ù 7 9
(04) else let u]v1rtw 7 ÆX�T� Dq+T*,/102+ 3Èù�v�- 7�� \ : 7 \ à ÊKâ¿Ë,ù 7Oà�� 6�4�ú 7Oà 4�6 7 9 ;
(05) DC+.Fi~�D�*E35u]v8rxw,7�9
(06) end if

Figure 8: Borowsky-Gafni’s renaming algorithm (code for O�~ )
Algorithm description A process O�~ invokes the operation ��� ���3¹3³;! ��Jj=.%r9�~ { �M�Oý*=�~ { ��}I��~ { }���~ L described in
Figure 8. Starting from the root, O�~ recursively descends along the tree of ladder objects until it stops (line
03). When it enters ��� �Ú�3¹*³"!ö��Jj=.%r9�~ { �M�Oý*=�~ { ��}I��~ { }���~ L , O�~ first invokes �2ët¨x¨��¾# / =Z%�9�~ 7Å2 �3³3�´�Sµ ¶*µº�*³¸�rµº¹¸» �����|Jj}���~ L
to obtain a set ¼§~ of participating processes satisfying the self-membership, comparability and immediacy
properties. Let us notice that this set can include only processes that have invoked the very same ladder
object (identified by =.%r9�~ ).

Considering the recursive invocations issued by O�~ , let ¼ u~ be the set obtained by O�~ during its first
invocation, ¼ ò~ be the set obtained by its second invocation, etc. A process O©~ considers smaller and smaller
renaming spaces until it obtains its final name. These renaming spaces are defined at line 02. Thanks to the
direction parameter ��}L�¸~ that takes alternate values, we have the following. Let t

u~ C BxÊ¬¼ u~ Ê¸G 0 .
The first renaming space is �r� u~ Cí/103242 t u~ 7 (notice that t

u~ P B o G 0 , where
o

is the number of participating
processes). Let t ò~ C BxÊ¬¼ ò~ Ê�G 0 . The second renaming space used by O ~ (if needed) is �r� ò~ Cí/ t u~ G�t ò~ 242 t u~ 7 .
Similarly, let t �~ C BxÊ¬¼ �~ Ê�G 0 . The third renaming space used by O�~ is then �r� �~ Cí/ t u~ G�t ò~ 242 t u~ G|t ò~ Dlt �~ 7 ;
etc. We have �1� ÷Q� u~ À �r� ÷~ . The process O�~ stops descending the ladder tree when, during its ù th recursive
call, it obtains a set ¼ ÷~ such that }���~ is the greatest identity in that set (line 03). Let us observe that, when we
consider a given depth ù of the ladder tree, there is at least one process O�� such that }��'� C>���
� J�Ë�}��Ê¸}��&�¼ ÷� Í L , from which it follows that each process terminates the algorithm after at most

o
recursive calls. It is

easy to see that the final renaming space that the processes can occupy is
/103242 B o G 0p7 .

Let =.%r9 /10p7 ÷ { =.%r9 / B 7 ÷ {|2|2|2A{ =Z%�9 / � 7 ÷ be the set of different tags used at the depth ù of the ladder tree. The
algorithm ensures the following property (from which follows the fact that no two of the

o P �
processes

obtain the same name). If ¢y�C¡ 
, the renaming spaces obtained by a process OA~ and a process O�® that in-

voke �2ët¨t¨���# / =.%�9 / ¢ 7 ÷ 7Å2 �*³3���rµ ¶*µ·�*³¸�Sµ·¹*» �����|Jj}���~ L and �2ët¨x¨��¾# / =Z%�9 /  §7 ÷ 7Å2 �*³3���rµ ¶*µ·�*³¸�Sµ·¹*» �����|Jj}��*® L , respective-
ly, have an empty intersection. For more details on this very elegant wait-free algorithm, the reader can
consult [9].

20
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Abstract. Asynchronous failure detector-based set agreement algorithms pro-
posed so far assume that all the processes participate in the algorithm. This means
that (at least) the processes that do not crash propose a value and consequently
execute the algorithm. It follows that these algorithms can block forever (pre-
venting the correct processes from terminating) when there are correct processes
that do not participate in the algorithm. This paper investigates the wait-free set
agreement problem, i.e., the case where the correct participating processes have
to decide a value whatever the behavior of the other processes (i.e., the processes
that crash and the processes that are correct but do not participate in the algo-
rithm). The paper presents a wait-free set agreement algorithm. This algorithm
is based on a leader failure detector class that takes into account the notion of
participating processes. Interestingly, this algorithm enjoys a first class property,
namely, design simplicity.

Keywords: Asynchronous algorithm, Asynchronous system, Atomic register, Con-
sensus, Leader oracle, Participating process, Set agreement, Shared object, Wait-
free algorithm.

1 Introduction

The consensus problem Consensus is a fundamental fault-tolerant distributed comput-
ing problem. As soon as processes cooperate, they have to agree in one way or another.
This is exactly what the consensus problem captures: it allows a set of processes to a-
gree on a critical data (called value, decision, state, etc.). Consensus can be informally
defined as follows. Each process proposes a value, and a process that is not faulty has
to decide a value (termination), such that there is a single decided value (agreement) 1,
and that value is a proposed value (validity).

It is well-known that the consensus problem cannot be solved in asynchronous sys-
tems prone to even a single process crash, be these systems read/write shared memory
systems [13], or message-passing systems [5]. So, one way to circumvent this impos-
sibility is to enrich the asynchronous system with additional objects that are strong
enough to allow solving consensus.

1 We consider here the uniform version of the consensus problem. A faulty process that decides
has to decide the same value as the non-faulty processes.
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Shared memory systems equipped with objects defined with a sequential specifica-
tion and more powerful than traditional atomic read/write registers have been investi-
gated. This line of research has produced the notion of consensus number that can be
associated with each object type defined by a sequential specification [9]. The consen-
sus number of a type is the maximum number of processes for which objects of that
type (together with atomic registers) allows solving consensus. For example, the ob-
jects provided with a ���������� operation have consensus number 2, while the objects
provided with a ����	
����	��� operation have consensus number ��. The con-
sensus number notion has allowed to establish a hierarchy among the objects (with a
sequential specification) according to the synchronization power of the operations they
provide to the processes [9].

Another research direction has been the investigation of objects that provide pro-
cesses with information on failures, namely, the objects called failure detectors [2]. A
failure detector class2 is defined by abstract properties that state which information on
failure is provided to the processes. According to the quality of that information, several
classes can be defined. Differently from an atomic register or a Compare&Swap object,
a failure detector has no sequential specification.

As far as one is interested in solving the consensus problem in an asynchronous
system prone to process crashes, it has been shown that � is the weakest failure de-
tector class that allows solving consensus in such a context [3]. “Weakest” means that
any failure detector that allows solving consensus provides information on failures that
allows building a failure detector of the class �.

A failure detector of the class � provides the processes with a primitive, denoted
��	�
��, that returns a process identity each time it is called, and eventually always
returns the same identity that is the id of a correct process, i.e., a process that does
not crash when we consider crash failures. (Examples of message-passing �-based
consensus algorithms can be found in [7, 12, 16]. These algorithms assume a majority
of correct processes, which is a necessary requirement for �-based message-passing
consensus algorithms.)

The set agreement problem The �-set agreement problem [4] generalizes the consensus
problem: it weakens the constraint on the number of decided values by permitting up to
� different values to be decided (consensus is �-set agreement). While �-set agreement
can be easily solved in asynchronous systems where the number � of processes that
crash is � � (each of a set of � predetermined processes broadcasts its value, and a
process decides the first value it receives), this problem has no solution when � � � [1,
11, 19]. The failure detector approach to solve the �-set agreement problem in message-
passing systems has been investigated in [10, 14, 15, 20].

While (as indicated before) it has been established that � is the weakest failure
detector class for solving consensus [3], let us remind that finding the weakest failure
failure detector class for solving �-set agreement for � � � is still an open problem.

2 We employ the words “failure detector class” instead of “failure detector type”, as it is the
word traditionally used in the literature devoted to failure detectors.
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The main question Failure detector-based consensus algorithms implicitly consider that
all the processes participate in the consensus algorithm, namely, any process that does
not crash is implicitly assumed to propose a value and execute the algorithm. This is also
an implicit assumption in the statement that � is the weakest failure detector to solve
the consensus problem [3]. Basically, an�-based consensus algorithm uses the eventual
leader to eventually impose the same value to all the processes. As the algorithm does
not know when the leader is elected, its main work consists in guaranteeing that no two
different values can be decided before the eventual leader is elected. The algorithm uses
the eventual leader to help decide all the processes that do not crash.

The previous observation raises the following question: What does happen if the
process that is the eventual leader does not participate in the consensus algorithm? It
appears that the algorithm can then block forever, and consequently the termination
property can no longer be guaranteed.

So, a fundamental question is the following: What is the weakest failure detector
to solve the consensus (or, more generally, the �-set agreement) problem when only a
subset of the correct processes (not known a priori) propose a value and participate
in the agreement problem? This question can be reformulated as follows: What are the
weakest failure detector classes to wait-free solve the consensus and the �-set agreement
problems? Wait-free means here that a process that proposes a value and does not crash
has to decide, whatever the behavior of the other processes (they can participate or not,
and be correct or not). The previous observation on � shows that a failure detector of
that class cannot be the weakest to wait-free solve the consensus problem.

Content of the paper Answering the previous question requires to investigate new fail-
ure detector classes and show that one of them allows solving �-set agreement (suf-
ficiency part) while being the weakest (necessity part). This paper addresses the suf-
ficiency part. (On the necessity side, although we don’t have yet formal results, we
currently are inclined towards thinking that the failure detector class � �

� -see below- is
the weakest failure detector class for wait-free solving �-set agreement.)

More precisely, the paper presents a failure detector-based algorithm for shared
memory systems that wait-free solves the �-set agreement problem whatever the num-
ber � of participating processes, and their behavior, in a set of � processes 3. This al-
gorithm assumes that, in addition to single-writer/multi-readers atomic registers, the
shared memory provides the processes with a failure detector object of a class that we
denote ��

� . That class is an extension of the failure detector class introduced in [18],
and the failure detector classes recently introduced in [6] and [17].

The failure detector class �� introduced in [18] extends the classical � class [3]
by allowing a set of up to � leaders to be returned by each invocation of the ��	�
��
primitive (�� boils down to �). The aim of the class �� introduced in [6] is to boost

3 Let us remind that all the algorithms based on an object � with consensus number � allows
solving consensus whatever the number (� � �) and the behavior of the participating process-
es, i.e., they are wait-free consensus algorithms. (Such an object � has always a sequential
specification.) In some sense, this paper looks for a failure detector class that, while being
as weak as possible, is as strong as the object �, i.e., a class that allows designing wait-free
failure detector-based set agreement algorithms. (Failure detectors cannot be defined from a
sequential specification.)
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obstruction-free algorithms into non-blocking algorithms. That paper also shows that
this failure detector class is the weakest for such a boosting. The failure detector class
introduced in [17] extends �� by explicitly referring to the notion of participating pro-
cesses. It has been introduced to circumvent the �� � � lower bound of the renaming
problem [11] (where � is the number of participating processes). Using such a failure
detector, the proposed renaming algorithm provides the processes with a renaming s-
pace whose size is reduced from �� � � to �� � � �

�
� (where the value � comes from

“�”-set agreement).

Roadmap The paper is made up of 6 sections. Section 2 presents the computation
model. Section 3 introduces the failure detector class � �

� . Then, Section 4 presents
the ��

� -based �-set algorithm. This algorithm uses an underlying object denoted ��.
So, Section 5 presents an algorithm constructing a �� object from atomic read/write
registers. Finally, Section 6 concludes the paper.

2 Asynchronous system model

2.1 Process and communication model

Process model The system consists of� sequential processes that we denote ��� � � � � ��.
A process can crash. Given an execution, a process that crashes is said to be faulty,
otherwise it is correct in that execution. Each process progresses at its own speed, which
means that the system is asynchronous. In the following, ������� denoted the set of
processes that are correct in the run that is considered.

Coordination model The processes cooperate and communicate through two types of
reliable objects: two arrays of single-writer/multi-reader atomic registers and a shared
object that we call �� (as shown in Section 5, such an object can be built from single-
writer/multi-reader atomic registers). The processes are also provided with a failure
detector object of the class ��

� (see below).
Identifiers with upper case letters are used to denote shared objects. Lower case

letters are used to denote local variables; in that case the process index appears as a
subscript. As an example, �	
����� denotes the �th entry of a local array of the process
��, while ��	
 ��� denotes the �th entry of the shared array ��	
 .

2.2 The�� object

The �� object is a variant of a round-based object introduced in [8] to capture the
safety properties of Paxos-like consensus algorithms [8, 12]. This object provides the
processes with an operation denoted 	���	 �
��������. That operation has two input
parameters: the value (��) proposed by the invoking process � �, and a round number
(
�). The round numbers play the role of a logical time and allows identifying the in-
vocations. The �� object assumes that no two processes use the same round numbers,
and successive invocations by the same process use increasing round numbers. Given
a �� object, the invocations 	���	 �
�������� satisfy the following properties (� is a
default value that cannot be proposed by a process):
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– Termination (wait-free): an invocation of 	���	 �
�������� by a correct process
always terminates (whatever the behavior of the other processes).

– Validity: the value returned by any invocation 	���	 �
�������� is a proposed value
or �.

– Agreement: At most � different non-� values can be returned by the whole set of
	���	 �
�������� invocations.

– Convergence: If there is a time after which the operation 	���	 �
�������� is in-
voked infinitely often, and these invocations are issued by an (unknown but fixed)
set of at most � processes, there is then a time after which none of these invocations
returns �.

A �� object can store up to � non-� different values. A process invokes it with a
value to store and obtains a value in return. If it is permanently accessed concurrently by
more than � processes, the �� object might store anything. If there is a period during
which it is accessed concurrently by at most � � � � processes, it stores forever the
corresponding � � proposed values.

3 The failure detector class��

�

3.1 Definition

A failure detector of the class ��
� provides the processes with an operation denoted

��	�
��. (As indicated in the introduction, this definition is inspired by the leader failure
detector classes introduced in [6, 17, 18].) When a process � � invokes that operation, it
provides it with an input parameter, namely a set  of processes, and obtains a set of
process identities as a result4.

The semantics of ��
� is based on a notion of time, whose domain is the set of inte-

gers. It is important to notice that this notion of time is not accessible to the processes.
An invocation of ��	�
�� by a process �� is meaningful if � �  . If � ��  , it is
meaningless. The primitive ��	�
�� is defined by the following properties:

– Termination (wait-free): Any invocation of ��	�
�� by a correct process always
terminates (whatever the behavior of the other processes).

– Triviality: A meaningless invocation returns any set of processes.
– Eventual multi-leadership for each input set  : For any  � � , such that  	
������� 
� �, there is a time �� such that, �� � �� , all the meaningful ��	�
��
invocations (that terminate) return the same set �� and this set is such that:
 ��� � � �.
 �� 	 � 	 ������� 
� �.

4 The definition of ��
� is not expressed in the framework introduced by Chandra and Toueg

to define failure detector classes [2]. More precisely, in their framework, the failure detector
operation that a process can issue has no input parameter. It would be possible to express ��

�

in their framework. We don’t do it to have simpler statements and make the presentation easier
to understand.
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The intuition that underlies this definition is the following. The set passed as input
parameter by the invoking process � � is the set of all the processes that �� considers as
being currently participating in the computation. (This also motivates the notion of
meaningful and meaningless invocations: an invoking process is trivially participating).

Given a set  of participating processes that invoke ��	�
��, the eventual multi-
leadership property states that there is a time after which these processes obtain the
same set �� of at most � leaders, and at least one of them is a correct process of  . Let
us observe that the (at most ���) other processes of�� can be any subset of processes
(correct or not, participating or not).

It is important to notice that the time �� from which this property occurs is not
known by the processes. Moreover, before that time, there is an anarchy period dur-
ing which each process, as far as its ��	�
�� invocations are concerned, can obtain
different sets of any number of leaders. Let us also observe that if a process � � issues
two meaningful invocations ��	�
��� and ��	�
��� with � 
� �, there is no
relation linking ��� and ���, whatever the values of � and � (e.g., the fact that
� � � imposes no particular constraint involving ��� and ���).

Let us consider an execution in which all the invocations ��	�
�� are such that
 � � (the whole set of processes are always considered as participating). In that
case, ��

� boils down to the failure detector class denoted � � introduced in [18]. If
additionally, � � �, we obtain the classical leader failure detector � introduced in [3].
When � � �, ��

� boils down to the failure detector class introduced in [6]. It is shown
in [6] that � is weaker than ��

� that in turn is weaker than �� (the class of eventually
perfect failure detectors: after some finite but unknown time, these failure detectors
suspect all the crashed processes and only them [2]).

3.2 The family ���

�������

It follows from the definition of ��
� , that the failure detector class family ���

�������
is such that ��

� � ����
� .

Moreover, as just indicated, when all the ��	�
�� invocations are such that  �
� , ��

� boils down �� (as defined in [18]), from which it follows that we have � � �
��
� . More generally, the failure detector classes � � and ��

� are related as indicated in
Figure 1 where a plain arrow means “includes”, while a dotted arrow means “does not
include”.

Ω1
∗ Ωk

∗ Ωn−2
∗ Ωn−1

∗ Ωn
∗

Ω1 Ωk Ωn−2 Ωn−1 Ωn

Fig. 1. Wait-free (ir)reducibility results between the families ���
� ������ and ���������
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The facts (1)�� � ��
� , and (2)�� and��

� are the same class, follows directly from
their definitions. It is important to notice that, �� 	 � � � � � � �, �� � 	 � � �� � �,
it is not possible to build a failure detector of � �

� from a failure detector of class ���

.
Differently, for � � �� �, the following very simple algorithm (where ��	��
�� is the
primitive provided by����) builds a failure detector of����

� from any failure detector
of ����:

operation ��	�
��: if  � � then return
�
��	��
��

�
else return �� end if.

4 �
�

�
-based �-set agreement

4.1 Wait-free �-set agreement

The �-set agreement has been informally stated in the introduction. It has been defined
in [4]. The parameter � of the set agreement can be seen as the degree of coordination
associated with the corresponding instance of the problem. The smaller �, the more co-
ordination among the processes: � � � means the strongest possible coordination (this
is the consensus problem), while � � � means no coordination at all. More precisely,
in a set of � processes, each of a subset of � � � processes proposes a value. These
processes are the participating processes. The wait-free �-set agreement is defined by
the following properties:

– Termination (wait-free): a correct process that proposes a value decides a value
(whatever the behavior of the other processes).

– Agreement: no more than � different values are decided.
– Validity: a decided value is a proposed value.

4.2 Principles and description of the algorithm

The �-set agreement algorithm is described in Figure 2. A process � � that participates
in the �-set agreement invokes the operation ���� �
���������� where �� is the value it
proposes. If it does not crash, it terminates that operation when it executes the statement

���
����������� (line 11) where �������� is the value it decides.

Shared objects The processes share three objects:

– A �� object. A process �� accesses it by invoking ���	���	 �
�������
�� ���
where 
� is a round number and the value � � proposed by �� (line 07). Due to the
properties of the �� object, the value returned by such an invocation is a proposed
value or �.

– An array of atomic single-writer/multi-reader boolean registers, ��	
 ������. The
register ��	
 ��� can be updated only by � �; it can read by all the processes. Each
entry ��	
 ��� is initialized to ���� . ��	
 ��� is switched to ���� to indicate that
�� is now participating in the �-set agreement (line 01).��	
 ��� is updated at most
once.
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– An array of atomic single-writer/multi-reader registers denoted��� ������.��� ���
can be written only by ��. It can read by all the processes. Each entry ��� ��� is
initialized to � (a value that cannot be proposed by the processes). When it is up-
dated to a non-� value �, that value � can be decided by any process. It is updated
(to such a value � or �) each time �� invokes ���	���	 �
�������
�� ��� to store
the value returned by that invocation (line 07).

The algorithm The behavior of a process is pretty simple. As in Paxos, it decouples the
safety part from the wait-free/termination part. The safety is ensured thanks to the ��
object, while the liveness rests on ��

� .

After it has registered its participation (line 01), a process � � executes a while loop
(lines 03-09) until it finds a non-� entry in the ��� ������ array. When this occurs, � �
decides such a value (lines 03 and 10-11).

Each time it executes the while loop, �� first computes its local view (denoted �	
��)
of the set of the processes it perceives as being the participating processes (line 04). It
then uses this participating set to invoke Leader��� (line 05). If it does not belong to
the set returned by Leader���	
���, �� continues looping. Otherwise (it then belongs to
set of leaders), �� invokes the �� object (line 07) to try to obtain a non-� value from
that object. The local variable 
� is used by �� to define the round number it uses when
it invokes the �� object. It is easy to see from the management of 
 � at line 02 and line
06 that each process uses increasing round numbers, and that no two processes use the
same round numbers (a necessary requirement for using the �� object). The properties
of �� ensure that no more than � values are decided, while the properties of � �

� ensure
that all the correct participating processes do terminate.

operation ���� ������������:
(1) ���� ��� � ���� ;
(2) �� � ��� ��;
(3) while ��� � �	
 ��� � �� do
(4) ���	� � �� � ���� ��� �� ��;
(5) 
������ � Leader�����	��;
(6) if �� � 
������� then �� � �� � �;
(7) �	
 ��� � ������	� ������������ ���
(8) end if
(9) end while;
(10) let �������� � any �	
 ��� �� �;
(11) ���
������������

Fig. 2. An ��
� -based �-set agreement algorithm (code for ��)
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4.3 Proof of the algorithm

Theorem 1. The algorithm described in Figure 2 wait-free solves the �-set agreement
problem whatever the number � of participating processes in a set of � processes (this
number � being a priori unknown).

Proof

Validity The validity property follows from the following observations:

– The value � cannot decided (lines 03 and 10).
– The ��� ������ array can contain only � or values that have been proposed to the
�� object (line 07).

– Any value �� proposed to the �� object is a value proposed to the �-set agreement.

Agreement The agreement property follows directly from the agreement property of the
�� object (that states that at most � non-� values can be returned from that object).

Termination (wait-free) If an entry of ��� ������ is eventually set to a non-� value, it
follows from the test of line 03 that any correct participating process terminates. So, let
us assume by contradiction that no entry of ��� ������ is ever set to a non-� value. Let
us first observe that all the ��	�
�� invocations issued by the processes are meaningful.

If no correct participating process decides, there is a time �� after which we have
the following:

– All the participating processes have entered the algorithm, and consequently the
array ��	
 ������ determines the whole set of participating processes. Let  be
this set of processes.

– all the ��	�
�� invocations have  as input parameter.

It follows from the eventual multi-leadership property associated with  , that there
is a time �� � �� such that, for all the times � � �� , all the invocations of ��	�
��
return the same set �� of at most � processes, and this set includes at least one correct
participating process.

As no process decides (assumption) and each 	���	 �
�������� invocation issued
by a correct process returns (termination property of the �� object), the correct partic-
ipating processes of the set  execute ���	���	 �
�������� infinitely often (lines 06-
07). It then follows from the convergence property of the�� object that these processes
obtain non-� values, and deposit these values in the array ��� ������. A contradiction.

�����	�
 �

5 Building a�� object from registers

This section presents an implementation of a�� object from single-writer/multi-readers
atomic registers. As already indicated, this algorithm is inspired from Paxos-like algo-
rithms [8, 12].
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5.1 Implementing��

An algorithm constructing a �� object is described in Figure 3. It uses an array of
single-writer/multi-reader atomic registers	�� . As previously,	�� ��� can be written
only by ��. A register	�� ��� is made up of three fields 	�� �����
�, 	�� �����
�� and
	�� �����	� whose meaning is the following (	�� ��� is initialized to � 
� 
�� �):

– 	�� �����
� stores the number of the �ast 
ound �ntered by � �. It can be seen as the
logical date of the last invocation issued by ��.

– 	�� �����
�� and 	�� �����	� constitute a pair of related values: 	�� �����
��
stores the number of the �ast 
ound �ith a �rite of a value in the field 	�� �����	�.
So, 	�� �����
�� is the logical date of the last write in 	�� �����	�.

(To simplify the writing of the algorithm, we consider that each field of a register can
be written separately. This poses no problem as each register is single writer. A writer
can consequently keep a copy of the last value it has written in each register field and
rewrite it when that value is not modified.)

operation ���	� ����������� ��:
(1) �������
��� �;
(2) for � � ��� � � � � �� do ������� � ������ end do;
(3) let ��
��� be ����������
 where � is such that �� � ��������
��� 	 ��������
���;
(4) if ���
��� � �� then ��
��� � � end if;
(5) ��������
���� �� � ��� ��
����;
(6) for � � ��� � � � � �� do ������� � ������ end do;
(7) if

�����
��������
�� 	 ��
�� � �

�
then ���
�����

(8) else ���
�����
���� end if

Fig. 3. A �� object algorithm (code for ��)

The principle that underlies the algorithm is very simple: it consists in using a log-
ical time frame (represented here by the round numbers) to timestamp the invocations,
and answering�when the timestamp of the corresponding invocation does not lie with-
in the � highest dates (registered in	�� ��������
�). To that end, the algorithm proceeds
as follows:

– Step 1 (lines 01-02): Access the shared registers.
- When a process �� invokes 	���	 �
�������
� ��, it first informs the other pro-
cesses that the �� object has attained (at least) the date 
 (line 01). Then � � reads
all the registers in any order (line 02) to know the last values (if any) written by the
other processes.

– Step 2 (lines 03-05): Determination and writing of a value.
Then, �� determines a value. In order not to violate the agreement property, it selects
the last value (“last” according to the round numbers/logical dates) that has been
deposited in a register	�� ���. If there is no such value it considers its own value �.
After this determination, �� writes in 	�� ��� the value it has determined, together
with its round number (line 05.
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– Step 3 (lines 06-08): Commit or abort.
- �� reads again the shared registers to know the progress of the other processes
(measured by their round numbers), line 07. If it discovers it is “late”, � � aborts
returning �. (Let us observe that this preserves the agreement property.) “To be
late” means that the current date 
 of �� does not lie within the window defined by
the � highest dates (round numbers) currently entered by the processes (these round
numbers/dates are registered in the field �
� of each entry of the array 	�� ������).
- Otherwise, �� is not late. It then returns (“commits”) �	���� (line 08). Let us
observe that, as the notion of “being late” is defined with respect to a window of �
dates (round numbers), it is possible that up to � processes are not late and return
concurrently up to � distinct non-� values.

It directly follows from the code that the algorithm is wait-free. Moreover, in order
to expedite the 	���	 �
�������� operation, it is possible to insert the statement

if
������
��������
� � 
�

�
� � �

�
then 
���
���) end if

between the line 02 and the line 03. This allows the invoking process to return� when,
just after entering the 	���	 �
�������� operation, it discovers it is late.

5.2 Proof of the�� object

Theorem 2. The algorithm described in Figure 3 wait-free implements a �� object.

Proof

Termination (wait-free) This property follows directly from the code of the algorith-
m (the only loops are for loops that trivially terminate when the invoking process is
correct).

Validity Let us observe that if a value � is written in ��������	�, that value has been
previously passed as a parameter in an 	���	 �
�������� invocation. The validity prop-
erty follows from this observation and the fact that only� or a value written in a register
������ can be returned from an 	���	 �
�������� invocation.

Convergence Let � be a time after which there is a set of � � � � processes such that
each of them invokes 	���	 �
�������� infinitely often. This means that, from � , the
values of � � �� registers ������ are no longer modified. Consequently, as the � �

processes �� repeatedly invoke 	���	 �
��������, there is a time � � � � after which
each ��������
� becomes greater than any ��������
� that is no longer modified.
There is consequently a time � �� � � � after which the �� processes are such that their
registers ��������
� contain forever the � greatest timestamp values. It follows from
the test done at line 07 that, after � ��, no 	���	 �
�������� invocation by one of these � �

processes can be aborted. Consequently, each of them returns a non-� value at line 08.

Agreement If all invocations returns�, the agreement property is trivially satisfied. So,
let us consider an execution in which at least one 	���	 �
�������� invocation returns
a non-� value. To prove the agreement property we show that:

Part Algo - APPENDIX [Raynal and Travers 2006] p 11



– Before the first non-� value is returned by an invocation, there is a time at which
the algorithm has determined a set  of at least one and at most � non-� values 5.

– Any value � 
� � returned by an invocation is a value of  .

To simplify the reasoning, and without loss of generality, we assume that a process
that repeatedly invokes 	���	 �
��������, stops invoking that operation as soon as it
returns a non-� value at line 08.

1. Invariants. �� � ��� � � � � ��:
– 	�� �����
� is increasing (assumption on the successive round numbers used

by ��).
– 	�� �����
�� � 	�� �����
� (because �� executes line 05 after line 01).

2. Among all the invocations that execute the test of line 07, let � be the subset of
invocations for which the predicate

�
����
��������
� � 
�

�
� � � is true. (This means

that any invocation of � either returns a non-� value -at line 08-, or crashes after
it has evaluated the predicate at line 07, and before it executes line 08.) Among the
invocations of �, let ! be the invocation with the smallest round number. Let � �� be
the process that invoked ! and 
 the corresponding round number.

3. Time instants (see Figure 4).
– Let � be the time at which ! executes line 05 (statement	�� ������ 
� 
� � �).
– Let � � be the time just after ! has finished reading the array	�� ������. Without

loss of generality, we consider that this is the time at which ! locally evaluates
the predicate of line 07.

– Let � ��� be the time at which ! reads	�� ��� at line 06. We have � � � ��� � � �.

��� ���� �� �� �� � �

line 07line 06line 05
�������� � ��� ���

�
������������ � ��

�
� � � is satisfied

	 ���	 	 �

Fig. 4. Time instants with respect to accesses to the registers �	�������

4. From � ��� � � �, the fact that predicate
�
����
���� �����
� � 
�

�
� � � is true at � �, and

the monotonicity of 	�� �����
�, we can conclude that a necessary requirement for
the predicate 	�� �����
� � 
 to be true at � is that it is true at � �.
Let � � ���� � � � � ��� � � � � �� be the set of processes �� such that 	�� �����
� � 

is true at � . As the predicate

�
����
��������
� � 
�

�
� � � is true at � �, we have

� � " � ��� � �.
5. From the previous item, we conclude that there are at least �� " � �� � entries �

of the array 	�� ������ such that 	�� �����
� � 
 at time � . Let � denote this set
of processes (� and � define a partition of the whole set of processes).

5 According to the terminology introduced in [2], the set � defines the values that are locked.
This means that from now on the set of non-� values that can be returned is fixed forever: no
value outside � can ever be returned.
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6. Let the � -time invocation of �� be the invocation issued by �� whose round number
is the value of 	�� �����
� at time � (assuming a fictitious initial invocation if
needed).

7. The � -time invocations of the processes �� in � define a set, denoted  , including
at most " � � values, such that these values are written in 	�� ������ with a write
timestamp (value of the field 	�� �����
��) that is � 
. This claim follows from
the following observation.

– The � -time invocation by ��� (namely !) writes a value and the round number

 in 	�� ����.

– Let ��� � �, ��� 
� ��� . From the definition of �, it follows that the round
number of the � -time invocation issued by � �� is	�� ������
� � 
� � 
. When
it executes that invocation, ��� atomically executes 	�� ���� �� 
�� 
�� �� �
(if it does not crash before executing the line 05).

– It is possible that, on one side, no process in� crashes before executing line 05,
and, on another side, all the values that are written are different. It consequently
follows that up to " � � different values (with a write timestamp �
�� � 
)
can be written in 	�� ������. Hence,  can contain up to � values.

– Moreover, it is also possible that each process in � returns at line 08 the value
it has selected at line 05 (this depends on the value of the predicate evaluated
at line 07). Consequently each value of  can potentially be returned.

8. Given an execution, the previous item has extracted a non-empty set  of at most
� non-� values that can be returned. We now show that (1) from � , only values of
 can be written in 	�� ������ with a timestamp field (�
��) greater than 
, and
(2) a non-� value returned by an invocation is necessarily a value of  .
(a) The � -time invocation issued by any �� � � has a round number 	�� �����
�

that is smaller than	�� ������
� � 
 (this follows from the definition of�). As
by definition, 
 is the smallest round number during which a process finds true
the predicate of line 07, it follows that any �� � � needs to issue an invocation
with a round number greater than 
 to have a chance to return a non-� value.

(b) Let � � be the set of all the invocations that have a round number greater than

. They are issued by the processes of � or the processes of � whose � -time
invocation has returned � at line 07. Let us observe that any invocation of � �

starts after � .
Let ! � be the first invocation of � � that executes 05. ! � (issued by some pro-
cess ��) selects (at line 03) a value �	���� from a register 	�� �#� such that
	�� �#���
�� � 	�� ������
�� � 
. As up to now, only processes of � have
written values in 	�� ������ with a write timestamp (�
��) � 
, it follows
that ! � selects a value from  6. Consequently, this invocation does not add a
new value to  .
Let ! �� be the invocation of � � that is the second to execute line 05. The same
reasoning (including now ! �) applies. Etc. It follows from this induction that a

6 It is possible that, when �� reads the array �	� ������ at line 02, not all the values of �
have yet been written in that array. The important points are here that (1) at least one val-
ue of � has already been written in the array (namely, �	��������
 with the timestamp
�	� �����
��� � �), and (2) any register �	���� that currently contains a value not in
� , is such that �	� ����
��� � �.
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value written at line 05 by an invocation of � � is a value of  , which proves that
only values of  can be written in the array 	�� ������ with a write timestamp
greater than 
.

(c) Finally, an invocation that returns a value at line 08, returns the value it has
written at line 05. Due to the definition of 
, its round number 
 � is � 
. It
follows that the non-� value that is returned is a value of  .

�����	�
 �

6 Conclusion

Considering asynchronous systems equipped with a failure detector object, this paper
focused on the set agreement problem when only a subset of the processes participate,
namely, the wait-free set agreement problem. Wait-free means here that a correct pro-
cess has to decide a value, whatever the behavior of the other processes (that can be
correct or not and participate or not).

A wait-free failure detector-based �-set agreement algorithm has been presented.
Its design principles follows the Paxos approach, decoupling the way the safety and
the termination properties are guaranteed. The algorithm safety is based on an object
denoted�� that can be built from single-writer/multi-reader atomic registers. The live-
ness property is based on a leader failure detector class, denoted � �

� , that takes into
account the participating processes. The very existence of the algorithm shows that � �

�

is sufficient to wait-free solve the �-set agreement problem. Showing that � �
� is also

necessary, or defining a class of weaker failure detectors solving the �-set agreement
problem, remains one of the greatest research challenges for the fault-tolerant asyn-
chronous computing theory community.
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Prêt à Voter with re-encryption mixes

P Y A Ryan1 and S A Schneider2

1University of Newcastle, 2University of Surrey

Abstract. We present a number of enhancements to the voter verifiable
election scheme Prêt à Voter [CRS05]. Firstly, we propose a mechanism
for the distributed construction by a set of independent clerks of the
ballot forms. This construction leads to proto-ballot forms with the can-
didate list encrypted and ensures that only a collusion of all the clerks
could determine the cryptographic seeds or the onion/candidate list as-
sociation. This eliminates the need to trust a single authority to keep this
information secret. Furthermore, it allows the on-demand decryption and
printing of the ballot forms, so eliminating chain of custody issues and
the chain voting style attacks against encrypted receipt schemes identi-
fied in [RP05].
The ballot forms proposed here use ElGamal randomised encryption so
enabling the use of re-encryption mixes for the anonymising tabulation
phase in place of the decryption mixes. This has a number of advan-
tages over the RSA decryption mixes used previously: tolerance against
failure of any of the mix tellers, full mixing of terms over the Z

∗

p space
and enabling the mixes and audits to be fully independently rerun if
necessary.

1 Introduction

The Prêt à Voter scheme, presented in [CRS05], is a cryptographic voting scheme
that enables voter-verifiability: at the time of casting their vote, voters are pro-
vided with an encrypted receipt. They can then check, via a secure Web Bulletin
Board (WBB), that their receipt is accurately included in a robust anonymising
mix process. Various checking mechanisms serve to detect any corruption in any
phase of this process: encryption of the vote, recording and transmission of the
encrypted ballot receipt and the decryptions of the votes. Full details can be
found in [CRS05]. Henceforth we will refer to this version of the scheme as Prêt
à Voter’05.

Prêt à Voter seeks to achieve the goals of accuracy and ballot secrecy with
minimal trust in the system: software, hardware, officials. Assurance is achieved
through a high degree of transparency and we thus verify the correctness of the
election rather that attempting to verify the system.

This scheme has the benefit of providing a very simple and familiar voter
experience, but certain vulnerabilities and trust assumptions have been identi-
fied, see [RP05]. In this paper we present a number of enhancements designed
to counter these threats and eliminate the need for these trust assumptions.
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The construction of the ballot forms presented here also enables the use of
re-encryption mixes in the anonymising/tabulation phase. This also provides a
number of advantages over the RSA/decryption mixes of Prêt à Voter’05.

The structure of the paper is as follows: in the next section we give the key
elements of Prêt à Voter’05. Section 3 summarises some of the threats to and
trust assumptions needed in Prêt à Voter’05. Section 4 presents the distributed
construction of encrypted ballot forms. Sections 5 and 6 describe how these
forms can be used in the vote casting process. Section 7 describes the use of
this construction for re-encryption mixes during the anonymising and tabulation
phase. Sections 8 and 9 describe the new auditing procedures required for the new
ElGamal style ballot forms. Sections 10 and 11 discuss some further extensions
to deal with more general voting methods and remote voting.

2 Outline of Prêt à Voter 2005

We now present an overview of the Prêt à Voter voter-verifiable scheme. Voters
select at random a ballot form, an example of which is shown in Figure 1.

Obelix

Asterix

Panoramix

Idefix

7rJ94K

Fig. 1. Prêt à Voter ballot form

In the booth, the voter makes her selection in the usual way by placing a
cross in the right hand column against the candidate of choice, or, in the case of
a Single Transferable Vote (STV) system for example, they mark their ranking
against the candidates. Once the selection has been marked, the left hand strip
is detached and discarded. The remaining right hand strip now constitutes the
receipt, as shown in Figure 2.

X

7rJ94K

Fig. 2. Prêt à Voter ballot receipt
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The voter now exits the booth and casts their vote in the presence of an
official. The ballot receipt is placed under an optical reader or similar device
that records the random value at the bottom of the strip and an index value
indicating the cell into which the X was marked. The receipt is digitally signed
and franked and the voter now retains this as their receipt.

Possession of a receipt might appear to open up the possibility of coercion or
vote-buying. However, the candidate lists on the ballot forms are independently
randomised for each ballot form. Thus, with the left hand strip removed, the
right hand strip alone does not indicate which way the vote was cast.

The cryptographic value printed on the bottom of the receipt, the ‘onion’,
is the key to extraction of the vote. Buried cryptographically in this value is
the information needed to reconstruct the candidate list shown on the left hand
strip. This information is encrypted under the secret keys shared by a number
of tellers. Thus, only the tellers acting in concert are able to reconstruct the
candidate order and so interpret the vote value encoded on the receipt.

Once the election has closed, all the receipts are transmitted to a central
tabulation server which posts them to a secure WBB. This is an append-only,
publicly visible facility. Only the tabulation server, and later the tellers, can
write to this and, once written, anything posted to it will remain unchanged.
Voters can visit this WBB and confirm that their receipt appears correctly.

After a suitable period, the tellers take over and perform a robust, anonymis-
ing, decryption mix on the batch of posted receipts. Various approaches can be
used to ensure that the tellers perform the decryptions correctly. Details of this
can be found in [CRS05].

Prêt à Voter’05 proposes an Authority responsible for the generation of the
entropy for the crypto seeds and prior printing of the ballot forms. Random
auditing, by independent organisations, of the forms before, during and after the
election serve to detect any attempt by the the Authority to pass off incorrectly
formed ballot forms. Later in this paper we propose an alternative approach
using on-demand creation and printing of forms and post-auditing.

The Prêt à Voter’05 approach has the advantage of simplicity and results in
a very simple and familiar experience for the voters: they simply register, collect
a form, mark their selection in the booth and then cast the form.

For full details of the mechanisms used in the 2005 version of the scheme to
detect any malfunction or misbehaviour by the devices or processes that comprise
the scheme, see [CRS05]. The construction of the ballot forms used here calls for
rather different monitoring and auditing mechanisms that we detail later.

3 Threats and trust models

The simplicity of the original scheme, in particular the use of a single authority
and the pre-printing and pre-auditing of the ballot forms, comes at a certain
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cost: various trust assumptions need to be made. In this section we briefly recall
the threats and assumptions of Prêt à Voter’05 identified in [RP05].

3.1 The need to trust the Authority for confidentiality

In Prêt à Voter 2005, a single entity creates the ballot forms. Whilst it is not
necessary to trust this entity from the point of view of accuracy, it is necessary
to trust it not to leak the ballot form information. Clearly, if the Authority were
to leak this information, the scheme would become susceptible to coercion or
vote buying.

3.2 Chain of custody

Just as we need to trust the Authority not to leak ballot form information, we
also need to assume that mechanisms are in place to ensure that none of this
information is leaked during storage and distribution. Various counter-measures
are possible: for example, ballot forms could be kept in sealed envelopes to be
revealed only by the voters in the booth. Alternatively, a scratch card style
mechanism along the lines suggested in [RP05] could be used to conceal the
onion value until the voter reveals it at the time of vote casting. The ballot
forms would also need to be stored and distributed in locked, sealed boxes. All
of these counter-measures are rather procedural in nature and so require various
trust assumptions.

3.3 Chain voting

Conventional, pen and paper elections may be vulnerable to a style form of vote
buying known as chain voting. The UK system in particular is vulnerable. Here,
the ballot forms are a controlled resource: on entering the polling station, the
voter is registered and marked off on the electoral roll. They are given a ballot
form which they take to the booth, mark and then cast in the ballot box. In
principle, officials should observe the voters casting their form.

The attack works as follows: the coercer smuggles a blank ballot form out of
the polling station. The controls on the distribution of the forms should make
this a little tricky, but in practise there are many ways it could be achieved.
Having marked the form for the candidate of their choice, the coercer intercepts
a voter as they enter the polling station. The voter is told that if, when they exit
the polling station, they hand a fresh, blank form back to the coercer they will
receive an reward. The attack can now proceed inductively until a voter decides
to cry foul. Note that, once initialised, the controls on the ballot forms works in
the coercer’s favour: if the voter emerges from the polling station with a blank
form, it is a strong indication that they did indeed cast the marked form they
were given by the coercer.
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3.4 Kleptographic channels

A further, rather subtle vulnerability can occur where a single entity is respon-
sible for creating cryptographic variables: kleptographic attacks as described in
[YY96]. The possible relevance of such attacks to cryptographic voting schemes
is described in [M. 06]. The idea is that the entity may carefully choose the
values of the crypto variables in order to leak information to a colluding party.

In the case of Prêt à Voter, the Authority might choose the seed values
in such a way that an agreed, keyed cryptographic hash of the onion value
indicates the candidate order. Clearly this may require quite a bit of searching
and computation to find suitable values. Note however that such an attack could
pass unnoticed: the distribution of seed values would look perfectly random to
anyone ignorant of the cryptographic hash function.

4 Distributed generation of encrypted ballot forms

Many of the above attacks stem from the fact that a single entity is able to
determine, in the sense of being able both to know and to control, the seed
values. We now present a mechanism for the distributed generation of the seed
values and ballot forms. Throughout, we will use ElGamal encryption rather
than RSA as used in Prêt à Voter’05 and we will work in Z∗

p , p a (large) prime.

An analogous construction is possible for the distributed creation of the RSA,
layered onions of Prêt à Voter’05. However, as we want to introduce re-encryption
mixes at the tabulation stage, we present the construction for ElGamal encryp-
tion here. We note also that the term onion is a slight misnomer where ElGamal
terms are used but we will retain it here for historical reasons.

The ballot forms will be generated by a set of l clerks in such a way that
each contributes to the entropy of the crypto seed and this remains encrypted
throughout. Consequently the candidate list, which is derived from the seed,
remains concealed and all the clerks would have to collude to determine the
seeds values.

We assume a set of decryption tellers who hold the key shares for a threshold
ElGamal primitive with public key: (p, α, βT ). These will act much as the tellers
of the original scheme and will be responsible for the final decryption stage
after the anonymising, re-encryption mix phase. Details of the anonymising and
decryption/tabulation phases will be given in section 7.

We also assume a set of Registrars with threshold secret key shares corre-
sponding to the public key: (p, α, βR). These public keys are known to the Clerks
and are used in the construction of the ballot forms.

An initial clerk C0 generates a batch of initial seeds s0
i . These seeds are drawn

randomly from a binomial distribution centred around 0 with standard deviation
σ. σ would probably be chosen to be of order n, the number of candidates.
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From these, C0 generates a batch of pairs of ”entangled” onions by encrypting
each s0

i , actually in the form γ−s0

i , under the Registrar key and the Teller key:

({γ−s0

i }PKR
, {γ−s0

i }PKT
).

Expressed as ElGamal encryptions these have the form:

(αx0

i , β
x0

i

R .γ−s0

i ), (αy0

i , β
y0

i

T .γ−s0

i )

for fresh random values x0
i , y0

i drawn from Z∗

p .

Notice that, for convenience later, we have encrypted the value γ−s0

i for some
generator γ of Z∗

p rather than encrypting s0
i directly. The reason for this will

become apparent shortly.

The remaining l − 1 Clerks now perform re-encryption mixes and transfor-
mations on this batch of onion pairs. Each Clerk takes the batch of pairs output
by the previous Clerk and performs a combined re-encryption along with an
injection of fresh entropy into the seed values. For each pair of onions, the same
entropy is injected into the seed value of both onions to ensure that these values
continue to match for each pair.

More precisely, for each pair of the batch, the jth Clerk Cj generates a new,
random values x̄, ȳ and s̄ and performs the following mix/transformation on each
onion pair of the batch:

{(αx
j−1

i , β
x

j−1

i

R .γ−s
j−1

i ), (αy
j−1

i , β
y

j−1

i

T .γ−s
j−1

i )}
↓

{(αx
j−1

i .αx̄
j

i , β
x

j−1

i

R .β
x̄

j

i

R .γ−s
j−1

i .γ−s̄
j

i ), (αy
j−1

i .αȳ
j

i , β
y

j−1

i

R .β
ȳ

j

i

R .γ−s
j−1

i .γ−s̄
j

i )}
↓

{(α(xj−1

i
+x̄

j

i
), β

(xj−1

i
+ x̄

j

i
)

R .γ−(sj−1

i
+s̄

j

i
)), (α(yj−1

i
+ȳ

j

i
), β

(yj−1

i
+ ȳ

j

i
)

R .γ−(sj−1

i
+s̄

j

i
))}

↓
{(αx

j

i , β
x

j

i

R .γ−s
j

i ), (αy
j

i , β
y

j

i

T .γ−s
j

i )}

where

x
j
i = x

j−1
i + x̄

j
i

y
j
i = y

j−1
i + ȳ

j
i

s
j
i = s

j−1
i + s̄

j
i

The x̄, ȳ denote fresh random values drawn from from Z∗

p generated by the
Clerk during the mix. Similarly the s̄ values are freshly created random values
except that these are again chosen randomly and independently with a binomial
distribution mean 0 and standard deviation σ. Having transformed each onion
pair in this way, the Clerk Cj then performs a secret shuffle on the batch and
outputs the result to the next Clerk, Cj+1.
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Thus, each Clerk performs a re-encryption mix along with the injection of
further entropy into the seed values s̄.

So the final output after l− 1 mixes is a batch of pairs of onions of the form:
{{(αxi , βxi

R .γ−si), (αyi , β
yi

T .γ−si)} where:

xi = xl
i , yi = yl

i , si = sl
i

thus:

xi = Σl
i=1x̄

i

etc.

The final si values will have binomial distribution mean 0 and standard
deviation σ

√
(l).

We will refer to the first onion as the “Registrar onion” or “booth onion”
and the second onion as the “Teller onion”.

For each pair, assuming correct behaviour of the clerks, the s values in the two
onions should match. We’ll discuss mechanisms to detect corruption of the forms
later. As the seed values, and hence the candidate orders, remain encrypted,
none of clerks knows the seed values and only if they all acted in collusion could
they determine the seed values. These “proto-ballot form” can now be stored
and distributed in encrypted form, thus avoiding the chain of custody problems
mentioned above. The seed values can now be revealed on demand by a threshold
set of the Registrars.

5 On-demand creation of ballot forms

The above construction of the proto-ballot forms means that the ballot form
material can be stored and distributed in encrypted form. Once registered at
the polling station, voters are assigned at random one of these forms:

onionL onionR

The voter proceeds to the booth in which they find a device that reads the
left-hand onion. In the simplest case, the secret key to decrypt the left-hand
onions could be held in the devices in the booths. Thus, the left hand onion
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could be decrypted in the booth, the seed value s revealed and the candidate
order π derived as some agreed function of s. If lodging the keys in a single
device is considered rather fragile, the left-hand onion could be encrypted under
a threshold key held by a number of registrars. The onions could be transmitted
to these registrars and a threshold set of these would then decrypt the onions
and return the seed to the booth device.

The candidate list can now be printed by the device in the booth to give a
standard Prêt à Voter ballot form:

Obelix
Asterix
Panoramix
Idefix
onionL onionR

As an additional precaution, the left-hand onion might be separately de-
stroyed.

The point of the paired onions is now clear: we arrange for the booth device
to see only the left hand onion and so it will not know the association of the
candidate list with the right hand, teller onion that will appear on the receipt.
Various mechanisms are possible to ensure that the booth device does not see
the right-hand onion. The scratch strip mechanism could be invoked here again
for example: the right-hand onion would be covered by a scratch strip that would
only be removed at the time of casting, or even at some time after casting. The
voter only really needs to reveal the teller onion when they come to check their
receipt on the WBB.

Strictly speaking, the lth clerk in collusion with the booth device could form
the candidate list/onion association. Elaborations of the scheme to counter the
threat of such collusion attacks are the subject of ongoing research.

6 Supervised casting of a ballot

The voter in the booth now has a “conventional” Prêt à Voter style ballot form
with the candidate list and the associated right hand (teller) onion. His vote
can now be cast in the usual way by marking an X against the candidate of
their choice. The left hand strip is detached and discarded and the voter leaves
the booth and casts their vote in the presence of an official exactly as described
previously. Their receipt is recorded digitally as (r, onion), where r is the index
value indicating the position of the X .

The receipt can be digitally signed and franked at this point to counter any
receipt faking attacks.
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Once the election has closed, copies of the digitised receipts will be posted to
the WBB exactly as before and the voters can visit this and assure themselves
that their receipt has been correctly registered. In addition to this, a Verified En-
crypted Paper Audit Trail mechanism could be deployed: at the time of casting,
an extra paper copy of the receipt is made and retained in a sealed audit box.
This can be used to independently check the correspondence with the receipts
posted to the WBB.

7 Re-encryption/tabulation mixes

Our construction leads to ElGamal onions which appear to be well suited to
being put through re-encryption mixes. However, the form of the ballot receipts
means that this is not quite straightforward: in addition to the onion term we
have the index value, in the clear as it were. An obvious approach would be to
send the receipt terms through the mix re-encrypting the onions whilst leaving
the index values unchanged. The problem with this is that an adversary is able
to partition the mix according to the index values. There may be situations
in which this is acceptable, for example large elections in which the number of
voters vastly exceeds the number of voting options. In general it seems rather
unsatisfactory.

A more satisfactory solution, at least for the case of a simple selection of
one candidate from the list, is described in this section. We will discuss how to
achieve full mixing in the more general case in section 10.

In this case we restrict ourselves to just cyclic shifts from the base ordering
of the candidate list from a base ordering. For single candidate choice elections,
this is sufficient to ensure that the receipts do not reveal the voter’s selection.
For more general styles of election, in which for example voters are required to
indicate a ranking of the candidates, we of course need to allow full permutations
of the candidate list. Indeed, even in the case of single selection elections, it is
preferable to allow full permutations in order to eliminate any possibility of
a systematic corruption of votes. For this moment we discuss the approach of
simple cyclic shifts.

Let si be the shift of the candidate list for the ith ballot form. We can absorb
the index value r into the onion:

(αy, β
y
T .γr−si)

This gives a pure ElGamal term and the value r−si taken modulo n indicates
the voter’s the original candidate choice in the base ordering. These ElGamal
terms can now be sent through a conventional re-encryption mix by a set of
mix tellers, see for example [JJR02]. These mix tellers do not hold any secret
keys but read in a batch of ElGamal terms from the WBB, re-encrypt each of
them and then post the resulting terms in random order to the WBB. After an
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appropriate number of such anonymising re-encryption mixes, (a threshold set
of) the decryption tellers take over to extract the plaintext values.

Thus, in contrast to the decryption mixes uses previously, the anonymising
and decrypting phases are separated out in re-encryption mixes.

This will yield decrypted terms of the form:

γr−si (mod p).

Now we have to extract the values r − si (mod n) to recover the original
votes. The difficulty is that r− si is the discrete log of γr−si in Z∗

p so in general,
if the seed values had been drawn randomly from Z∗

p , computing this would be
intractable. However, we have set things up so that the s values are drawn from
a binomial distribution so we can search the space very efficiently. We could, for
example, generate a look-up table for the logs out to some multiple of σ

√
(l).

Occasionally we will have an outlier that will require some search beyond the
range of the look-up table.

7.1 Coercion resistance and plausible deniability

The point of using a binomial distribution for the seed value is to ensure plausible
deniability or coercion resistance whilst at the same time avoiding the discrete
log problem. An alternative approach would be to bound the possible seed values
generated by the clerks to lie in some fixed range, between −M and +M say.
This would have the problem that occasionally we would hit situations in which
final decrypted r − s values would take on extreme values, e.g., r − s = −M .
In this case, an adversary could deduce that r must have equalled 0 and so be
able to link this vote value back to a subset of the receipts, i.e., receipts with
the index value 0.

Using a distribution avoids such “edge effects” whilst avoiding our having to
compute arbitrary discrete logs in Z∗

p . Arguably, the adversary would be able to
assign a non-flat probability distribution to the possible r values, but as long as
no values of r can ever be eliminated, plausible deniability will be maintained.

We should also observe that even if it were possible to link a vote back to a
particular index value, this would not typically violate ballot secrecy unless this
it so happened that this identified a unique receipt, i.e., there happened to be
only one receipt with this r value.

8 Auditing the Ballot Forms

The mechanisms described above allow for the distributed generation of ballot
forms and just-in-time decryption of the candidate list and printing of the ballot
forms. This has clear advantages in terms of removing the need to trust a single
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entity to keep the ballot form information secret and avoiding chain of custody
issues. On the other hand, it means that we can no longer use the random
pre-auditing of pre-printed ballot forms as suggested in [CRS05]. Consequently,
we must introduce alternative techniques to detect and deter any corruption or
malfunction in the creation of the ballot forms.

A possible approach, in the supervised context at least, is to incorporate
the two sided ballot form mechanism suggested in [Rya06] and re-introduce a
cut-and-choose mechanism into the voter protocol. Here, a ballot form would be
assigned two independent, entangled pairs of onions. One printed on one side of
the form, the other on the flip side. In the booth, on each side, the left hand
onion would be decrypted and the corresponding candidate list printed in the
left hand column. The result is two independent ballot forms, one printed on
each side, as illustrated in Figure 3.

Obelix —————-

Asterix —————-

Panoramix —————-

Idefix —————-

7rJ94K —————-

Side 1

Panoramix —————-

Idefix —————-

Obelix —————-

Asterix —————-

Y u78gf —————-

Side 2

Fig. 3. Prêt à Voter ballot form

Figure 3 shows the two sides of such a dual ballot form. These two sides
should be thought of as rotated around a vertical axis. Note that each side has an
independent randomization of the candidate order along with the corresponding
cryptographic values. Thus each side carries an independent Prêt à Voter ballot
form.

The voter uses only one side to encode their vote and makes an arbitrary
choice between the sides. Suppose that the voter in this case chooses what we
are referring to as side 2 and wants to cast a vote for Idefix. They place an
X against Idefix on side 2 and then destroy the left hand strip that shows the
candidate order for side 2. This results in a ballot receipt of the form shown in
Figure 4.

These two sides should be thought of as being rotated around a vertical axis
with respect to each other. Thus the shaded, third column of side 1 would oppose
the candidate list of side 2.

The voter makes a random choice of which side to use to cast their vote and
made their mark on the middle column against their candidate of choice and
leave the flip, unselected side blank. The left hand column of the selected side is
destroyed, and so the blank column of the flip side is destroyed. This results in a
receipt on which the candidate list for the chosen side has been destroyed, whilst
the ballot form on the slip, unselected side is intact, i.e., still has the onion value
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Obelix

Asterix

Panoramix

Idefix

7rJ94K

auditable side

(remaining part of Side 1)

—————-

X —————-

—————-

—————-

Y u78gf —————-

vote encoding side

(remaining part of Side 2)

Fig. 4. Both sides of a Prêt à Voter ballot receipt

and candidate list. The information on both sides would now be recorded when
the ballot is cast and posted to the WBB.

This flip side can now be audited and checked to ensure that the candidate
list printed by the booth correctly corresponds to the onion value. Such checks
could be performed immediately at the time of casting to detect any problems as
soon as possible. Additionally, checks could be performed on the posted values.

In addition to such post-auditing of the dual ballot forms, we can do some
pre-auditing of the committed onions pairs. This would help pick up any mal-
functions or corruption in the preparation of the proto-forms at an early stage.

9 Auditing the anonymising mixes

In order to detect any malfunction or corruption by the mix tellers, we can
again use the Partial Random Checking approach of [JJR02]. Here the checks on
audited links will be slightly different: rather than revealing the seed information
for the layer in question, the teller is required to reveal the re-randomisation
value used to e-encrypt the select link. Auditing of the decryption tellers is
quite straightforward as we don’t need any further mixing at this stage (the
anonymising mixes will be enough to ensure ballot secrecy). The correctness
of the decryptions can thus be directly checked by simply encrypting the final
values with the public keys and checking that these agree with the initial terms.

10 Handling full permutations and STV style elections

In order to deal with full permutations of the candidate list it is not immediately
clear how to generalise the approach of section 7. As mentioned, one possibility is
to leave the index values unchanged through the mixes. This might be acceptable
in some situations but is clearly not satisfactory in general.

One solution is simply to have one onion for each candidate position. For a
single candidate selection the ballot receipt would in effect simply be the onion
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value against the chosen candidate. This feels rather inelegant and inefficient in
terms of multiplying up the number of onions required.

For a ranked voting method, in which the voters are required to place a rank
against each candidate, a ballot receipt would now comprise n pairs of rank value
and onion. Each of these pairs could be put through the mix separately with the
rank value unchanged (allowing the adversary to partition the mix according
to the rank values seems not to matter). This approach works fine as long as
the voting method does not require a voters rankings to be kept grouped for
tabulation, as with STV for example.

11 Remote voting with Prêt à Voter

The encrypted ballot forms proposed here would appear to be adaptable to
remote voting. We could for example, use a protocol like that described in
[ZMSR04], to transform left-hand onions encrypted under the registrars’ public
key to terms encrypted under an individual voter’s public key. The protocol of
[ZMSR04] achieves this without having to reveal the underlying plaintext (seed)
in the process. A pair of such ballot forms could be supplied to each voter in
order to mimic the cut-and-choose mechanism described above. Details of such
protocols are the subject of ongoing research.

Any remote voting scheme must face problems of coercion. A possible ap-
proach to counter such threats is the use capabilities as proposed in [JCJ02].
The possibility of using such a mechanism in conjunction with Prêt à Voter
2005 was explored in [CM05]. Voters are supplied with capabilities that are es-
sentially encryptions of a nonce and a valid string. Votes are cast along with a
capability and these go through the mix alongside the ballot terms. They emerge
from the mix decrypted. A valid capability will decrypt to a valid plaintext. The
validity or otherwise of the capability is not apparent until it is decrypted. As
a consequence, a voter who is being observed whilst casting their vote has the
possibility of deliberately and surreptitiously corrupting their capability. As long
as the voter has some window of unobserved access to system he can cast his
vote with his valid capability.

12 Conclusions

We have proposed some extensions to Prêt à Voter 2005 to counter vulnerabilities
identified previously:

– Authority knowledge of ballot form crypto variables.
– Chain of custody threats.
– Chain voting attacks.
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– Kleptographic channels.

The new version of the scheme counters these threats by enabling the dis-
tributed construction of encrypted ballot forms by a set of clerks. As a result,
only a collusion of all the clerks could determine the cryptographic seed values.
This eliminates the need to trust a single entity to keep this material secret and
prevents Kleptographic attacks.

Our construction results in ballot forms in which the cryptographic seed
values remain encrypted and can be decrypted on demand. Thus, the ballot
forms with the candidate ordering can be created and printed in the booth, so
eliminating chain of custody and chain voting threats.

The new construction uses ElGamal encryption and so is better suited to
using re-encryption mixes for the anonymising/tabulation phase. Earlier work
on robust ElGamal mixes may be found in [JJ01,Nef01,GJJS04]. The rather
special representation of the ballot receipt in Prêt à Voter, index value plus
cryptographic onion, means that it is not entirely straightforward to send such
terms through a re-encryption mix. We have shown how, for single candidate
selection and cyclic shifts of the candidate list at least, the ballot receipts can
be transformed into pure ElGamal terms and so are adapted to re-encryption
mixes. We have indicated how the approach may be generalised to deal with
alternative electoral methods.

This version of the scheme is, we believe, technically superior to the 2005
version in that it requires less trust assumptions and is more robust against a
number of threats. On the other hand, from a socio-technical point of view, it
may have certain disadvantages. The voter experience is a little more complex,
in particular the need for the cut-and-choose element on the voter protocol,
which could have usability implications as well as opening up possibilities of
“social engineering” style attacks, [KSW05]. Thus, it is possible that, for some
situations like general elections perhaps, in evaluating the trade-off between the
trust assumptions of Prêt à Voter 2005 and the usability issues of this scheme,
the former might be deemed more acceptable.
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Abstract 

In this paper we summarise the results of an interdisciplinary study of computer-aided decision making 
in cancer detection. Our study included probabilistic modeling, refined statistical analyses of evaluation 
data from an independent controlled study and an empirical study of the effects of incorrect computer 
output on the decisions of expert clinicians. Our results strongly suggest that, at least for some categories 
of cases, incorrect computer output had a significant detrimental effect on human decisions. We discuss 
these results in the context of the human factors literature on “automation bias” (roughly, negative 
effects of over-reliance on automation), which we review extensively in this paper. Automation bias 
effects have not been previously reported for this application with expert clinicians, and are not 
generally considered in the medical/radiological literature. One lesson from our study was that these 
potentially important effects will easily go unnoticed with common assessment methods. Implications 
for designers of computer aided decision making include that: a) it may be necessary to calibrate tool 
design for a range of different levels of user skills; b) an "expert modeling" approach to computerised 
aid design – building a "better replica" of a human expert – may be counterproductive by making the aid 
weak in those very areas where humans need help; c) HCI design risks focusing on usability of the 
physical human-computer interface, but the critical issues in design concern the cognitive effects (e.g. 
changes of decision thresholds) a computer tool may have on users; d) users’ subjective assessments of a 
computer aid may be misleading: people may judge a tool helpful when their decision-making 
performance is actually being hampered. 

1 Introduction 

This paper deals with computer-aided decision making, where automated aids support human decisions 
with advice, filtered or enhanced information, alerts and prompts. From the viewpoint of design for 
dependability, computer aided decision making offers diverse redundancy (Littlewood, Popov et al. 
2002; Strigini 2005), with diverse components (people and machines) expected to detect and support the 
correction of errors of other components.  

Designing such human-computer systems involves attending to a number of different aspects of the 
system’s components. Their dependability is affected by the design of the decision support tools, the 
procedures for their deployment and use and the training of operators and the definition of their roles. 

The intended role of automation is often purely auxiliary: to reduce the risk of humans missing some 
information (e.g. when fatigued or overloaded), or to make the process of human apprehension of all 
important information more efficient. The human user retains the authority and responsibility for 
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decisions. The design intention is thus to exploit protective redundancy with diversity: the machine 
protects against some human errors, and vice versa.  

We summarise here analyses and empirical work we conducted of a particular application of computer 
aided decision making: Computer Aided Detection (CAD) in mammography, i.e., clinicians using 
computer support in reading X-ray images for breast cancer screening.  

The study, within the context of DIRC (the Interdisciplinary Research Collaboration on the 
Dependability of computer-based systems) used an interdisciplinary approach, combining insights and 
methods from reliability engineering, psychology, human factors and ethnography (Alberdi, Povyakalo 
et al. 2005). It was a follow-up to a previous controlled study of CAD conducted by other researchers for 
the UK Health and Technology Assessment (HTA) programme, on a specific CAD tool ("Study 1" in 
(Taylor, Champness et al. 2005), hereon "the HTA study"). 

Our probabilistic modelling (Strigini, Povyakalo et al. 2003), inspired by previous experience on 
software systems with diverse redundancy (Littlewood, Popov et al. 2002), highlighted how variation 
and co-variation in the "difficulty" of input cases for the machine and human components of the system 
substantially affect the dependability of the overall system: focusing on the average probabilities of the 
failures of the components, or assuming statistical independence among their failures, can be misleading. 
We were granted access to raw data from the HTA study, on which we conducted various exploratory 
statistical analyses, focusing on the interactions between correctness of computer output, difficulty of 
individual decision problems and human skills. Additional empirical work by us and our DIRC 
colleagues included follow-up experiments (focusing on the effects of incorrect computer output on 
decisions) and ethnographic observation, both of which helped to elucidate aspects of the users' 
behaviour. 

Our statistical results (Alberdi, Povyakalo et al. 2004; Povyakalo, Alberdi et al. 2004), which we 
summarise here, suggested that the effects of computer assistance varied markedly across users and over 
the set of cases examined. In particular, the effects were shown to be potentially detrimental for some 
clinicians when dealing with some categories of cases. This finding was striking in this application 
context because it refuted an assumption often found (implicitly or explicitly) in discussions of the 
efficacy of CAD, i.e., that the computer aid can do no harm (cannot cause bad decisions); moreover, this 
assumption has implications for the methods to be used in estimating the tool's efficacy. However, the 
observation of varying effects of computer aids on human decisions is more generally important as a 
basis for conjecturing how these effects are generated, and thus informing better design of decision 
systems. We discuss here possible explanations for the observed detrimental effects. It is tempting to 
categorise them all as effects of “complacency”: human operators becoming less attentive or less wary of 
error since they can fall-back on the computer for decisions. But this would be simplistic and unfair. 
When experts, giving every indication of being attentive and thorough, appear to be led into error, it is 
prudent to contemplate other possible causes of error besides complacency, and to examine their 
implications for design and assessment practices in all applications of computer-aided decision-making. 

Our aim is to discuss these general implications, not the effectiveness of CAD in general or of the 
specific tool in particular: both issues are widely debated in the medical literature and CAD tools evolve 
rapidly so that data obtained about one version may rapidly become obsolete (BJR 2005).  

In the rest of this paper, we review some pertinent literature (Section 2), and introduce the application 
domain of our study (Section 3). Section 4 describes our exploratory statistical analyses of the raw data 
from the HTA study. In Section 5, we outline the results of our follow up empirical studies, as well as 
evidence from questionnaires and ethnographic observations. Next we discuss potential explanations of 
the behavioural patterns observed (Section 6) and their implications for the design of decision systems 
(Section 7). Section 8 contains our conclusions.  

2 Automation bias literature 

“Automation bias” refers to those situations where a human operator makes more errors when being 
assisted by a computerised devise than when performing the same task without computer assistance 
(Mosier, Skitka et al. 1998; Skitka, Mosier et al. 1999). Similar or related concepts are automation-
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induced “complacency” (Azar 1998; Singh, Molloy et al. 1993; Wiener 1981), and “overreliance” on 
automation (Parasuraman and Riley 1997). 

This review focuses on computer assisted monitoring or decision making, where an automated aid 
supports the human decisions with advice, filtered or enhanced information, alerts and prompts (as is the 
case with CAD for mammography, see Section 3). These human-machine decision systems correspond 
mostly to what Parasuraman et al. (Parasuraman, Sheridan et al. 2000) classify as Stage 1 and Stage 2 
automation: Stage 1 automation refers to automated tools that support the human by filtering or focusing 
attention on information deemed of interest and Stage 2 automation refers to tools that support the 
human by forming inferences of the state of the world or by integrating information. In these types of 
human-computer systems, the final decision and action are the responsibility of the human operator. 
Examples of computer tools in these categories are: warning devices, medical diagnostic or detection 
tools, intelligent target aiding, collision alerts and statistical tests. 

(Stage 3 and Stage 4 in Parasuraman et al.’s (Parasuraman, Sheridan et al. 2000)  classification 
correspond to higher levels of automation where the computer tool either recommends/selects a course 
of action or implements the action).   

Although many studies support the view that the collaboration between automation and a human 
decision maker can be beneficial and effective (Corcoran, Dennett et al. 1972; Dalal and Kasper 1994; 
Parasuraman 1987; Thackray and Touchstone 1989), it has long been recognised that human-computer 
“decision systems” do not always function ideally (Bainbridge 1983; Sorkin and Woods 1985). For 
example, Sorkin & Woods (1985), using signal detection analysis, concluded that optimising an 
automated aid’s performance would not always optimise the performance of a human-computer team in 
a monitoring task. The implication is that human-machine system can only be optimised or improved as 
a whole: improving the automation alone or human training alone may be ineffective or wasteful.  

The view that automation simply replaces or supports the human operator is too simplistic and 
sometimes incorrect as automation fundamentally changes the nature of the cognitive task that the 
human operator does, often in ways that were not intended or anticipated by the developers of automated 
tools (Parasuraman and Riley 1997). 

2.1 Basic concepts and terminology 

Parasuraman and Riley (Parasuraman and Riley 1997) discussed ways in which human-computer 
interaction can go wrong, presenting anecdotal evidence and results from various empirical studies. They 
talked about three aspects of ineffective human use of automation: 

− disuse, i.e., underutilization of automation, where humans ignore automated warning signals; 

− misuse, i.e., overreliance on automation, where humans are more likely to rely on computer advice 
(even if wrong) than on their own judgement; 

− abuse, when technology is developed without due regard for human needs or the consequences for 
human (and hence system) performance and the operator’s authority in the system. 

 Skitka, Mosier and Burdick (Skitka, Mosier et al. 1999) focused on the misuse of automation, in 
particular on the “automation bias” effects occurring when people used wrong computer advice for 
monitoring tasks in aviation. They distinguished two types of error: 

− errors of commission: decision-makers follow automated advice even in the face of more valid or 
reliable indicators suggesting that the automated aid is wrong; 

− errors of omission: decision makers do not take appropriate action, despite non-automated 
indications of problems, because the automated tool did not prompt them. 

Focusing on  warnings generated by automated tools, Meyer (Meyer 2004), distinguishes between two 
alternative ways in which humans can “follow the advice” from a warning system : compliance and 
reliance:  
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− compliance indicates that the operator acts according to a warning signal and takes an action.  

− reliance is used to describe those situations where the warning system indicates that “things are OK” 
and the operator accordingly takes no action.  

As a result, in Meyer's terms, undue compliance (complying with an incorrect automated warning) 
would lead to errors of commission and undue reliance (failing to take action when no automated 
warning is issued) would lead to errors of omission. 

2.2 Studies of automation bias  

The phrase “automation bias” was introduced by Mosier et al. (Mosier, Skitka et al. 1998) when 
studying the behaviour of pilots in a simulated flight. In this study, they encountered the errors of 
omission and commission described above. These findings were subsequently replicated in studies using 
non-pilot samples (student participants) in laboratory settings simulating aviation monitoring tasks 
(Skitka, Mosier et al. 1999). Essentially they found that, when the automated tool was reliable, the 
participants in the automated condition made more correct responses. However, with automation that 
was imperfect (i.e. unreliable for some of the tasks), people in the study were more likely to make errors 
than those who performed the same tasks without automated advice. For the monitoring tasks that Skitka 
and colleagues used in their studies, the decision-makers had access to other (non automated) sources of 
information. In the automated condition they were informed that the automated tool was not completely 
reliable but all other instruments were 100% reliable. Still, many chose to follow the advice of the 
automated tool even when it was wrong and was contradicted by the other sources of information. The 
authors concluded that these participants had been biased by automation and interpreted their errors 
(especially their errors of omission) as a result of complacency or reduction in vigilance. 

As indicated above, people’s ineffective use of computerised tools is often described in terms of 
“complacency”, resulting from overreliance on automation (Azar 1998; Singh, Molloy et al. 1993; 
Wiener 1981).  Singh et al. (Singh, Molloy et al. 1997) quote the ASRS Coding Manual’s definition of 
“complacency” as “self-satisfaction which may result in non-vigilance based on an unjustified 
assumption of satisfactory system state” (Billings, Lauber et al. 1976). 

Similarly, in a review of studies of pilot use of aviation-related decision support systems, Cummings 
(Cummings 2004) proposes that some automation bias effects can be explained in terms of 
“confirmation bias”, that is, people’s tendency to disregard or not search for information that contradicts 
a belief they already formed or solution they chose, in this case the belief or solution generated by a 
computer. This tendency can be exacerbated for time critical tasks.  

A problem with the term “complacency” (and similar accounts of automation bias) is that they suggest 
value judgments on the human experts. As Moray (Moray 2003) has recently pointed out, the claim that 
automation fosters complacency implies that operators are at fault, when the problem often lies in the 
characteristics of the automated tools, not in the human operators’ performance; hence he advocates for 
a radical re-design of monitoring tools. 

Similarly, in a recent review of human use of diagnostic automation, Wickens and Dixon (Wickens and 
Dixon 2005) question the notions of complacency or reduced vigilance as explanations of automation 
bias phenomena. Instead, they argue that operators, whilst being aware of the unreliability of the 
diagnostic tools, choose to depend on the imperfect computer output to preserve available processing 
resources for other tasks, particularly in situations with high workload. The authors conjecture that, even 
in “non-high workload” situations, the human operator may have an inherent need to protect some 
reserve capacity for unexpected tasks that may arise. 

Individual differences seem to play an important role in human reactions to automation (Skitka, Mosier 
et al. 1999; Skitka, Mosier et al. 2000; Dzindolet, Peterson et al. 2003). One would expect that more 
experienced people would tend to be less susceptible to bias from automation when performing tasks in 
their area of expertise. However, as highlighted above, automation bias effects have been reported for 
both laymen (e.g. student participants) and experts (e.g. air pilots and clinicians). In fact, Galletta et al. 
(Galletta, Durcikova et al. 2005) have shown (in a verbal skills domain using spelling and grammar 
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checking software) that more skilled and experienced individuals were more likely to be damaged by 
certain types of computer errors (e.g. false negatives) than were the less skilled individuals.  

Factors that have been proposed as possible influences in people’s vulnerability to automation bias 
include:  

− people’s accountability for their own decisions (Skitka, Mosier et al. 2000); 

− the levels of automation at which the computer support is provided (Meyer, Feinshreiber et al. 2003; 
Cummings 2004); 

− the location of computer advice/warnings with respect to raw data or other non-automated sources of 
information (Meyer 2001); (Singh, Molloy et al. 1997). 

2.3 Trust in automation 

Some researchers have discussed human reliance on automation in terms of trust (Bisantz and Seong 
2001); (Dassonville, Jolly et al. 1996; Dzindolet, Peterson et al. 2003; Lee and Moray 1994; Lee and See 
2003; Muir 1987; Muir 1994; Muir and Moray 1996; Parasuraman and Riley 1997; Singh, Molloy et al. 
1993; Tan and Lewandowsky 1996).  The idea is that human operators are the more likely to rely on an 
automated aid the more they trust the aid. If a human trusts an aid that is adequately reliable or fails to 
trust an aid that is indeed too unreliable, appropriate use of automation should occur as a result. However 
if a human trusts (and therefore relies on) an unreliable tool, then automation bias may occur (or misuse 
of automation as defined above). Similarly if a person does not trust a highly reliable tool, the person 
may end up disusing (as defined above) or under-using the tool, hence the full potential benefits of 
automation will not be fulfilled. 

Indeed, subjective measures of the trust of human operators in a computer tool have been found to be 
highly predictive of people’s frequency of use of the tool (de Vries, Midden et al. 2003; Dzindolet, 
Peterson et al. 2003). Use of automation (or reliance in automation in its generic sense) is usually 
assessed with observations of the proportion of times during which a device is used or by assessing the 
probability of detecting automation failures (Meyer 2001). 

A concept related to “trust” in automation is that of the “credibility” or “believability” of automation 
(Tseng and Fogg 1999). There are indications that (some) people tend to perceive computers as 
infallible, and may put excessive trust in them (Fogg and Hsiang 1999; Martin 1993). Indeed, 
(Dzindolet, Peterson et al. 2003) have shown empirically that people have an inclination to trust and rely 
on an automated aid regardless of its reliability. However, there is also evidence that as soon as humans 
become aware of the errors made by a computer tool, their trust in the tool, and their subsequent reliance 
on it, decrease sharply (de Vries, Midden et al. 2003; Dzindolet, Peterson et al. 2003; Dzindolet, Pierce 
et al. 2002). This reduction in trust, in turn, can be attenuated by increasing people’s understanding of 
the computer errors. Dzindolet et al. (Dzindolet, Peterson et al. 2003) found that people who were told 
the reasons for the aid’s errors were more likely to trust it and follow its advice than those who were not 
aware of these reasons.  

In addition to people’s perception of the reliability of an automated tool, other factors will influence trust 
in automation. For example, (Parasuraman and Miller 2004) define an automated tool as having good 
“etiquette” if it is not invasive or is not perceived as “interrupting” the user or as being “impatient”. 
They found that automated tools with "good etiquette" (in this sense) were more likely to be trusted by 
human operators and led to better human performance even in high-criticality automation. Similar 
results have been found in studies of the invasiveness of collision alarms in automobiles (Bliss and 
Acton 2003). 

3 Domain: CAD for mammography 

In screening for breast cancer, expert clinicians ("readers") examine mammograms (sets of X-ray images 
of a woman's breasts), and decide whether the patient should be "recalled" for further tests because they 
suspect cancer. 
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Figure 1. The decision system formed by a human "reader" with the Computer Aided Detection tool. 

A CAD tool is designed to assist the interpretation of mammograms. It aims to recognise and mark 
(“prompt”) regions of interest (ROI) on a digitized mammogram to prevent clinicians from overlooking 
them. CAD is not meant to be a diagnostic tool, in the sense that it only marks ROIs, which should be 
subsequently classified by the reader to reach the "recall/no recall" decision.  

The CAD tool in our study was the R2 Imagechecker M1000 (FDA 1998). The prescribed procedure for 
using it is: the reader looks at a mammogram and interprets it as usual, then activates the tool and looks 
at a digitised image of the mammogram with the tool's prompts for ROIs, checks whether he/she has 
overlooked any features with diagnostic value and then revises his/her original assessment, if 
appropriate. Fig. 1 schematically shows the resulting "decision system". 

The manufacturers claim that when this tool is used as recommended the potential for missing lesions is 
not increased over routine screening (FDA 1998). 

This decision system may produce two kinds of errors: false negative (FN: the reader issues a "no recall" 
decision on a cancer) or false positive (FP: recalling a non-cancer – a normal – case). In turn, we define 
a FN error by the CAD tool as failing to prompt areas of the mammogram where cancer is located, even 
when the tool places prompts on other areas (we also call a FN error "incorrect prompting" of a cancer), 
and a FP error as placing any prompt on the mammogram of a normal case.  

4 Interactions between correctness of computer output, difficulty of cases and human 
skills 

In the HTA study (Taylor, Champness et al. 2005), 50 readers looked at mammograms for which the 
correct diagnosis was known (60 cancer and 120 normal cases) in two conditions: with and without 
computer support. Each reader examined every case, once in a session with computer aid and once in a 
session without it (in independent randomised orders) producing a "recall/no recall" decision. This study 
found no statistically significant effect of CAD prompts on the performance of these readers in detecting 
cancers.  

We re-analysed the raw data from this study looking especially for effects that may not be visible in the 
average results. These supplementary analyses (Alberdi, Povyakalo et al. 2005) indicated that: 

1. correct computer prompting was likely to help readers in reaching a correct decision while incorrect 
prompting hindered them; 

2. even without computer support, incorrect decisions were more likely for cases that the CAD tool 
also processed incorrectly: reader and computer errors are strongly correlated. Consequently, for 
those cases that are more difficult for humans to interpret, the computer is less likely to give useful 
output. 
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Figure 2. Effect of correctness of CAD prompting on case difficulty (i.e., rate of FN errors): dp: difficulty of a 
case with computer aid; d: difficulty without computer aid; w: cancer incorrectly prompted by CAD; c: cancer 
correctly prompted by CAD; dashed curve: logistic regression curve for wrongly processed cancers; dashed-
dotted curve: logistic regression curve for correctly processed cancers; solid curve: logistic regression curve for 
all cancers (Povyakalo, Alberdi et al. 2004).

We define the difficulty of a case as the fraction of readers who produced an incorrect decision about that 
case. We call the difficulty of a case read with computer aid (prompting) dp and the difficulty without 
computer aid d. Statistical analyses indicated that the value: d – dp was significantly different between 
correctly and incorrectly prompted cases (both for cancers and normal cases).  

We also used logistic regression (a form of interpolation on the raw data) to look for possible general 
patterns in the effect of CAD (Povyakalo, Alberdi et al. 2004). This showed that CAD tended to make 
cancers that were relatively easy (i.e. with d<0.6) less difficult (i.e., dp<d), and cases which were 
relatively difficult (i.e. with d>0.6) even more difficult (i.e., dp>d).  

Fig. 2 illustrates this effect. The regression analysis covered "non-obvious" cancer cases, that is, cancers 
missed by at least one reader in either condition. The horizontal axis represents their difficulty d without 
computer aid; the vertical axis shows the differences (dp – d). So, a point below 0 on the y-axis indicates 
a cancer for which CAD appears to reduce the rate of FN errors. Points marked ‘w’ and ‘c’ indicate the 
observed values of d and (dp – d) for non-obvious cancers, divided into those with correct CAD output 
(‘c’ symbols) and with wrong CAD output (‘w’ symbols). The curves show the regression estimates for 
the mean value of (dp – d) as a function of the difficulty d of cases. The dashed curve is obtained from 
the data for the incorrectly prompted cancers, the dotted-dashed curve to the correctly prompted cancers 
and the solid curve to all cancers together.  

Analyses of all readers' decisions without computer aid, suggest that the more sensitive readers (those 
more likely to decide correctly on cancers) recognised more of the difficult cancers than other readers. 
Fig. 2 shows that, for difficult cases, incorrect decisions were more common with computer aid than 
without. Since less sensitive readers were very unlikely to recognise difficult cancers anyway, this 
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increase in FN errors for difficult cases must be due to an adverse effect of the computer aid on the 
decisions of the more sensitive readers, plausibly caused by incorrect computer prompts (cf Fig 2, 
again). Similarly, for the "easy" cases, without computer aid the less sensitive readers made a larger 
number of incorrect decisions: they were thus more likely to benefit from the correct computer prompts 
on "easy" cases than on "difficult" ones, and on easy cases they were more likely to benefit than the 
more sensitive readers. 

Thus, the use of computer support is likely to be more beneficial for less sensitive readers (i.e., it may 
improve their sensitivity) and more questionable for the more sensitive ones (as it can decrease their 
sensitivity for some cases). This conjecture is supported by additional statistical analyses of these data 
(Povyakalo, Alberdi et al. 2005). 

Apart from evaluating the probable effect of CAD in future use (Strigini, Povyakalo et al. 2003; Alberdi, 
Povyakalo et al. 2005), these statistical patterns (and observed exceptions to them) can help identify 
possible mechanisms causing improved or worse decisions. Examples of exceptions can be seen in 
Figure 2: despite being prompted correctly (points highlighted as 'c'), there were a few "easy" cancer 
cases (with d≤ 0.1) missed by more readers with computer support than without it. For instance, one 
cancer case was missed by 2 of 50 readers without computer aid (d = 0.04) and by 6 of 50 readers with 
computer aid (dp = 0.12). Such changes in decisions might be due simply to natural "noise" – random 
variation – in human decision making. But if the marked change observed here were a confirmed 
pattern, we would need to explore possible causes. For this particular cancer case, without CAD, 13 of 
50 readers (26%) decided that this case required discussion before the final decision. This suggests that 
there was a relatively high level of uncertainty associated with this case, although the low number of FN 
errors in deciding about it define it as comparatively "easy". As we report below, evidence from 
ethnographic work and from our follow-up studies supports the conjecture that when dealing with 
uncertain ("indeterminate") cases, readers' CAD prompts can have unanticipated (and potentially 
detrimental) effects on readers' decisions. 

5 Follow-up empirical studies: effects of incorrect computer output 

We conducted two follow up studies, investigating in more detail the effects of incorrect computer 
output on human decision making (Alberdi, Povyakalo et al. 2004). These were complemented by the 
collection of subjective data via questionnaires.  

5.1 Follow-up studies 

In our follow-up Study 1 we used a test set containing a large proportion of cancers that CAD had 
missed. We kept all other characteristics of the test set as similar as possible to the sets used in the HTA 
study as we wanted the readers to perceive this study as a natural extension of the HTA study (all 20 
readers in Study 1 had also participated in the HTA study) and to behave in a comparable way. We used 
essentially the same procedures used in the HTA study, except that the readers in Study 1 saw all the 
cases only once: always with the benefit of CAD. 

At that stage, we were not interested in comparing readers’ performance with and without CAD; our 
goal was to estimate the probability of reader error when the CAD tool's output was incorrect. However, 
we obtained intriguing, unexpected results: the proportion of correct decisions was very low, and 
particularly so for cancer cases not marked by the tool. This suggested that CAD errors may have had a 
significant negative impact on readers’ decisions. To explore this issue further, we ran Study 2, where a 
new but equivalent set of readers saw the same test set without computer aid. We used the same 
procedure as in Study 1, except that readers did not see the computer prompts. 

Reader sensitivity in Study 2 (without CAD) was significantly higher than in Study 1 (with CAD); the 
measured difference increased if we looked at incorrectly prompted cases only, and even more so for 
cancer mammograms where the tool had placed no prompts at all. 

These findings strongly suggest that, at least for some categories of cases in our studies, incorrect 
prompting had a significant detrimental effect on human decisions. This conclusion reinforces that of a 
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previous experiment (Zheng, Ganott et al. 2001) which used artificially inserted errors in computer 
prompts, as opposed to the actual errors used in our study. 

5.2 Questionnaire results 

At various stages during Study 1, the readers were asked to answer a series of questionnaires on various 
issues. Of particular interest was a final questionnaire which probed the perceived differences between 
the test sets used in Study 1 and in the HTA study, in terms of the behaviour of the CAD tool and the 
characteristics of the test cases. Since only 10 out of the 20 readers in Study 1 completed this 
questionnaire, our analysis is limited. However, we found some interesting patterns.  

Some readers seemed unaware of the large proportion of cancers for which the CAD tool generated 
incorrect prompting in our test set. For example, most of the respondents answered that our test set had 
the same proportion of cancers, or fewer, than the sets in the HTA study, when it actually contained a 
few more cancers. Similarly a few respondents thought our test set had the same proportion of cancers 
missed by the CAD tool as in the HTA study; but, in fact, it contained many more. Also, half of the 
respondents thought that the CAD prompts were more useful in Study 1 than in the HTA study because, 
they said, our test set had fewer “distracting” prompts; yet, in reality, there were fewer correct prompts 
for cancers. 

Interestingly, we found no association between a reader's responses to the questionnaires and his/her 
performance in Study 1. Readers whose answers indicated a realistic perception of the behaviour of the 
CAD tool and of the proportion of cancers in the test set were as likely to be affected by incorrect 
prompts as those who believed CAD was being more helpful in Study 1 than in the HTA study. 

6 Does CAD bias readers’ decision making? 

The results of our analyses and empirical studies suggest that the CAD tool’s incorrect output may have 
biased the decision making of at least some of the readers, for some categories of cases. Ethnographic 
work by DIRC colleagues has shown that readers: a) dismissed obvious incorrect prompts as spurious 
(indeed, most prompts on features that the reader had not considered – either missed or thought 
irrelevant – are false prompts); and b) recognised that the tool often fails to prompt obvious cancers 
(Hartswood, Procter et al. 2003; Alberdi, Povyakalo et al. 2005). However, our results indicate that, for 
difficult cancers, incorrect prompting often led to incorrect human decisions. 

Using Skitka et al.’s (Skitka, Mosier et al. 1999; Skitka 2000) terminology, introduced earlier, one could 
characterise these incorrect decisions as “errors of omission”: readers interpreted absence of prompts on 
(an area of) a mammogram as an indication of “no cancer” and therefore failed to take appropriate action 
(i.e., they failed to recall the patient). There are, however, important differences between Skitka et al.’s 
tasks and mammogram reading as investigated in the HTA study and our follow-up studies. In the 
former, the participants seemed to use the computer output to replace calculations they could perform 
otherwise by using alternative, highly reliable, non-computer mediated indicators. In contrast, 
uncertainty in mammogram reading is greater. The readers did not have access to any sources of 
information other than the X-ray films (mammograms) and the output of the CAD tool on digitised 
versions of the films. It is important to remember that CAD prompts are designed merely as attention 
cues - not to replace other sources of information. 

With CAD, over-reliance on automation could manifest itself in readers using prompts instead of 
thoroughly examining the mammograms, implying readers becoming complacent, or less vigilant, when 
using automation – as hypothesised by Skitka’s team and others to explain errors of omission 
(Parasuraman and Riley 1997; Skitka, Mosier et al. 1999; Skitka 2000; Meyer 2001; Meyer and Bitan 
2002; Meyer, Feinshreiber et al. 2003; Meyer 2004; Parasuraman and Miller 2004).  

One could argue that, based on past experience with the tool, readers tended to assume that the absence 
of prompts was a strong indication that a case was normal. CAD generates many false positives, which 
readers claim to find distracting. As a result, the absence of prompts may be seen as more informative 
than their presence so readers may have paid less attention than necessary to those mammograms that 
had no computer prompts.  
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An alternative (perhaps complementary) way of accounting for the association between incorrect 
prompting and reader errors contemplates how readers deal with “indeterminate” cases: cases where they 
have detected anomalies with unclear diagnosis, so that they are uncertain as to whether the cases should 
be recalled. For example, it is possible that the absence of prompts made readers revise their decisions 
for ambiguous abnormalities they had already detected. In other words, they may have used the absence 
of prompts as reassurance for a "no recall" decision when dealing with features they found difficult to 
interpret. Conceivably readers were using any available evidence to resolve uncertainty. The implication 
is that the CAD tool was being used not only as a detection aid but also as a classification or diagnostic 
aid – specifically not what the tool is designed for. Readers’ use of CAD in such a way has been reported 
before for the CAD tool investigated  here (Hartswood, Procter et al. 2003) and for other similar CAD 
tools (Hartswood, Procter et al. 1998). The following transcript is an example of a reader’s use of 
prompts to inform her/his decisions: “This is a case where without the prompt I’d probably let it go … 
but seeing the prompt I’ll probably recall … it doesn’t look like a mass but she’s got quite difficult dense 
breasts … I’d probably recall.” (Hartswood, Procter et al. 2003) In other instances, readers were 
observed using the absence of a prompt as evidence for ‘no recall’ (Hartswood, Procter et al. 2003) 

Arguably, this use of CAD violates an explicit warning in the device labelling (FDA 1998): "...a user 
should not be dissuaded from working up a finding if the device fails to mark that site". However, such 
warnings could only be useful if readers were aware of exploiting prompts in this fashion. 

An alternative conjecture about "indeterminate cases" posits that CAD may alter readers’ decision 
thresholds. The conjecture is as follows: when seeing certain "indeterminate cases" without computer 
support, readers are likely to recall it for further investigation. However, with computer support, they 
know that supplementary information is available in the form of CAD prompts; therefore, their 
preliminary decisions (before checking the prompts) are more likely to be "no recall" than they would be 
without CAD (a similar point was previously raised about other studies (Astley and Gilbert 2004; 
Taylor, Given-Wilson et al. 2004)). In practice, this makes the computer outputs a determinant for the 
"recall/no recall" decision, despite readers never changing a preliminary decision from "recall" to "no 
recall" based on absence of prompts, or being in violation of the prescribed procedures. For those 
indeterminate cases that are "difficult" cancers, CAD is likely to produce incorrect output, substantially 
reducing the chances of the case being recalled. Readers may not change any individual decisions 
because of absence of prompts, but they may change their decision thresholds for some cases due to the 
very presence of computer support. It may be very difficult (or even impossible) to prevent this 
behaviour by simple prescription. 

7 Implications for design 

The decision system whose dependability we are considering is formed by the human reader plus an 
"alerting" tool (the CAD tool) - a common type of system, in many medical and non-medical 
applications. The people involved in designing such systems include the designers of the computer tool 
proper, those responsible for the client-specific configuration of the tool and those who devise 
procedures for its use and the training of the staff using and servicing it. What are the implication for 
these people of the possible subtle effects of computer use? 

In this section we focus on the risk of FN failures: not raising an alarm when an alarm is required. For 
CAD, this means not recalling a patient with cancer. A false negative, in these decision systems, is 
usually a more severe failure than a false positive. Space precludes discussion of the major concern of 
achieving a low enough FN rate without an excessive FP rate – spurious alarms. However, there are 
many application scenarios when we can expect a degree of homeostasis in the FP rate: the human 
operator spontaneously limits the total rate of alarms to a level that is acceptable in terms of extra 
workload on the organisation. In these cases, success in reducing FN rates does not automatically 
translate into excessive FP rates. 

It can be seen that the probability of incorrect decisions from a system like the one described is 
determined not only by the probability of failure of the CAD tool and of the reader separately, but also 
by how likely they are to fail together (for a mathematical treatment see (Strigini, Povyakalo et al. 
2003)). In the experiments we described, there was indeed a high correlation between their failures. This 
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may be due to two factors: the same mammograms that are hard to interpret correctly by readers are also 
hard for the tool to prompt correctly; or, incorrect prompting by the CAD tool makes readers more likely 
to err in their turn. The data from the HTA study suggest that both factors were present.  

Thus, multiple lines of attack are open to designers seeking to improve this alarm system. An obvious 
one is to improve either component – the tool or its user. But improvements in algorithms and/or in user 
training may be difficult and subject to a law of diminishing returns. They could also be comparatively 
ineffective, if for instance we improve a CAD tool's ability to prompt kinds of cancers that readers very 
seldom miss anyway. Other strategies, targeting the interaction and correlation between machine and 
human error, may be more attractive. We outline two general categories of such strategies, some of them 
already adopted by designers, others possibly more novel. 

7.1 Make alerting tools more different from their users  

The first strategy aims to reduce the covariance between the difficulty of a case for the alerting tool and 
for the unaided user: making the tool less likely to err in those situations in which the unaided user is 
more likely to err. This strategy is feasible, since the designers of an alerting tool have a degree of 
freedom in choosing the trade-off between its FP and FN rates. Especially if the tool uses a combination 
of algorithms for identifying situations that require an alert, tuning these multiple algorithms may allow 
some "targeting" of the peaks and troughs in FN and FP rates for different classes of "cases". 

An additional desirable effect of this strategy may be the scope for designers to reduce the overall FP 
rate of the tool: users find FPs annoying and they may increase cognitive load. For some applications, it 
may even be possible to tune the alerting tool for each individual user, tuning which could be under 
control of the users themselves or achieved via automatic calibration routines. 

The importance of the probability of common failure between human and alerting tool may have more 
general implications for the design philosophy for these tools. A design philosophy aiming at 
reproducing the outward behaviour of human experts may bring intrinsic limitations to the effectiveness 
of these tools, in that they will tend to help the user most reliably on those cases where the user needs 
less help. They will still be immune to fatigue and random lapses of attention, and thus serve the goal of 
making human performance more uniform, if these were important causes of human failure. But, even 
from this viewpoint, a tool design focused on helping users with cases where they are least effective (or 
most vulnerable to the effects of fatigue, for instance) could still be the more effective solution (Strigini, 
Povyakalo et al. 2003). Even when designers lack information to identify these categories of cases, there 
may be some reward in building the tools on principles different from replicating human behaviour. The 
blind pursuit of diversity has proven effective, after all, in other areas of system design (Strigini 2005). 
However, for humans to accept hints from such tools, it may be more important that the tool provides 
convincing explanations of its behaviour, lest users become accustomed to ignoring hints that they 
cannot make sense of (cf the observation that CAD users feel the need to explain successes and errors of 
the CAD tool in terms of regular patterns of behaviour (Hartswood and Procter 2000; Hartswood, 
Procter et al. 2003)). 

7.2 Reduce the effect of incorrect prompting on user error 

The instructions for using the tool in our case study say that readers must not allow machine prompts (or 
lack thereof) to influence how they interpret features in the X-ray images. If readers comply, then 
incorrect prompting of a case could not produce a false negative, except on cases on which the reader 
failed to notice the symptoms to start with: computer support "could do no harm". But can users actually 
comply with these guidelines? Much of the skill that experts utilise is at the level of non-explicit pattern 
recognition rules and heuristics. If experts slowly adapted to relying on the tool's prompts for advice, at 
least for some types of cases, they may not realise that they are doing so. At least two forms of 
protection can be pursued: 

- make it easier for the user to obey the prescribed procedure, or more difficult to violate it. For 
instance, the user interface could allow users to mark all features they are going to consider in their 
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decision, before showing the tool's prompts. However, such measures may be cumbersome to 
enforce, especially with high load on the users, causing them to take advantage of all available help; 

- make the user more immune to being influenced in the wrong way by the tool. A form of protection 
is to remind users of the possibility of machine failure by giving frequent examples of incorrect 
prompting: in training, just as e.g. pilot simulator training includes an unrealistically high rate of 
mechanical failure, or even better, where socially and organisationally acceptable, in normal use.  

Several authors assume, both for cancer screening CAD and for advisory systems in general, that the 
phenomenon of incorrect prompting causing user error is limited to users who lack experience with the 
tool, and disappears with use. This seems a one-sided over-optimistic statement, if not supported by 
decisive empirical evidence: 

- experience will help users to recognise that the tool is fallible, but it will also teach them that, for 
instance, in many situations it is normally reliable. CAD tools are tuned to have low FN rate at the 
cost of a high FP rate, so they are indeed quite reliable for the kinds of cancer signs they target.  

- experience will teach them to recognise some situations in which the tool tends to fail, but this will be 
more likely the more the situation is one in which the user is reliable and so needs the tool's support 
less.  

So, the issue is not whether experience or special training or other factors will have some mitigating 
effect on user error rates, but the magnitude of these effects, when combined, and its sign and magnitude 
when combined with that of detrimental factors.  

Another issue specific to our case study is whether it is right to insist that readers not be influenced by 
the tool not prompting a feature about which they were uncertain. After all, with highly sensitive alerting 
tools, absence of alerts is a good indicator that no alarm should be raised. As users appear to recognise 
and exploit this fact to reduce their workload, it might be appropriate to develop explicit guidelines 
about how to use this kind of indication. 

8 Conclusions 

We have discussed the outcomes of a case study with a form of computer aided decision making, trying 
to elicit implications of general interest, in particular in the area of possible detrimental effects of a 
computer aid. 

One outcome is further evidence against the simplistic view that "computer support can do no harm". 
Some mechanisms that may make a computer aid harmful, like user complacency, are intuitively 
obvious. Others that we have hypothesised here are subtler. An important implication for designers is 
that they cannot ignore the possibility of such harmful effects; they should consider whether the overall 
effect of computer support can be made sufficiently positive. In cases of high uncertainty about these 
factors, they must consider whether effective precautions can be adopted in designing the whole decision 
system (not just the computer part of it), and how the effects of computer aids can be monitored in use. 

Another known lesson that our findings support is that the problem in human-computer interaction goes 
way beyond designing the visible human-computer interfaces. Much codified knowledge about "human 
factors" is about the latter. But a computer may affect the dependability of the system of which it is part 
mostly through how it affects the mental processes of its users, quite independently of how friendly and 
"usable" it appears. In this case study, we would conjecture that design choices like the false positive-
false negative trade-offs selected by designers for various categories of cases, and the way readers learn 
about the characteristics of the CAD tool, may be the determinant factors in the effects observed 
here. 

From the methodological viewpoint, our experience confirms the usefulness of an interdisciplinary 
approach, exploiting the indications of diverse methods of investigation. Inspired by our experience 
modelling common-mode failure processes in diverse redundancy, we applied methods for exploratory 
data analysis that focused on the variation between behaviours of computers or people across the range 
of "cases". These methods revealed interesting patterns that would be missed by standard analyses 
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focused on the average effect of using a computer tool. We must underscore that these methods are a 
source of useful conjectures about the mechanisms of action of computer support, which can then be 
subjected to independent confirmation, but also provide indications of possible design problems even 
while this confirmation is missing.  

Last but not least, recognising that the system of interest is the whole decision system, a composite 
human-machine, fault-tolerant system, rather than the computer part of it, is essential for a correct 
approach to its design.  
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Abstract. The purpose of ARINC 661 specification [1] is to define interfaces to 
a Cockpit Display System (CDS) used in any types of aircraft installations. 
ARINC 661 provides precise information for communication protocol between 
application (called User Applications) and user interface components (called 
widgets) as well as precise information about the widgets themselves. However, 
in ARINC 661, no information is given about the behaviour of these widgets 
and about the behaviour of an application made up of a set of such widgets. 
This paper presents the results of the application of a formal description 
technique to the various elements of ARINC 661 specification within an 
industrial project. This formal description technique called Interactive 
Cooperative Objects defines in a precise and non-ambiguous way all the 
elements of ARINC 661 specification. The application of the formal description 
techniques is shown on an interactive application called MPIA (Multi Purpose 
Interactive Application). Within this application, we present how ICO are used 
for describing interactive widgets, User Applications and User Interface servers 
(in charge of interaction techniques). The emphasis is put on the model-based 
management of the feel of the applications allowing rapid prototyping of the 
external presentation and the interaction techniques. Lastly, we present the 
CASE (Computer Aided Software Engineering) tool supporting the formal 
description technique and its new extensions in order to deal with large scale 
applications as the ones targeted at by ARINC 661 specification.  

1 Introduction 

Interactive applications embedded in cockpits are the current trend of evolution 
promoted by several aircraft manufacturer both in the field of civil and military 
systems [7, 10]. Embedding interactive application in civil and military cockpit is 
expected to provide significant benefits to the pilots by providing them with easier to 
use and more efficient applications increasing the communication bandwidth between 
pilots and systems. However, this technological enhancement comes along with 
several problems that have to be taken into account with appropriate precautions. 
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ARINC specification 661 (see next section), aims at providing a common ground for 
building interactive applications in the field of aeronautical industry. However, this 
standard only deals with part of the issues raised. The aim of this paper is to propose a 
formal description technique to be used as a complement to ARINC 661 for the 
specification, design, implementation and validation of interactive application.  

The paper is structured as follows. Next section introduces ARINC 661 
specification to define software interfaces for a Cockpit Display System. It presents 
informally the content of the specification but also its associated architecture that has 
to be followed in order to build ARINC-661-compliant interactive applications. 
Section 3 presents the ICO formalism, a formal description technique for the design of 
safety critical interactive applications. This description technique has already been 
applied in various domains including Air Traffic Control applications, multimodal 
military cockpits or multimodal satellite ground segments. Its applicability to cockpit 
display system and its compatibility with ARINC specification 661 is discussed and 
extensions that had to be added are also presented in section 4. Section 5 presents the 
use of the formal description technique on an interactive application called MPIA 
(Multi Purpose Interactive Application) currently available in some cockpits of 
regional aircrafts. Last section of the paper deals with conclusions and perspectives to 
this work.  

2 ARINC 661 specification  

This section presents, in an informal way, the basic principles of ARINC 661 
specification. The purpose of this section is to provide a description of the underlying 
mechanisms of ARINC 661 specification and more precisely how its content 
influences the behaviour and the software architecture of interactive applications 
embedded in interactive cockpits. 

2.1 Purpose and Scope 

The purpose of ARINC 661 specification (ARINC 661, 2002) is to define interfaces 
to a Cockpit Display System (CDS) used in interactive cockpits that are now under 
deployment by several aircraft manufacturers including Airbus, Boeing and Dassault. 
The CDS provides graphical and interactive services to user applications (UA) within 
the flight deck environment. Basically, the interactive applications will be executed 
on Display Units (DU) and interaction with the pilots will take place through the use 
of Keyboard and graphical input devices like the Keyboard Cursor Control Unit 
(KCCU).  

ARINC 661 dissociates, on one side, input and output devices (provided by 
avionics equipment manufacturers) and on the other side the user applications 
(designed by aircraft manufacturers). Consistency between these two parts is 
maintained through a communication protocol: 
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• Transmission of data to the CDS, which can be displayed to the flight deck 
crew. 

• Reception of input (as events) from interactive items managed by the CDS. 
In the field of interactive systems engineering, interactive software architectures 

such as Seeheim [14] or Arch [9] promote a separation of the interactive system in at 
least three components: presentation part (in charge of presenting information to and 
receiving input from the users), dialogue part (in charge of the behaviour of the 
system i.e. describing the available interface elements according to the current state of 
the application) and functional core (in charge of the non interactive functions of the 
system).  The CDS part may be seen as the presentation part of the whole system, 
provided to crew members, and the set of UAs may be seen as the merge of both the 
dialogue and the functional core of this system.  

2.2 User Interface Components in ARINC 661 

The communication between the CDS and UAs is based on the identification of user 
interface components hereafter called widgets. ARINC 661 defines a set of 42 
widgets that belong to 6 categories. Widgets may be any combination of “container”, 
“graphical representation” of one or more data, “text string” representations, 
“interactive”, dedicated to “map management” or may “dynamically move”. 

In ARINC 661,  each widget is defined by: 
• • a set of states classified in four levels (visibility, inner state, ability, visual 

representation), 
• • a description in six parts (definition section, parameters table, creation 

structure table, event structure table, run-time modifiable parameter table, 
specific sections). 

The main drawback of this description is the lack of description of the behaviour 
itself. Even if states are partially described, dynamic aspects such as state changes are 
informally described. As stated in ARINC 661 (section 1.0 introduction), the main 
paradigm is here based on this comment: 

“A UA should not have any direct access to the visual representations. 
Therefore, visual presentations do not have to be defined within the 
ARINC 661 interface protocol. Only the ARINC 661 parameter effects on 
graphical representation should be described in the ARINC 661 interface. 
The style guide defined by the OEM should describe the “look and feel” 
and thus, provide necessary information to UAs for their HMI interface 
design.” 

An additional textual description called SRS (for Software Requirement 
Specification), informally defines the look and feel of a CDS (Cockpit Display 
System). This SRS is designed by each manufacturer of airline electronic equipment 
(we worked with a draft document provided by Thales Avionics). This kind of 
document describes both the appearance and the detailed expected behaviour of each 
graphical or interactive component. 
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2.3 Overview of our contribution to ARINC 661 

One of the goals of the work presented in this paper is to define an architecture that 
clearly identifies each part of this architecture and their communication, as shown on 
Fig 1. The aim of this architecture is also to clearly identify which components will be 
taken into account in the modelling process and which ones are taken into account in 
a different way by exploiting SVG facilities. The architecture has two main 
advantages: 
1. Every component that has an inner behaviour (server, widgets, UA, and the 

connection between UA and widgets, e.g. the rendering and activation functions) 
is fully modelled using the ICO formal description technique. 

2. The rendering part is delegated to a dedicated language and tool (such as SVG). 

 
 

 
Fig 1. Detailed architecture to support ARINC 661 specification 

The following section recalls the basics of ICO notation and presents a new 
extension that has been required in order to be able to address all the modelling 
challenges put forward by interactive cockpit applications compliant with ARINC 661 
specification, and then present the connection to SVG. Lastly, a real case study 
illustrates this architecture and how modelling all the elements of ARINC 661 
specification are addressed using ICOs formal description technique. 

3 ICO modelling of ARINC 661 components 

We use the ICO formalism to describe formally the behaviour of the ARIC 
components. This section first briefly recalls the main features of the ICO formalism. 
We encourage the interested reader to look at [13, 11] for a complete presentation of 
the formal description technique and the environment supporting it. The second part is 
dedicated to the extensions that had to be defined in order to address the specificities 
of interactive applications compliant with ARINC 661 specifications.  
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3.1 Overview of the ICO formalism 

The Interactive Cooperative Objects (ICOs) formalism is a formal description 
technique dedicated to the specification of interactive systems [4, 11]. It uses concepts 
borrowed from the object-oriented approach to describe the structural or static aspects 
of systems, and uses high-level Petri nets [8] to describe their dynamic or behavioural 
aspects. ICOs are dedicated to the modelling and the implementation of event-driven 
interfaces, using several communicating objects to model the system, where both 
behaviour of objects and communication protocol between objects are described by 
Petri nets. The formalism made up of both the description technique for the 
communicating objects and the communication protocol is called the Cooperative 
Objects formalism (CO). 

ICOs are used to provide a formal description of the dynamic behaviour of an 
interactive application. An ICO specification fully describes the potential interactions 
that users may have with the application. The specification encompasses both the 
"input" aspects of the interaction (i.e., how user actions impact on the inner state of 
the application, and which actions are enabled at any given time) and its "output" 
aspects (i.e., when and how the application displays information relevant to the user). 
Time-out transitions are special transitions that do not belong to the categories above.  

An ICO specification is fully executable, which gives the possibility to prototype 
and test an application before it is fully implemented [12]. The specification can also 
be validated using analysis and proof tools developed within the Petri nets community 
and extended in order to take into account the specificities of the Petri net dialect used 
in the ICO formal description technique. 

3.2 ICO improvements 

Two main issues have been raised while working with ARINC 661 specification that 
have not been encountered in previous work we have done in the field of interactive 
systems’ specification and modeling.  

• The first one is related to the management of rendering information in a 
more independent and structured way in order to be able to dissociate as 
much as possible the graphical appearance of interactive components from 
their behavior. This is one of the basics of interactive cockpit applications 
compliant with ARINC 661 specification as (as stated above) these two 
sides of the interactive cockpit applications are described in two different 
documents (communication protocol and abstract behavior in ARINC 661 
specification while presentation and detailed behavior are described in the 
SRS (System Requirement Specifications)). 

• The second one is related to the fact that ARINC 661 specification does 
not exploit current windows manager available in the operating system (as 
this is the case for Microsoft Windows applications for instance). On the 
opposite, the manufacturer in charge of developing the entire ARINC 661 
architecture is also in charge of developing all the components in charge 
of the management of input devices, device drivers and to manage the 
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graphical structure of the interactive widgets. In order to handle those 
aspects we have defined a denotational semantics (in terms of High-level 
Petri nets) of both the rendering and the activation functions. Beforehand, 
these functions were only partly defined (relying on the underlying 
mechanisms provided by the window manager) and implemented using a 
particular java API thus making much more limited the verification 
aspects of theses aspects of the specification. Indeed, the work presented 
here addresses at the same level of formality, applications, widgets and 
user interface server (also called window manager). Besides, the 
connections and communications between these three parts are also 
formally described. 

Next section presents in details the various mechanisms that have been defined in 
order to handle the low level management of input devices and focuses on one 
specific aspect called picking which correspond to the window manager activating of 
finding the interactive component that was the target of the user when an event has 
been produced. The case study in section 4 shows on a concrete example how those 
elements are combined for describing User Applications, Widgets and User Interface 
servers.  

4 MPIA case study 

MPIA is a User Application (UA) that aims at handling several flight parameters. It is 
made up of 3 pages (called WXR, GCAS and AIRCOND) between which a crew 
member is allowed to navigate using 3 buttons (as shown by Fig 2). WXR page is in 
charge managing weather radar information; GCAS is in charge of the Ground Anti 
Collision System parameters while AIRCOND deals with settings of the air 
conditioning. 

            
Fig 2. Snapshots of the 3 pages of the UA MPIA 

In this section, we present the modelling of a simple widget and its link to SVG 
rendering, then we briefly present the classical modelling of a user application to 
show the extension made to ICOs, and finally we present parts of the server. The 
purpose is not here to present the whole specification which is made up of about 40 
models, but only to present brief extracts to show all bricks of the modelling. 
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4.1 Modelling ARINC 661 interactive widgets 

The whole modelling process of ARINC 661 interactive components using ICO is 
fully described in [12]. The additional feature consists in using the rendering process 
described above, based on replacing the classical code-based rendering methods with 
rendering methods that modify the SVG Document Object Model. Rendering is the 
process of transforming a logical description (conceptual model) of an interactive 
component to a graphical representation (perceptual model). In previous similar 
works, we specified rendering with Java code, using the Java2D API., However, 
describing graphics with an imperative language is not an easy task, especially when 
one tries to match a particular look. Furthermore, the java code for graphics is 
embedded into the model, which makes it hard to change for another look. This is 
even more difficult when several components share a common part of the graphical 
representation, for instance when components must have a similar style and when this 
style has to be changed.  

To overcome these two problems, we changed for an architecture that uses 
declarative descriptions of the graphical part and that supports transformations from 
conceptual models to graphical representations. These two elements exploit XML-
based languages from the W3C: the SVG language for graphical representation, and 
the XSLT language for transformation. SVG is an xml-based vector graphics format: 
it describes graphical primitives in terms of analytical shapes and transformations.  
XSLT is an xml-based format that describes how to transform an xml description (the 
source) to another xml description (the target). An XSLT description is called a 
“stylesheet”. Due to space constraints this work is not presented in the next section as 
we focus on the behavioural aspects of models.  

4.2 Modelling User Applications 

Modelling a user application using ICO is quite simple as ICO has already been used 
to model such kind of interactive applications. Indeed, UAs in the area of interactive 
cockpits correspond to classical WIMP interfaces,  

As the detailed specification is not necessary to expose the modification of ICO, 
we only present an excerpt of the models that have been produced to build the MPIA 
application. This excerpt is the first page (WXR) of the application (left part of Fig 2). 

4.2.1 Behaviour 

Fig 3 shows the entire behaviour of page WXR which is made up of two non 
connected parts:  

•  The upper part aims at handling events from the 5 CheckButtons and the 
modification implied of the MODE_SELECTION that might be one of five 
possibilities (OFF, STDBY, TST, WXON, WXA). Value changes of token 
stored in place Mode-Selection are described in the transitions while 
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variables on the incoming and outgoing arcs play the role of formal 
parameters of the transitions.  

•  The lower part concerns the handling of events from the 2 PicturePushButton 
and the EditBoxNumeric. Interacting with these buttons will change the state 
of the application.  

 
Fig 3. Behaviour of the page WXR 

4.2.2 Activation function 

Fig 4 shows an excerpt of the activation function for page WXR. 
 Widget Event UserService ActivationRendering 
wxrOFFAdapter off_CheckButton A661_INNER_STATE_SELECT off setWXRModeSelectEnabled 
wxrSTDBYAdapter stdby_CheckButton A661_INNER_STATE_SELECT stdby setWXRModeSelectEnabled 
wxrTSTAdapter tst_CheckButton A661_INNER_STATE_SELECT tst setWXRModeSelectEnabled 
wxrWXONAdapter wxon_CheckButton A661_INNER_STATE_SELECT wxon setWXRModeSelectEnabled 
wxrWXAAdapter wxa_CheckButton A661_INNER_STATE_SELECT wxa setWXRModeSelectEnabled 
autoAdapter auto_PicturePushButton A661_EVT_SELECTION switchAUTO setWXRTiltSelectionEnabled 
stabAdapter stab_PicturePushButton A661_EVT_SELECTION switchSTABILIZATION setWXRTiltSelectionEnabled 
tiltAngleAdapter tiltAngle_EditBox A661_STRING_CHANGE changeAngle setWXRTiltSelectionEnabled 

Fig 4. Activation Function of the page WXR 
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From this textual description, we can derive the ICO model shown on Fig 5. The 
left part of this figure presents the full activation function, which is made up of as 
many sub Petri nets as there are lines in the textual activation function. The upper 
right hand side of the figure emphasises on of these sub Petri nets. It describes how 
the availability of the associated widget is modified according to some changes in the 
WXR behaviour. The lower right hand part of the Figure shows the general pattern 
associated to one line of the activation function: It describes the handling of the event 
raised par the corresponding widget, and how it is linked to an event handler in the 
WXR behaviour.  

 

 

 
Fig 5. Activation Function of the page WXR expressed in Petri nets 

The use of Petri nets to model the activation function is made possible thanks to the 
event communication available in the ICO formalism. As this kind of communication 
is out of the scope of this paper, we do not present the models responsible in the 
registration of events-handlers needed to allow the communication between 
behaviour, activation function and widgets. More information about this mechanism 
can be found in [2]. 
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4.2.3 Rendering Function 

The modelling of the rendering function (shown on Fig 6) into Petri nets (shown on 
Fig 7) works the same way as for the activation function, i.e. for each line in the 
rendering function, there is a pattern to express that in Petri nets. This is why we do 
not detail more the translation.  

 ObCSNode name ObCS event Rendering method 

modeSelectionAdapter MODE_SELECTION token_enter <int m> showModeSelection(m) 

tiltAngleAdapter TILT_ANGLE token_enter <float a> showTiltAngle(a) 

initAutoAdapter AUTO marking_reset showAuto(true) 

autoAdapter AUTO token_enter showAuto(true) 

notAutoAdapter AUTO token_remove showAuto(false) 

initStabAdapter STABILIZATION_ON marking_reset showStab(true) 

stabAdapter STABILIZATION_ON token_enter showStab(true) 

notStabAdapter STABILIZATION_ON token_remove showStab(false) 

Fig 6. Rendering Function of the page WXR 

 

 

 
Fig 7. Rendering Function of the page WXR expressed in Petri nets 
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4.3 Modelling User Interface Server 

The user interface server manages the set of widgets and the hierarchy of widgets 
used in the User Applications. More precisely, the user interface server is responsible 
in handling: 

• The creation of widgets 
• The graphical cursors of both the pilot and his co-pilot 
• The edition mode 
• The mouse and keyboard events and dispatching it to the corresponding widgets 
• The highlight and the focus mechanisms 
• … 

As it handles many functionalities, the complete model of the sub-server (dedicated 
in handling widgets involved in the MPIA User Application) is complex and difficult 
to manipulate without an appropriate tool. As the detailed model is out of the scope of 
this paper, Fig 8 only present an overview of the complete model. 

 
Fig 8. Overview of the complete model of the user interface server. 

The rectangle at the bottom of Fig 8 represents the part of the model of the server 
in charge of the interaction technique and input devices management. The rest of the 
model corresponds to the management of the widgets.  
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4.4 Modelling the complete MPIA User Application 

We do not present here the full model of the user application MPIA neither the one of 
the user interface server, but the formal description technique ICO has been used to 
model in a complete and non ambiguous way all the pages and the navigation between 
pages for such user application, and still produces low-sized and readable models. 
Modelling Activation functions and Rendering functions using Petri nets, legitimates 
the use of the table notation as a readable way to express the connection between the 
dialog and the presentation parts. 

Another issue is that the models of the user application MPIA can both be 
connected to the modelled CDS or to an implemented CDS, using a special API, as it 
respects the ARINC 661 specification. As testing an implemented user application is 
still a problem that has to be solved, especially when the UA is connected to a real 
CDS, a model based approach may support testing at different levels: 

1. Test a modelled user application on the modelled CDS. 
2. Test the modelled user application on the CDS implemented by the 

manufacturer. 
3. Code and test the user application on the implemented CDS. 

The first step promotes a very iterative prototyping process where both the User 
Application and the CDS may be modified, as the second step allows user testing on 
the real interactive system (CDS), with classical prototyping facilities provided by the 
models expressed in ICO of the User Application. 

The MPIA application has been fully modelled and can be executed on the CDS 
modelled using the ICO formalism. However, it has also been connected on a CDS 
developed on an experimental test bench as shown in Fig. 9. 

 
Fig. 9. The MPIA application modelled using ICO connected to experimental CDS at THALES 
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5 Conclusions and Perspectives 

This paper has presented the use of a formal description technique for describing 
interactive components in ARINC specification 661. Beyond that, we have shown that 
this formal description technique is also adequate for interactive applications 
embedding such interactive components. One of the advantages of using the ICO 
formal description technique is that it provides additional benefits with respect to 
other notations such as statecharts as proposed in [15]. Thanks to its Petri nets basis 
the ICO notations makes it possible to model behaviours featuring an infinite number 
of states (as states are modelled by a distribution of tokens in the places of the Petri 
nets). Another advantage of ICOs is that they allow designers to use verification 
techniques at design time as this has been presented in [3]. These verification 
techniques are of great help for certification purposes.  

We are currently developing techniques for providing support to certification 
processes by allowing verification of compatibility between the behavioural 
description of the interactive application and task model describing nominal or 
unexpected pilots behaviour. Support is also provided through the verification of 
interactive system safety and liveness properties such as the fact that whatever state 
the system is in there is always at least one interactive element available. 
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ABSTRACT 
In the field of safety-critical interactive systems, the use of a 
formal specification technique is extremely valuable because 
it provides non-ambiguous, complete and concise ways of 
describing the behaviour of the systems. The advantages of 
using such formalisms are widened if they are provided with 
formal analysis techniques that allow proving properties 
about the models, thus giving an early verification to the 
designer before the application is actually implemented. 
Usually, one of the points put forward while designing such 
a formal description technique is to provide a notation 
powerful enough for describing/specifying the systems 
under consideration. In previous papers [14, 17] we have 
shown how the expressive power of the Interactive 
Cooperative Objects (ICO) formalism is sufficient for 
describing interactive applications of interactive cockpits or 
ground segments for satellite control rooms for instance. 
This paper addresses the issues related to the applicability 
power of the formalism and describes the extensions that 
have been defined and implemented to make it usable for 
real size interactive applications and even in an industrial 
context. The application domain we report on is the ARINC 
661 specification standard for interactive cockpits 
applications. We first present the challenges raised by these 
kinds of applications and the basic principles of the standard. 
We then detail how we adapted the ICO formalism (and its 
CASE tool Petshop) with three innovative techniques, to 
specifically deal with such large and real-life safety-critical 
interactive systems. The solutions include models 
restructuring and visualization techniques (label hiding, 
virtual places and mini-view). We present these solutions 
using a case study showing all the aspects of the applications 
compliant with ARINC 661 specification, namely Server, 
User Applications and Widgets specifications. 

KEYWORDS  
ARINC 661 specification, formal description techniques, 
interactive software engineering, Interactive Cockpits. 

INTRODUCTION 
In the domain of the design and construction of safety-
critical interactive systems, the use of a formal specification 
technique is extremely valuable because it provides non-
ambiguous, complete and concise notations. The advantages 
of using such formalisms are widened if they are provided 

with formal analysis techniques that allow proving 
properties about the design, thus giving an early verification 
to the designer before the application is actually 
implemented [7, 8 or 19].  
The complete specification of interactive applications is now 
increasingly considered as a requirement in the field of 
software for safety critical systems. This is due to the fact 
that interactive systems are used as the main control 
interface. As the user interface part of command and control 
systems may represent a huge quantity of code, user 
interface design and construction tools must provide ways to 
address this complexity as well as the reliability. This paper 
does not address user interface design issues as it focuses on 
the notation and tools for their specification and 
construction. Support dealing with code management only 
(as typically provided by software development tools), is not 
enough and there is thus a critical need for addressing this 
complexity at a higher level of abstraction than software 
code. This paper argues that one possible way to deal with 
these issues is to follow the same path as in the field of 
software engineering where modeling activities and model-
based approaches (also called model-driven approaches) 
take the lead with standards like UML [6]. Besides, for this 
kind of system (as argued in [15]) safety and usability 
aspects cannot be considered independently and 
development processes must be able to address them in a 
balanced and consistent way. While these concerns are 
typical of the development process of any type of software 
systems, safety critical ones put a special emphasis on the 
certification phase. Indeed, developers of such systems are in 
charge of demonstrating that the system is ‘acceptably safe’ 
before certification authorities grant regulatory approval. It 
is widely recognised that software qualification and system 
certification costs dwarf all other aspects of developing, 
installing and updating a Cockpit Display System (CDS) as 
argued in [2] p. 2.  
While elements of solutions are available in the literature, 
scalability of the approaches to deal with real-life and real-
size applications can often prove difficult due to the size and 
the number of models that have to be constructed and 
managed. In [14], we discussed the modelling of the ARINC 
661 widgets and User Applications (UA) using the 
Interactive Cooperative Objects (ICO) formalism (in terms 
of functionality further presented in the ICO Formalism 
section). More particularly, in [14], we presented a small 
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User Application including only a very limited subset of the 
ARINC 661 widgets. We did not address the scalability 
capability of the formalism and its case tool. For example, 
the behaviour of a very simple widget (PicturePushButton 
that behaves as a standard command button) resulted in a not 
so simple model comprising of 47 places and 29 transitions, 
representing 16 reachable states. When it comes to more 
complicated widgets (like EditBoxes for instance) or to the 
modelling of the behaviour of the CDS (Cockpit Display 
System) server, the size of models is significantly larger and 
thus even more difficult to manage.  
In the current paper we go beyond the previous paper by 
focusing on the “applicability power” of the ICO formalism. 
This aspect aims at improving the modelling process making 
the process of going from a given problem to a resulting 
model (representing a solution to that problem) easier. 
Modifications have been made at two different levels: firstly 
new model structuring mechanisms for handling complexity 
and secondly, new interaction and visualization techniques 
for editing and modifying models. These extensions are 
generic in the sense that they can be applied to other formal 
description techniques. We have applied the new structuring 
mechanism to a real-size application for interactive cockpits 
and present its improvement in terms of size and structure of 
models with respect to a more classical structuring 
technique. As for interaction and visualization techniques, 
we have implemented all of them in Petshop (the edition and 
simulation environment for ICO models) and we present 
how the modifications have an impact on the modelling 
process itself.  
The paper is structured as follows. The following section 
introduces the ARINC 661 specification standard in an 
informal way, including the purpose and scope of this 
standard. Following this, we briefly present the case study 
that we use for exemplifying the issues raised and the 
solutions we propose for modelling interactive cockpit 
applications. We then provide an informal presentation of 
the ICO formalism and its CASE (Computer Aided Software 
Engineering) tool, Petshop. We discuss the limitations of the 
ICO formalism and the problems we encountered in our 
previous research work, and lastly present the modified 
model structuring technique and three extensions made to 
Petshop to cope with these scalability issues. The last section 
of the paper deals with conclusions and perspectives to this 
work. 

AN OVERVIEW OF ARINC 661 SPECIFICATION 
The Airlines Electronic Engineering Committee (AEEC) (an 
international body of airline representatives leading the 
development of avionics architectures) formed the ARINC 
661 Working Group to define the software interfaces to the 
Cockpit Display System (CDS) used in all types of aircraft 
installations. The standard is called ARINC 661 - Cockpit 
Display System Interfaces to User Systems [1, 2].  
The CDS (the software system embedded in an aircraft) 
provides graphical and interactive services to user 
applications within the flight deck environment. When 
combined with data from user applications, it displays 

graphical images and interactive components to the flight 
deck crew. It also manages user-system interactions by 
integrating input devices for entering text (via keyboard) and 
for interacting with these interactive components (via 
mouse-like input devices). ARINC 661 emphasizes the need 
for independence between aircraft systems and the CDS and 
fully defines software interfaces between the CDS and the 
aircraft applications. This is a key issue in ARINC 661 as 
several avionics equipment manufacturers can be involved 
(concurrently and independently) in the development 
process of a cockpit while enabling easy integration through 
this standardisation. However, the “ARINC specification 
661” standard does not specify the "look and feel" of any 
graphical or interaction technique information, and as such 
does not address human factors issues. These elements are 
meant to be defined by the aircraft manufacturers and/or by 
avionics equipment manufacturers. This means, as long as 
the user interface functions correctly, various aircrafts (from 
different families) can have different looking user interfaces, 
without needing to modify the User Applications.  
The primary objective of the “ARINC specification 661” 
standard is to minimize the development costs, directly or 
indirectly by accomplishing the following (excerpt from 
[1]): 
• Minimizing the cost of changing or adding new avionic 

systems. 
• Minimizing the cost of adding new display functions to the 

cockpit during the life of an aircraft.  
• Minimizing the cost of managing hardware obsolescence in 

an area of rapidly evolving technology.  
• Introducing interactivity to the cockpit, thus providing a 

basis for airframe manufacturers to standardize the Human 
Machine Interface (HMI) in the cockpit. 

One of the goals of the work presented in this paper is to 
define a software architecture clearly identifying the set of 
components and their inter-relations in order to reach the 
goals described above. Figure 1 illustrates the proposed 
architecture making explicit what the components are. An 
explanation of the detailed content of each component is out 
of the scope of this paper and can be found in [3]. 
The aim of this architecture is also to clearly identify the set 
of components that will be taken into account in the 
modelling process (via the complete description of their 
behaviour using ICOs). It also makes explicit the set of 
components that are not directly integrated in the formal 
description technique as the entire description of their 
graphical representation exploits Scalable Vector Graphic 
(SVG) facilities.  
Such architecture presents two main advantages: 
1. Every component that has an inner behaviour (server, 
widgets, UA, and the connection between UA and widgets, 
e.g. the rendering and activation functions) is fully modelled 
using the ICO formal description technique (see icons with a 
Petri net in Figure 1). 
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2. The rendering part is delegated to a dedicated language 
and tool (such as SVG or Java 2D) represented by the box 
closest to the user icon on the left-hand side of Figure 1. 

 
 

 
Figure 1 Detailed architecture to support ARINC 661 
specification 
Figure 1 is split in 3 parts. The right hand side corresponds 
to the user applications and the left-hand side to the widgets 
and the interface server. The “ARINC specification 661” 
mainly addresses the communication protocol between UAs 
and CDS (doted line between the two parts).  
In contrast to, “classical” work on interfaces for cockpits 
that target at extending interaction in the cockpit (as for 
instance in [9, 12]), the aim of ARINC 661 specification is 
to provide a systematic and standardised way to engineer 
interactive application in the cockpit.  

CASE STUDY: MULTI-PURPOSE INTERACTIVE 
APPLICATION (MPIA) 
The aim of this section is to present an application compliant 
with the “ARINC specification 661”. This application has 
simple functionality but complicated enough to highlight the 
main point of this paper that is to propose solutions for 
managing large specification using a formal notation offering 
a graphical representation. This User Application (UA) is 
made up of 3 different pages containing 12 different widgets 
as defined by the “ARINC specification 661”. It is important 
to note the usability or human factors issues are out of the 
scope of this paper as we focus on software engineering 
aspects of this application. 
MPIA is a real User Application (UA) aimed at handling 
several flight parameters. It is made up of 3 pages (called 
WXR, GCAS and AIRCOND) between which a crew 
member is allowed to navigate using 3 buttons (as shown in 
Figure 2). WXR page is for managing weather radar 
information; GCAS is for Ground Anti Collision System 
parameters while AIRCOND deals with air conditioning 
settings. 

   
Figure 2 Snapshots of the 3 pages of the UA MPIA 
The application can be controlled (though not at the same 
time) by the pilot and the co-pilot via keyboard and mouse 
interaction. The MPIA window of any page is made up of 
three main parts. The information area, the menu bar and the 
workspace area as presented in Figure 3.  

 
Figure 3: Multipurpose Interactive Application (MPIA) 
(1) Information area, split in two parts, left displays current 
state of application, right is set by default blank but displays 
error messages, actions in progress or bad manipulation 
when necessary. 
(2) Workspace area, display changes according to 
‘interactive control panel’ selected. WXR workspace is 
dedicated to all modifiable parameters of the weather radar 
sensor. GCAS workspace is dedicated to some of the 
working modes of GCAS. AIRCOND workspace is 
dedicated to selection of temperatures inside the aircraft. 
(3)Menu bar, includes 3 tabs for accessing 3 main 
‘interactive control panels’. 

ICO FORMALISM 
This section recalls the main features of the ICO formalism 
that we used for the software modelling in the project. The 
models presented later correspond to the case study 
presented in the previous section. The Interactive 
Cooperative Objects (ICOs) formalism is a formal 
description technique dedicated to the specification of 
interactive systems [13]. It uses concepts borrowed from the 
object-oriented approach (dynamic instantiation, 
classification, encapsulation, inheritance, client/server 
relationship) to describe the structural or static aspects of 
systems, and uses high-level Petri nets [10] to describe their 
dynamic or behavioural aspects. The extensions presented in 
the next section have been developed in order to tackle the 
issues that have been raised while working in the field of 
real time command and control systems (like Air Traffic 
Workstations, satellite ground segments [17] and cockpits 
[14]). We encourage the interested reader to look at [4, 20] 
for a complete presentation of the underlying principles of 
this formal description technique. 

Overview of Petshop Environment 
Currently, PetShop is linked to JBuilder environment for the 
creation of the presentation part of the ICOs (corresponding 
to the graphical representation of the user interface). A well-
known advantage of Petri nets is their executability. This is 
highly beneficial to our approach, since as soon as a 
behavioural specification is provided in term of ObCS, this 
specification can be executed to provide additional insights 
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on the possible evolutions of the system. This way of 
interacting with the specification during the execution of the 
application as well as the numerous advantages it provides 
for the designers and the users has been presented in detail in 
[15]. The graphical nature of ICOs makes it very efficient 
for visualising the evolution of a system even though the 
behaviour of the system is highly concurrent. Similarly, with 
Petri nets, it is also possible to address systems with an 
infinite number of states. However, the graphical nature of 
ICOs raises management issues when handling real-size 
applications like the MPIA.  
The next section presents some limitations that we have 
identified in handling models. They both lie in the 
structuring of models and in the graphical nature of ICOs.  

Limitations of ICO & problems encountered 
One of the main problems we faced and reported in [14] 
using the ICO notation for specifying ARINC 661 widgets is 
the fact that graphical presentation of widgets (called 
rendering) was done using Java 2D code and that that code 
was directly associated to each widget. The issue is related 
to the fact that interactive components should have a 
“similar” graphical representation and thus a significant part 
of the code dedicated to rendering appears in the code of 
each widget. Similarly, when a modification has to be made 
with respect to this graphical aspect, it has to be replicated in 
various places.  
The number of arcs in a large model, such as that of the 
interface server is huge). Often, the arcs have long labels due 
to the large number of variables representing the parameters 
of different widgets that is imposed by the “ARINC 
specification 661”. The labels are often illegible and disrupt 
visualisation of the behaviour of the network. However it is 
not necessary that this information remains visible at all 
times during editing. 
Also, in relation to legibility of models, a recurring problem 
identified during the modelling process of large systems is 
the need for numerous transitions to share the same input or 
output places. This causes regions of the model to have a 
high density of arcs some of which must cross the entire 
model to reach the destination place. This modelling 
problem is specific to the “ARINC specification 661” that 
defines, for each widget, a set of parameters whose values 
influence its behaviour. As (using the ICO formalism) 
parameters are stored as tokens in the places of the Petri net, 
each state changing operator (modelled as transitions) that 
needs to change or test the value of the token will feature an 
input and/or output arc from the place.  
The fourth problem encountered relating to the visualisation 
of large models was their size, making it difficult, and 
sometimes even impossible to view them entirely on the 
screen. This is why one seldom works on such models with a 
level of so significant zoom, for rather privileging a level 
making readable the information. We thus had to extend 
PetShop to simultaneously provide a focus and context view 
on the models.  

EXTENDING ICO AND PETSHOP TO COPE WITH 
SCALABILITY ISSUES 
This section details how the ICO formalism has been 
extended in order to take into account the specificities of the 
“ARINC specification 661” components (UAs, server and 
widgets). Even though we mainly detail these modifications 
with respect to the ICO formalism any other graphical 
notation like Statecharts [11] or automatons [21] would 
require similar extensions to deal with this kind of 
application domain. The contribution of this section is not 
the solution per se but the issues raised and how the 
solutions proposed and implemented have been able to solve 
the problems and thus to allow ICOs to scale up to handle 
large interactive software systems.  

Restructuring models for graphical appearance 
The goal of model restructuring is twofold; firstly it 
simplifies the management of graphical aspects, reduces the 
size of the models and reduces development time. Secondly, 
it provides an elegant solution to a recurring problem related 
to the selection of widgets, called “picking”. Picking is a 
task that has to be solved by the user interface server in 
order to determine which widget has been the target of a user 
action using the input device.  
Initially we decided to handle picking and graphical 
rendering in a similar way as we did in other application 
domains (like air traffic control and satellite ground segment 
applications. Picking was explicitly modelled using ICO in 
the server model while rendering was handled by including 
Java/2D code in the rendering function of the ICO models 
(as presented in [14]). However, these two ways of handling 
the problem have raised more problems when dealing with 
the large scale application. We thus defined a structuring 
method of these specific aspects by using SVG (Scalable 
Vector Graphics) for rendering and by externalizing picking 
away from the server behaviour. We do not present here in 
full detail the new solution. However, the following tables 
show the benefit that resulted with the restructuring 
presented above.  

 

Type of 
widget 

ARINC 661 Widget Size of 
graphics code 
(Java/2D) 

Size of 
graphics 
code (SVG) 

RadioBox 142 lines 15 lines 

TabbedPanelGroup 168 lines 16 lines 

TabbedPanel 151 lines 25 lines 

Container 

Panel  152 lines 16 lines 

GPTriangle 221 lines 15 lines Graphical 

GPRectangle 178 lines 15 lines 

PicturePushButton 333 lines 55 lines 

PictureToggleButton 393 lines 55 lines 

CheckButton1 399 lines 60 lines 

Label 216 lines 16 lines 

LabelComplex 379 lines 25 lines 

Interactive 

EditBoxNumeric 490 lines 50 lines 

Table 1 Measure of volume of each widget in terms of number of 
lines of code for the graphical part. (left Java2D/right SVG) 
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A detailed presentation of the design process exploiting this 
restructuring of model is available in [16]. Table 1 shows a 
measurement of the volume of each widget in terms of a 
number of lines of codes for the graphical part, and Table 2, 
in terms of a number of places and transitions.  

Model size 

Separated picking 

Model size 

Centralised picking 

Widget 

Places Transitions Places Transitions 

RadioBox 49 29 28 21 

TabbedPanelGroup 62 22 44 16 

TabbedPanel 72 49 22 7 

Panel  65 46 16 5 

Table 2 Measure of volume of each widget in terms of model size 
(left Java2D/right SVG) 

Label hiding 
A simple solution to the arc label problem is to give the 
designer the option to mask arc labels. This modification is 
purely graphical and does not change any modelling aspect. 
Once the arc labels are masked, it is possible to edit the arcs 
in the usual way (double clicking on the desired arc). Figure 
4 and Figure 5 illustrate the difference between displayed 
and masked arcs. The point here is not to read the models 
but to see that the flow of information (arcs between places 
and transitions) is much easier to perceive with hidden arc 
labels.  

Virtual places 
In the server ICO model, one place contains references of all 
the interactive widgets of the application executed by the 
server. This implies that all transitions creating an interactive 
widget or using an interactive widget has an arc linked to 
this place (in the server model for the MPIA application 
resulting in more than 50 arcs).  

 
Figure 4 Partial view of the MPIA Server with displayed arc 
labels 
The ICO formalism is defined following an object oriented 
structuring of models. This means that models are usually 
quite limited in size as they only address the behaviour of a 
single object. While dealing with the “ARINC specification 
661”, the server cannot be split in several sub objects as (as 
stated above) references to the widgets are required for most 
of the actions. In order to deal with the complexity of the 
resulting server model we have defined and implemented the 

notion of virtual places in a Petri net model. These virtual 
places make it possible to define regions in a model. Each 
region is responsible for a given part of the behaviour. 
Virtual places allow exploiting shared parameters between 
regions improving the legibility of models.  

 
Figure 5 Partial view of the MPIA Server with arc labels 

masked 
A virtual place is a partial copy of a normal place. It adopts 
the display properties (such as markings) but not the arc 
connections. The arcs can be connected to normal places or 
to virtual places. 
The display is therefore modified allowing easier 
reorganisation of models. On a semantic level, the group 
made up of the “source” and its virtual places, behaves like a 
single place. For instance, if one token is removed by a 
transition for one of these places, then it will be removed 
from all of them. The left hand side of Figure 6 shows three 
places P1 (the “source” place with a darker border and the 
two virtual places) each with an arc. The right hand side of 
Figure 6 shows the result of the reconstitution of the place  

 
Figure 6 Real view (left) versus Semantic view (right) 

This functional structuring of models and the support of 
virtual places significantly reduces the time and effort for 
construction and modification of models. It is however 
important to note that this kind of construct has to be used 
carefully as, breaking down the graphical dynamics of the 
models can also result in making it more difficult to 
understand their behaviour. To solve this problem we have 
defined usage rules limiting their use to places storing 
parameters and which are not part of an information flow.  

Mini view 
In order to simplify the navigation in large models, we have 
added a “mini map” feature to Petshop. The bird’s eye view 
is a representation of the complete model but on a much 
smaller scale. A screenshot of Petshop including the bird’s 
eye view is not presented due to space constraints. The 
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bird’s eye view contains a small box which highlights what 
is currently visible in the main viewing area. The user can 
change which part of the model is visible in the main 
viewing area by moving a small box on the bird eyes view. 
On the contrary, if the user zooms or move within the main 
viewing area, the box on the bird’s eye view will move 
accordingly.  

CONCLUSION AND PERSPECTIVES 
In this paper we have presented problems incurred when 
trying to model large, real life embedded safety-critical 
interactive applications systems using the ICO formalism 
and the Petshop tool. We approached the structural 
modelling problems in a systematic way to deal with 
scalability by making modifications on two levels; 
modification of the tool to facilitate the management of large 
models and modification to the structuring mechanisms of 
the modelling approach. 
The specification and modelling parts of the study have 
shown that it is possible to formally model the entire 
behaviour of a real-life safety-critical interactive application. 
The interactive cooperative objects (ICO) formal description 
technique has been adapted to meet the requirements of user 
applications compliant with ARINC 661. This adaptation has 
been applied to the MPIA application.  
The same description technique was applied for the 
modelling of ARINC 661 components and the server. One of 
the difficulties for the server side was the multiple 
instantiation of the various components embedded in the 
MPIA interactive application but also the modelling of the 
interaction techniques and the management of the various 
input sub-systems like mouse and keyboard.  
The specification technique was additionally successfully 
applied to a subset of the 57 components described in the 
“ARINC specification 661”. This subset covers all 
components necessary for the MPIA but also other ones 
featuring more complex behaviour such as Popup menus or 
ComboBoxes.  
Modelling interactive applications requires the creation of 
numerous models (even relatively simple types as the MPIA 
requires 37 models and 91 instances). Without an adequate 
tool that allows the entry of data as well as the simulation of 
models and without an adequate modelling process, this task 
would not be possible due to industrial resource constraints 
(human, time and financial). 
After working on the expressive power of the ICO notation 
and the definition of a CASE tool supporting the various 
activities related to the construction and modification of ICO 
models, we have extended and improved the editing and 
simulation features of Petshop to increase the applicability 
power of the notation. Indeed, Petshop and ICOs make it 
possible to manage large scale models by means of various 
interaction techniques including a bird’s eye view, 
management of “virtual places” and management of arc 
labels. 
In addition to the above mentioned results, the study also 
provided interesting prospects. In an interactive cockpit 

application like MPIA, we noticed that both the pilot and co-
pilot are interacting with the same application. In the current 
deployed version of MPIA multi-user interaction is not 
allowed as only the first cursor entering a window is active 
(it becomes inactive after a period of inactivity). However, 
taking into account multi-user interaction techniques which 
allow collaborative interaction between the pilot and co-pilot 
might become a requirement for future cockpit systems. We 
have already shown the capability of ICOs and PetShop for 
dealing with multimodal interactions [16] but we also 
believe that addressing that aspect within real-size 
applications might raise additional challenges.  
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1 INTRODUCTION  

In the aviation industry, cockpits are becoming 
increasingly interactive with the introduction of the 
keyboard cursor control unit (KCCU) combined 
with graphical display units (DU) to be embedded 
in the Airbus A380 for commercial flights in 2006 
and later in the Boeing 787 aircraft.  
There exists extensive literature on types of 

human computer interaction failures that can occur 
while a user is operating an interactive system. 
Examples include mode confusions which are a 
kind of automation surprise (Rushby et al. 1999). 
Evidently, the consequence of such “errors” in a 
safety-critical context can potentially be 
devastating. The roots of such “errors” are often 
the result of poor design. Typically, there is a 
mismatch between the designer’s conception of the 
system and the user’s interpretation of the system. 
From an organizational perspective, such “errors” 
could also be a consequence of poor training, 
management etc. 
Ideally, the possible existence of these “errors” 

should be considered throughout the design 
process, as early as during requirements gathering 
to mitigate them and minimize development costs. 
Techniques for analyzing software safety such as 
Preliminary Hazard Analysis (PHA) including 
Fault Tree Analysis (FTA) and System and 
Subsystem Hazard Analysis (SHA and SSHA) 
including deviation analysis such as Failure Mode 
Effects and Criticality Analysis (FMECA), mode 
confusions analysis and state machine hazard 
analysis are targeted for such early analysis. 
(Leveson et al. 1997). 
The identification of potentially dangerous 

software aspects can be used to inform changes to 
the design, and training procedures etc. With 
respect to the design, such modifications could be 
considered as software barriers.  
While barriers have been used quite intensively 

in the field of hardware and socio-technical 
systems (Hollnagel 1999) their use in the field of 

software systems remains very limited as for 
instance in (Leveson 1991). The intrinsic nature of 
interactive software systems that involve users in 
their daily operation require the same level of 
reliability but, surprisingly, a barrier approach has 
not been applied to this area so far. This might be 
related to the fact that interactive applications have 
been kept away from command and control safety 
critical areas or to the fact that redesigning the 
system has been considered as a more adequate 
alternative than integrating barriers to the extant 
system. 
A barrier is an obstacle, an obstruction, or a 

hindrance that may either (i) prevent an action 
from being carried out or an event from taking 
place, or (ii) prevent or lessen the impact of the 
consequences, limiting the reach of the 
consequences or weakening them in some way 
(Hollnagel 1999). According to Leveson (Leveson 
1991), a distinction can be made between three 
types of barriers called lockout, lockin, and 
interlock, respectively. A lockout device “prevents 
a hazardous, event from occurring, while a lockin 
device maintains safe conditions. An interlock is 
used to ensure that a sequence of operations occurs 
in the correct order.”  
This paper presents a complementary approach 

for the systematic identification of software-related 
user interaction hazards and barriers and modelling 
of barriers. The basis of sound design for a safety-
related system is the identification, through 
systematic analysis, of the hazards which the 
system might encounter in operation as claimed in 
(Falla 1997). The proposed approach provides 
systematic ways to deal with the increase of 
reliability of safety critical interactive applications. 
The design of a usable, reliable and error-

tolerant interactive safety-critical system is a goal 
that is hard to achieve but can be more closely 
attainable by taking into account information from 
previous usages of the system. One such usually 
available and particularly pertinent source is the 
outcome of an incident or accident investigation. 
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Designs of any nature can be improved by taking 
into account previous experiences, both positive 
and negative. However, it is not always the case 
that an accident report will be available, especially 
when new technology is involved. With a more 
pro-active perspective, we aim to analyse a safety 
critical interactive application, similar to those that 
will be embedded in the new interactive cockpits 
(like the Airbus 380 cockpit or Boeing 787) that 
are compliant with the ARINC 661 specification, 
for which we have no accident data. We aim to 
identify flaws in the application and suggest 
software barriers that could minimise potential 
erroneous user interaction with the system. 
With the objective of increasing safety, in 

safety-critical interactive systems, previous 
research in the field aimed at trying to eliminate 
the error completely by identifying its source. It 
has now been widely accepted however that human 
errors are inevitable due to the unpredictable 
behaviour of humans and we must instead try to 
manage errors. The perspective of blame has also 
changed from isolating an individual operator to 
having a wider outlook on the organisation as a 
whole. However, the broader the perspective, the 
more information has to be gathered and thus 
making it more complex not only to organise it but 
also to reason about it.  
In order to tackle these issues, modelling 

processes and techniques have been defined and 
applied widely in the field of safety critical 
systems. Model-based development (MBD) is a 
developing trend in the domain of software 
engineering (MDA Guide version 1.0.1 2003) 
advocating the specification and design of software 
systems from declarative models (Puerta 1998). It 
relies on the use of explicit models and provides 
the ability to represent and simulate diverse 
abstract views that together make up a ‘system’, 
without the need to fulfill its implementation. It is 
widely accepted within the community that models 
are needed for the design of safety critical 
interactive systems; this is to be able to understand 
issues such as safety and resilience and to think 
about how safety can be ensured, maintained, and 
improved (Hollnagel and Woods 2006). 
Previously, we focused on task models and 

error analysis of sub-tasks to identify potential 
problems (See (Palanque and Basnyat 2004) for 
cash machine PIN entry example, & (Basnyat et al. 
2005b) for a hardware-related valve opening 
example). We argue that although it is important 
for human “error” analysis and consideration for 
human factors to be included throughout and in 
early stages of the development process, further 
problems can occur during the interaction with the 
system.  
In addition to the skill-based Human Error 

Reference Table (HERT) defined and exemplified 

in our previous work, we apply a typical heuristic 
evaluation to the UI and a Hazard and Operability 
Studies (HAZOP) analysis. The identified 
interaction hazards are used to propose socio-
technical barriers to mitigate these hazards. The 
proposed barriers, which may take the form of 
improved training, software implementation 
modifications, or UI design improvements for 
example, are also categorised according to 
Leveson’s (Leveson 1991) and Hollnagel’s 
(Hollnagel 1999) barrier classifications. By doing 
so, the barriers can be filtered and represented in 
their relevant design model. For example, barriers 
relating to the behaviour of the software can be 
represented in the system model whereas barriers 
relating to improved training could modify the 
operator’s task and thus be modelled in the task 
model. Barriers relating to warning signs, personal 
protective equipment or fire extinguishers for 
example should be represented in a dedicated 
model. 
In this paper, we focus on barriers related to the 

behaviour of the system. The relevant software 
barriers are extracted from the identified list and 
are modelled using the Interactive Cooperative 
Objects (ICO) (Navarre et al. 2003), a formalism 
dedicated to the description of interactive systems 
based on a dialect of Petri nets.  
The approach has been applied on an interactive 

cockpit application called Multi Purpose 
Interaction Application (MPIA) whose formal 
description has been presented in (Navarre et al. 
2004). The following section briefly describes the 
case study. Section 3 details the interaction hazard 
analyses and results followed by section 4 which 
presents the proposed barriers. Finally, we present 
the modelling of the barriers and their integration 
with the previously modelled system model of the 
interactive cockpit application in section Erreur ! 
Source du renvoi introuvable.. 

2 CASE STUDY: MULTIPURPOSE 
INTERACTIVE APPLICATION (MPIA) 

The aim of this section is to present the case 
study, the MPIA User Application (UA) compliant 
with the ARINC 661 specification. The Airlines 
Electronic Engineering Committee (AEEC) (an 
international body of airline representatives 
leading the development of avionics architectures) 
formed the ARINC 661 Working Group to define 
the software interfaces to the Cockpit Display 
System (CDS) used in all types of aircraft 
installations. The standard is called ARINC 661 - 
Cockpit Display System Interfaces to User 
Systems (ARINC 661-2 2004).  
MPIA is a User Application (UA) that aims at 

handling several flight parameters. It is made up of 
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3 pages (called WXR, GCAS and AIRCOND) 
containing 12 different widgets as defined by the 
ARINC 661 specification. The crew member is 
allowed to navigate between the 3 pages using 3 
buttons (as shown in Figure 1). The WXR page is 
responsible for managing weather radar 
information; GCAS is responsible for Ground Anti 
Collision System parameters while AIRCOND 
deals with settings of the air conditioning. 
     
 
 
 
 

 
Figure 1 Snapshots of the 3 pages of the MPIA UA 

The application can be controlled (though not at 
the same time) by the pilot and the co-pilot via 
keyboard and mouse interaction. Each MPIA 
window contains three main parts: The information 
area (on the top), the menu bar (on the bottom) and 
the workspace (central part).  
(1) Information area, split in two parts, left 
displays current state of application, right is set by 
default blank but displays error messages, actions 
in progress or bad manipulation when necessary. 
(2) Workspace area, display changes according to 
‘interactive control panel’ selected. WXR 
workspace is dedicated to all modifiable 
parameters of the weather radar sensor. GCAS 
workspace is dedicated to some of the working 
modes of GCAS. AIRCOND workspace is 
dedicated to selection of temperatures inside the 
aircraft. 
(3)Menu bar, includes 3 tabs for accessing 3 main 
‘interactive control panels’. 

3 SOFTWARE SAFETY & INTERACTION 
HAZARD IDENTIFICATION 

This section is dedicated to the description of the 
interaction hazard identification analyses including 
related work in the field of software safety 
analysis. In (Falla 1997), it is argued that current 
software safety standards provide little advice 
regarding threats which ought to be considered 
when undertaking software hazard analysis such as 
environmental and operating conditions, logic 
control, real time executive, system function calls, 
system resources, timing and software design 
notations. Although all these types of hazards are 
important, in this paper we focus our attention on 
hazards relating directly to UI interpretation 
problems and ways of improving the UI to assist 
the operator. It was found in (Falla 1997), that 
“optimum [software safety analysis] results were 
obtained when techniques including Fault Tree 
Analysis (FTA), Failure modes and effects analysis 

(FMEA) and Hazard and Operability Studies 
(HAZOP) were used in a coherent fashion as part 
of an integrated safety assessment method” p.6 
chapter 3. Although the authors apply HAZOP to 
an existing software design, the approach is based 
on data flow diagrams. Our approach differs since 
we apply the HAZOP analysis more specifically to 
the user interface.  
In closer relation to our approach, Leveson 

(Leveson et al. 1997) presents an approach for 
analysing the safety of the Center-TRACON 
Automation System (CTAS) portion of an Air 
Traffic Control (ATC) system. The approach aims 
to analyse the effect the system changes have on 
human “errors” in order to modify the system and 
improve user training to reduce their impact. The 
approach looks at the automation as a way of 
evaluating its potential to contribute to human 
“error”. The focus of this work is on automation 
and on mode confusion. Six “categorises of 
potential design flaw” are identified including 
interface interpretation error, inconsistent 
behaviour, indirect mode changes, operator 
authority limits, unintended side effects and lack of 
appropriate feedback. Our approach builds and 
extends this kind of work as it does not focus on 
only mode confusion but on human-computer 
interaction failures because of cognitive “errors” 
and poor design. 

3.1 Skill-based HERT analysis 

Human error plays a major role in the 
occurrence of accidents in safety-critical systems 
such as in aviation, railways systems, or nuclear 
power plants (Reason 1990). 
Although the term “human error” appears very 

controversial, theories of human “errors” such as 
Rasmussen’s (Rasmussen 1983) SRK, Hollnagel’s 
(Hollnagel 1991) Phenotypes and Genotypes and 
Norman’s (Norman 1990) classification of slips 
can be considered widely acceptable.  
We have produced Human Error Reference 

Tables (HERTs) that are in early phases of 
development and the current version is available 
on the following web site http://liihs.irit.fr/basnyat. 
The three tables are based on the above human 
“error” theories. The benefit of producing such 
reference tables is the support it offers for the exact 
identification of precise types of ‘error’ while 
analysing human behaviour. 
In (Palanque and Basnyat 2004) and (Basnyat et 

al. 2005b) we applied HERTs to subtasks of a user 
task model. However, this kind of task-based 
analysis of deviation requires detailed information 
concerning pilot or co-pilot tasks involving the 
MPIA. In this paper we propose a complementary 
approach using HERTs that is based on generic 
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“error” types and does not require this kind of 

information.  

  
  

We have applied the HERTs directly to the 
Weather Radar (WXR) part of the application 
without using any information from pilot’s tasks. 
Using HERTs we have been able, for each type of 
human error, to deduce possible erroneous 
interactions with the system and what the impact of 
the identified ‘error’ will be on the task in hand. 
The aim of these reference tables is not to 
guarantee a comprehensive and exhaustive 
identification of every possible eventuality but to 
provide investigators with systematic ways of 
exploring likely and reoccurring user deviations. 
For example, Table 1 documents an extract of the 
outcome of this process focussing on the skill-
based errors. Due to space constraints we have not 
presented the other two i.e. rule-based and 
knowledge-based. The key benefit of this human 
‘error’ analysis  is that its style not only helps to 
identify potential interaction problems that led to a 
particular incident (if analysing after an incident), 
it can also be used to identify other alternate 
problems that might jeopardise the future safety of 
an application but which did not arise in this 
specific accident. 

3.2 Heuristic analysis 

Heuristic Evaluation (HE) (Nielsen and Molich 
1990) is an established Usability Inspection 
Method (UIM) in the field of HCI (Human-
Computer Interaction). The analyst, who must have 
knowledge in HCI, follows a set of guidelines to 
analyse the user interface. The technique is inex-
pensive, easy to learn and can help predict usabil-
ity problems early in the design phase if prototypes 
are available. Examples of HEs include (Nielsen 
and Molich 1990), (Pierotti 1995) and (Gerhardt-
Powals  1996). We have chosen to use Nieslen’s 
10 usability heuristics due to the nature of MPIA 
application whose interaction and visualization 
techniques correspond directly to the type of desk-
top application targeted by this kind of heuristics. 
It has been argued that such a UIM is not the most 

effective for identifying potential usability prob-
lems (Cockton et al. 2003). We understand that for 
larger, more complex systems involving complex 
activities from users, it would be more appropriate 
to base the evaluation on a user goal and involve 
analysts to predict usability as we have done while 
identifying potential scenarios of interaction with a 
system (Basnyat et al. 2005a).  
Due to space constraints we cannot present all 

of the results of the heuristic evaluation. An extract 
is presented in Table 2. The results have been used 
to identify potential software barriers. By this we 
do not mean barriers to accessibility as in (Killam 
and Holland 2003), instead we mean potential 
software barriers that could help prevent erroneous 

user interactions. 
 

Table 2. Extract of Heuristic Evaluation Results (mainly for 
WXR page unless otherwise stated)  

3.3 HAZOP analysis 

Error Type Example System Impact 

Under-motivation  Try to change tilt angle without first changing tilt selection 

mode to manual 

Tilt angle is unmodifiable 

Description error  Click on stabilization button instead of tilt selection button 

 

 

 

Change tilt angle in a temperature character box 

If tilt selection was in manual, then stabilization mode is available and 

becomes on or off depending on its current state 

If tilt selection was in auto, then stabilization mode is unmodifiable 

 

Temperature will be set to figure entered or a figure nearest that entered 

if outside the 18-28 degree range and tilt angle will remain the same 

Input or Mispercep-

tion errors  

Not realise that stabilization mode can only be changed when 

tilt selection is in manual 

Will cause delay in interaction 

Data driven error Enter a tilt angle figure of a different figure that is currently 

being looked at or discussed 

Tilt angle will be set to the degree entered or a degree nearest to that 

entered if outside of the +15 -15 degree range.  

Order Errors Changing tilt angle before changing tilt selection mode Tilt angle is unmodifiable 

… … … 

Nielsen’s 10 Heuristics Result 

Visibility of system 

status  

Mode selection status clear, tick box indicator & 

selection highlight 

Tilt selection, Stabilization and Tilt angle status 

less clear 

Match between system 

and the real world  

Abbreviations could be misleading to non-

experienced pilot 

 

Layout of cockpit, forward cabin and afterward 

cabin temperature setting displays do not match 

real world layout of aircraft (AIRCOND) 

User control and 

freedom  

 

No undo/redo however user can easily 

undo/redo their actions 

Consistency and 

standards  

 

The checkbox widget for mode selection 

behaves as a radio button widget. With respect 

to the other 2 tabs, GCAS & AIRCOND, the 

checkbox widget does not behave in the same 

way as the checkbox widget of GCAS Override 

which allows 2 boxes to be selected at the same 

time.  

Error prevention  No confirmation options 

Recognition rather than 

recall 

No recall necessary except for abbreviations 

Help users recognize, 

diagnose, and recover 

from errors 

None available 

Help and documentation  None available 

… … 

Table 1. Extract of Skill based Human Error Analysis Results on Weather Radar (WXR) page 
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Although a full explanation of the HAZOP 
technique is outside the scope of this paper, the 
interested reader can see (Kletz 1999). Briefly 
however, HAZOP is a systematic technique that 
attempts to consider events or process in a system 
exhaustively. Within a particular system domain 
(or scenario), items (or events) are identified and a 
list of guidewords is applied to the items. The 
guidewords prompt consideration of deviations to 
item behaviour (guideword examples include less, 
more, none, more than) to elicit the potential for 
arriving at possible hazardous states (Smith and 
Harrison 2002). These guidewords provide the 
structure of the analysis and can help to ensure 
complete coverage of the possible failure modes 
(Pumfrey 1999). Although a HAZOP analysis 
should generally be applied to a Piping and 
Instrumentation Diagram, we apply the analysis to 
the WXR UI. An extract of the results can be seen 
in Table 3. 
 

Table 3 Extract of HAZOP analysis results on WXR tab 

4 BARRIERS 

In this section we discuss the relation between the 
identified interaction hazards and potential barriers 
that could be imposed to minimise the threats. We 
briefly discuss barrier analysis and then detail the 
categorisation of proposed barriers according to 
Hollnagel and Levesons’ categorisations. 
Barrier analysis is often associated with 

accident analysis in aiming to determine which 
barriers failed, why they failed and how to rectify 
the problems. “Barrier analysis starts from the 
assumption that a hazard comes into contact with a 
target because barriers or controls were unused or 
inadequate” (Johnson 2003) p.355). 
A barrier is an obstacle, an obstruction, or a 

hindrance that may either (i) prevent an action 
from being carried out or an event from taking 
place, or (ii) prevent or lessen the impact of the 
consequences, limiting the reach of the conse-
quences or weakening them in some way 
(Hollnagel 1999). There are several distinctions of 
barrier types. According to Johnson (Johnson 

2003), there are three different forms of barriers, 
people, process and technology. Hollnagel 
(Hollnagel 1999) distinguishes between four types 
of barriers, Material barriers, barriers that physi-
cally prevent an action of limit the negative conse-
quence of an event; functional barriers, barrier that 
logically or temporally link actions and events; 
symbolic barriers, barriers that require interpreta-
tion and immaterial barriers, barriers that are not 
physically in the work situation. It can be seen that 
the above classifications relate more closely to 
large hardware related domains, such as chemical 
engineering plants. Little research has been carried 
out on barrier analysis and classification for soft-
ware applications except (Leveson 1991). Accord-
ing to Leveson, a distinction can be made between 
three types of barriers called lockout, lockin, and 
interlock, respectively. A lockout device “prevents 
a hazardous, event from occurring, while a lockin 
device maintains safe conditions. An interlock is 
used to ensure that a sequence of operations occurs 
in the correct order.” 

4.1 Barrier Identification 

This section is dedicated to the discussion of 
human-computer interaction/software barrier 
identification. Previously (Basnyat et al. 2005b), 
(Schupp et al. 2006) we used incident and accident 
reports to identify existing (successful and failed) 
socio-technical barriers. The case study in this 
paper differs from our previous work in that it is a 
software application and there exists no known 
accident report with reference to this particular 
application. This section describes the barriers that 
were identified following the three analyses.  
The barriers identified following the heuristic 

analysis relate mainly to the interface design, 
layout and representation. The first barrier (B1) 
(see Table 2 visibility of system status) is related to 
graphical feedback provided by the system and 
should improve user understanding of the current 
state of the system. For example, the current status 
of tilt selection, stabilization, tilt angle and 
Glidescope selection are not clear. A second 
barrier (B2) (see Table 2 match between system 
and real world) could be an improvement in the 
design of the AIRCOND page such that the layout 
of the modifiable temperatures resembles the 
layout of the aircraft to reduce possible 
misinterpretation. In the GCAS page there is a 
restriction on selecting more than one 
‘GLIDESCOPE’ option at any given time. Options 
include ACTIE, INHIBIT or STEEP APR. 
However, in relation to consistency and standards, 
symbolic coding should be imposed (B3) (see 
Table 2 consistency and standards) such that radio 
style button interaction is represented as radio 
buttons and not as checkboxes. Error prevention is 

Guideword Deviation MPIA WXR Interpretation 

MORE THAN 

or AS WELL AS 

 

All intentions achieved, 

but with additional 

effects (qualitative 

increase) 

Change tilt angle, also change 

stabilization mode to off 

PART OF  

 

Only some of the 

intention is achieved 

(qualitative decrease) 

Change tilt selection to 

manual, but do not change tilt 

angle 

OTHER THAN  A result other than the 

intention is achieved 

Mistype new tilt angle but do 

not realize, new state is 

undesired 

REVERSE  

 

The exact opposite of 

the intention 

is achieved 

Tilt angle is not 

entered/changed 

 

Early, Late, 

Before & After 

 Not analysed, could be 

applicable to procedures of the 

pilots 

… … … 
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non-existent in the application. Symbolic warning 
(visual or auditory for example) is required (B4) 
(See Table 2 Error prevention) for each mode 
change, tilt angle changes and temperature changes 
that could conflict with other modes and settings. 
However, it is not necessarily useful to have a 
warning for every modification. Providing 
reference (B5) (See Table 2 Recognition rather 
than recall) to abbreviations could help reduce 
possible misinterpretation of labels used. 
Furthermore, a combination of training (non-
technical barrier) and software feedback could help 
users recognize, diagnose, and recover from errors. 
To minimise the likelihood of the issues relating 

to the categories, detached intentions, under 
motivation, description error, input or 
misperception, omission, reversal, insertion and 
order errors, a barrier relating to the three tabs of 
the interface should be imposed (please note, not 
all of these results are available in Table 1). In 
relation to the description error issue, the barrier 
(B6) (See Table 1 description error) should enforce 
clear distinctions between button behaviour. For 
example, the Tilt selection mode and stabilization 
mode buttons are both labelled CTRL however the 
behaviour of CTRL for Tilt selection is 
auto/manual and the behaviour of CTRL for 
stabilization mode is on/off. 

The data driven error example could be 
minimised with a barrier (B7) (See Table 1 data 
driven error) providing a symbolic warning in 
relation to the difference of the figure entered and 
the acceptable figure. There is no such barrier 
implemented in the MPIA. The tilt angle range 
(lower right hand corner of the left-hand side of 
Figure 1) must be between -15° and + 15°. If a tilt 
angle outside of the range is entered, no warning is 
provided, the angle is set to the nearest entered, i.e. 
if -19 is entered, the tilt angle will be set to -15°, if 
+ 40 is entered, the tilt angle will be set to +15°. 
The same rule applies for the temperature setting 
however the range is between 18° and 28° degrees. 
The preventative barrier therefore would be to 

inform the pilot or co-pilot that their command has 
not been accepted. Also it was noted that if a 
character is entered into the tilt angle text box as 
opposed to a number, the previously set angle 
disappears and becomes simply “+ °”. We do not 
know the impact this would have on the operation 
of the application within a cockpit.  
The HAZOP analysis highlighted two further 

barriers in addition to exemplifying barriers 4 and 
7 which had already been identified. (B8) (see 
Table 3 part of) calls for a restriction on available 
interaction until the current task in hand is 
complete, in this case entry of a new tilt angle for 
the WXR. (B9) (see Table 3 more than/as well as) 
aids the user to follow a correct sequence of 
actions by modifying the UI. This would also 
support potential cognitive “errors” such as a post-
completion error.  

4.2 Barrier Classification 

In total, 10 barriers (after generalising the 
findings) were identified using the three 
complementary techniques. They can be 
considered a combination of protective and 
preventative barriers. These barriers are classified 
(see Table 4) according to Hollnagel’s 
classification of system barriers and Leveson’s 
classification of software barriers. This is 

particularly useful because it is possible to then 
allocate each type of barrier to a relevant design 
model for accurate representation. We are 
interested in functional barriers since this is where 
we can make most contribution to the field. The 
functional barriers can be modelled using the ICO 
notation and integrated with an existing system 
model of the MPIA using the same notation to 
induce a safer interaction system. The ICO CASE 
tool, Petshop supports simulation of models, thus 
once the barrier has been integrated, it is possible 
to view the impact it would have on the system and 
human interactions with the system.  

5 BARRIER MODELLING 

No Barrier Analysis 

Technique 

Identifier 

Leveson’s 

software 

barrier 

classification 

Hollnagel’s system barrier classification 

B1 Improve user understanding of current system state  Heuristic N/A Symbolic Indicating 

B2 Improve design of AIRCOND workspace such that the layout of the 

modifiable temperatures resembles the layout of the aircraft  

Heuristic N/A Symbolic Indicating 

B3 Use radio style button interaction for GLIDESCOPE option in GCAS 

workspace 

Heuristic Interlock Symbolic 

Functional 

Indicating 

Soft Preventing 

B4 Symbolic warning is required for all mode changes, tilt angle changes 

and temperature changes. 

Heuristic 

HAZOP 

Lockout Symbolic 

Functional 

Indicating, Countering, 

Preventing, Hindering 

B5 Provide references and ensure correct training regarding abbreviations. Heuristic N/A Symbolic 

Immaterial 

Indicating 

Prescribing 

B6 Enforce clear distinctions between button behaviour HERT N/A Symbolic Indicating, Countering 

B7 Provide a symbolic warning in relation to the figures entered and 

acceptable figures. 

HERT +  

HAZOP 

Lockout Symbolic 

 

Indicating 

Countering 

B8 If tilt angle is not entered, system should not allow other actions to be 

available until task in hand is complete i.e. tilt angle entered 

HAZOP Lockin Functional Soft Preventing, Hindering 

B9 When sequences of actions should be performed in a certain order, the UI 

should guide the user  

HAZOP Interlock Functional Soft Preventing 

Table 4 MPIA software barrier classification 
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In this section we briefly present the ICO 
formalism and its use for modelling the some 
functional barriers (B4, B8, B9). The implications 
of the identified barriers should be tested on the 
system in order to justify them. This could be 
achieved by formal specification of the interactive 
system and is possible using the Interactive 
Cooperative Objects (ICO) formalism. 

5.1 ICO Formalism and Barrier Modelling 

This section recalls the main features of the ICO 
formalism that we used for the software modeling 
in the project. 
The models presented later relate to the case 

study presented in section Erreur ! Source du 
renvoi introuvable.. The Interactive Cooperative 
Objects (ICOs) formalism is a formal description 
technique dedicated to the specification of 
interactive systems (Navarre et al. 2003). It uses 
concepts borrowed from the object-oriented 
approach (dynamic instantiation, classification, 
encapsulation, inheritance, client/server 
relationship) to describe the structural or static 
aspects of systems, and uses high-level Petri nets 
to describe their dynamic or behavioral aspects.  
The extensions presented in the next section 

have been developed in order to tackle the issues 
that have been raised while working in the field of 
real time command and control systems (like Air 
Traffic Workstations, satellite ground segments 
and cockpits). We encourage the interested reader 
to look at (Sy et al. 1999) for a complete 
presentation of the underlying principles of this 
formal description technique. 

5.2 An example of Barrier Modelling 

This section presents how the ICO models have 
been modified in order to integrate the functional 
barriers that have been identified using the 
framework presented above. We have chosen to 
illustrate barrier B9 as it is both representative and 
still has a limited impact on the models. Figure 2 is 
a screenshot of the tilt angle edition ICO model 
produced using Petshop environment. The image 
has been numbered 1-4 for explanatory purposes.  

 
Figure 2. Behaviour of the Tilt angle edition using ICOs 

The five blue transitions (1) the behaviour of the 
mode selection in the WXR workspace, i.e. off, 
stdby, tst, wxon and wxa (See left-hand side of 
Figure 1). The behaviour of the tilt selection button 
is represented near (2), auto and manual. The lower 
part of the Petri net, (3) represents the stabilization 
button behaviour, on and off. Finally the transition 
the behaviour of the tilt angle edit box (4). The edit 
box transition is fireable when tilt selection place 
not_auto and stabilization place stablization_off 
contain tokens i.e. representing the fact that the 
systems is in a adequate state for allowing the crew 
to modify the angle. The system model described 
above has been modified in order to represent 
barrier B9. Figure 3 illustrates the modifications 
made to the model. A new place, Lock has been 
added to the model (1). This place plays the role of 
a semaphore providing an exclusion mechanism to 
any other action in the WXR page when it does not 
contain a token. The additional transition 
StartEditing removes that token when the user 
activates the Tilt-angle edition. Transition 
FinishEditing puts the tiken back to place Lock. 
Meanwhile no other action is available and thus all 
other interface interactions are unavailable meeting 
the requirements of the barrier B9. 

 
Figure 3. B9 Barrier modelling for Tilt angle edition  

1 

2 

3 

4 

2 

1 
3 
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6 CONCLUSIONS AND FURTHER WORK 

We have presented a systematic approach for 
identifying user interaction hazards and their 
related mitigating software barriers based on three 
complementary analysis techniques: heuristic, 
human error and HAZOP analysis. We have used 
the ICO formal description technique to model the 
extracted functional barriers and integrate then 
with an existing model of a complete real-life 
embedded interactive cockpit application. The 
modelling of such barriers allows us to simulate 
potential user interactions with the system to 
ensure that the barrier eliminates the previously 
identified hazards. 
The approach also aids in identifying further 

barriers such as symbolic and immaterial barriers 
that should be represented and taken into account 
within the development process, however not 
within the system model.  
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reduction if implemented. The detailed mechanism by which these barriers behave is designed in the 

subsequent stage, using a Petri nets-based formal description technique called Interactive Cooperative 
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the operation of such systems. This paper addresses this issue of user behaviour by modelling tasks and 

activities using the same notation as for the system side (both barriers and interactive system). The use of a 

formal modelling technique for the description of these three components makes it possible to compare, 

analyse and integrate them. The approach and the integration are presented on a mining case study. Two 

safety barriers are modelled as well as the relevant parts of the interactive system behaviour. Operators’ tasks 

are also modelled. The paper then shows how the integration of barriers within the system model can prevent 

previously identified hazardous sequences of events from occurring, thus increasing the entire system safety.  
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1. Introduction 

Today, safety has become paramount in the design and operation of many technological systems. Often 

such systems present hazards that cannot be easily eliminated and therefore these systems become safety 

critical. Safety critical systems can be found in domains, such as in transportation, medicine, industry, and 
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even in financial systems. To mitigate the risk caused by the potential consequences of these hazards, risk 

reduction must occur for the system to be safe enough to be accepted by society. The means of risk reduction 

are usually dedicated safety systems that stop the evolution of scenarios leading to unacceptable 

consequences.  

To avoid double use of the word system, we will refer to safety systems as safety barriers, or simply 

barriers. When we refer to ‘the system’, this reference is made to the system that is being designed and 

operated as a whole, for instance the plant, aircraft or computer system. Several definitions for barriers exist. 

For example,  

“A barrier is an obstacle, an obstruction, or a hindrance that may either (i) prevent an action from 

being carried out or an event from taking place, or (ii) prevent or lessen the impact of the consequences, 

limiting the reach of the consequences or weakening them in some way” (Hollnagel 1999).  

“The combination of technical, human and organizational measures that prevent or protect against an 

adverse effect” (Schupp et al. 2004). 

 “Barriers represent the diverse physical and organisational measures that are taken to prevent a 

target from being affected by a potential hazard” (Johnson 2003).  

Though a long discussion of safety barriers is beyond the scope of this paper, barriers are usually regarded 

as systems that prevent or stop an undesired consequence. The ability to stop is important here, and defines 

the scope of what the barrier is. For instance a fire extinguisher is not a barrier itself, as it has to be operated 

by a human who must have received some training, and it must be in an easily accessible place. These 

elements are part of the barrier too. While systems and barriers should be independent to a certain aspect, they 

will often share components. 

In this paper we will deal with a special but very common category of barriers, those that are socio-

technical. This means that the barrier is essentially a combination of hardware and software, but also depends 

on human action for it to function correctly. The barrier thus assigns safety critical tasks to human operators 

who therefore become crucial in maintaining system safety. As these barriers are socio-technical, the tasks 

involve interaction with system software and hardware.  

The task of the operator appears often hard to integrate in system design, and may occur too late (Daouk 

and Leveson 2001) whilst the technical part of designing a socio-technical system is often systematically 

Part Socio - APPENDIX [Basnyat et al. Submitted] p 3



 4

addressed and supported by notations and tools. These integration difficulties may lead to operators not being 

aware that a task is safety critical, which can obviously cause accidents. 

It is the specification, analysis, verification and documentation of the safety critical human tasks that we are 

interested in. In this paper we outline an approach that facilitates these tasks. Most importantly, we simplify 

system analysis by explicitly defining barriers, analysing how these function, and only subsequently 

integrating them in the system, instead of directly trying to analyse the system as a whole. 

2. The Approach 

The approach employs a formal description technique to provide non-ambiguous, complete and concise 

models, thus giving an early verification of some potential problems to the designer before the application is 

actually implemented. However, formal specification of interactive systems often does not address the issues 

of erroneous user behaviour that may have serious consequences for the system. In order to provide such 

benefits, formal specification techniques can be complex, and designers may be reluctant to use them (Bowen 

and Hinchey 1999). For these reasons, the Interactive Cooperative Objects (ICO) approach presented in the 

paper is tool supported and tutorials, examples and case studies are available through the web site 

(http://liihs.irit.fr/petshop).  

We use a three step approach (see Figure 1 for approach overview diagram). Step one uses the Safety 

Modelling Language (SML) to identify a structure which achieves risk reduction (Schupp et al. 2004). This 

structure makes up the safety architecture of the system. Here the specific hazards are analysed, and barriers 

are devised that can prevent targets (e.g. workers, environment) from being affected by these hazards. In this 

first step, barriers are treated as black boxes, it is specified why they are in the system, not how they function. 

Designers are thus supported in reasoning about risk reduction conceptually. 

In the second step each individual barrier is analyzed, designed and modelled. Often various techniques are 

required to achieve this. In this paper we employ the Interactive Cooperative Objects (ICO) formalism 

(Bastide et al. 2000) based on Petri-nets to model and analyse the mechanisms of the barrier, their 

specifications and to verify their functions. The result of this step is a full design of the barrier which will 

achieve the safety function as specified in step one. This may use various parts of the system, hardware, 

software and human to achieve the required safety function.  
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Figure 1. Approach Diagram 

In the third step the functions specified by each individual barrier are connected to the system model as a 

whole by integrating the barrier into the system. In this paper we study this using the ICO-model. This occurs 

as follows. An operator has a number of functions. Some of these are specified by barriers. Using this 

mapping, it becomes clear which of the operator’s functions are specified by which barrier, and therefore are 

safety critical. Barrier functions are connected in a similar way to hardware and software components of the 

system. 

2.1 Safety Modelling Language 

The first step of our approach uses Safety Modelling Language. In short SML (Schupp et al. 2001) uses the 

Hazard-Barrier-Target (H-B-T) model to model the safety architecture of a system. The H-B-T model 

assumes that targets are vulnerable to the effects of hazards, and that targets can be protected against these 

effects by barriers. In some respects it is similar to other barrier models, such as the accident evolution and 

barrier function model (Svenson 1991), and the ‘Swiss-cheese’ model (Reason 1990). In Figure 2, a basic 

example of a SML diagram is shown. It shows that toxic fumes are hazardous to workers. However the 

worker is protected by a containment system that contains the fumes, thus being a barrier that prevents 
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exposure. As this may not be completely adequate, the worker is further protected by Personal Protective 

Equipment (PPE). Alternatively prevention is realized by removing the hazard, for example by using a non-

toxic substance. 

Containment
System

PH1 B2B1 T1

Toxic
Fumes

PPE Worker

 

Figure 2. A typical H-B-T diagram. PH1 is a primary hazard symbol, T1 a target symbol, and B1 & B2 are 

barrier symbols 

SML models hazards in a more complex manner than the basic H-B-T model in Figure 2. A hazard is 

something that has the potential to cause an adverse effect to a target. A hazard is a ‘label’ that humans apply 

to complex phenomena perceived as hazardous. SML does not provide insight into the hazardous 

phenomenon itself but into the relations this phenomenon has with the rest of the design/system. It is 

modelled using two components: Causal elements that provide a link to the mechanism of the hazard, and 

effects, that provide the link to the targets. For instance, when the elements ‘flammable substance’, ‘oxygen’, 

and ‘ignition source’ are present in a design, these will cause a fire hazard, having heat radiation, smoke and 

high temperature as effects. This is shown in Figure 3a. An example of a human factors related hazard is a 

misdiagnosis in interpreting an X-ray photograph in a medical domain. This can for instance be caused by the 

causal elements ‘training’, ‘available time’, and issues such as ‘X-ray clarity’. 
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Fire  
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Human 
Operator  

PT1  
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FH1  

Sprinkler 
System
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PH1  

X-ray 
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tation

C

Poor fire 
detection  

FH2  

Sprinkler 
System  

FT1 / 
MB1  

PB2

Testing 
Procedure

 

Figure 3: SML representation of (a) fire hazard, (b) a human error hazard, and (c) recursion. FH1 & FH2 are 

functional hazard symbols, MB1 a mitigative barrier, PB2 a protective barrier 

To model the failure of barriers, SML defines primary and functional hazards. Primary hazards cause direct 

harm to humans, neighbouring installations, and the environment. The barriers inbetween primary hazards 

and primary targets are called primary barriers. Functional hazards are phenomena due to either human 

factors or other causes that adversely affect other barriers, thus making these fail. Poor fire detection causes a 

sprinkler system to become inoperable, a testing procedure protects against this, as shown in Figure 3c. In this 

way, a risk reduction problem is defined recursively; when a barrier is used, it can fail due to a functional 

hazard. 

A consequence of this is that the list of primary hazards quickly provides insight into why the systems’ 

safety is critical. Next, accident mechanisms, and the role humans play in these can be understood via 

recursions. This and many other aspects of the language such as the different kind of symbols and barriers are 

not further explained in this paper though Figure 3 shows some. For further information on SML see (Schupp 

et al. 2006). 

2.2 System Modelling, Petri Nets, and the ICO formalism 

Whilst SML helps to define the barriers and their role in risk reduction, we need to understand which tasks are 

defined by these barriers, and how they must be integrated in the system. SML is not helpful here. We use the 

ICO formalism based on Petri nets to achieve that. The ICO barrier models built using the SML model 

represents both human and system behaviour, thus allowing task analysis. The advantages of the use of 

formalisms are that they provide non-ambiguous, complete and concise notations. Moreover, they allow to 

check and prove properties of the design, thus to verify that the barrier will function.  
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2.2.1 Petri nets 
 
Petri nets are a widely used formal description technique in systems engineering. In this paper, a dialect of 

Petri nets is used to model both the system and the behaviour of barriers. Brevity prevents a detailed 

introduction to the Petri net notation however interested readers can look at (Petri 1962). 

Petri nets are a formalism composed of four elements: the states (called places, depicted as ellipses), state 

changing operators (called transitions, depicted as rectangles), arcs (relating transitions and places) and tokens 

(representing the current state of the Petri net).   

2.2.2 Informal presentation of the ICO formalism 
 
The Interactive Cooperative Objects (ICOs) formalism is a formal description technique dedicated to the 

specification of interactive systems (Navarre et al. 2003). It uses concepts borrowed from the object-oriented 

approach (dynamic instantiation, classification, encapsulation, inheritance, client/server relationship) to 

describe the structural or static aspects of systems, and uses high-level Petri nets (Genrich 1991) to describe 

their dynamic or behavioural aspects. 

An ICO specification fully describes the potential interactions that users may have with the application. The 

specification encompasses both the "input" aspects of the interaction (i.e. how user actions impact on the 

inner state of the application, and which actions are enabled at any given time) and its "output" aspects (i.e. 

when and how the application displays information relevant to the user). An ICO specification is fully 

executable, which gives the possibility to prototype and test an application before it is fully implemented 

(Navarre et al. 2000). The specification can also be validated using analysis and proof tools developed within 

the Petri nets community. In subsequent sections, we use the symbols in Figure 4. 
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• States of the system are represented 

by the distribution of tokens into 

places  

• Actions triggered in an autonomous 

way by the system are called 

transitions and are represented as 

follows  

• Actions triggered by users are 

represented by half bordered 

transition  

 
Figure 4. An ICO model of the operation of a pump and its motor (see section 3 for full case study) 

3. Case Study 

The case study we have chosen to illustrate the proposed three-step approach is a fatal US mining accident 

(Andrews et al. 2002). We will first introduce the plant to the reader and then describe the accident. A Quarry 

and Plant system is designed to produce cement. However, the part we are interested in is the delivery of 

waste fuel used to heat the plant kilns. We will first detail the plant layout and its operation and then describe 

the accident. The Waste Fuel Delivery System is comprised of two separate liquid fuel delivery systems, the 

north and the south. Each system delivers fuel to the three plant kilns independently and cannot operate at the 

same time. See Figure 5 for layout diagram. This particular application was chosen because it relies upon the 

interactive operation of a complex, embedded command and control system involving human operators and 

technical systems. 

Part Socio - APPENDIX [Basnyat et al. Submitted] p 9



 10

 

Figure 5. Simplified Layout Diagram of Waste Fuel Delivery Plant 

Each delivery system contains the following components (presented here in the order of fuel flow): 

• A fuel storage tank (right of the diagram) 

• Two different sets of pumps, known as G and S, including motors and valves. 

• A grinder, including motor 

• One ¾” ball valve 

In order to understand the events leading to the accident, we must first describe the interaction between the 

command and control system and the north Waste Fuel Delivery System. If the north fuel storage tank is 

open, fuel flows from the storage tank to north pump-S. The north pump-S motor pumps the fuel to the north 

grinder. The fuel is grinded and passes to north pump-G. The north pump-G motor then pumps the fuel into 

the three kilns. The waste fuel delivery systems also contain sensors located in different areas. Each delivery 

system has at least one temperature sensor and one fuel line pressure sensor. There is also a pressure sensor in 

the plant kiln area where the north and south fuel lines join (H symbol in the diagram).  

The sensors detect a number of abnormal conditions that will generate warning alarms in the control room.   

The command and control system will also automatically intervene to increase or decrease the speed of the 

pump motors when pressure is too low or too high. The fuel line pressure sensors also send information 
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directly to the pump-S and G motors to maintain the correct pressure of fuel to the three plant kilns via an 

automatic step increase program. 

The waste fuel delivery system has two independent but interconnected electronic systems for monitoring 

and controlling both the north and the south fuel delivery systems. The ‘F’ system receives signals from 

sensors located on fuel lines.  The data is transmitted to a programmable logic controller (PLC), which raises 

audible and visible alarms in the control room and can also update more detailed process information on the 

monitoring screen.   

3.1 Personnel 

A number of different individuals contributed to the events that led to this accident. A Kiln Control Operator 

is located in the control room. Her responsibility is to monitor the fuel system via the screens and respond to 

any alarms. If necessary, an emergency shutdown of all pumps can be activated from the control room.  The 

Kiln Control Operator uses a two-way radio to interact with other personnel located in the basement of the 

waste fuel containment area. The victim of the accident was responsible for monitoring the Waste Fuel 

Delivery Systems and for responding to instructions given by the supervisor who was located in the 

containment area. This supervisor monitors the Waste Fuel Delivery Systems and the worker. The supervisor 

communicates with the Kiln Control Operator via two-way radio. He receives information about the fuel flow 

from the Kiln Control Operator. The supervisor instructs the worker to make adjustments to the systems and 

switch the active Waste Fuel Delivery System from north to south or vice versa. The supervisor also assists 

the worker, if needed. 

3.2 Current barriers imposed in the plant 

During the accident analysis, a number of barriers were identified as being present within the system design.  

3.2.1 Hardware related barriers 
 
Line sensors and alarms: The control room monitored the two systems by means of sensors that activated 

alarms and displayed warnings on monitor screens when specific set points for temperature or pressure were 

exceeded. Three pressure sensors were installed on the fuel line: one in the kiln area of the plant, and one each 

on the north system and south system just prior to the point where the two system lines merged into a single 
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line leading to the plant. If an alarm sounded or a warning was displayed, the control room operator used two-

way radios to communicate with personnel at other areas. 

Containment area: Contains hazardous fuel from humans and igniting sources. 

Auto-shutdown: Two independent but interconnected electronic systems monitored and controlled both the 

north and south fuel delivery systems. The “F System I/A DCS”, (Intelligent Automation, Distribution 

Control System), is used to monitor and record normal operating parameters (temperatures, pressures, etc.) as 

well as audible and visual alarms. These can be viewed on displays at the plant control room. A PLC 

(Programmable Logic Controller) network performed the basic start-up/shutdown of the system and 

responded to electronic commands from the F System. The F System recorded information it sensed, but it did 

not record the PLC's actions.  

One of the commands that the F System is programmed for, is send a signal to the PLC to de-energize all 

pumps in the fuel delivery system if a pressure of approximately 60 pounds per square inch (PSI) was not 

sensed at the line in the kiln floor area within 3 minutes of system start-up. The 3-minute set point was based 

on a normal delay of 3 minutes for pressure to reach approximately 60 PSI at the kiln area from the time the 

pumps were started.  

The fire suppression system: Located in the waste fuel containment area and should activate after a fire breaks 

out.  

Manual shut off valves: Implemented and used to prevent the north system from operating at the same time as 
the south system. 
 

3.2.2 Human related barriers 
 
Manufacturer guidelines and procedures: Among many guidelines, the manufacturers strongly recommend 

against bleeding pipes while pumps are in operation 

Training: The operators had both attended training classes on the operation of the waste fuel system. 

3.3 Events Leading to the Accident  

A seal on the north grinder overheated. The Kiln Control Operator and supervisor decided to switch waste 

fuel delivery systems from north to south. The worker switched delivery systems; however fuel did not flow 

to the plant kilns as planned.  The personnel believed the problem was due to air being trapped in the south 
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fuel pipes.  They, therefore, bled the valves of the south system while the motors were running.  In the 

meantime, due to the low pressure being sensed in the fuel lines, the automatic step increase program was 

increasing the speed of the motors on the south pumps in an attempt to increase pressure in the fuel line. 

These various factors combined to create a ‘fuel hammer effect’ in the pipe feeding the south pump.   The 

hammer effect is caused by rebound waves created in a pipe full of liquid when the valve is closed too 

quickly.  The waves of pressure converged on the south grinder. Figure 6 provides an overview of this ‘fuel 

hammer effect’. The grinder failed and fuel was sprayed on the two personnel.  The fuel ignited and fire 

spread across the entire area.  The supervisor managed to extinguish himself only.  The worker later died in 

hospital.  

 

Figure 6. Fuel Hammer Effect 

We will focus at the start-up procedure of the fuel line. We will analyse why some of these tasks should 

have been defined as safety critical, and how our method is of help here. We will investigate how using 

barriers improves design by helping to define safety critical operator tasks. Lastly we will discuss the 

integration of these barriers with the system.  
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3.4 System Analysis, starting point 

In a real world design situation a natural starting point for our analysis would exist, provided by drawings or 

other documentation of the design. We therefore shortly discuss the design of the fuel line before proceeding 

with explaining the proposed method. At this point, hazards and barriers are not yet known, hence we start 

from a purely a functional description. We will discuss a hazard analysis as well, though this is not strictly 

part of our method. 

  
Figure 7: Piping and Instrumentation Diagram of fuel line. See text for explanation.  

 
The exact manner in which the design is represented is domain dependent. Here we use a Piping and 

Instrumentation Diagram (P&ID), and a formal model. A formal system model is a required input to our 

method. Conversely, the P&ID is only required to understand the design, and may be substituted or 

complemented by other forms of documentation. In a real world situation, the formal model may have to be 

created before proceeding.  

3.4.1 Functional system design 
 
Figure 5 shows the Piping and Instrumentation Diagram (P&ID) describing the Fuel delivery system. V-1 and 

V-4 represent check valves, V-2 and V-6 are section valves, V-3 and V-5 are for bleeding, and V-7 is a ball 

valve used to control the start-up procedure. Bleeding is done before system start-up to make the pipes free of 

air, and to prime the pumps. Without priming, the pumps cannot create suction, and thus do not pump. MCU-

1&2 are the Motor Control Units, PI-1&2 are Pressure Indicators, FSystem-1&2 are the implementations of 

the pump control loops.  
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3.4.2 Formal system description 
 
The formal system description is achieved using the ICO formalism described in section 2.2. The model is 

here only briefly discussed, see [12] for a more in depth discussion. 

In [12], we have modelled each individual component of the plant (e.g. pumps, grinders, fuel tanks etc) 

using the ICO formalism. These individual components have been interconnected based on fuel flow, because 

that most accurately describes how the process functions. With this configuration, we are able to see what 

happens to fuel if for example a motor is not turned on, or a valve is left open etc. Though Figure 8 is 

illegible, it gives an overview of the complete system model for the fuel system. For explanatory purposes, 

the components have been grouped and labelled. 

A) Fuel tank 
B) Pump-S Motor and corresponding fuel flow  
C) Pump-S Bleeding Valve (V0 in Figure 5)  
D) Pump-S Section Valve (V3 in Figure 5) 
E) Grinder Motor and corresponding fuel flow 

F) Pump-G Motor and corresponding fuel flow 
G) Pump-G Bleeding Valve (V5 in Figure 5)   
H) Pump-G Section Valve (V6 in Figure 5) 
I) Ball valve (V7 in Figure 5) 
J) Plant Kilns 
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Figure 8. Petri net system model of the fuel line 
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4. Application of the approach  

This section describes the application of our three-step approach on the case study.  

4.1 Step 1: HBT analysis 

In this example hazard identification is relatively straightforward. A group of experts using a common 

identification method (e.g. a Hazop) would for instance quickly realise that both too much static pressure and 

pressure waves (which may compromise containment) can occur in this system. Though other hazards might 

be identified as well, we will concentrate on these pressure related hazards here.  

Our method however becomes important after hazard identification. Now two steps must be taken. Firstly, 

potential consequences and risk must be estimated, then barriers to reduce the risk must be designed. Though 

both steps are supported by the method, this paper focuses at designing the barriers, and in particular at 

integrating and understanding tasks carried out by humans as part of these barriers. In this example, typical 

barriers may include surge arrestors, emergency shutdown or procedural barriers (e.g. limiting pump power 

during start-up). The method helps to select, specify and verify these. 

In Figure 9 the results of a Hazard-Barrier-Target analysis using SML are shown. The primary hazard is a 

fire hazard, as this will cause harm to for instance, operators. Many potential barriers are available that may 

stop them from receiving such harm. Fire normally is caused by the presence of fuel, air and an ignition 

source. In this case fire is prevented by an Inherent Barrier (IB1), containment, which keeps the fuel separated 

from air and ignition sources. In case containment (IB1) fails, and fire occurs, a sprinkler system is present to 

mitigate the effects of the fire. Figure 9A shows a SML representation of this. More complicated and precise 

models are probably appropriate here, for instance to include failure modes of the barrier (e.g. spraying fuel or 

just leaking). SML facilitates these, but for brevity we will omit further discussion. 

Containment thus is an important barrier here. Our further discussion focuses on protecting this barrier 

against functional hazards. That is, the integrity of pipe work and casing of equipment such as the pumps and 

the grinder must remain. This may however be compromised by high pressure in the system. Therefore 

pressure surges must not occur in the system. In other words, these are functional hazards. A pressure surge 

may for instance occur because of starting a pump in the wrong way. For this to happen, four causal elements 

must be present; the pump must be running, but it must contain air as is shown in Figure 9B. Then the air 

must be bled from it, which will cause sudden flow. In an inelastic system, this will cause a pressure surge. 
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Hence, bleeding the pump (also called priming; fill it with liquid as it cannot otherwise create suction), and 

starting the pump must not occur in the wrong order. Two alternative causes of high pressure are possible as 

well; water hammer due to sudden stop of flow, and static high pressure, see Figure 9C.  

 

 
Figure 9. SML representation of hazards, barriers and targets discussed in this text (PB1 and PB2 modelled in 

this paper) 
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The system designers may now evaluate alternative barriers that potentially reduce the risk of a pressure 

surge.  The SML notation allows system designers to conceptually understand which barrier is best to use. 

Although PB1, the pump priming procedure, will prevent pressure surges (FH1) altogether, MB2 will protect 

against most transient pressure waves (FH2), now also including water hammers. PB3 will protect 

containment against both transient (FH1 and FH2) and non-transient (static) high pressure (FH3), as the 

dotted arrows indicate.  

In deciding, designers also have to take into account factors like probability of failure on demand, economic 

viability, and ease of design, construction and operation. This is not subject of further discussion here. As we 

are interested in barriers, and in particular, socio-technical barriers, we continue building an ICO model of 

PB1 and PB2.   

4.2 Step 2: Barrier modelling using Petri Nets & ICO formalism 

In this section we discuss the analysis and design of PB1 and PB2. PB1 has been selected for modelling 

because it is clearly a socio-technical barrier. It is an operator procedure, derived from manufacturer 

guidelines involving human operators and their interactions with the system. PB2 will also be modelled 

however can be considered a technical barrier since it involves valves, a programmable logic controller and 

the “F-system”. In this step the focus thus is on the barrier, not on the system as a whole. In our view, this is 

an important improvement over current design practices as the design of barriers and systems often becomes 

intermingled, causing people to loose track of which elements of the system actually are part of barriers. 

4.2.1 ICO modelling of PB1: Pump Priming Procedure 
 

As discussed a pump in this system should not run dry or be started unless it has been sufficiently "primed". 

Before describing the model of this procedural barrier, we first present informally the priming process 

exemplified on the fuel delivery system (that is graphically presented in Figure 7).  

The principle of this procedural barrier is simple. First prime the pump, then switch it on. As the system 

contains two pumps and some other components, the actual barrier is more complex. A domain expert might 

design it as follows: 
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1. Before and during the priming procedure, no motor must be on (i.e. both pump motors and grinder 

motor) 

2. Open the fuel storage tank by opening V0 Storage Valve. (Assumption: gravity will cause fuel to 

flow through the piping until V3 Section Valve) 

3. Open V2 Bleeding Valve to release any air in piping. 

4. When all air is removed, close V2 Bleeding Valve 

5. Open V3 Section Valve. (Assumption: gravity will cause fuel to continue flowing to the next Section 

Valve V6). 

6. Open V5 Bleeding Valve to release any air in piping. 

7. When all air is removed, close V5 Bleeding Valve 

8. Open V6 Section Valve. (Assumption: gravity will cause fuel to continue flowing to the kiln 

section). 

9. If required, close V3 and V6 Section Valves (when the system is not to be used immediately). 
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Figure 10. PB1 Pipe Priming Procedure Barrier 

 
Notice that this barrier reuses some functionality already present in the system. For instance, the pumps do 

not pump without being primed, therefore priming is part of the functionality with or without this barrier. The 

PB1 barrier imposes constraints on this existing functionality to ensure safety. This becomes explicit by 
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modelling the barrier this way. At the same time the barrier also defines new functionality, and implements it 

in other system components. For instance, the first step demands that the pump motors must remain off until 

the procedure defined by PB1 is completed. This is simple to implement in the barrier model, however in 

practice this can be more complicated, and detailed discussion of this is beyond the scope of our discussion. It 

may perhaps be achieved using signs near the switches referring to the procedure.  

We have modelled PB1 using the ICO formalism - see Figure 10. The diagram has been segregated into 

several sections for explanatory purposes. The model of this barrier is a combination of hardware and human 

actions. The hardware concerns the three motors, modelled in Figure 10 part 1, the Pump-G motor, Grinder 

motor and Pump-S motor. It also concerns the valves. However these are modelled together with their 

interaction with the required operator’s actions in the remainder of the figure.  

The barrier is mainly made up of arcs connecting transitions and places rather than the transitions and 

places themselves. It can be decomposed into three main parts. The first part concerns preventing the three 

motors (part 1 of Figure 10) from running before the procedure is completed. This is modelled by means of 

test arcs which impose a pre-condition on operating the bleeding valves (V2 and V5) or the section valves 

(V3 and V6) preventing them from being opened during the priming procedure if the motors are running. 

The second part of PB1 is the obligation of order of events for the operator’s interaction with the system. 

For instance part 5 shows the opening of the 1st section valve which cannot be opened before air has been 

bled from the first section of piping (part 3). 

The third part is also an obligation of order. It prevents the operator from closing the section valves (as 

shown in part 9) before fuel arrives at the plant kilns (a token is set into place PlantKiln123ReceivingFuel). 

Once fuel arrives at the plant kilns, the task is complete. The closing of the section valves (step 9 in the 

procedure) is optional and depends on whether the fuel delivery system will be started immediately in which 

case the section valves are left open, or later, in which case they can both be closed. 

4.2.2 ICO modelling of PB2 Auto-Shutdown of Pumps  
 

The second Primary Barrier (PB2) has also been modelled using Petri nets and the ICO formalism. Figure 11 

illustrates the Petri net representing this barrier. It is interesting to that it is very different from the priming 

procedure barrier previously described.  
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As previously mentioned this is also one of the barriers designed and present in the existing mining plant. 

One of the commands that the F-System was programmed to send to the PLC, was to de-energize all pumps in 

the fuel delivery system if a pressure of approximately 60 pounds per square inch (PSI) was not sensed at the 

line in the kiln floor area within 3 minutes of system start-up. The 3-minute set point was based on a normal 

delay of 3 minutes for pressure to reach approximately 60PSI at the kiln area from the time the pumps were 

started. The accident occurred 10 minutes after the pumps started. When no pressure was detected in the line 

at the kiln area, the F-System functioned properly in signalling the PLC to shut down the pumps 7 minutes 

before the accident, but the PLC did not respond. It failed the day of the accident because three months prior 

to the accident, an older PLC system was replaced by a new PLC, and the F-System connections to the older 

PLC system were never changed over to the new PLC. 

 

Figure 11. PB2: Auto shut down of pumps after 3 minutes barrier 

Figure 11, diagram of PB2, has been separated into three sections for explanatory purposes. In order to 

model this barrier, we have assumed that the F-System system starts counting to 3 minutes from the moment 

the South Pump-S Motor is started (the first motor in line from the fuel tank according to the order of fuel 

flow). The place at the top of the diagram containing a token, SouthPumpSMotorRunning, represents the 

behaviour that the motor is running. With respect to the barrier, there are main two possibilities at the end of 

the 3 minutes; either no fuel arrived at the plant kilns (modelled in parts A and B) or fuel arrived at the plant 

kilns (modelling in parts C and B). Part B of the diagram represents the plant kilns. Fuel flows to the plant 

A B C 
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kilns via the north or the south waste fuel system. The component in this diagram represents the kilns 

receiving or not receiving fuel, from the south delivery system only. The initial marking (represented by 

setting a token in the place PlantKiln123NotRecevingS) of the kilns in this model shows that the kilns are not 

receiving fuel from the south delivery system. 

In the first scenario, where no fuel arrives at the kilns by 3 minutes, the TimerNoFlow transition which has 

a timer of 180,000ms will fire, remove the token from SouthPumpSMotorRunning and from 

PlantKiln123NotReceivingS and set a token in AutoShutDownNoFuelPumpG and 

AutoShutDownNoFuelPumpS.  

In the second scenario, where fuel does arrive at the kilns by 3 minutes, the auto shut-down of the pumps 

depends on the pressure of the fuel in the pipes. If the pressure is less inferior to 60PSI, the pumps must be 

shut down. To simulate the scenario in which fuel arrives, the PlantKilns123StartReceivingSouth transition 

can be fired which will remove the token from PlantKiln123NotReceivingS and set a token in 

PlantKiln132ReceivingS. The moment fuel begins to arrive at the kilns, the transition TimedMonitorPressure 

sets a token in the Pressure place and gives it random values (representing the PSI pressure) every 80ms (in 

this model).  

In the top right hand corner of part C of the diagram, we have another timer (the same as in part A) lasting 

for 180,000ms. After 3 minutes, this transition will fire removing the token from SouthPumpSMotorRunning 

(Note, the token containing a random value is not taken from PlantKiln132ReceivingS because fuel continues 

to arrive. This is modelled using a ‘test arc’). The timer transition sets a token in the PressureToCheck place. 

From this state, two further transitions will become fireable, depending on the random value that the token in 

the PressureToCheck place has been set to. If the value of the token is superior to 60, the upper transition, 

TimePressureTestValue2 will fire automatically, and the system will simply continue to function. If on the 

other hand, the random value of the token is inferior to 60, the lower transition TimePressureTestValue will 

fire and set a token in AutoShutDownPumpG and AutoShutDownPumpS. 

It must be noted however, that the barrier model of PB2 could be considered as incomplete because it 

currently does not shutdown the pumps. The complete model of the barrier includes events and arcs connected 

to the pump motors in order to represent the connections between the models and thus automatically turn 

pumps G and S off.  
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Now the barrier models have been established they can be analysed further. For instance human factors 

methods can be used to understand whether humans can achieve the tasks that the barriers specify. 

4.3 Step 3: Connecting technical and human barriers in the system model 

Integrating the barrier in the system in the real world obviously involves much more then just integrating the 

ICO models.  However, we will continue our discussion on the integration of barriers with the system model. 

Figure 12 illustrates steps 2 and 3 of the approach. Step 2 (described in the previous section) of the diagram 

details three ways in which a barrier can be modelled. The barrier could simply correspond to adding arcs 

between existing components of the system model. However, it is more likely that the barrier will comprise of 

one or more of the following; new arcs between existing components of the system model, new components, 

and new arcs between existing components of the system model and new components. The modelled barrier 

could only have an impact on a subset of the system model but it is naturally difficult to model a barrier 

without exploiting the system model.  Step 3 (described in this section) is the integration of the barrier model 

with the system model.  

 

Figure 12  Steps 2 and 3 of the approach – barrier modelling and integration. 

As discussed, the initial state required by PB1 might be implemented by adding a sign to a power switch on 

pump, which refers to the procedure specified by PB1. Such implementation issues are beyond the scope of 

this paper however, and require additional methods. Here we only have space to briefly discuss what happens 

to the ICO models.  
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The initial ICO system model as presented in Figure 8 significantly changes because of the connection of 

PB1. In Figure 13, we present the system model (previously shown in Figure 8) with the addition of PB1 in 

the south waste fuel delivery system. Although illegible, the idea is to illustrate the complexity of adding a 

simple procedural barrier. The number of arcs has significantly increased. 

 

Figure 13. System model + PB1 

The complexity of the model has also significantly increased, mainly because of the number of added arcs. 

Also several places and transitions have been added for instance to represent the existence of air in the pipes 

which was previously not represented in the system model as this has nothing to do with the initial functional 

specification of the system. Although out of the scope of this paper, the issues of model illegibility due to the 

complex nature of the system under design, have recently been tackled. The tool used for ICO modelling, 

Petshop, has been extended to make it usable for real size interactive applications. Briefly, the three 

extensions are Restructuring models, label hiding and virtual places. The interested reader can see (Barboni et 

al. 2006) 

Two further issues must be noted. Firstly the addition of the barrier to the system model must not change 

the behaviour of the system, except of course for excluding the hazardous state it is designed for. That is to 
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say, an action or task that was previously available on the system side or via interaction with the user must not 

be changed and must be still available. Secondly, the actual modelling of the barrier inevitably involves direct 

integration with the system model because the barrier not only takes existing components, but may also rely 

on adding extra arcs to existing components. Hence it is not possible to model the barrier without taking 

notion of the system model; barriers exploit a subset of the system model, sometimes with extra transitions 

and places. Thus step 3 of the approach is the addition of the complete barrier, including any additional 

components that were not present in the existing system model.  

Using the ICO model representing the system behaviour, it becomes possible to verify that the system still 

works, to prove that the hazardous state is no longer reachable and to analyse in which way the newly 

integrated barrier may fail.  Briefly, an ICO specification can be executed to provide a prototype User 

Interface (UI) of the application under design. It is then possible to proceed with validation of the system by 

applying techniques such as user testing.  In (Basnyat et al. 2005a) we present a systematic approach for 

exploring all possible combinations of actions and events of an ICO system model using typical Petri net 

analysis techniques such as marking graphs, to analyse our model and ensure that a hazardous state is no 

longer reachable. That is to say, that a place, representing a hazardous state can no longer contain a token. 

5. Conclusions and future work 

This paper presented a three-step approach for identifying, modelling and formally specifying safety critical 

human tasks, interactive system and their associated barriers. The Safety Modelling Language is used to 

model existing as well as identify new socio-technical barriers. We then used the Interactive Cooperative 

Objects (ICO) formalism to specify the behaviour of the barriers. Finally we integrate these barriers with a 

system model, also specified using the ICO formalism. To date we have successfully integrated individual 

barriers with the system model for simulation purposes. However, it is important to note that integration of 

multiple barriers raise additional issues related first to the increase of the size of the models, second to the 

potential conflicts between the various barriers. However, we believe that formal description techniques can 

provide a unique way of detecting such conflicts even though their resolution remains an open issue.  

The approach presented is part of a larger framework of research centred on model based design, aiming to 

improve the design of safety critical interactive systems by accounting for errors (technical and human 
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related) early in the design process. We believe that by identifying and incorporating socio-technical barriers 

such as those discussed in this paper within their relevant models, we can obtain an early verification of some 

potential problems before the application is actually implemented. This will ultimately lead the design of safer 

safety critical interactive systems by embedding reliability, efficiency and error-tolerance in the system. For 

instance, as part of this larger framework, we have shown in previous papers (Basnyat et al. 2005b)how 

system design can be improved by using accident investigation techniques.  
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Abstract

Elections are increasingly dependent on computers and
telecommunication systems. Such “E-voting” schemes cre-
ate socio-technical systems (combinations of technology
and human organisations) that are complex and critical,
as the future of nations depends on their proper operation.
Thus heated debate surrounds their adoption and the pos-
sible methods for making them demonstrably dependable.
We discuss the dependability requirements for such systems,
and the design issues in ensuring their satisfaction, with ref-
erence to a recent proposal that uses cryptography for fault
tolerance, in order to avoid some of the perceived dangers
of electronic voting. Our treatment highlights the need for
considering the whole socio-technical system, and for inte-
grating security and fault tolerance viewpoints.

1 Introduction

Many electronic voting methods are currently being in-
vestigated in many countries. Brazil held its first fully elec-
tronic national election in 2002. State-level electronic elec-
tions have been held in the US. Across Europe many coun-
tries have also trialled electronic voting systems.

“E-voting” has both potential advantages and risks.
These systems can make the casting of a vote more con-
venient and may therefore lead to improved turnout. Elec-
tronic recording and counting of votes could be faster,
more accurate and less labour intensive. Digital technology
could also provide greater anonymity than conventional ap-
proaches.

On the side of risks, the scenario of integrated com-
puter and communication systems performing all functions
from collecting the voter’s opinion (without paper records)
through transmitting and counting them raises the possibil-

ity of large-scale vote-forging and/or spying on voters (and
thus coercion or vote-buying). The possibility of these sys-
tems being implemented on current off-the-shelf computing
platforms and with the low assurance standards common in
much of the software industry has caused many experts to
voice a concern that huge risks are being taken and spurred
demands for voter verifiability of the functioning of voting
machines, and guaranteed possibility of recounts, usually
via paper records.

Any national or state election is a large, complex and im-
portant system, involving millions of voters and thousands
of officials, as well as being increasingly reliant on IT. It
is of immense importance that these systems be depend-
able. In this paper, we discuss the conventional dependabil-
ity attributes of an e-voting system, including accuracy, se-
crecy, availability, and discuss the design concerns involved
in guaranteeing them. Our focus is on proposed methods for
reducing the current hazards in elections using voting ma-
chines in secret booths, not on the more extreme proposals
for internet or mobile-phoned based voting. However, our
discussion of requirements has a very general scope. We
also consider the issue of reputation, and show that attacks
on the reputation of a electronic voting system may poten-
tially be more damaging than attacks on the system itself.

The paper is organised as follows. Section 2 discusses
the balance between design time and run time measures for
achieving and assessing the dependability of such a com-
plex system. Section 3 describes the high-level dependabil-
ity requirements for such a system. Section 4 introduces the
Prêt à Voter scheme [5] for ensuring tamper-resistant, se-
cret, paper-less transmission of ballots. Section 5 proceeds
to show the fault-tolerant design implied by the proposed
scheme and discuss the allocation of dependability require-
ments to subsystems, for defence against both accidental
fault and malicious attacks. Sections 6 and 7 further discuss

1
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some peculiarities of this socio-technical system: the com-
posite, human and technical recovery mechanisms required
for detected failures, and the risk of “loss of reputation”.
Our conclusions follow in Section 8.

2 Assurance

In security there is a common tendency to look for prov-
able correctness – impossibility of successful attacks – but
the community’s attitude has been evolving towards a more
substantial role for fault tolerance and for probabilistic as-
sessment (as highlighted by the increasing visibility of se-
curity in recent dependability conferences). It is considered
essential that mechanisms be provided to detect, contain and
recover from failures. These mechanisms need to be robust
in the face of malicious as well as accidental threats.

There are a number of ways in which assurance in a sys-
tem’s correct behaviour with respect to a specification can
be achieved. These can be thought of as lying along a spec-
trum with pure verification at one end and run time monitor-
ing at the other, with testing lying somewhere in between.
It is clear that we should use all of these techniques in com-
bination to achieve increased levels of assurance.

In order to verify a system we assume some model of its
behaviour and subject this to various forms of mathematical
analysis to prove that it will satisfy certain (formally stated)
requirements. This is fine up to a point but suffers from a
number of deficiencies:

• Our analysis will only be as good as the models on
which it is based. Unless we have succeeded in ensur-
ing that our models are entirely faithful with respect to
the properties of interest, proofs about the models will
not necessarily carry over to the real system.

• It is difficult to ensure that the verified system will cor-
respond exactly to the fielded system. Even supposing
that our models start off as being faithful representa-
tions of the real system and its environment, systems
and their environments evolve. This evolution, which
could include degradation, patches etc, can invalidate
the original analysis.

On the other hand, run time monitoring (error detection)
also improves assurance. It directly improves dependabil-
ity, because detecting unwanted states (“errors”) within the
system can be made to trigger containment and recovery
mechanisms; and it will deter some possible attacks1. But it
also suffers various drawbacks:

1We will follow the convention of calling error an undesired state in-
side the system, failure an undesired output of the system to the exter-
nal world, irrespective of whether they are caused accidentally or by mal-
ice [1]. Errors may or may not cause failures, and the goal of fault-tolerant
design is to reduce the probability of their causing failures.

• Monitoring can be difficult: you need to know exactly
what to monitor, monitoring has to be accurate and, in
a hostile environment, robust against subversion.

• Good response and recovery strategies may be difficult
to devise and execute.

• Detecting a violation at run time may be too late. For
example, once a secret is out, it cannot be recovered.

• Inappropriate or compromised behaviour may not be
easy to detect. Some properties, by their very nature,
are not amenable to run time monitoring within the
system that needs to satisfy them. Information flow
properties (e.g. an attacker cannot read information
transmitted along a wire) are a case in point. It is of-
ten the case that no monitorable event occurs when an
information flow is violated.

We see these issues very clearly illustrated in the context
of digital and electronic voting systems. Many of the pro-
posed and even deployed electronic voting systems depend
heavily on claims for verified and tested code, but fail to
provide even the possibility of run time monitoring.

The Prêt à Voter Scheme [5], which we discuss in Sec-
tion 4, is almost at the other extreme: for the accuracy prop-
erty, virtually no reliance need be placed in the deployed
components and all the assurance comes from close moni-
toring of the behaviour of the components. For the secrecy
and availability requirements some verification will be nec-
essary. It is therefore more amenable than many other vot-
ing systems to a dependability or fault tolerance style anal-
ysis.

3 Electronic Voting Dependability Require-
ments

There are a large number of types of election, common
examples being “First Past The Post” and “Proportional
Representation”. Although the requirements we consider
here will apply to all elections, the type of election itself
will introduce its own complexities. For concreteness, in
this paper we will consider a very simple scenario. We will
assume several candidates, with each voter selecting only
one, and the winner being the candidate with the most votes.

We will refer to the dependability of an “election sys-
tem”, by which we will mean the socio-technical system
– people, as well as physical, computing and communica-
tion resources – performing all functions from collecting the
vote through to ultimately producing the final tally.

We outline in this section a template of attributes and de-
pendability requirements, that one would need to elicit in
order to design and assess an election system. The details
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to fit into the template (down to numerical values of param-
eters) should be informed by the special type of election
used in that society, the preferences of the society using the
system and the specific threats that elections face in that so-
ciety; politicians required to state these requirements would
obviously need the assistance of disciplines outside com-
puting and engineering.

The main requirements of an election system belong to
two categories: accuracy and ballot secrecy. Ballot infor-
mation should be transmitted and counted correctly, and the
link between voters and the votes they have cast should be
secret. Neither property is fully guaranteed in current elec-
tions, so a reasonable requirement for any improved elec-
tion system is for counting errors and violations of secrecy
to be within acceptable limits. Dependability requirements
will be about sufficiently low probabilities of these limits
being exceeded, given the environment in which the sys-
tem is deployed and, in particular, the threat profile, e.g.,
the technical ability, aggressiveness, and willingness to take
risks of the potential attackers. We will discuss these ac-
ceptable limits and dependability requirements in the next
subsections. The primary dependability requirements about
accuracy and ballot secrecy imply secondary requirements:
the system must be robust and resilient in the face of acci-
dental and malicious threats. The balance between imper-
viousness to attack (or avoidance of accidental faults) and
ability to survive them (or tolerance of accidental faults) is a
matter of design trade-offs; but in practice a large amount of
the latter seems necessary, since the system needs to survive
highly competent and motivated attacks, and to be trusted
by the general population. If the system does fail with re-
spect to the primary requirements (i.e. accuracy or secrecy
requirements are violated) in an election, it is essential that
the failure be detected and flagged, so that it can be properly
dealt with.

It is also essential for such a system to gain public trust
in its accuracy and secrecy. One way to help engender
confidence in the accuracy of the system is to provide voter
verifiability: some way for the voter to assure themselves
that their vote has been accurately included in the tally.

An important difficulty with these requirements is that
naive implementations of verifiability would immediately
violate secrecy, by requiring that votes be traceable back to
the voters, or that a voter declare his/her vote when claiming
that it has been miscounted. So, “end-to-end” checks, com-
paring the output of the system against its input, are not fea-
sible without jeopardising secrecy. Assurance of accuracy
must thus rest on assurance (by prior verification and/or run
time monitoring) of the proper functioning of the mecha-
nisms meant to protect it.

3.1 Accuracy

At the most abstract level, we would like the outcome
of an election to accurately reflect the “intentions” of the
eligible electorate. At this level we would need to con-
sider social and psychological issues that might, for exam-
ple, favour certain sectors of society, bias voter choices or
encourage voter error.

In this paper we will restrict ourselves to the purely tech-
nical question of ensuring that votes counted in the final
tally accurately reflect votes cast. We will assume that is-
sues of authentication and prevention of double voting have
been addressed.

Scientific studies of dependability, particularly of
software-based systems, have long exhibited some tension
between “perfection” and “good enough”. It has sometimes
been said that a computer program can be made fault-free
so that it will never fail during its life: from a dependability
perspective it is “perfectly reliable”. Claims for complete
perfection of this kind are now rarely, if ever, made. In-
stead, it is generally recognised that programs of even mod-
est complexity may contain faults that will show themselves
as failures at some time during the operational life of the
system. Once this view is taken, questions about the ac-
ceptability for use of a system will involve dependability at-
tributes such as reliability and safety: e.g. they will address
questions such as “will it fail sufficiently infrequently?”

These considerations also apply to voting systems.
Whilst we would like to have perfect accuracy, i.e. a com-
plete guarantee that the result of an election reflects in all
respects the voting intentions of the electorate, this seems
an unrealistic goal in practice2. Rather, we need to know
that a result is sufficiently accurate, or (expressing it slightly
differently) that sufficient confidence can be placed in the
result.

In order to be able to talk about the “dependability” of
a voting scheme we need to put some flesh on the bones of
informal concepts like “sufficient”. The key here is uncer-
tainty. There will be uncertainty about the nature and num-
ber of faults in the voting system, there will be uncertainty
about the kinds and frequency of malicious threats it might
meet. The result will be uncertainty in the relationship be-
tween the reported result of an election and the “true” result.
As usual in dependability, the appropriate calculus for un-
certainty is probability.

There are three potential sources of uncertainty: collec-
tion, transmission, and counting of votes. Even if we knew
the intentions of all voters, there would be some uncertainty
as to what is collected, and in how that is transmitted; even

2This remark is not intended to imply that approaches that seek perfec-
tion are invalid. On the contrary they may be plausible means of achieving
dependability. For example, it may be possible to prove the absence of a
particular class of faults: a kind of conditional perfection.
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if we knew what is transmitted, there is some uncertainty as
to how the outcome of the election is decided (for an exam-
ple of this in paper-based elections, consider the variations
in recorded totals between successive recounts in closely
contested elections).

In any calculation, all the variables involved (votes as
cast, votes as transmitted, etc.) would be random variables.
So any measure of the discrepancies must be a stochastic
one. For example, we might say that a voting procedure is
“sufficiently accurate” so long as the expected proportion
of votes reported for every candidate does not differ from
the actual proportion by more than 1%. Alternatively, we
might require that there is less than a 5% chance that any
difference between a reported proportion and the actual one
exceeds 1%.

Clearly, other formulations of what we mean (i.e. re-
quire) by sufficiently accurate are possible, even in this ex-
tremely simple example. In more complex voting schemes
this issue of deciding what we mean by “sufficiency” may
turn out to be quite difficult, but obviously necessary for a
rational choice of system design.

Another difficulty in voting schemes is that the input for
a particular election will generally be unknown: the confi-
dentiality requirement will see to that. So, directly checking
whether a particular election result is sufficiently accurate
will be difficult or impossible. Of course, there are many
systems for which we cannot know the exact value of the
input data, but here we are specifically forbidden to find it
out, by the requirement of confidentiality.

On the other hand, we can test a voting scheme to see
how it behaves when presented with known inputs, and even
with selected types of attacks or attackers (“tiger teams”).
This will give some information – deterministic or proba-
bilistic – about its dependability with respect to accuracy
requirements, either conditional on the scenario adopted on
testing, or unconditional, assuming a distribution of inputs
and threats. Techniques akin to the various forms of soft-
ware testing and fault injection have their place here.

3.2 Ballot Secrecy and Voter Anonymity

It will typically be a requirement that the way any indi-
vidual voter voted remain secret. Besides the natural desire
for privacy, ballot secrecy serves to prevent coercion or vote
buying. The key point is that there should be no way a third
party can determine which way a voter voted, even with
voter cooperation.

Note that absolute assurances of total secrecy may not be
realistic here. In certain exceptional circumstances secrecy
will be violated: for example, if all the votes went one way.

Instead of ballot secrecy we might require voter
anonymity. At first glance one might suppose that these
are equivalent. We define anonymity to be that the observ-

able behaviour of the system remains the same under ar-
bitrary permutations of the input ballots. This approach is
formalised in [6] using the process algebra CSP. Using this
definition, the scenario of everyone voting for the same can-
didate would still be deemed to satisfy anonymity but would
fail the ballot secrecy requirement. Given that such a sce-
nario is perfectly admissible and that the violation of ballot
secrecy seems inevitable, this would seem to suggest that
voter anonymity is the more appropriate requirement.

We will continue to use the informal name “secrecy” for
the set of attributes and requirements about constraints on
what one can learn about another’s vote.

How would one define dependability requirements with
respect to the secrecy attribute? Vote secrecy is limited by
many factors outside the election system proper, so that a
practically zero probability of secrecy violations in the elec-
tion system itself, even if possible, may not be required. In-
stead, we will have a notion of “secret enough”: a bound
on the number and pattern of compromises of secrecy that
are rare and limited enough not to endanger the general in-
tegrity of the process. However, this bound will depend
more strongly than the one for “accurate enough” on the sit-
uation around an election: e.g., in a society where reprisals
against opposition voters are likely and severe, the knowl-
edge that even a small sample of votes can be known to the
government may be enough to allow widespread intimida-
tion.

3.3 Voter interface issues

An e-voting system that is used by a large and diverse
group of people must have a readily understandable user
interface, and the tallying and auditing mechanisms must
be throughly understood by the people responsible.

More subtly, the voting procedure should not introduce
any bias into the choice that the voter makes. If the ballot
includes questions that are not of interest to a voter, then
he or she may tend to chose (for example) the first of a
number of options. An assertion about the lack of bias of
a voting procedure (procedural invariance) would need to
be substantiated by a cognitive argument.

3.4 Verifiability

A voter should have grounds to trust that his or her vote
has been properly counted. Further, if it has not been prop-
erly counted, the voter should have a means of recourse to
demonstrate this. However, this means of recourse must not
be able to be used by a third party to coerce the voter into
revealing his or her vote.

Demonstrating to yourself that your vote was counted
is important, but it is also important that any voter can be
assured that all votes are counted. This is called universal
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verifiability in [7]. These properties go a long way towards
providing transparency of the mechanisms, and their pres-
ence in a voting system would make an important contribu-
tion to an argument for public trust.

4 The Prêt à Voter Scheme

We now present an overview of the Prêt à Voter scheme.
For full details see [5]. Prêt à Voter is based on the Chaum
scheme [3], but uses a radically different mechanism to rep-
resent the encrypted vote value in the ballot receipt. In place
of the visual cryptographic techniques of the Chaum orig-
inal, the voters are provided with a familiar-looking ballot
form. The voter makes her selection in the usual way by
placing a cross against the candidate of choice. Thus a bal-
lot with a vote for the Sophist candidate is indicated thus:

Nihilist
Buddhist
Anarchist
Sophist X
Solipsist

7rJ94K

To cast the vote, the voter now separates the right hand
(RH) and left hand (LH) strips. The LH strip should be
discarded, by, for example, feeding it into a shredder. The
RH strip is placed under an optical reader or similar device.
This records the information on the RH strip: the random-
looking value at the bottom of the strip and the position
of the X , i.e., the numerical representation of the cell into
which it has been entered. The RH strip is now returned to
the voter to retain as her receipt:

X

7rJ94K

The ballot forms would be augmented with various anti-
counterfeiting devices, and a digital signature applied to the
receipt when the vote is cast.

Thus far, aside from the retention of a receipt, the pro-
cess of casting a vote is entirely familiar, to a UK voter at
least. Now, an objection at this point is that possession of
a receipt would open up the possibility of coercion or vote-
buying. The trick that sidesteps this is that the order of can-
didate lists on the ballot forms are randomised. Choose a
ballot form at random, and the order in which the candi-
dates are shown will be unpredictable. Clearly, with the LH

strip removed, the RH strip alone does not indicate which
way the vote was cast.

Now the problem is how the votes will be extracted and
counted. This is where the random value printed on the
bottom of the receipt comes into play. Buried cryptograph-
ically in this value is the information needed to reconstruct
the candidate list shown on the LH strip and visible to the
voter when they cast their vote. This information is en-
crypted under the secret keys of a number of tellers. These
tellers are automated, but have a similar role to the human
tellers that count the votes in a manual election. Thus, only
the tellers acting in consort (in an anonymising mix [4]) are
able to reconstruct the candidate order and so interpret the
vote value encoded on the receipt.

Once the election has closed, all the receipts are trans-
mitted to a central tabulation server which posts them to a
secure web bulletin board (WBB). This is a write-only, pub-
licly visible facility. Only the tabulation server can write to
this and, once written, anything posted to it will remain un-
changed. Voters can visit this WBB and confirm that their
receipt appears correctly.

After a suitable period in which voters can verify that
their receipts have been correctly posted, the set of tellers
take over and perform a robust, anonymising, decryption
mix on the batch of posted receipts. Intermediate stages are
also posted to the WBB for partial random audits, and so is
the final list of decrypted, anonymised ballots.

In summary, the tellers perform a set of publicly avail-
able algorithms, aimed at guaranteeing that all votes are
properly decrypted and also that accidental or malicious
vote tampering (altering or deleting ballot contents or
adding spurious ballots) has only a minuscule probability
of going undetected. We omit the details of this here, but
they can be found in [5].

All this is fine as long as all the steps are performed faith-
fully. If we are prepared to trust the entities executing this
process then we can be confident that the election will be
accurate and the vote values kept secret. However, the aim
of schemes like the ones devised by Chaum and Neff and
Prêt à Voter is to achieve these goals without the need to
place such trust in any of the components of the scheme.
In section 6 we outline the mechanisms used to detect any
malfunction or misbehaviour by the devices or processes
that comprise the scheme.

5 Satisfying the dependability requirements

The function of the election system is to transmit the in-
formation from the voting booth to the counting stage. Prêt
à Voter (like Chaum’s scheme [3]) is remarkable for its error
detection mechanisms, which, when coupled with appro-
priate error treatment, allows a highly dependable system
to be built out of undependable components. Assurance in
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the error detection mechanisms themselves, in turn, requires
proof of properties of their algorithms, plus verification of
their implementation.

Accuracy is assured by a series of checks on the mecha-
nisms that perform stages of the transmission and counting.
Some are performed directly by the voter in the booth ( Sec-
tion 6.1). The posting on websites of voters’ (encrypted) re-
tained receipts, together with people actually checking the
posted data against those left with the voters detects errors
during the transmission of the votes from the booth to the
initial teller. The auditor detects accuracy errors in each
decryption-based stage of the transmission.

So far, we have not considered denial-of-service attacks.
In a viable design, detected errors in the core system (that
part of the system defined thus far) must lead to attempts to
recovery, repeated if necessary. Eventually, therefore, either
the result is considered valid by the error detection mecha-
nisms (and can thus be either a real success or a secrecy
failure or an accuracy failure) or the election does not com-
plete.

To evaluate the whole election system, it is necessary to
consider the threat profile: probability of attacks of each
kind. Importantly, this is affected by social and cultural fac-
tors and by the would-be attackers’ perception of the effec-
tiveness of the error detection and/or recovery mechanisms,
and of the severity of consequences that they can trigger
for the attackers. This assessment requires understanding
of social and psychological factors of deterrence that are
certainly outside the competence of reliability engineering.
Yet, this dependability analysis suggest clearly which ques-
tions the decision makers need to ask their social scientists,
historians and psychologists.

In the high-level system design stage, a designer uses
the dependability requirements (Section 3) to appor-
tion responsibility to the various subsystems, and judge
whether the subsystems proposed are suitable for the sys-
tem to satisfy the overall system requirements. For ac-
curacy and secrecy failures, Pr(undetected failure) ≤
Pr(error in core system) × (1 − coverage) where the
coverage of the error detection mechanisms is their prob-
ability of detecting an error, if an error did occur. Given
the overall requirement (left-hand term), high-level design
must determine the two right-hand terms. This will typi-
cally be done separately for different categories of failure
modes and causes. Errors may be caused by misfortune
(accidental faults) or malice (attacks, also called intentional
faults). For the former, familiar techniques can be applied
towards a conservative assessment of their likelihood and
the coverage of the error detection mechanisms. The threat
profile is an input for the designer of the detection systems
that have to assure the required coverage. Technical analy-
sis of Prêt à Voter gives a high coverage, conditional on as-
sumptions on the type of attack (e.g., no collusion between

multiple tellers and/or auditors) that must be satisfied via
further technical and organisational mechanisms.

As for non-completion failures (ncf ), if the reaction to
a detected error were to abort an election we could write
Pr(ncf) = Pr(error)(coverage) + Pr(false alarm)

We observe that shifting responsibility for avoiding un-
detected failures from the security of the mechanism col-
lecting the votes to high detection coverage may shift the
focus of some adversaries to causing non-completion fail-
ures, by increasing their attacks on either the core system
or the error detection mechanisms. On the other hand, for a
given strength of the security of the core system, adding de-
tection mechanisms will have the desired result of reducing
undetected failures and increasing the risk for attackers, but
will still increase the probability of non-completion failures,
via possible errors in detection mechanisms.

6 Recovery Mechanisms and Strategies

The core scheme provides a high level of assurance that
any accidental or malicious corruption of votes will be de-
tected. But these error detection mechanisms by themselves
do not reduce the probability of failures. Detected errors
must also be dealt with properly; aborted elections are still
failures.

In this section we propose some possible strategies and
explore their implications for the robustness of the scheme.

Leaving aside for the moment problems that might arise
outside the core system, there are basically three failure
modes with respect to the accuracy requirement:

– Ballot forms might be incorrectly constructed in
that the information buried in the cryptographic
value on the receipt might not in fact match the
candidate order shown on the LH strip.

– The receipt might be incorrectly recorded or
transmitted to the WBB.

– The tellers might fail to correctly decrypt the re-
ceipts.

For all of these there are random auditing mechanisms in
place to (probabilistically) detect any malfunctions or cor-
ruption. Details can be found in [5].

Turning to the effects of attacks, our response strategy
should be based on patterns of detected errors rather than
isolated errors. It is possible for individual errors to look
quite innocent and yet a group of errors taken together may
constitute a collusion attack resulting in the deliberate cor-
ruption of a vote. In defining our response strategy there-
fore, we must take account of the nature and patterns of er-
rors. This is reminiscent of the challenge faced by intrusion
detection in general.
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6.1 Ballot form errors

Voters are urged to confirm that their ballot sheets appear
correctly in the input column of the web site. If the voter
fails to find a copy of their receipt posted or finds that the
posted receipt does not match their copy, then they should
report this. The process of collecting and collating such re-
ports needs to be handled carefully: the dependability of the
scheme depends on appropriate response to such reports. It
is important that voters are made aware of a recognised and
dependable reporting authority, for example the returning
officer.

It may be necessary to check voter claims of missing or
corrupted receipts. This can be done by requesting voters to
provide their receipts and confirming each report. If a par-
ticular booth is confirmed to have lost or corrupted a number
of ballot receipts, it should be assumed to be either defective
or malicious and taken out of service. It may be necessary
to rerun votes cast at that booth.

6.2 Teller errors

The auditor performs checks on a random sample of
links on the WBB for each teller to establish whether or
not the decryptions have been correctly performed. All re-
sulting errors need to be collated and analysed.

Requirements can be set on the tellers to deploy reason-
able quality computing systems and cheap fault-tolerance to
achieve very low probability of accidental corruption of bal-
lots. The purpose here is not to avoid undetected errors at
the system level, but to make even minor disruption of elec-
tions by accidental faults very unlikely, and thus: protect so-
ciety’s trust in the election system; prevent non-completion
failures; and ensure that only massive effort by attackers
can disrupt an election, and that such attacks cannot be
disguised as technical “glitches”. This improves diagnosis
(discriminating malicious from accidental faults) and thus
also improves society’s confidence.

6.3 Secrecy failures

The notion of a detector for secrecy errors raises inter-
esting issues. The main question is: what would such a
detector detect? There are clearly plenty of blatant errors
that could be detected. If say a teller applied the null per-
mutation then this would be picked up at audit. On the other
hand there appear to be a large class of secrecy failures that
would not manifest themselves in the target system, espe-
cially when we note that there are restrictions on where we
place our monitors.

Consider the following: we have just two tellers and they
are in collusion: the first applies a “random” permutation

and the second applies the inverse. This is clearly a viola-
tion of secrecy, or at least puts the system in a hazardous
state w.r.t. secrecy.

It could be argued that if nobody but the tellers knows
that this has occurred then no failure of secrecy has oc-
curred. There is always the danger that this will leak out
at some time to some group later. Also, the fact that such
a fault could occur with our having no way to detect it is
itself worrying and has the potential to undermine confi-
dence. The fact that we may not be able to detect such haz-
ardous states also means that it is hard to demonstrate that
such a state has not occurred. Absence of an alarm does not
imply absence of error state.

We should note that we could in principle audit all links
and detect this attack, but this would then immediately vio-
late the secrecy property we are trying to preserve.

7 Trust and Reputation

One of the primary assets of an election system is its
reputation. Indeed, the reputation of the election system is
an important factor in the mandate of any person elected by
it. An attack on the reputation of an election system could
be as damaging as an attack on the system itself.

One way of thinking about the reputation of an election
system is in terms of the confidence that the voters place
in it. We can be more precise, and say that voters have re-
quirements of election systems expressed as dependability
claims (“its accuracy is no worse than ... , its secrecy is
no worse than ...”). One can never be sure that such claims
are true, but on the basis of the available evidence one will
have a certain confidence in their truth. We can expect that
if confidence were to fall below a certain threshold, there
could be serious social implications.

These ideas are close to recent formal approaches to
confidence in reliability and safety claims for systems [2].
There, an attempt is made to model confidence as a (possi-
bly subjective) probability that a dependability claim is true,
based upon the evidence and reasoning of a dependability
“case”. The novelty in a voting system is that intentional
faults, as well as accidental ones, can contribute to a reduc-
tion of confidence in a dependability claim.

Just as worrying as the scenario of public opinion mis-
trusting a dependable system is the scenario of a populace
trusting an undependable system, leading to elections be-
ing stolen through vote tampering or vote buying. Efforts to
avoid the first danger might well increase the likelihood of
second. An adversary could even pursue strategies like mi-
nor sabotage of a few elections, causing many minor error
reports which governments will be compelled to play down,
so reducing the public’s sensitivity to reports of problems,
and reducing the probability of appropriate reactions to the
real, all-out attack when eventually launched.
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A comprehensive threat profile should consider attacks
against reputation. This highlights again the importance of
integrating the considerations from the social and human
sciences, that should inform the dependability requirements
for the election system, with the technical considerations
from reliability and security engineering (including human
factors and organisational issues) that determine the feasi-
bility of satisfying the requirements via the various possible
designs of election systems.

As an example of a possible attack against the reputation
of the encrypted ballot receipt, consider the case where an
attacker wishes to coerce people into voting in a particular
way. He could (falsely) claim that he is able to decrypt the
partial receipts retained by the voters, and insist that they
are surrendered to him. Voters would then have to choose
between believing the experts that told them the receipt was
undecipherable, or believing the coercer.

Defences against such an attack might include things like
specific public information measures to build public trust.
These defences would necessarily need to be psycholog-
ically and sociologically informed, and indeed building a
comprehensive threat profile would also require interdisci-
plinary thinking.

The reputation of a voting system could also be damaged
without a malicious “attack”, e.g. by even minor acciden-
tal errors being detected and requiring the telling procedure
to be rolled back: the transparency of a system may work
against the system on a societal level.

Attacks on the reputation of a system are not new, nor
is defending against them. What makes the reputation of
an electronic voting system interesting is the criticality of
conveying the supporting arguments to such a large number
of people. Compelling dependability arguments are usually
designed to convince experts; here the general public must
be convinced.

8 Conclusion

We have discussed at a high level the dependability re-
quirements of an election system, which includes computer
and communication technology as well as the people and
organisations controlling it.

With its large scale and tight interconnection of techni-
cal and human components, an election system exemplifies
the kind of systems that will become increasingly common.
It is comparable in scale to some telecommunication net-
works or corporate IT systems, but is more similar to an
anti-missile defence system in being an on-demand system
with very stringent requirements on the single demand. It
differs from all these other examples in having limits on its
error detection capabilities imposed by a secrecy require-
ment, rather than just by physical constraints or costs; and
its usefulness depends more heavily than with many other

systems on preserving its reputation with the public, which
is vulnerable to many kinds of attack.

The solution we have used as reference in our discussion
relies on a combination of provable properties of crypto-
graphic algorithms, and extensive error detection methods
which in turn depend on both technical and social mecha-
nisms for their functioning.

Our discussion has emphasised three aspects: require-
ment specification, with the need to translate society’s infor-
mal requirements and to consider how threat profiles change
compared to those affecting non-electronic elections; de-
sign issues for the fault-tolerant system, including the need
to complement the basic cryptography-based ideas with ex-
plicit methods for assurance of the detection mechanisms
and explicit recovery mechanisms, subsystem-level depend-
ability requirements and the concern for denial-of-service
attacks; and the need to integrate technical considerations
with psychological and social ones that determine the threat
profile, the voters’ reactions and the effectiveness of the
socio-technical mechanisms for error detection and recov-
ery.
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Abstract. This chapter discusses the relevance of timing to the design of inter-
active systems. It introduces a set of dimensions that can be used by designers to
assist the process of thinking about interactive systems. It explores examples of
analysis of interactive properties of a system design using a specification based
on uppaal and in particular assesses design choices that arise from timing conse-
quences of a design.

1 Introduction

Timing is an important and yet neglected feature of the design and implementation
of interactive systems and in understanding their usability. People use technology to
complete activities, to achieve goals, to judge whether to delay goals, and to do things
imperfectly under time constraint. People’s experiencewithin an environment involving
computer based systemsmay be affected by temporal concerns. For example, in the con-
text of an airport information system, travellers may become anxious if the status of a
flight is not updated often enough, or may become annoyed if they are reminded too of-
ten. Time requirements may relate to experience and may be subjective or requirements
may be critical to the safety or security of a system and therefore objective. This chap-
ter highlights the importance of time in design and suggests ways that devices within
systems may be designed to support aspects of time in the user’s interaction more ef-
fectively. Finally the chapter briefly illustrates the role that modelling techniques might
play in helping designers to explore the timing implications of a design.

In practice time is an element of the context in which a device is placed that may
affect its activity in a number of ways. It may be a factor to be taken into account in
relation to the behaviour of the device itself. Properly designed systems may help peo-
ple juggle activities to use time most effectively, may enable them to predict episodes
that are likely to involve high workload and deal with them accordingly, may keep the
user in control while taking away those aspects of the activity that can be dependably
automated. Time is a resource to be used effectively. Systems may use timely feedback,
or timely recommendations to allay the stress of not being sure whether some future
event will happen at the appropriate moment.

The chapter has two objectives. The first is to discuss the way design may be af-
fected by time and to explore dimensions that may help designers to account for time in
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design. Therefore Section 2 discusses a number of time dimensions and Section 3 con-
siders ways of thinking about how the system to be designed resources the user. Finally
Section 4 explores the role that modelling may play in helping designers to identify
timing issues in the design of a particular system.

2 Time dimensions for design

Design of the whole interactive system may be improved by a proper consideration
of time. There are a number of dimensions that may be important in a consideration
of how time might impact a design. These dimensions may be more or less important
depending on time granularities, the nature of the context in which the device is situated,
the training and capabilities of the user and may be categorised as: internal / external;
subjective / objective; sporadic / continuous; user initiative / system initiative; extreme
/ normal.

Internal / external The pace or timing of an interaction may be driven by the activ-
ity of the device itself. As a result user actions may take time and affect the pace
at which the user can achieve goals. Alternatively the environment of the device
may drive the pace of the interaction. For example, incoming email messages or
telephone calls can affect work-rate. These characteristics of the system may be
important to how the task is carried out and therefore device design may need to
take this into account. For example, the device might alert the user to the conse-
quences of the external environment or to help the user decide how an objective
should be achieved given some external circumstance.

Subjective / objective Timing affects the experience the user has of the system by gen-
erating a sense of satisfaction or well being or by causing anxiety or a sense of
hurry. Such experiences might be created without otherwise affecting the behaviour
of the system. Such experiences are subjective. Those aspects of the system for
which timing is externally important — for example, the system times out if the
user fails to achieve an objective (entering a pin number) within a certain interval
— may be said to be objective.

Sporadic / continuous Timing characteristics may be continuous. They affect the on-
going pace of the interaction. Alternatively effects might be sporadic — they hap-
pen in bursts where users have deadlines to meet with differing degrees of warning,
and as a result may have periods of high workload. For example, the broadband
connection may suffer high loadings that might be exhibited as a temporary cessa-
tion to the user’s progress.

user initiative / system initiative The pace of interaction might be driven through the
initiative of the user or through the activity of the device.

Extreme / normal Timing effects may be normal and dealt with in the everyday ac-
tivity of the user or something that only happens in extreme situations. In extreme
situations unusual decisive action may need to be taken leading to changes in the
pace of the interaction. These changes may be hard to deal with and may require
new strategies or plans that are unfamiliar, and the device interface might provide
assistance to the user.
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Thinking about these design dimensions can help to understand how the system
should be designed, and they may lead to a rationale for design decision.

Internal versus external design An internal / external timing dimension might lead to
a number of design decisions. For example:

– Designing a text reader so that the first few pages are displayed to mask the delay
involved in the computer reading the whole document. This is a design decision that
is made in response to an internal timing effect. How necessary or effective such a
strategy is depends on the activities of the user. If the user normally starts reading
at the beginning of the document then this might be a good strategy leading users
to a perception that there has been no delay. Hence an appropriate design strategy
involves an understanding of delays in the system, generation of information and
the way that the user operates.

– Providing a public display in an airport terminal that continually updates to show
when a flight is to leave or is guaranteed to provide flight information with some
specific delay after arriving in the hall. Here timing considerations in the external
environment are important to the tasks being carried out by the user of the display.
The currency of this information is important to the effective performance of the
user’s (passenger’s) task. A similar but more direct purpose is achieved by a pedes-
trian traffic light that counts down to indicate how long before the light goes green.
Both examples provide information about how much “slack time” is available in
which the user can carry out other activity.

Subjective versus objective design The subjective / objective dimension is more dif-
ficult to assess. Consider again the airline display. An objective requirement of this
system would be that the information is updated within some maximum time interval,
whereas a subjective requirement would be that the display should be updated suffi-
ciently regularly for the particular passenger so that the anxious traveller may be sure
that the information presented on the display is a sufficiently accurate picture of the
system.

Sporadic versus continuous design Here the design might enable items arriving spo-
radically to be buffered so that the user can deal with them in a more continuous way, or
enable the user to batch items so that when the system is able to to deal with the actions
they can be carried out. Another example is a control system such as an aircraft where
automation automatically takes over from the pilot when the risk of the automation per-
forming the actions are less than the pilot carrying out the actions — for example high
performance manoeuvers in which an aircraft is inherently unstable.

User initiative versus system initiative A system might be designed to enable the
user to see what progress is being made toward the goal so that even though the user
has the initiative, the system will provide information about the consequences of the
user’s pace. An example of such a system is a car trip computer that predicts time to
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destination at current pace. Alternatively the system may calculate that, according to
current progress, the user will not meet a deadline and therefore carry out some of the
processing even though the quality of the output may be more prone to error as a result.

Extreme versus normal design Here an infrequently practiced procedure might be
supported more directly by the interface than a routine procedure. Consider the support
for standard operating procedures for normal operation in an aircraft cockpit versus
recovery procedures that are rarely carried out.

Good time support can be an important contributor to improving user-system inter-
action. The design may be improved by providing resources for the user to enable them
to manage aspects of time. Conn [1] comments that time design should be considered
in terms of the tasks to be carried out. Time design is however also about experience,
such as reassurance that appropriate resources will be provided in a timely manner so
that the system provides an accceptable experience. From a task perspective timing may
have an impact that a design should take note of, for example:

delays the design may help the user to manage the delay by indicating its extent, by
counting down, by visualising how much of the delay has been spent. As well as
providing information about the delay itself, the device can help the user manage
available slack time. For example an airport based information systemmight inform
a passenger of the existence of a restaurant if a flight delay has occurred and there
is sufficient time to have a meal.

deadlines in an interaction. It may not be enough to say when the deadline is but be
more appropriate to help people manage the deadlines. Hence it might be appropri-
ate to:
– give a prediction of whether the objective will be achieved at the present rate
of progress;

– indicate how pace may need to be changed in order to achieve the deadline;
– offer to carry some of the workload to achieve it faster;
– indicate what kind of result will be achieved if current progress is continued.

pace of the interaction where the device may take over some of this activity if the pace
is too slow.

deadlines the system may indicate explicitly to the user how to defer the inessential
so that the essential can be carried out before the deadlines. Alternatively it may
indicate how good the result is as the system continues to refine the result as the
dealine approaches.

From the external perspective design depends on the effects of external phenomena.
Good design based on time will depend on:

– Activity arrival rates and how predictable these are and the deadlines associated
with carrying them out

– The user’s or users’ awareness of activity arrival, their control mode (see for ex-
ample [2]) which gives an indication of how much time there is to reason about
options and their awareness of activities

– How the activities that are external relate to system objectives, what resources are
available and what their service rates are
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– The pre-emptability of activities that have to be performed, whether it is feasible
to combine activities, interleave them, postpone or drop them. The discretion that
there is for satisficing and trading off between system objectives.

Systems and devices can be designed to make these issues more explicit to the
operator.

3 Resourcing time

People perform actions by using resources that are available to them in their environ-
ment. These resources might be information about the actions that are possible, infor-
mation about goals, about plans, about the current state or about the effects that action
might have [3]. Time design may be facilitated by identifying and analysing resources
that have an impact on the temporal behaviour of the system. These resources play a
role in shaping the interaction. The timing and availability of these resources may be
a critical factor in the user’s pace and understanding of deadlines and delays. In the
following list, the impact of time is considered from a resource perspective.

– plans specifying actions to be performed and the order in which they are to be per-
formed. It may be necessary to know whether the order of actions can be changed,
whether it might be possible to drop actions and what the effect on the overall
goal would be of dropping the action, whether there are alternative strategies that
will produce more or less reliable answers depending on time pressure. While all
these timing properties all relate to performance against goal it may be reassuring
to know about the progress that is being made in relation to the achievement of the
goal.

– goals and sub-goals to be achieved: the effects of the states of the system that are
to be attained. In terms of goals it may be appropriate to know whether a sub-goal
is essential to the achievement of the top-level goal so that a decision can be made
to drop it if appropriate. It may be helpful to know how long it will take to recover
a sub-goal.

– knowledge of the current state of the world or interactive system to be used as a
means of comparison with the goal state that is to be achieved The current state
may in fact differ from the state as represented by the device configuration because
updates have not been sufficiently recent. As a result it may be difficult to anticipate
what still has to be done and how long it will take to do it.

– historical information about process, actions and properties that have held of the
state in the past; this may be in the form of a script of the last few commands as is
the case of Unix or some description of previous landmarks or profile of how the
current state was reached

– the effect that actions may have on the system or the world and how long these
actions take, and how long they take to undo

– action possibilities that the system currently supports (including constraints on the
interaction that limit what can or cannot be done) including indications of best
strategy relating to the possibilities in the face of temporal concerns.
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Resources may be used to control the plans of the user and to support the best
strategy under time constraint. Resources may be used to indicate the immediacy of a
deadline and the impact that actions may or may not have in achieving the deadline with
an appropriate level of accuracy. Hence a plan following interface where the device is
forcing the user down a path can take control away from the user and may affect the
mode of control through the pace of the interaction. The operator may no longer have
time to consider the activity nor the freedom to choose alternative courses of action.

Conn’s affordances [1] are intended to help designers to provide “timely” informa-
tion in the context of task performance: to support events such as the acceptance or
scheduling of tasks, their initiation and completion, and making clear to the user when
exceptions occur. Conn’s recommendations also relate to status information about the
task’s scope (how big is it), progress, how much of the execution is left. In relation to
events and status information, Conn discusses the role that a “time tolerance window”
plays in enabling an operator to assess for example the length of time an operator al-
lows before deciding that a task is not making progress or that something must have
gone wrong. Implicitly the information about tasks, status and events leads to support
for decision making. To complete things in time appropriate human decision making
may be required. The ability to predict how long something will take, to alert people
to the likelihood of delay, to compromise or make realistic trade-offs, in order to be
timely is critical to effective and satisfactory work practice. When activity supported
by the device is task related the appropriateness of different techniques for visualising
and presenting this information depends on the kind of task that is being supported. For
these sorts of systems to understand and design interactive systems it is necessary to de-
sign to help people in the system achieve their goal according to contextual constraints.
This might for example involve understanding how scheduling takes place in order to
help users to decide how the technical system should support this activity, what aspects
of the activity should be automated, and how that automation should be perceived by
the user, and how the system should support the decision making that is crucial to effec-
tive activity. Interactive systems are hybrid systems the computer system is embedded
in an environment involving people as well as systems that are effectively continuous
and which must be understood in the discrete terms of the computer system.

4 Modelling time for design

4.1 Introduction

Modelling aims to allow designers to assess the implications of a particular set of de-
sign decisions. The concern in this chapter is that models should be used to assess
ways in which users of the system can make better use of timing aspects of the system.
The chapter has so far described and illustrated features that may be important from a
modelling perspective: how time relates to the control of the system; how information
resources relate to temporal properties of the system; how the system affords delay,
pace, deadline etc. These features can be designed in a variety of ways and for a vari-
ety of purposes and different kinds of model are most appropriate for the modelling of
different features of the design. In this chapter a particular modelling technique is used.
Other more quantitative styles of modelling would be appropriate for assessing typical
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queueing behaviour for example, the identification of appropriate strategies for dealing
with steady state behaviour.

To illustrate possible techniques, two examples are explored in more detail. The
first is a system that involves operator control of a dynamic process (namely a paint
shop). This activity is taking place at a time granularity that involves seconds rather
than minutes. The system offers the user opportunity to automate some of the activities
that have to be carried out. The system can break down from time to time, the paint guns
wear out and require replacement. Options are provided for the operator to replace or
repair parts. These two options have different costs associated with them, replacement
is immediate but costs money while repair is free but costs time. Modelling is used here
to explore what would be the optimal strategy in normal circumstances, what would be
most robust to variation and what alternative strategies would be appropriate in different
extreme circumstances. This analysis can be used to assess whether the interface to the
operator is appropriate. The second analysis is concerned with the deployment of ser-
vice information within a built environment, in this example an airport. The important
activity from the user perspective works a time granularity that is in terms of minutes
rather than seconds. The system uses public display and hand-held device. Here issues
associated with the timeliness and freshness of deployed information are important. An
example property that may be checked of the model is that relevant flight information
should be available to a passenger within one minute of arriving in a new space.

Using modelling techniques, processes can be specified to describe the physical
characteristics of the environment, assumptions about the user and features of the in-
teractions with the device that is being designed. These processes can, in particular, be
used to capture temporal characteristics of the external environment, strategies includ-
ing temporal strategies relating to the user’s behaviour, features of the artefact that are
important from the perspective of interaction with it.

The uppaal tool [10] is used here. It allows the analysis of networks of linear hy-
brid automata with clocks whose rates may vary within a certain interval. This makes
it possible to take the different temporal reference systems into account that may be
present in the case study – for instance, the real-world frequency of items on the belt
and the operator’s perception of the frequency under varying workload. Automata may
communicate either by means of integer variables (which are global) or by using binary
communication channels. Messages can be passed and syncronised correctly employ-
ing modelling patterns channels to synchronise and communicate. These are described
in the uppaal tutorial [?]. Communication occurs as a result of two process synchroni-
sations using receiving actions a? and sending actions a!. Guards are used to describe
the circumstances in which communications can take place. Automata may be guarded
by conditions involving clocks that can be used to represent delays or time invariants. It
is not within the scope of this chapter to describe the syntax and semantics of uppaal in
detail, however the examples given below should be sufficiently clear to give the spirit
of the approach. Although the expressive power of the notation has some limitations,
the system has the advantage of easy availability using a graphical interface and this
makes the model more accessible to non specialists. Uppaal provides tools for the sim-
ulation of systems — the state transition diagrams are animated, and the inter-process
communication is displayed as an animated message sequence chart. The tool also sup-
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ports analysis by state exploration. Models used in model checking can only label input
and output resources. A key issue in developing these models is to minimise the number
of states by making appropriate abstractions so that analysis can be performed.

Simulation or checking of the model generates state sequences. They can be gener-
ated through a simulation facility. Through user intervention sequences can be created
and explored that are the bare bones of scenarios that have been gathered through a
process of user elcitiation. These scenarios might have been gathered by interviewing
users of the system that is to be replaced or as a result of some kind of experimental
evaluation of how strategies emerge or of typical strategies. Alternatively sequences
might be generated by asserting properties that can be checked by the model checker.
By this means it could be possible to discover the path that would take the least time
or the strategy that would minimise loss given failure of a particular component of the
system— here loss might result from delay in carrying out some action. Once paths are
generated further analysis can be carried out.

This technique is discussed in more detail in Campos and Harrison [5] and Loer and
Harrison [6]. It is intended that domain experts or human factors experts consider the
implications of a sequence generated through the modelling and checking process. They
use their expertise to envisage a situation, a context, in which the sequence might occur
and creating a narrative based on the sequence. Loer and Harrison [6] explore prop-
erty templates or patterns of properties to make the process of generating appropriate
properties more intuitive. Their tool provides an interface that allows the instantiation
of CTL properties to a model based on usability heuristics [8] in order to make the pro-
cess of analysis easier for designers. Reachability is of particular interest in the context
of timing properties, can significant states (goal states) be reached within a timescale
subject to given constraints. In the finite state model of the environment, end states can
be associated with reaching significant points in the process, for example if a physical
model of the process is involved then relate a state to the completion of that process.

Alternative paths may be explored by adding additional constraints to the property
to be checked. Further analysis might involve the manual annotation of action sequences
with the information resources that have been described as part of the design but can
only be hinted at in the state labelling captured in the model (see [4]).

A key to effective modelling is to find appropriate abstractions without biasing the
analysis. Device models at different levels of abstraction capture key characteristics of
the interactive system. For example a flight management system [5] is explored in the
context of a simple model of airspace trivially capturing notions of ascent and descent.
This model of context is sufficiently general to explore mode issues associated with
the design of the device. On the other hand, in [7], two context models constrain the
behaviour of a handheld device. Here a sewage plant model characterises the behaviour
of tanks, pipes, valves and effluent contained in the tanks and transported by the pipes.
An additional model captures the spatial position of the hand-held device.

A human factors expert can consider alternatives to assess the implications for the
design of the system and, possibly as a result, work with the designer to produce an
interface that has better timing characteristics.
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4.2 The paintshop study

The paintshop study is an example of a system that involves the control of dynamic
processes. Indeed it has been used as a “microworld” experiment to explore how users
devise strategies in the face of real-time constraint [9]. The design issue here would be
to explore what device interface would provide most support for the user in the face of
varying levels of workload as well as to support the decision processes required when
choosing between repair and replacement strategies in the face of paintstation failure.

Hence modelling is used to explore alternative strategies. These strategies might
include decisions in relation to postponement, interleaving, synchronisation, speeding
up or slowing down of function servicing and whether control should be automatic or
manual.

A number of questions then relate to the design of the artefact— how an appropriate
strategy can be conveyed in the interface, whether appropriate strategies or next actions
can be adequately resourced [3].

The system involves a conveyer belt that transports boxes to two parallel paint sta-
tions (Figure 1) for painting. Boxes may enter the paint system at different rates and a
financial reward is given according to the number of boxes painted. When boxes arrive
at a distribution lift, the user can then choose for allocation to paint stations to be auto-
matic or to press the “up” and “down” manual buttons as appropriate. The painting pro-
cess can either be set to automatic mode (which is the default) or to the manual mode.
In automatic mode, the paint station will automatically specify the number of coats to
be painted, carry out painting and wait for it to dry. The rate of paint flowing through
the nozzles is displayed just above each production line. The flow rate may decrease if
nozzles become blocked or increase if the nozzle leaks thereby providing information
about the future potential for replacement or repair. To paint an item manually, the op-
erator has to click on a box and keep the mouse button pressed for a specified period of
time to complete the process. If the mouse button is released before the minimum paint
time the box is not painted and a spoiled box is released.

In the model, painting takes five time units in the automatic case and two time units
in the manual case. When a nozzle ceases to function properly it can be repaired or
replaced. Replacing a nozzle incurs no time cost but does incur a certain monetary
cost. Repairing the nozzle incurs no monetary cost but causes a delay before the nozzle
can be used again. In the micro-world experiments the cost and time variables were
manipulated and indeed in the model also these values can be manipulated. Depending
on the rate at which boxes arrive at the station and the state of the nozzles and the
strategy used to employ the paint stations a certain proportion of the possible boxes will
be painted. Boxes can fail to be painted either because the appropriate procedure has
not been carried out inside the paint station or because the queue of boxes waiting to
be painted exceeds a certain number. When the queue waiting to be processed exceeds
some number boxes are lost down a reject shute.

4.3 Modelling paintshop

The paintshop is modelled as seven concurrent processes with the aim of identifying
what the optimal strategies under different constraints are and how the design may be
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Fig. 1. The paintshop system
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changed to make it easier for the operator to adopt a better strategy. Thus it is possible
to express and check for reachability properties such as:

1. “Is it possible to reach a state where the clock x is greater than 20”
2. “Is it possible to reach a state where all boxes have been painted?”

The result of checking the property is a path that can then be explored in more detail.
Two of the models (Figures 2 and 3) describe the physical environment of the sys-

tem. A dispatcher automaton (Figure 2) captures the regular distribution of boxes de-
fined by a constant (workload) that is used to describe the workload level. This can be
changed to explore different workloads. This process dispatches objects to the incoming
queue. Figure 3 specifies the behaviour of a box being channelled through the two paint

disp
t<=workload

t>=workload && num>0
next!
t=0,num= num-1

t>=1
t=0

Fig. 2. High workload incoming belt

stations. This automaton models the part of the system containing the queue of boxes
waiting to be serviced by the paint stations, as well as the lift that causes the boxes to be
moved to one paint station or the other. It also models a repository for boxes that have
fallen off the end of the queue because the queue and therefore lost. The final phys-
ical element (not illustrated) models the belt of finished items. When workload=2
a new box arrives on the belt every two units (which is high workload). Values repre-
senting a medium and low workload are 3 and 4 respectively. In order to reduce the
complexity of the analysis, the number of boxes in the model is limited to 10. While it
is acknowledged that this is a great simplification in comparison to the continuous flows
a real-world operator is likely to have to deal with, for the purpose of this analysis the
simplified model is sufficient.

The device design is captured by the process in Figure 4. This describes the be-
haviour of the button that can be used to change from manual to automatic delivery
to paint stations, as well as the feature that enables automatic or manual paint deliv-
ery and the mechanisms for repairing or replacing. There are two instances (station1
and station2) of this process that describe the behaviours of the two paint stations. The
description of automatic and manual operation is contained in the top and bottom part
of the automaton respectively. The automaton also captures fault occurrence and repair
and replace costs. The severity of faults increases over time. A nozzle may break as
soon as two items are painted but it will break for sure once four items are painted. Re-
pairs cost 24 time units (see locations repairingA and repairingM), replacing a nozzle
costs four tokens.
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Fig. 3. Boxes waiting to be channelled
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Fig. 4. The paint station automaton
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The remaining modelling problem is to describe the alternative assumptions that
are being made about users Two processes are designed to reflect what the user does.
The first model (Figure 5) carries out a number of actions. It dispatches conditional
user inputs and models simple repair/replace decisions: if the fault (variables p1fault
and p2fault) is bigger than 3 and sufficient funds (variable win) are available, replace a
nozzle, otherwise perform a repair.

The second user process (Figure 6 implements a random strategy. This process dis-

thinking

p1fault>3 and win>4

replace1!
win-=4

p2fault>3
repair2!p2fault>3 and win>4

replace2!
win-=4

p1fault>3
repair1!

Fig. 5. Process implements a simple repair strategy

patches unconditional user inputs that are consumed by other processes (“monkey at
the keyboard” style) but only generated when no internal synchronisations can be per-
formed. Using the two models that have been described it can be used to explore a

control

m1button!

m2button!

s2button!
up!

down!

auto!

s1button!

Fig. 6. Process which implements a random user

variety of properties that provide constructive information about the appropriateness of
the design of the device.

Reachability of system goals Analysis proceeds experimentally by exploring a num-
ber of properties:
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P1: Can all n items be painted?
The property (“E<> painted==n”) is true for 0 ≤ n ≤ 10. When the negated

property (here, the never-claim A[] painted!=n in other words “n items can never
be painted”) is checked, the model checker produces a trace that can be simulated.
Stepping through that trace, the analyst is guided through a scenario where both manual
and automatic mode of painting are applied. The simulation and the sequence chart
provided by uppaal can point to simple flaws or instances of unexpected behaviour
of the model. In order to obtain a broader understanding of the reasons behind flaws,
additional traces of similar instances are required. However, the tool only produces a
single trace for each property. Additional traces, focussing on different aspects that may
be considered contributing factors to a discovered problem, require a refinement of the
property. For instance:

P2: Can all n items be painted, using only a single paint station?
The verifier only explores paths that involve a single instance of the paint station

process. This is achieved by temporarily modifying the paint station specification so
that only one of them used.

Finding minimal durations under different conditions Reachability properties may
be further elaborated by considering how long it takes to reach a given state. In these
cases it is necessary to explore alternative possible times to find the actual duration
associated with an activity.

P3: Can all n items be painted in m time units, using only a single paint station?
This can be expressed as “E<>(painted==n and stationUsed==0 and

gtime==m)” This property was checked for different values m of a global clock
gtime. By repeated analysis the propery is satisfied for 22 units for the ten items,
but the nozzle needs to be replaced at least twice, so the win is only two units. In the
same way the following property can be explored:

P4: Can all items be painted in m time units, using both paint stations?
Again, the minimal duration is 22 time units. However, while the execution time is

the same, in this case only one of the nozzles needs to be replaced, so the monetary win
is six units.

All the traces captured by these properties confirm that the fastest way to perform
the work is to opt to paint manually. To consider the design of the automation, the
temporal effect of an automatic strategy was considered.

P5: What is the minimal time required to paint all items automatically?
A similar temporary modification to the one described above preventing the manual

mode was performed in order to explore this property. The minimal time required to
paint all items without manual intervention and by using both stations is 29 units.

Analysis of this kind has yielded the following observations that can be made use
of in the design of the interface to the device:

1. Painting items manually is faster than automatic painting.
2. Using both stations does not necessarily gain a time advantage over using a single
station only.

3. However, using both stations can save repair costs if the operator is prepared to take
the risk and leave one station broken.
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The analysis is described more fully in [?]. It should be noted that the temporal
properties of this stage could have been calculated simply by using a numeric model of
the processes. However, the additional effort of creating the uppaal model pays off when
multi-valued decisions are considered, as a focus on monetary costs demonstrates.

Focussing on monetary costs So far the analysis has only been concerned with tem-
poral costs and effects. Further properties can be used to check temporal and monetary
costs associated with replacing faulty nozzles.

P6: Can all boxes be painted without losing money?
This property forces a search strategy where nozzle replacements are avoided. The

resulting trace demonstrates that the task can be completed in 50 time units. The sim-
ulation demonstrates that both stations are used to paint in automatic mode until they
break; then one station is repaired.

P7: What is the shortest time for painting everything without losing money?
The analysis yields that best performance (finishing the task in 44 time units) can

be achieved, and the new trace suggests that this performance can only be achieved if
manual control is opted. Again, both stations break, but the trace indicates that only one
station needs to be repaired.

P8: Can all items be painted without losing money, using only one paint station?
This analysis is dual to P6, but focussing on a modified specification so that there is

a single paint station only. This property is concerned with the robustness of the system
and the additional temporal costs. The strategy exhibited by the model-checking trace
could be used by an operator who does not have time pressure and therefore aims at
maximising the win.

Analysing the durations under the assumption that temporal costs are secondary to
monetary costs reveals again that the best possible performance can be achieved by
using both stations in manual mode, but the required duration increases to 44 units. The
results produced provide an indication of what a good operation strategymight be under
extreme conditions with respect to temporal and monetary costs. However, it remains
the task of the system designer to resolve if any of these strategies are suitable, and if
they should be implemented as part of the system or as part of the operator training. For
an informed decision it also remains necessary to draw on human-factors experience. A
crucial additional factor that will influence this decision is the operator workload.

Variable workload The analysis of performance has assumed a constantly high work-
load, given by the dispatcher model in Figure 2. The analysis can be repeated using
increasing, decreasing or alternating workloads in order to collect insights about fur-
ther strategies.

4.4 An airport ambient system

By way of contrast the second example involves the exploration of an ambient and
mobile system as it would appear in a built environment. Here the timescale is at the
“minutes” level because it concerns what a passenger would perceive as urgent or im-
mediate in the context of the environment. This system allows access to services, either
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global services or services that are specific to the environment (for example, passenger
information about travel delays or the status of a flight or retail service information).
This information might be invoked and deployed to hand-held devices as well as be-
ing displayed in a suitable format on public displays. To get a sense of the style of the
system that is to be modelled and analysed consider the following scenario based on an
airport.

On entry to the check-in hall, a sensor recognises the passenger’s electronic ticket
and therefore subscribes her to the flight service for which she is booked. Her context
will be updated with current location, namely the check-in hall. The flight service im-
mediately sends information about flight progress to her hand-held that contains queue,
gate and delay information. The queue that she is notified about ensures the shortest
waiting time. Queue messages are also sent to the public display in the check-in hall so
that passengers have an alternative source of information. When the passenger enters
the queue a sensor detects her presence and adds this locational information to her con-
text. As a result of this change of location, information about queues are no longer sent
to her hand-held device but instead she receives messages that relate to the length of
queue and the predicted waiting time. The passenger is meanwhile subscribed to a seat
booking service specific to the flight that enables her to book the seat she likes while
waiting. The service helps the passenger choose based on her preference information.

Properties of concernwould depend on a requirements elicitation but would feasibly
include examples such as: “The system should ensure that flight information relevant
to all passengers contained within a space is supplied by posting that information on
the displays of that space”. In general required properties would concern: the resilience
of the whole system, including temporal characteristics; the usability of the hand held
devices and public displays; how effectively and immediately information is provided
that enhances the experience of users of the system. In the last case timing issues may
be critical to achieving this experience and a sense of place in the built environment.
Properties of concern here will include “however many services a user subscribes or is
subscribed to, the flight information service will be dispatched both to the user’s device
and to the local display within a defined time interval” and “any facility that is offered
to a subscriber will only be offered if there is a high probability that there is enough
time to do something about the facility offered.”

In reality the development of ambient mobile intelligence applications might be
carried out without complete foreknowledge of the platforms and software that will be
running on these platforms. The physical characteristics of alternative platforms may
be important in contributing to the experience of place — frequent flyers may use smart
phones, large plasma screens may be placed in the space in a number of different ways.
The advantage of using walkthrough techniques is that early exploration may be car-
ried out before the platform is decided and may assist an understanding of whether a
particular configuration is appropriate.

4.5 Modelling the airport

To model this system some gross simplifications are made to indicate the style of anal-
ysis. The description captures the characteristics of the airport system by modelling
sensors for each space in the built environment, the single dispatcher that is designed to
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distribute messages and a token passenger that captures the properties of all the passen-
gers in the environment.

The dispatcher (Figure 7) simply distributes messages with tags associated with
flight number and location. In the version described here it distributes these at random
at different time intervals depending on the value of workload. The rate of distribution
can be adjusted to assess the properties of different rates of distribution.

dispstate

t<=workload i : int[1, flights-1],
j : int[1, locations-1]

t>=workload

mchan!
flight = i,
loc = j,
msg = true,
t = 0

Fig. 7. The dispatcher process

The distributed characteristics of the airport system are captured by three further
models. Two of these models represent different types of sensor, one relates to the queue
in the checkin area while the other is a more generic sensor (Figure 8) that captures the
location of the different areas of the airport while at the same time receiving messages
from the distributor. These messages are filtered according to location. They are marked
as displayed on the public display if the sensor has received requests from passengers
with flight details that match the flight tag. In other words the public display is modelled
so that it only displays those messages that are relevant to the passengers in the area.

intersense

sensestatexloc==loc
entexit!
xfinish=true,
present[xflt] -= 1

!(xloc==loc)
entexit!

xfinish=false,
present[xflt]+= 1xloc==loc

entexit!
xfinish = false

mchan?
read()

who?

Fig. 8. The non-queueing sensor

The other sensor is designed to updates its display with information about its queue
based on the longest wait. The non-queueing sensor checks the location and status of
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a passenger that communicates with it. Depending on the flight number and whether
the passenger has just entered the location or is about to exit it, the count for the flight
is decremented or incremented. When a message is received from the dispatcher for a
particular flight it is only dispatched if it is valid for the location and there are passengers
in the location that relate to the flight — this is done by the read() function.

The passenger (Figure 9) checks its location by communicating its flight number to
the sensor. When the passenger initialises it absorbs a strategy for navigating through
the building by simply updating an array path. It receives messages from the dis-
patcher and displays them on the hand-held only if the location and flight match the
passenger in the distributed message.

passupdate

passfin

afterdist

t<=workload-2

passinit

t<2

passrun
t<=workload

passtart

t<=2

entexit[path[prog]]?
stepornot()

prog==locations

prog<locations
who[path[prog]]!
xloc=ticket.loc,
xflt=ticket.flt

path[0]=entryhall,
path[1]=queue2,
path[2]=checkin,
path[3]=mainhall,
path[4]=mainhall,
path[5]=gate,
prog=0

mchan?
ticket.message=
      ((ticket.flt==pflight)&&(ticket.loc==ploc))?
      msg:(ticket.message)

ticket.loc = location,
ticket.flt = flight,
ticket.id = true

Fig. 9. The passenger

5 Conclusion

This chapter has identified features in the design of an interactive system that may be
influenced by timing characteristics and has provided a preliminary illustration of how
modelling techniques might assist the exploration of the design. The chapter contains
a challenge — features of a design in response to timing considerations are rarely con-
sidered and yet have an important impact on the usability and the experience of the
system design. Within the context of time orientated design it makes a number of ob-
servations, for example the fact that temporal issues may be external, a feature of the
environment, or may be internal and perceived. It may therefore be necessary to explore
external cognitive resources which the user can offload to so that perceived workload
may be reduced. We have demonstrated that while modelling techniques that are famil-
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iar to computer scientists can be used there are a number of challenges that must be
overcome before these techniques become practically feasible.

1. dealing with the state explosion that is associated with adding temporal constraints
2. in the case of the ambient and mobile systems, dealing with the fact that there
may be many processes with similar properties (such as passengers) that must be
incorporated within the model without exploding the specification so that it is im-
practical

3. finding appropriate languages or patterns of use of the modelling techniques to cap-
ture notions of location and context in a way that makes it easier for implementers
to use these techniques without serious and unnecessary overhead.
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Abstract The chapter explores the role that formal modelling may play in aiding
the visualisation and implementation of experience requirements in an ambient
and mobile system. Mechanisms for requirements elicitation and evaluation are
discussed, as well as the role of scenarios and their limitations in capturing expe-
rience requirements. The chapter then discusses the role of formal modelling by
revisiting an analysis based on an exploration of traditional usability requirements
before moving on to consider requirements more appropriate to a built environ-
ment. The role of modelling within the development process is re-examined by
looking at how models may incorporate knowledge relating to user experience
and how the results of the analysis of such models may be exploited by human
factors and domain experts in their consideration of user experience issues.

1 Introduction

Ambient and mobile systems are often used to bring information and services to the
users of complex built environments such as leisure complexes, hospitals, airports and
museums. The success of these systems is dependent on how users experience the space
in which they are situated. They may serve to provide users with an experience of the
built environment as a place rather than a forbidding sterile space. They may serve
to alleviate the anxiety of travelling in an unfamiliar world. The problem of concern
in this chapter is how to reason about such systems so that they satisfy experience
requirements.

A focus on experience and ambient and mobile systems provides an important trig-
ger for a fresh look at evaluation in interactive systems. Traditional notions of usability
need reconsideration. Ambient and mobile systems have distinctive characteristics that
lead to a requirement for special treatment:

– the impact of the environment as the major contributor in understanding how the
system should work — its texture and complexity
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– the possible role of location and other features of context in inferring user action
implicit or incidental in the activities of the user — how natural and transparent this
inference is.

For these reasons it is difficult to assess ambient and mobile systems early in the de-
sign process. The chapter explores how experience requirements can be related to more
rigorous methods of software development. The chapter’s structure takes phases of the
design process to explore how experience requirements can be implemented within a
system.

The chapter begins by discussing how experience requirements can be elicited from
an existing system (Section 2). It then moves onto the means of assessing and eval-
uating a proposed design against such requirements (Section 3). It considers ways in
which these requirements can be explored effectively using formal techniques: by con-
sidering interface requirements within a process control system (Section 4); and then
considering experience requirements more explicitly by speculating about information
flows (Section 5) in an airport system. Finally the chapter sketches a future agenda for
completing the objectives established.

2 Eliciting and making sense of user experience requirements

A conclusion that may be drawn from the challenges mentioned in the previous section
is that the evaluation of such ambient and mobile systems must be carried out in-situ
within the target environment, with typical users pursuing typical activities. The prob-
lem with this conclusion is that it is usually infeasible to explore the role of a prototype
system in this way, particularly when failure of the system might have safety or com-
mercial consequences. Methods are needed therefore that would enable the establishing
of experience requirements and to explore whether they are true of a system design
before expensive decisions are made.

Eliciting experience requirements for an envisaged ambient system can be carried
out using a combination of techniques. For example, stories can be gathered about the
current system, capturing a variety of experiences, both normal and extreme, and vi-
sualising the experiences that different types of user or persona might have in the de-
sign. The results of this story gathering process will be a collection of scenarios that
can be used to explore how the new design would behave. They can be used to eval-
uate the design (see for example [Rosson and Carroll, 2002]), perhaps using a specifi-
cation of the design or using a rapidly developed prototype. For more traditional us-
ability requirements, techniques such as cognitive walkthrough [Lewis et al., 1990] or
co-operative evaluation [Monk et al., 1993], can provide valuable complementary ap-
proaches to evaluation based on these scenarios. In addition to scenario orientated tech-
niques for elicitation other techniques are also valuable. Techniques such as cultural
probes [Gaver et al., 1999] can be used to elicit “snapshot experiences”. The elicitation
process here involves subjects collecting material: photographs, notes, sound record-
ings to capture important features of their environment. While these snippets may make
sense as part of a story they may equally well be aspects of the current system that are
common across a range of experiences or stories.
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A question then is how to make sense of these snapshots. Consider the example
of a frequent flyer who is nevertheless anxious about missing his flight. One could
imagine that he might take a snapshot of the public display and comment that he always
looks for a seat where this information is visible. He might also comment: that the
flight information relevant to him is not always clearly discernible on the display; that
delay information is often displayed late and is not updated so there is no sense of
there being any progress. This information is not captured well by a specific scenario
because, although one such situation can be captured well, the scenario does not cover
all situations — that this information needs to be available whatever “path” the user
takes. Alternative approaches are required that will enable the exploration of all possible
user paths.

[Buchenau and Suri, 2000] describe an approach they call “experience centred de-
sign” that involves the construction of prototypes, sometimes very inexpensive and ap-
proximate prototypes, which can be used to imagine the experience that users would
have with the design. The quality and detail of the prototype tends to vary: from “mock-
ing up” using non-functional prototypes to more detailed prototypes that are closer to
the final system. To explore and to visualise the proposed design effectively, it is im-
portant that systems can be developed with agility, using a context that is close to the
proposed target environment. They help envision the role of the “to-be-developed” arte-
fact within that work. Prototypes can be used to “probe”, that is explore, the validity and
representativeness of the scenarios and may lead to alternative or additional scenarios.
Testing the prototypes appropriately can develop an understanding of the experience of
the system in its proposed setting.

Consider, for example, a system developed to help passengers experience a sense of
place in the unfamiliar setting of an airport. One might imagine a combination of ambi-
ent displays, kiosks and mobile services for hand-held devices. They combine together
to provide an environment in which passengers can obtain the information they need, in
a form that they can use it, to experience the place. Information about the environment
relevant to an understanding of this experience might be captured using a combination
of cultural probes and scenario analysis. For example in the case of cultural probes,
passengers might be asked to identify those elements in the space that relate strongly to
their experience of the airport, perhaps by taking photographs or making audio-video
recordings and then by annotating these snapshots. In addition they might be asked to
tell stories about situations where they did or did not experience place. The following
examples might derive from such elicitation:

– photographs of the main display board with comments such as: “I like to be in a
seat in which I can see this display board”; “I wish that the display board would
tell me something about my flight — it disturbs me when it simply says wait in
lounge”;

– photographs of signposts pointing to where my gate is annotated with “I wish I had
better information about how far it was and whether there were likely to be any
delays on the way”;

– tape recordings of helpful announcements and tape recordings of unhelpful an-
nouncements, with annotations such as “These announcements do not happen often
enough and announcements for other flights distract me”;
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– stories about where the airport helped me to feel aware of what was happening;
– stories of long and complicated situations that caused me problems.

Thus an idea can be obtained about how the system works. It becomes possible to
capture stories that deal exclusively with subsets of the required functionality, for ex-
ample one might deal with details of flights, whether there is food, what the reason for
the delay is, whether there are any other flights that I can catch that would get me to
Los Angeles today. Another story might relate to whether there is enough time to get
a meal and whether the meal is vegetarian. Hence in parallel, prototypes might be de-
veloped that deal with segmented functionality — a prototype dealing with flights and
flight schedules; a prototype dealing with retail services. Prototypes might be explored,
running in-situ using the user stories as the means of testing, exploring the prototype
in a simulation of the situation, assessing whether an experience of place is being con-
tributed to.This means that the whole system might be built up using partial prototypes
thereby reducing the need to wait until a complete system is available.

There is a problem with scenarios however they are elicited. They cannot capture
all aspects of the experience of place in the airport. The value of cultural probes on the
other hand is that they provide an orthogonal viewpoint. In order to achieve an experi-
ence of place, the familiar things – for example the constant presence of the notice board
– must be captured across scenarios. It is not sufficient simply to focus on scenarios in
order to establish a proper sense of the overall experience of the envisaged system under
design. Further exploration may be required to assess and probe how well these static
elements of the environment (such as the continually present notice board) are repre-
sented across all possible behaviours of the design. It is also necessary to investigate
the unforeseen consequences of the proposed design. The complexity and interaction
between the different components of the system may result in unexpected, emergent
properties of behaviours. As a system design evolves, so will the experience associ-
ated with using the system. This can contribute to producing a more consistent overall
experience, even though the design of the system has emerged in piecemeal fashion.

The physical characteristics of alternative platforms may be important in contribut-
ing to the experience of sense of place — frequent flyers may use smart phones, large
plasma screens may be placed in the space in a number of different ways. The ad-
vantage of using walkthrough techniques is that early exploration may be carried out
before the platform is decided and may assist an understanding of whether a particular
combination of system components is appropriate.

In the next section evaluation and analysis techniques shall be considered in more
detail. Before doing this two short descriptions of how an airport system might work
will set the context more concretely.

– On entry to the departures hall, a sensor recognises the electronic ticket and sub-
scribes the passenger to the appropriate flight while updating the passenger’s con-
text to include current position in the departures hall. The flight service publishes
information about the status and identity of queues for check in. A message direct-
ing the passenger to the optimal queue is received by the passenger’s hand-held
device because the passenger’s context filter contained in the device permits its ar-
rival. This information is displayed on a public display in the departures hall. When
the passenger enters the queue a sensor detects entry and adds the queue identifier
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to the passenger information. As a result different messages about the flight are
received by the passenger — this might include information about seating so that
the passenger can choose a seat while waiting to check in baggage. This process
continues as the passenger progresses through the various stages of embarkation.

– The passenger enters the main hall. The passenger is now additionally subscribed to
a retail service. Information about available facilities are received by the passenger
according to preferences and flight status.

The software framework that is implicit here is based on a publish-subscribe system
[Eugster et al., 2003].

3 Analysis and evaluation

[McCarthy and Wright, 2004] have argued that while the emphasis within the GUI
paradigm has been on technology as tools, the new paradigms require thought about
technology we live with (see also [Bannon, 2005]). Elsewhere, this has been charac-
terised as a shift from understanding the use of artefacts to understanding their presence
in people’s lives [Halnass and Redstrom, 2002]. While user-centred design helps under-
stand the practices and routines into which technologies are expected to fit, they are not
as helpful with feelings of resistance, engagement, identification, disorientation, and
dislocation. Prototypes can be explored from a variety of perspectives, from a spectrum
of usability-engineering evaluation techniques to “experience” explorations through
active engagement with prototypes (see [Buchenau and Suri, 2000] and [IST, 2004]).
Techniques that are used should be formative and prototypes developed within the sim-
ulated scene may be used to stimulate communication and exploration of design ideas
as a dialogical process between user, designer and software engineer. A number of tech-
niques may be used to identify experience characteristics of a design.

3.1 Scenario analysis

Scenario analysis [Rosson and Carroll, 2002] can be used at a number of levels to ex-
plore the role that the system might play and to evaluate usability and experience is-
sues. Scenarios can be used to capture important characteristics of the environment,
either typical uses of the system or “critical incidents” where current arrangements
have failed users. They can be analysed by usability engineers to explore how the
system would work — what information would be displayed at specific times within
the scenario, what actions the user would have to take to obtain further information
and so on. Techniques such as cognitive walkthrough [Lewis et al., 1990] and THEA
[Pocock et al., 2001] are designed to be used at the action level by usability engineers
who have enough knowledge of the environment or a sufficiently detailed scenario to be
able to consider and visualise the design. While reservations are appropriate in terms of
their objectivity [Gray and Salzman, 1998] they are nevertheless of value as a formative
mechanism in the hands of designers.

Scenarios can also be “visualised” by users as they re-experience in their imagina-
tions the scenario in the context of the new design. This might involve the user adopting
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a persona – a frequent flyer who is nevertheless an anxious flyer. This would not create
a detailed account of how the technology works rather it would provide an impression
of aspects that require further analysis. Assessing how an artefact contributes to ex-
perience requires observation or assessment of the artefact embedded in the proposed
situation. Although experience prototypes can be constructed, simulated conditions are
required that can deal with realistic scenarios in order that a “passenger-to-be” might
visualise the effect that the proposed technology would have and how it would feel to
use it. Consider, for example, a system developed to help passengers experience a sense
of place at check-in, security screening, passport control and while waiting in the main
body of the airport and making use of the many facilities made available to them.

3.2 Alternatives to scenario analysis

Scenario analysis inevitably restricts consideration of the system to particular situations
and therefore issues of coverage are important. Often experience requirements lead to
properties that hold true whatever the situation. Experience level requirements that can
be captured specifically for the application in question can be dealt with in a similar
way to usability inspection where properties are checked systematically by a team using
heuristics [Nielsen, 1992].

[Campos and Harrison, 2001] and [Loer and Harrison, 2006] explore the synergis-
tic role that modelling and scenario based evaluation can play. Properties, formal ex-
pressions of usability heuristics, are used to generate traces, that is sequences of actions
in the model that serve to demonstrate a situation where the property does not hold.
These traces can provide the basis for scenarios. Domain experts can use the bare se-
quence of actions to create a plausible narrative that can form the basis of a scenario.
This scenario can then be subjected to an analysis such as a cognitive walkthrough in or-
der to explore potential problems with the interface to the design. Consider an example
of mode confusion. A system is checked for some formal representation of mode confu-
sion and a trace is generated that indicates a circumstance where confusion might occur.
This forms the basis for a scenario that is investigated. It is quite possible that although
formally there is mode confusion, the interface signals the mode so clearly that in prac-
tice it will not be a problem. This kind of analysis can also be carried out for properties
that result from an exploration of the experience requirements of the design. Suppose
that a passenger reports that she wants to be able to access up to date flight information
wherever she is. An appropriate model might be used to explore possible paths that pas-
sengers might take to reach the flight gate and whether up-to-date flight information is
always available. This approach is analogous to that taken in [Loer and Harrison, 2005]
where a system is explored that controls a process either using a central control room
or a hand-held PDA. This will be explored in more detail in the next section.

3.3 Modelling

Formal modelling techniques and agile software development may both have contri-
butions to make to experience centred design. The modelling approach provides the
basis for exploring paths that are used by domain experts or usability experts to create
narratives that can then be used to explore the experience. Viewing a design in terms
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Figure 1. The formal process of experience requirements exploration.

of the narratives that produce scenarios, or from the perspective of personae with their
own particular experiences of an envisaged system, limits the analysis to that sequence
of actions that is visualised by the scenario. While it is likely that these scenarios cap-
ture important ingredients of a potential user’s experience and can be used as a basis for
evaluation, it is equally likely that there are crucial features of the envisaged system that
are not captured. The chapter argues that these characteristics are more akin to the more
rigorous analysis of unforeseen consequences that can be carried out using techniques
such as model checking. A design process is envisaged that is depicted in Figure 1.

The discussion will be related specifically to ambient “always on” type systems
involving the use of public displays and hand-held devices. Generic models may be
used to capture the properties of this type of system. General categories of property
templates and of models could be determined to make it easier for the analyst to check
properties.

Two model types will be particularly important:

1. Models that capture properties of the interactive device or the public display and its
relation to the environment. This is discussed in Section 4.

2. Models that capture the message delivery mechanism. The chapter speculates about
these models and discusses the types of properties that require checking using such
models in Section 5.

The properties that are considered here derive directly from experience elicitation. This
process will have been carried out initially within the design context. These require-
ments may fall into a number of categories. They may be “place relevant” properties,
for example using the check-in hall as an example: “The system should ensure that
display information telling passengers about the status of check-in queues should be
equally visible wherever the user is situated in the room”. They may be time relevant
properties relating to the same situation, “The information about which check-in queue
is appropriate should be updated whenever there is a change to the queue. It should be
clear to all who can see the display that the information has recently been updated”.
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There may be goal relevant properties, to support users in achieving their goals in
those spaces: “when the traveller is late in carrying out the next action, for example
screening baggage, a message will be sent to the traveller’s hand-held informing them
of the urgency of their need to move to the next stage”. In reality the development of
ambient mobile intelligence applications might be carried out without complete fore-
knowledge of the platforms and software that will be running on these platforms. The
advantage of using walkthrough techniques is that early exploration may be carried out
before the platform is decided and may assist an understanding of whether a particular
configuration is appropriate. However it may also be feasible to use formal approaches
to provide this analysis and thereby make some of the processes more tool supported
and systematic as explored in [Loer and Harrison, 2006].

4 Properties of interactive devices

The external world can be explored in terms of how it provides resources for the actions
available through the device. [Campos and Doherty, 2006] have done preliminary work
concerned with modelling and investigating the interaction between devices and users
— exploring whether, given a set of (dynamically) available resources (in some place,
and at some point in time), users will be able to achieve certain goals.

This section diverges from the airport example to demonstrate the process in a more
fully worked example designed to explore conventional usability requirements of a mo-
bile system [Loer and Harrison, 2005]. It is concerned with goal related properties of
a mobile device within a process plant. It concerns the operator interface to a process
control system from a centralised control room (see Figure 2) as well as an alternative
hand-held device (see Figure 3) [Nilsson et al., 2000]. A limited subset of information
and controls for these components will be “stored” in the hand-held device to ease ac-
cess to them in the future – analogous to putting them on the desktop. These desktop
spaces are called buckets in [Nilsson et al., 2000]. The operator can view and control
the current state of the components when in their immediate vicinity. Context is used in
identifying position of an operator, checking validity of a given action, inferring an op-
erator’s intention, checking action against an operator’s schedule, while assessing and
indicating the urgency of these actions.

In this type of system, context confusions can be avoided through design by chang-
ing the action structure (for example, using interlocks) so that these ambiguities are
avoided or by clearly marking the differences to users. Techniques are required that
will enable the designer to recognise and consider situations where there are likely to
be problems. However there is a further issue, namely that the experience of the device
and the system by the user might support safety more or less effectively. In the analysis
that proceeded, the exploratory approach described in the previous section was used to
scrutinise traces that are “interesting”. Implications of different configurations are ex-
plored by considering simple assumptions about the user. An analysis is now described
in which questions are articulated in LTL (Linear Temporal Logic) and recognised by
the SMV model checker [McMillan, 1993]. There are no details of the specifications
here — these can be found in [Loer and Harrison, 2006].
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Figure 2. Control Screen layout.

Both the hand-held device and the control room were modelled using Statecharts
[Harel, 1987] as was the plant. A requirements process might plausibly have generated
the following top level requirements for the interactive system controlling the plant:
(1) to inform the operator about progress; (2) to allow the operator to intervene appro-
priately to control the process; (3) to alert the operator to alarming conditions in the
plant and (4) to enable recovery from these conditions.

The plant involves tanks, pipes, valves and pumps that feed material between tanks.
The tanks are designed to be used for more than one process and, in order to change
processes, a tank must be evacuated before material can be pumped into it. In order
to achieve this some of the pumps are bi-directional. The functioning of the plant, the
flows and evacuations can be expressed as a simple discrete model so that the signif-
icant features of the environment can be explored. This is discussed in more detail in
[Loer and Harrison, 2006]. The plant is defined in terms that provide the simplest way
in which the control interface is aware of its function. Hence the state of the tank is sim-
ply described as one element of the set {full, empty, holding} — there is no notion
of quantity or volume in the model.

The control room, with its central panel, aims to provide the plant operator with a
comprehensive overview of the status of all devices in the plant. Situation awareness
is considered to be critical to the operator’s work in the system — in experience terms
the operator needs to know that they can see everything that is going on. Availability
and visibility of action are therefore seen to be primary concerns. For this reason a
model of the interface is chosen that focuses on these aspects of the design. Other
models could also have been considered to focus on other facets, for example alarms
or recoverability. The control panel is implemented by a mouse-controlled screen (see
Figure 2). Screen icons are both displays and controls at the same time — clicking on
an icon will have an effect. These features of the design are all modelled, showing when
icons are illuminated and when actions trigger corresponding actions in the underlying
process. The Statechart here builds a bridge between actions that relate to the behaviour
of the process underneath and actions performed by the user, such as using the mouse
to point and click at the relevant icons.
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The hand-held device uses individual controls that are identical to the central control
panel. However there is only a limited amount of space available for them. As a con-
troller walks past a pump she may “save” controls onto the display. While the controls
continue to be visible on the display, the pumps relating to the controls can be manipu-
lated from anywhere in the system. The hand-held control device (Figure 3) knows its
position within the spatial organisation of the plant.

By pointing a “laser pointer” at a plant component and pressing the component se-
lector button, the status information for that component and its controls are transferred
into the currently selected bucket. Components can be removed from a bucket by press-
ing the delete button. With the bucket selector button the user can cycle through buckets.
The specification of the hand-held device describes both the physical buttons that are
accessible continuously and other control elements, like pump control icons, that are
available temporarily and depend on the position of the device. When the operator ap-
proaches a pump, its controls are automatically displayed on the screen (it does not
require the laser pointer). The component may be “transferred” into a bucket for future
remote access by using the component selector button. Controls for plant devices in lo-
cations other than the current one can be accessed remotely if they have been previously
stored in a bucket. When a plant component is available in a bucket and the bucket is
selected, the hand-held device can transmit commands to the processing plant, using
the pump control icons.

In the case of the hand-held control device the interface to be explored is the device
in the context of its environment. The environment in this case is a composition of
the tank content model and the device position model. The model presumes that the
appliance should always know its location. An alternative approach would allow the
designer to explore interaction issues when there is a dissonance between the states
of the device and its location. The effect of the type of software architecture used to
implement these types of system is to mask the possibility of discrepancy from the
implementer.

In order to explore the effect of the difference between the control room and the
hand-held device and to generate traces that may be of interest a reachability property
is formulated for a user level “goal” of the system. The goal chosen here for illustra-
tion is “Produce substance C”. This is a primary purpose of the system. The analysis

delete

component selector
bucket selector

laser pointer

touch screen LED

O
N

/O
F

F

D
E

L

ON/OFF

ON/OFF
VOLUME

Volume

-
+

2.5

Pump1

Pump5

Figure 3. A hand-held control device (modified version of the “Pucketizer” device in
[Nilsson et al., 2000]).
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proceeds by making a comparison between traces generated by the alternative mod-
els, using domain knowledge and user experience to generate appropriate scenarios.
If a property does not hold then the checker finds one counter-example. Alternatively,
the negated property may be used to find a trace that satisfies the property. Usually
the model checker only produces a single trace giving no guarantee that it is an in-
teresting one from the point of view of understanding design implications. Additional
traces can be created by adding assumptions about the behaviour. This contrasts with
an approach using explicit tasks (see for example, [Fields, 2001,Loer, 2003]) where the
model checker is used to explore a particular way in which the goal can be achieved
(the task). So far as this chapter is concerned any behaviours required to achieve a goal
are of interest.

The sequences in Figure 4 represent the traces obtained by checking for different
models if and how the plant can deliver substance C to the outside world. The property
asserts that, eventually, pump 5 will be turned on with tank 1 holding substance C. The
two models involving the different interfaces are checked with the same property. These
sequences can be used to provide the basis for scenarios that would enable a domain
expert and human factors expert to assess the interaction. One possibility would be
that a narrative is described around the sequence and this narrative used by a potential
operator to visualise the experience that they would have using the designed system,
much as scenarios and snapshots elicited from the current systems are used. The first
sequence in Figure 4 satisfies the control room interface. The second sequence was
generated by checking the property against the hand-held device model. While the first
two traces assume a serial use of pumps, the third and fourth sequences show the same
task for a concurrent use of pumps. Comparison of these sequences yields information
about the additional steps that have to be performed to achieve the same goal.

As a result of making a comparison between the traces for the control room and for
the hand-held, the analyst might come to the conclusion that the repetitive process of
saving controls may cause slips or mistakes, a direct effect of location on the actions of
the hand-held device. While these slips or mistakes may not be dangerous, it may be
concluded that the frustration of continually delaying because of omitting actions may
be significant and therefore the experience of the design will be affected negatively. To
explore the effect of this a further assumption may be introduced to the property to be
analysed, namely that an operator might forget certain steps.

For example, if it is assumed that controls for the pumps are not saved and the
original property is checked, the sixth sequence in Figure 4 is obtained. This sequence
highlights the likelihood of context confusions as well as user frustrations and there-
fore the need for the redesign of the device. As can be seen, an identical subsequence
of actions at positions 2 and 6 have different effects. An interlock mechanism might
therefore be introduced to reduce the frustration caused by forgetfulness. The proposed
redesign warns the user and asks for acknowledgement that the currently displayed con-
trol elements are about to disappear. The warning is issued whenever a device position
is left and the device’s control elements are neither on screen nor stored in a bucket. It
is straightforward to adjust the model of the interface to the hand-held device to capture
this idea, and this specification is given in [Loer and Harrison, 2004]. The design how-
ever does not prevent the user from acknowledging and then doing nothing about the
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Figure 4. Traces generated by runs of the model checker
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problem. Checking the same properties, including the assumptions about the forgetful
user, produces Sequences 7 and 8 in Figure 4. In this example the central control panel
can be used to identify the key actions to achieving the goal since the additional actions
introduced by the hand-held device are concerned exclusively with the limitations that
the new platform introduces, dealing with physical location, uploading and storing con-
trols of the visited devices as appropriate. The analysis highlights these additional steps
to allow the analyst to judge if such additional steps are likely to be problematic from a
human factors perspective. The reasons why a given sequence of actions might be prob-
lematic may not be evident from the trace but it provides an important representation
that allows a human factors or domain analyst to consider these issues. For example
some actions might involve a lengthy walk through the plant, while some actions may
be performed instantaneously and some might depend on additional contextual factors
like network quality. The current approach leaves the judgement of the severity of such
scenarios to the designer, the human factors expert or the domain expert. It makes it
possible for these experts to draw important considerations to the designer’s attention.

5 Information arrival

In the previous section an analysis performed on a control system to explore usabil-
ity properties was used to demonstrate the proposed formal approach. Although, no
experience requirements elicitation has been performed on that system it was possi-
ble to speculate on requirements associated with frustration manifested in the necessity
to repeat actions unnecessarily. The airport example is considered in a little more de-
tail to illustrate the analysis of provision of information to the user (space does not
permit a detailed analysis). Properties to be described in this section may be analysed
using models of the type described by [Garlan et al., 2003] and [Baresi et al., 2005].
With such models it is possible to explore the integration of sensors and appropriate
ways to introduce filters associated with context using a publish-subscribe architecture,
enabling the exploration of properties such as:

– when the passenger enters a new location, the sensor detects the passenger’s pres-
ence and the next message received concerns flight information and updates the
passenger’s hand-held device with information relevant to the passenger’s position
and stage in the embarkation process.

– when the passenger moves into a new location then if the passenger is the first
from that flight to enter that location, public displays in the location are updated to
include this flight information

– when the last passenger on a particular flight in the location leaves it then the public
display is updated to remove this flight information

– as soon as a queue sensor receives information about a passenger entering a queue
then queue information on the public display will be updated.

These properties can all be related to the experience that a user has of the system.
The system’s failure to adhere to all of these properties will not necessarily mean that
the system cannot perform effectively but in some sense or other they may relate to the
potential for anxiety or a sense of where the passenger is. Given the style of approach
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discussed in the previous section, checking properties of the model will generate se-
quences that do not satisfy them. The domain expert will use this information to gener-
ate scenarios that are potentially interesting from a user point of view. These scenarios
may then be used perhaps to visualise how different personae would experience them.
A potential user might be asked to adopt the persona and then to visualise the system.
Paper or electronic prototypes would be used to indicate what the system would appear
to be like at the different stages of the scenario.

Many characteristics of systems associated with timeliness or likelihood of oc-
currence contribute to the experience that we have of them. Such properties require
models that incorporate notions of time (the message relating to the flight will be
received within a fixed time span) and stochastic models (with a given probability).
[Loer et al., 2004] have used uppaal models to analyse human scheduling behaviour
in relation to process control systems. [Doherty et al., 2001] have explored stochastic
properties of interactive systems and [ten Beek et al., 2006] have used both timed model
checking and stochastic model checking to analyse a “groupware system”. Properties
that are relevant here relate to the dispatching of messages, for example:

1. the message is the next message
2. the message is most likely to be the next message [De Nicola et al., 2005]
3. the message will arrive within 30 seconds [Loer et al., 2004]

Hence further properties of the airport system with an impact on user experience
would include:

– no matter how many services a user is subscribed to, the flight information service
will be dispatched both to the user’s device and to the local display within a defined
time interval

– any service that is offered to a subscriber will only be offered if there is a high
probability that there is enough time to do something about the service offered

– when the passenger moves into the location then flight status information is pre-
sented to the passenger’s hand-held device with 30 seconds

– information on public displays should reflect the current state of the system within
a time granularity of 30 seconds

– if the passenger enters a location then the passenger’s trail will be updated with the
action that should occur at that stage (for example screening hand baggage) within
an appropriate time (two minutes). If not a reminder of the current activity will be
delivered to the user’s hand-held

– queue information relating to the best queue to join for a specific flight will be de-
signed to avoid jitter, that is it will be updated sufficiently frequently to improve the
experience of passengers but not so frequently that which queue to join and infor-
mation about how long the delay in the queue changes in a way that is annoying to
passengers.

It can be seen that properties such as these will be particularly appropriate to meet
passenger uncertainties about flight status, avoid the frustration of jittering information
about queues and of being offered services that cannot be received through lack of time.
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6 Conclusions

Ambient and mobile systems provide a rich context for the process of requirements
elicitation. They challenge our presumptions about how to analyse interactive systems.
A particularly interesting class of such systems provides the occupants of built environ-
ments with a sense of the space — to support a feeling of place and provide access to
the services that are offered within the environment. The evaluation of the effectiveness
of these systems requires the full richness of the target environment and yet in reality it
is not possible for a variety of reasons to explore these systems in a live environment.
The possibility that these systems can be explored through a process that involves the
use of formal methods has been discussed. Part of this has been demonstrated by recon-
sidering an analysis that was performed with a more traditional usability perspective.
Further examples derived from the specific concerns of an ambient and mobile system
in an airport environment.

Formal techniques that can be used to capture abstractly the key features of the pro-
totype currently being developed and can be used as a means of simulation or exhaustive
path checking. The model can be developed at the same time as the prototype. Using the
model it becomes possible to capture, for example, the knowledge that users in the en-
vironment might have [Fagin et al., 2004] or the resources for action that are required
by users [Campos and Doherty, 2006]. The development of prototypes that support a
subset of functions may be accompanied by simple models and simulations in which
these prototypes can be explored. So for example, separate models can be developed to
reason about the features pertaining to movement through space, and the actions that the
user may perform explicitly using the system. Analysis by simulation or model check-
ing can lead to the discovery and exploration of paths that were not envisaged in the
original set of scenarios. With the help of domain experts, situations can be envisaged
in which the design fails to provide the passenger with the information they need to
experience place.

Two important issues underpin our agenda for future research. The first concerns
the mapping between models and prototypes and how to maintain an agile approach to
the development of prototypes, while at the same time providing the means to explore
early versions of the system using formal models. Our concern is to produce generic
models that reflect the software architecture used for rapid development and to main-
tain synchrony between prototype and model. The second concerns the class of models
required to analyse the range of requirements that would be relevant to ambient and
mobile systems — how to ensure practical consistency between them, and to avoid bias
and inappropriate focus as a result of modelling simplifications.
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This paper describes the issues raised by the evaluation of multimodal interfaces in the 
field of command and control workstations. Design, specification, verification and 
certification issues for such Man-Machine Interfaces (MMIs) have been already identified as 
critical activities. This paper focuses on the issues raised by evaluation of their usability 
evaluation. We first present a formalism (Interactive Cooperative Objects) and its related 
case tool (PetShop) for the specification of such MMIs and then show how the models built 
can support the usability evaluation phase. As a case study we present a multimodal 
interaction for 3D navigation in a 3D satellite model.  

I. Introduction 
he importance of the Man-machine Interface (MMI) part of Space Ground Segment Information Treatment 
applications is significant and increasing. The same holds for costs of theses MMIs throughout the various 

phases of their life cycle, namely design, development, operation and maintenance. 
Current research work in the field of Human Computer Interaction promotes the development of new interaction 

and visualization techniques in order to increase the bandwidth between the users and the systems they are 
interacting with. Such an increase in bandwidth can have a significant impact on efficiency. For instance the number 
of commands triggered by the users within a given amount of time and the error rate, typically the number of slips or 
mistakes40 made by the users, are influenced by the user interface. 

On the interaction technique side, these new technologies promote the use of multimodal interfaces allowing 
users to interact with the system by entering data or commands using a combination of several input devices. In 
addition to "traditional" devices such as keyboard and mouse other “new” devices are available for the designers. 
Such devices include tactile screens, voice recognition systems, speech synthesisers, haptic devices (possibly 
providing force feedback) and eye tracking (allowing visual pointing). 
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The research results presented in this paper have been produced within a research project that targeted three main 

objectives: 
• study the potential contribution of these new MMI technologies for our Space Ground Segment IT 

software, 
• evaluate their adequacy with our needs in order to anticipate the design problems of the future MMIs and at 

the same time to assess our space systems,  
• Develop interactive applications with the same quality as non interactive applications i.e. through a 

rigorous development process.  
 
One of the key issues of the research carried out in the project is to find efficient ways of bringing together two 

separated (and often opposite) issues such as usability and reliability. Indeed, the continuously increasing 
complexity of the information manipulated by safety critical interactive systems calls for new interaction techniques 
increasing the bandwidth between the system and the user. Multimodal interaction techniques are considered as a 
promising way of tackling this problem. However, the lack of engineering techniques and processes for such 
systems makes them hard to design and to build and thus jeopardizes their actual exploitation in the area of safety 
critical applications. Space Ground Segment IT software is one the application domains where such failures can 
have a catastrophic impact on the equipment or data under manipulation. 

In a previous paper36 we presented the challenges provided by multimodal and 3D user interfaces as far as 
software design, specification and verification are concerned. We proposed a new formalism dedicated to the formal 
specification of such interfaces and presented a software CASE (Computer Aided Software Engineering) tool 
dedicated to this formalism. This tool called PetShop (for Petri nets workshop) allows software developers to edit 
and modify the models of the multimodal interface. This tool, a tutorial and a set of examples are available on our 
research group web site: http://liihs.irit.fr/petshop  

 
The current paper is dedicated to the last phase of the research project. After the phase of defining notations and 

tools for the specification of multimodal interfaces, we are presenting how these components can support the 
usability evaluation phase. Indeed, the fact that both the interaction technique and the entire application have been 
formally specified makes it possible to exploit that information (usually not available in a “classical” development 
process of interactive applications). 

The paper is structured as follows. The next section (section 2) presents the state of the art in the field of 
usability evaluation methods for multimodal interfaces. This section first presents a brief introduction about 
multimodal interaction and multimodal interfaces and then compares the current practice in multimodal interfaces 
usability evaluation. Section 3 informally presents the Interactive Cooperative Objects formal description technique. 
It also describes the specificities of multimodal interfaces and their impact on the expressive power and verification 
techniques. Section 4 introduces the case study used for providing a concrete example of multimodal interaction 
techniques and for showing how the ICO formalism is applied. The case study is used here, as a proof of concept 
and does not correspond to any Space Ground Segment application currently deployed. The last section (section 5) 
details through the explicit representation of user goals, tasks and interaction scenarios how usability evaluation 
could be conducted for these kinds of systems. It also shows how the formal specification technique can provide 
useful precise information for supporting this task.  

II. Usability evaluation of multimodal interfaces 

A. Introduction to interactive systems and multimodality 
By definition, multimodal interaction techniques make it possible for the users to interact with the application 

using several modalities. A modality is defined as a couple made up of a device (input or output) and an interaction 
language. Thus multimodality can take place in two different ways:  

• input multimodality that involves the use of several input devices such as a mouse, keyboard, voice 
recognition system, gaze recognition,…;  

• output modality that involves the use of several output devices such as screen, spatialized sound, 3D 
visualisation systems, … 
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Figure 1. Two handed interaction on a tablet PC (extracted from45) 

 
Today, multimodal interaction techniques are used in almost all areas ranging from business software to 

embedded systems such as cockpits of military aircrafts7.  
 
In this project we focus on input multimodality supporting the use of speech input and input by two mice. The 

successful use of two handed interaction has been shown in9. Using a toolglass and magic lenses, the user is able to 
select a color at the same time as choosing an object. A similar two handed interaction for coloring objects has been 
shown in45 for pen and touch input (see Figure 1). 

 
A previous study37 has shown that, in the field of safety critical systems, multimodal interaction presents several 

advantages.  
• Multimodality increases reliability of the interaction. Indeed, it permits to drastically decrease critical error 

(between 35% and 50%) during interaction. This advantage, on its own, can justify the use of multimodality 
when interacting with safety critical systems. 

• It increases efficiency of the interaction, in particular in the field of spatial commands (multimodal 
interaction is 20% more rapid than classical interaction to specify geometric and localization information).  

• Users predominantly prefer interacting in a multimodal way, probably because it allows more flexibility in 
interaction thus taking into account users' variability.  

• Multimodality allows increasing naturalness and flexibility of interaction so that the learning period is 
shorter. 

However, assessing quantitatively and in a predictive way both efficiency and usability of multimodal interactive 
systems is still considered as a difficult problem by the research community in the field of human-computer 
interaction. To structure the issues, a set of multimodal properties, called the CARE properties, have been identified 
in17. According to this study, input and output modalities can be combined in four ways: complementarily, 
assignment, redundancy and equivalence. These properties can be used both at design time when designers have to 
define how multimodal interaction will take place and also at exploitation time when the users will actually use the 
system and select how they will interact with the system. For instance if the designer provides two equivalent 
modalities for triggering a command, the user will be able to choose any of them while interacting with the system. 
Assignation of a given modality to a given command requires, on the other side, the user to use only that modality 
for triggering this command. 

As CARE properties are more oriented towards design and use of modalities, they are of little help as far as the 
precise specification or the construction of the system is concerned. The other classification17 proposed a system’s 
view on applications featuring multimodal interactions. Indeed, one of the key elements of multimodal interfaces is 
related to the fusion of information provided by several devices used in a concurrent way by the user.  

This classification (see Table 1) is structured according to 2 criteria:  
1. Use of modalities: this criterion indicates if two modalities can be used in parallel (i.e. at the “same” time) 

or in sequence (i.e. one after the other), 
2. Interpretation: this criterion indicates if pieces of information coming from two different modalities are 

fused to define a new command. This is the case, for instance, when the user triggers the command using voice 
recognition and provides the parameter for this command using the mouse like in saying the word “delete” and 
clicking simultaneously on a graphical object to be deleted.  
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Use of modalities 
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Table 1. Usage and interpretation of modalities 
 

The table shows that there can be four kinds of multimodal interaction both addressing input and output:  
• Exclusive: is the poorer kind of multimodality. Modalities can only be used in a sequential way and 

information provided by two different modalities are not fused. 
• Concurrent: Modalities can be used both in sequence and in parallel, but information provided by two 

different modalities are not fused for triggering a command. So modalities have to be used for different tasks 
and in a non correlated way. 

• Alternating: Modalities can only be used in a sequential way and information provided by the different 
modalities is fused. Fusion/fission mechanisms can be applied to trigger specific commands if the 
information content is compatible. 

• Synergistic: it is the more complex and powerful kind of multimodality. Modalities can be used both in 
sequence and in parallel and information provided by two different modalities can be fused. 

B. Usability Evaluation methods for Multimodal Interfaces 
Multimodal User Interfaces (MUI) are often referred to be more natural to users than “uni-modal”  user 

interfaces (e.g. graphical UI) because they allow making better use of users’ communication channels. This 
assumption is supported by studies on two-handed multimodal user interfaces which have shown that using two 
pointing devices in a normal graphical user interface has been found to be more efficient and understandable than 
the basic mouse and keyboard interfaces as described in (Ref. 13, 26, 46). However, multimodal interaction only 
benefits when the design takes into account the human abilities and the appropriate selection of communication 
channels. Several studies have revealed that when these interfaces are designed poorly, hey are neither better 
understood nor more efficient (Ref. 19, 26).  

 
Figure 2. An overview of evaluation methods for multimodal user interfaces. 

 
The combinations of input and output devices and interaction modalities have opened a complete new world of 

experience for interactive systems and it poses the question on how to accurately evaluate the usability of 
multimodal user interfaces. The results of existing empirical studies of such as multimodal applications revealed a 
very intricate problems concerning the assessment of multimodal technology where individual user preferences for 
modality18, context of use and kind of activity supported by the system (task-oriented versus non-task oriented)26, 
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use of specific devices2,24 and interaction technique32 (e.g. pointing x clicking), play major role to determine the 
usability.  

There have been attempts to adapt traditional usability evaluation methods for use in multimodal systems, and a 
few notable efforts to develop structured usability evaluation methods for multimodal applications. Regarding the 
current practice of usability evaluation of multimodal systems, we may distinguish in Figure 2 four main 
approaches: a) theoretical frameworks based on inspection methods, b) empirical investigation based on user testing, 
c) user inquiry, and d) analytical modeling.  

Despite the great importance of inspection methods such as Heuristic Evaluation33 and cognitive walkthrough28 
for usability evaluation of user interfaces, they have been found less useful to assess multimodal user interfaces.  

The great majority of studies still employ some kind of user testing where user activity is measured while 
performing some pre-defined tasks. Log file analysis39 and the think-aloud protocol is frequently employed in both 
laboratory and in field observation25 with advanced prototypes. Nevertheless, mockups and early prototypes have 
also been testing using the method Wizard of Oz27 technique. User testing seems to be a preferred strategy for 
evaluation of many studies of multimodal user interfaces because it allows the investigation of how users adopt and 
interact with multimodal technology.  

Questionnaires have been extensively employed to obtain qualitative feedback from users (e.g. satisfaction, 
perceived utility of the system, user preferences for modality) as well to assess cognitive workload42 (especially 
using the NASA-TLX method). Questionnaires have quite often been used in combination with user testing 
techniques25.  

More recently, two main approaches have been developed to support analytical modeling which intends to 
predict usability of multimodal user interfaces. On one hand simulation and model-based checking of task 
specifications are used to predict usability problems such as unreachable states of the systems or conflicting events 
required for fusion. (Ref. 39) propose to combine task specification based on ConcurTaskTree (CTT) with multiple 
data sources (e.g. eye-tracking data, video records) in order to better understand the user interaction and the task 
models used to support the development process of multimodal user interfaces. On the other hand, analytical 
modeling based on fitness functions38 and Fuzzy Logical Model of Perception29 (FLMP) that belongs to the category 
of predictive analytical modeling try to mathematically explain how users interact with the system. These 
approaches highlight how humans benefit from multiple sources of information from multiple modalities but they 
cannot be used alone for usability assessment. 

III. ICO a formal description technique for safety critical interactive systems 
Design, specification and verification of interactive systems is very complex and classical techniques and tools 

in the field of software engineering do not provide adequate support for these kinds of software systems. Complexity 
increases when more sophisticated interaction techniques (such as multimodal interaction) are made available to the 
users. We believe that the use of an adequate formal description technique can provide support for a more systematic 
development of multimodal interactive systems. Indeed, formal description techniques allow for describing a system 
in a complete and non-ambiguous way thus allowing an easier understanding of problems between the various 
persons participating in the development process. Besides, formal description techniques allow designers to reason 
about the models by using analysis techniques. Classical results can be the detection of a deadlock or presence or 
absence of a terminating state. As stated above, a set of properties for multimodal systems have been identified17 but 
their verification over an existing multimodal system is usually very difficult to achieve. For instance it is very 
difficult to guarantee that two modalities are redundant whatever state the system is in. 

C. Related Work on Engineering Multimodal Applications 
This paper exploits a formal description technique that we have defined. This proposal builds upon previous 

work we have done in the field of formal description techniques for interactive systems and is an answer to several 
requests from industry to provide software engineers with software engineering techniques for multimodal systems. 

Work in the field of multimodality can be sorted into five main categories. Of course, the aim of this 
categorization is not to be exhaustive but to propose an organization of previous work in this field.  

• Understanding multimodal systems: (Ref. 16) presents a typology of multimodal systems while (Ref. 17) 
deals with properties of multimodal systems. 

• Software construction of multimodal systems: (Ref. 8) and (Ref. 14) propose toolkits for the construction 
of multimodal systems, and (Ref. 34) proposes a generic software architecture for multimodal systems. 

• Analysis and use of novel modalities: (Ref. 11) presents the first use of voice and gesture as combined 
modalities. (Ref. 12) introduces two handed interaction (Ref. 10) introduces the use of two handed 
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interaction for virtual reality applications and (Ref. 44) presents Jeanie, a multimodal application, to test the 
use of eye tracking and lips movements recognition. 

• Multimodal systems description: (Ref. 15) presents QuickSet a cooperative interface using both voice and 
gesture, while (Ref. 34) presents a Multimodal Air Traffic Information System (MATIS) using both voice 
and direct manipulation interaction. Similarly, (Ref. 9) presents a drawing system featuring two handed 
interaction through a trackball and a mouse.  

• Multimodal systems modeling: (Ref 1) exploits high-level Petri nets for modeling two handed interaction 
(a mouse and a trackball) and (Ref 18 and Ref 45) use finite state automatons for modeling two handed 
interaction. 

D. Informal Description of ICOs 
The aim of this section is to recall the main features of the ICO (Interactive Cooperative Objects) formalism that 

we have proposed for the formal description of interactive system. The formalism will be used for the case studies 
and performance evaluation in the next sections. We encourage the interested reader to look at (Ref. 4) and (Ref. 43) 
for a complete presentation of this formal description technique. 

The Interactive Cooperative Objects (ICOs) formalism is a formal description technique dedicated to the 
specification of interactive systems (Ref. 5). It uses concepts borrowed from the object-oriented approach (dynamic 
instantiation, classification, encapsulation, inheritance, client/server relationship) to describe the structural or static 
aspects of systems, and uses high-level Petri nets (Ref. 22) to describe their dynamic or behavioral aspects. 

ICOs are dedicated to the modeling and the implementation of event-driven interfaces, using several 
communicating objects to model the system, where both behavior of objects and communication protocol between 
objects are described by Petri nets. The formalism made up of both the description technique for the communicating 
objects and the communication protocol is called the Cooperative Objects formalism (CO and its extension to 
CORBA COCE (Ref. 43)). 

In the ICO formalism, an object is an entity featuring four components: a cooperative object with user services, a 
presentation part, and two functions (the activation function and the rendering function) that make the link between 
the cooperative object and the presentation part. 

Cooperative Object (CO) part: a cooperative object models the behavior of an ICO. It states how the object 
reacts to external stimuli according to its inner state. This behavior, called the Object Control Structure (ObCS) is 
described by means of high-level Petri net. A CO offers two kinds of services to its environment. The first one, 
described with CORBA-IDL35, concerns the services (in the programming language terminology) offered to other 
objects in the environment. The second one, called user services, provides a description of the elementary actions 
offered to a user, but for which availability depends on the internal state of the cooperative object. 

Presentation part: the Presentation of an object states its external appearance. This Presentation is a structured set 
of widgets organized in a set of windows. Each widget may be a way to interact with the interactive system (user-
towards-system interaction) and/or a way to display information from this interactive system (system-towards-user 
interaction). 

Activation function: the user-towards-system interaction (inputs) only takes place through widgets. Each user 
action on a widget may trigger one of the ICO's user services. The relation between user services and widgets is 
fully stated by the activation function that associates to each couple (widget, user action) the user service to be 
triggered. 

Rendering function: the system-towards-user interaction (outputs) aims at presenting to the user the state 
changes that occurs in the system. The rendering function maintains the consistency between the internal state of the 
system and its external appearance by reflecting system states changes. 

ICOs are used to provide a formal description of the dynamic behavior of an interactive application. An ICO 
specification fully describes the potential interactions that users may have with the application. The specification 
encompasses both the "input" aspects of the interaction (i.e. how user actions impact on the inner state of the 
application, and which actions are enabled at any given time) and its "output" aspects (i.e. when and how the 
application displays information relevant to the user). 

An ICO specification is fully executable, which gives the possibility to prototype and test an application before it 
is fully implemented (Ref. 6). The specification can also be validated using analysis and proof tools developed 
within the Petri nets community and extended in order to take into account the specificities of the Petri net dialect 
used in the ICO formal description technique. This formal specification technique has already been applied in the 
field of Air Traffic Control interactive applications. A case study on this field can be found in (Ref. 30). 
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IV. Multimodal interaction on a 3D satellite model 
This section presents the exploitation of the formalism presented in previous sections to a case study in the field 

of space applications. Even though the application is not one currently used by “real” users it has been designed in 
order to cover a wide range of issues spanning from formal specification of interactive behaviors to usability 
evaluation.  

E. Informal presentation of the case study 
This application provides multimodal interaction techniques to a user moving the point of view (we will later call 

this “navigating”) in a 3D model of a satellite. This navigation can be done either by rotating the 3D model of the 
satellite directly using the mouse on the 3D image or using the two control panels presented in Figure 3.  

 

a)  b)  c)  
Figure 3. The 3D representation of Demeter satellite (a) and its two control panels (b and c) 

 
The control panel (b) entitled “point de vue” allows the user to manipulate the current position of the point of 

view of the 3D image using the set of buttons in the top right hand side of Figure 3b. The set of buttons in the 
“orientation” section allows rotating the satellite image in any direction. The two list-boxes on the left hand side 
present respectively the list of components of the satellite and the list of categories the components belong to. We do 
not present the other parts of the user interfaces as they are beyond the scope of this paper.  

At the beginning the satellite appears as presented in Figure 3a). The main task given to the user of this 
application is to locate one or several components in the satellite. This task is not easy to perform as components are 
nested and might not be visible. Thus the user interface offers the possibility to make the set of components selected 
from the list partly or fully transparent. This transparency is set by means of the Transparence slider on the right 
hand side of Figure 3c). The goal of the user is to locate components that can be of two types: overheating and over-
consuming. The selection of the range of temperature of interest and the range of consumption can be done using the 
range slider in the section “données” in the right hand side of Figure 3c. Figure 4 presents a snapshot of the satellite 
3D model including the temperature of the visible components.  
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Figure 4. 3D satellite model displaying the temperature of the visible components 

 
In this application multimodal interaction takes place both while using the button pairs, changing the point of 

view of the 3D model, and while interacting with the range slider for selecting the temperature and the consumption.  
Due to space constraints we only present here multimodal interaction on the button pair. The interested reader 

can see the formal specification of a similar multimodal range slider component in (Ref 21).  
 

 
Figure 5. One of the multimodal interactions in the application 

 
Figure 5 shows the multimodal interaction in action. In this figure the user is currently using 3 input devices at a 
time: 2 mice and 1 speech recognition system. The speech recognition systems allows only for entering 2 different 
words: “fast” and “slow”. The interaction takes place in the following way: at any time the user can use any of the 
mice to press on the buttons that change the point of view. In Figure 5, the button that moves the satellite image 
backwards (with the additional label right mouse interaction on Figure 5) has been pressed using the right mouse. 
Simultaneously the left mouse has been positioned on the button moving the satellite image to the left. At that time 
the image has already started to move backwards and as soon as the other button will be pressed the image will be 
moving both backwards and to the left. The user is also able to increase or decrease the movement speed by uttering 
the words “fast” and “slow”. In Figure 5 the word “fast” has been pronounced and recognized by the speech 
recognition system and is thus (as shown on the left-hand side of Figure 5). This action will reduce the time between 
two movements of the image. Indeed, the image is not moved according to the number of clicks on the buttons but 
according to the time the buttons are kept pressed by the user.  
Describing such interaction techniques in a complete and unambiguous way is one of the main issues to be solved 
while specifying and developing multimodal interactive systems. The next section presents how the ICO formalism 
is able to deal with these issues. Additionally it will show that the description above is incomplete and does not 

Left mouse interaction 

Right mouse interaction 

Disabled button  

Speech recognition output  
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address at an adequate level of detail both timed and concurrent behavior at least when it comes to implementation 
issues.  

F. ICO modeling of the case study 
This section is devoted to the formal modeling of the multimodal interactive application presented in section E. 

In this multimodal application there is no fusion engine per se, the two mice are handled independently and the 
speech interaction affects movement speed whatever interaction is performed with the mice.  

The modeling is structured as represented in Figure 6. The right hand side of the figure shows the user 
interacting with the input devices. As stated before three input devices are available. In order to configure this set of 
input devices we use a dedicated notation called Icon14. A more readable model of this configuration is represented 
in Figure 7.  

 

IV
Y

 b
us

 
Figure 6. Software architecture of the multimodal interactive application 

 
The left hand side of Figure 7 represents the 3 input devices connected to software components. These 

components are represented as graphical bricks and connectors model the data flow between these bricks. For 
instance it defines that interaction with the mice will take place using the left button (but1 in the usbMouse brick) 
and that the alternate button for the speech recognition system is the space bar (Space label in the keyboard brick 
connected to the speechCmd brick). The right hand side of this figure represents contact points with the other 
models of the application. As input configurations are not central to the scientific contribution of this paper we do 
not present in more detail how this modeling works. More information about the system supporting the edition and 
execution of models, the behavior of a model and the connections to other models can be found in (Ref. 31). 
Similarly, functional core and communication protocol between the functional core and the interaction models are 
not presented.  
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Figure 7. Input configuration using ICon14 

 

 
Figure 8. Model of the temporal evolution of movements driven by speech (continuous move in Figure 6) 

 
The ICO model in Figure 8 represents the complete and unambiguous temporal behavior of the speech-based 

interaction technique as well as how speech commands impact the temporal evolution of the graphical representation 
of the 3D image of the satellite. Darker transitions are available according to the current marking of the models. 
Taking into account the current marking of the model of Figure 8 (one token in each place delay, Idle and core) only 
transitions startMove_1, faster_ and slower_ are available. These transitions describe the multimodal interaction 
technique available i.e. how each input device can be used to trigger actions on the system. Transitions faster_ and 
slower_ are triggered when the user utters one of the two speech commands fast and slow. In the initial state these 
are available and will remain available until the upper limit and the lower limit are reached (respectively delay>1000 
for transition slower_ and delay<100 for transition faster_).  
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Figure 9. Mutual exclusion of the pair of buttons for changing the point of view (button pair in Figure 6) 

 
Figure 9 presents another model of the application, responsible for describing the behavior of each button pair. 

By button pair we mean the buttons that are antinomic, namely (up, down), (left, right) and (backwards, forward). 
These 3 button pairs are represented on the right hand side of Figure 5. To model this antinomy the ICO description 
represents the fact that the user can press either the positive or negative button. Once pressed, these buttons can be 
released when the left button on the input device is released (as represented in the ICon model of Figure 7).  

G. Low level interaction constraints 
Models of Figure 8 and Figure 9 integrate some constraints for the user. These constraints can result from the 

design process and design choices (the 3D image will not move faster than one modification every 100 milliseconds) 
or physical constraints (one button on a mouse can only be either pressed or released).  

All of these constraints are made explicit in the models and thus provide a unique source of information about 
the actual precise behavior of the interaction technique. Thanks to the expressive power of the underlying Petri net 
formalism used in ICO, concurrent behavior can be described together with quantitative temporal evolution (the 
image will change every 100 milliseconds). Indeed, Petri nets is the only formalism able to express concurrency and 
both quantitative and quantitative temporal evolutions.  

For example the ICO model makes explicit the speech-driven temporal evolution of the model. The value of the 
delay between two images is stored in a variable called Delay. This variable is then used as the timer in the 
transition Sleep (bottom right hand side of Figure 8). This construct is defined in Generalized Stochastic Petri nets3 
and behaves as follow. According to the buttons pressed using the mice, a token containing this information will be 
set in place moving. While the buttons are pressed the transition move is fired performing the calculation of the 3D 
image and rendering it on the screen. This will move the token from place core to place done making the transition 
move unavailable (there is no token in one of its input place (the place core)). Transition Sleep will become 
available (one token in each input place (only place done)) but will not fire as it is a timed transition. Indeed, the 
transition will wait until the amount of time delay (the variable delay is storing a number of milliseconds) has 
elapsed before firing. When this amount of time has elapsed the transition will fire removing the token from place 
done and setting a new one in place core. After this loop, transition move will become available again and thus be 
ready to render a new 3D image of the satellite. As transitions startMove_2 and stopMove remain available during 
the loop it makes explicit the fact that users can press or release any button on the user interface at any time.  

V. Model-Based Usability Evaluation 

H. Basic Principles of Model-Based Evaluation 
As presented in section B, to ensure usability of these kinds of applications, various methods from the field of 

human-computer interaction (HCI) can be applied. Even though any kind of usability evaluation method can help in 
this process we will focus on applying usability tests.  
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A typical usability test is performed in a laboratory (sometimes in the field), were users are asked to perform 

selected tasks. The users are observed by cameras, and they might be asked to talk aloud (also called elicitation 
activity) while performing the task. A usability test typically begins with asking the users a pre-questionnaire related 
to the domain of the software (use of other related systems, experience with multimodal-interfaces, hours of training 
…). Some tasks are then performed to ensure that the user is able to use the system. Testing multimodal interactions 
usually requires an additional activity corresponding to the presentation of the key input modalities to the user. The 
user then performs the tasks. Tasks have to be completed within a given time. If the user cannot solve the task within 
this time, the experimenter (leader of the usability test) helps the user by giving hints or providing the solution. The 
number of successful completions and the completion time are recorded. Tasks not solved indicate usability 
problems, leading to further detailed investigations of the problems. For an example of a usability test recording see 
Figure 10. 

 

 
Figure 10. Example of usability test in action 

 
When complex interaction techniques are considered (as in the current application) the presentation of the 

application to be tested with the user also requires a description of the actual interaction technique. This description 
goes beyond the typical high-level (task-based) scenarios promoted by usability testing methods. The goal of a 
usability test is to improve the interface by finding out major usability problems within the interface. While a 
common practice is to use the most frequently performed tasks (based on the task analysis), in the field of safety 
critical systems, it is important to cover all (or most of) the possible interactions that the user might be involved in. 
The explicit description, in the formal models, of the interaction techniques makes it possible to identify not only the 
“minimum” number of scenarios to be tested but also to select more rationally the tasks that are to be focused on.  

When testing multimodal interfaces, this constraint reaches a higher level of complexity due to the significant 
number of possible combinations of input modalities and also due to the fact that fusion engines usually involve 
quantitative temporal evolution as presented in section F. In order to test all (or most) of these combinations it is 
required to provide usability tests scenarios at a much lower level of description than what is usually done with more 
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classical systems. Indeed, as for walk-up and use systems, the interaction technique must be natural enough for the 
user to be able to discover it while interacting with the system.  

Even though we need to address this issue of low level scenarios it is also important to notice that usability 
testing is very different from software testing. The objective here is to test the usability of the interaction technique 
and not its robustness or default-freeness like in classical software testing. The issue of reliability testing of 
multimodal interactive systems is also very important but it is beyond the scope of this paper. Formal methods can 
help to specify the “real” number of low-level interaction scenarios and thereby inform selection of tasks more 
appropriately. 

It is important to note that we are not claiming that current practices in the field of usability evaluation must 
involve model-based usability evaluation. Our claim is that in the field of safety critical interactive systems and 
more specifically when multimodal interaction techniques are considered, model-based approaches can support 
specific activities (like low-level tests scenarios and tasks identification) that could be otherwise overlooked or not 
systematically considered.  

The next section presents examples of low-level interaction scenario descriptions for the case study.  

I. Example of Model-Based Evaluation on the Case Study 
The description of the temporal evolution presented in section G shows how complex low-level multimodal 

interaction can be. When it comes to testing the usability of such behavior it is required first to provide a detailed 
description of the behavior to the evaluators but also to make it possible to modify such behavior if the results of the 
usability testing require to do so. Some of the modifications in the ICO model of Figure 8 are trivial:  

• Changing the value of increase and decrease of time when speech commands are issued: this can be done by 
changing the line delay=old+50 in the transition slower_ for instance to another amount of increase 

• Changing the maximum speed of 3D image rendering: this can be done by changing the precondition in 
transition slower_ or faster_ to another value than 1000 (maximum) and 100 (minimum).  

 
Other complex behaviors relative to qualitative temporal behaviors can also be represented and thus exploited 

during usability tests. For instance as modeled in Figure 8 all the input modalities are available all the time but 
another design choice could have been to allow only to use a maximum of 2 input modalities at a time. In such case 
these limitation should have been presented with precise details to the user before executing the evaluation 
scenarios. Similarly, some scenarios could have been selected with the explicit purpose of evaluating comfort and 
cognitive workload induced by this kind of reduction of the interaction space.  

 
This notion of low-level interaction technique can have a significant impact on the results and thus the 

interpretation of usability tests results. We are currently in the phase of performing such model-based evaluation on 
a real ground segment information treatment system to assess the impact of multimodal interaction techniques on the 
ease of use and performance. The goal is also to asses impact of model-based evaluation with respect to more 
classical usability evaluation technique for multimodal systems (as the ones presented in section B).  

VI. Conclusion 
This paper has presented the use of a formal description technique for describing multimodal interactive 

applications. Beyond that, we have shown that this formal description technique is also adequate for interaction 
techniques and low level interactive components. One of the advantages of using the ICO formal description 
technique is that it provides additional benefits with respect to other notations such as Statecharts41. Thanks to its 
Petri nets basis, the ICO notations makes it possible to model behavior featuring an infinite number of states (as 
states are modeled by a distribution of tokens in the places of the Petri nets). Another advantage of ICOs is that they 
allow designers to use verification techniques at design time as has been presented in (Ref. 30). These verification 
techniques are of great help for certification purposes. Beyond these software engineering benefits, we have also 
shown that this model-based approach can also support the usability evaluation activities that are usually considered 
externally from the actual development process. This specific contribution provides a first step for integrating, in a 
same development framework, requirements coming both reliability and usability communities.  
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Abstract 
This paper presents a three step approach to improve safety in the field of interactive systems. This 
approach combines, within a single framework, previous work in the field of barrier analysis and 
modelling, with model based design of interactive systems.  
The approach first uses the Safety Modelling Language to specify safety barriers which could achieve 
risk reduction if implemented. The detailed mechanism by which these barriers behave is designed in 
the subsequent stage, using a Petri nets-based formal description technique called Interactive 
Cooperative Objects. One of the main characteristics of interactive systems is the fact that the user is 
deeply involved in the operation of such systems. This paper addresses this issue of user behaviour 
by modelling tasks and activities using the same notation as for the system side (both barriers and 
interactive system). The use of a formal modelling technique for the description of these three 
components makes it possible to compare, analyse and integrate them. The approach and the 
integration are presented on a mining case study. Two safety barriers are modelled as well as the 
relevant parts of the interactive system behaviour. Operators’ tasks are also modelled. The paper then 
shows how the integration of barriers within the system model can prevent previously identified 
hazardous sequences of events from occurring, thus increasing the entire system safety.  
 
Résumé 
Cet article présente une approche composée de trois étapes pour accroitre la fiabilité des systèmes 
interactifs. Cette approche combines, à l’intérieur d’un seul et même cadre fédérateur, des travaux 
antérieurs dans le domaine de l’analyse et de la modélisation des barrières, et dans celui de la 
modélisation des systèmes interactifs. 
L’approche exploite tout d’abord SML (Safety Modelling Language) pour la spécification des barrières 
dont l’implémentation permet la diminution des risques. La façon dont ces barrières sont conçues et 
spécifiées est décrit dans la deuxième phase et exploite une technique de spécification formelle basée 
sur les réseaux de Petri appelée ICO (Interactive Cooperative Objects).  
Une des caractéristiques fondamentales des systèmes interactifs est liées au fait que l’utilisateur du 
système est lourdement impliqué dans l’exploitation de ces systèmes. Cet article prend en compte cet 
aspect utilisateur par la modélisation des tâches et activités des utilisateurs à l’aide de la même que 
pour la partie système (qui couvre à la fois la partie système et la partie barrière). L’utilisation d’une 
même technique de description formelle pour ces trois composants offre de nombreux avantage tels 
que la vérification de la compatibilité des descriptions, la vérification de leur complémentarité ainsi que 
la vérification du comportement global suite à leur intégration. L’approche est exemplifiée sur une 
étude de cas du domaine minier décrivant un système d’incinérateur de charbon. La modélisation 
inclus deux barrières, les parties pertinentes du comportement du système ainsi que les tâches des 
opérateurs. L’article décrit ensuite comment ces barrières, une fois intégrées dans le modèle du 
système, peuvent éviter l’occurrence de séquences d’événements pré-dentifiées qui pourraient 
conduire à un incident, accroissant par là même la sureté du couple opérateur-système.  
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1. Introduction 

 
Today, safety has become paramount in the design and operation of many technological systems. 
Often such systems present hazards that cannot be easily eliminated and therefore these systems 
become safety critical. Safety critical systems can be found in domains, such as in transportation, 
medicine, industry, and even in financial systems. To mitigate the risk caused by the potential 
consequences of these hazards, risk reduction must occur for the system to be safe enough to be 
accepted by society. The means of risk reduction are usually dedicated safety systems that stop the 
evolution of scenarios leading to unacceptable consequences.  

To avoid double use of the word system, we will refer to safety systems as safety barriers, or simply 
barriers. When we refer to ‘the system’, this reference is made to the system that is being designed 
and operated as a whole, for instance the plant, aircraft or computer system. Though a long 
discussion of safety barriers is beyond the scope of this paper, barriers are usually regarded as 
systems that prevent or stop an undesired consequence. The ability to stop is important here, and 
defines the scope of what the barrier is. For instance a fire extinguisher is not a barrier itself, as it has 
to be operated by a human who must have received some training, and it must be in an easily 
accessible place. These elements are part of the barrier too. While systems and barriers should be 
independent to a certain aspect, they will often share components. 

In this paper we will deal with a special but very common category of barriers, those that are socio-
technical. This means that the barrier is essentially a combination of hardware and software, but also 
depends on human action for it to function correctly. The barrier thus assigns safety critical tasks to 
human operators who therefore become crucial in maintaining system safety. As these barriers are 
sociotechnical, the tasks involve interaction with system software and hardware.  

The task of the operator appears often hard to integrate in system design, and may occur too late [1] 
whilst the technical part of designing a sociotechnical system is often relatively straightforward, 
correctly specifying and analysing the human tasks and performance appears more difficult. These 
difficulties may also lead to operators not being aware of a task being safety critical, which can 
obviously cause accidents. 

It is the specification, analysis, verification and documentation of the safety critical human tasks that 
we are interested in. In this paper we outline an approach that facilitates these tasks. Most importantly, 
we simplify system analysis by explicitly defining barriers, analysing how these function, and only 
subsequently integrating them in the system, instead of directly trying to analyse the system as a 
whole. The length of this paper does not allow a full discussion of our work. We will mention however 
where we shortened our discussion for brevity. 

2. The Approach 

The approach employs a formal description technique to provide non-ambiguous, complete and 
concise models, thus giving an early verification of some potential problems to the designer before the 
application is actually implemented. However, formal specification of interactive systems often does 
not address the issues of erroneous user behaviour that may have serious consequences for the 
system. In order to provide such benefits, formal specification techniques can also be complex, and 
designers may be reluctant to use them [2]. For these reasons, the ICO approach presented in the 
paper is tool supported and tutorials, examples and case studies are available through the web site 
(http://liihs.irit.fr/petshop).  

We use a three step approach (see Figure 1 for approach overview diagram). Step one uses the 
Safety Modelling Language (SML) to identify a structure which achieves risk reduction [3]. This 
structure makes up the safety architecture of the system. Here the specific hazards are analysed, and 
barriers are devised that can prevent targets (e.g. workers, environment) from being affected by these 
hazards. In this first step, barriers are treated as black boxes, it is specified why they are in the 
system, not how they function. Designers are thus supported in reasoning about risk reduction 
conceptually. 

In the second step each individual barrier is analyzed, designed and modelled. Often various 
techniques are required to achieve this. In this paper we employ the Interactive Cooperative Objects 
(ICO) formalism [4] based on Petri-nets to model and analyse the mechanisms of the barrier, their 
specifications and to verify their functions. The result of this step is a full design of the barrier which 
will achieve the safety function as specified in step one. This may use various parts of the system, 
hardware, software and human to achieve the required safety function.  
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Figure 1. Approach Diagram 

 
In the third step the functions specified by each individual barrier are connected to the system model 

as a whole by integrating the barrier into the system. In this paper we study this using the ICO-model. 
This occurs as follows. An operator has a number of functions. Some of these are specified by 
barriers. Using this mapping, it becomes clear which of the operator’s functions are specified by which 
barrier, and therefore are safety critical. Barrier functions are connected in a similar way to hardware 
and software components of the system.  

2.1 Safety Modelling Language 

The first step of our approach uses Safety Modelling Language. In short SML [5] uses the Hazard-
Barrier-Target (H-B-T) model to model the safety architecture of a system. The H-B-T model assumes 
that targets are vulnerable to the effects of hazards, and that targets can be protected against these 
effects by barriers. In some respects it is similar to other barrier models, such as the accident 
evolution and barrier function model [6], and the ‘Swiss-cheese’ model [7]. In Figure 2, a basic 
example of a SML diagram is shown. It shows that toxic fumes are hazardous to workers. However 
the worker is protected by a containment system that contains the fumes, thus being a barrier that 
prevents exposure. As this may not be completely adequate, the worker is further protected by 
Personal Protective Equipment (PPE). Alternatively prevention is realized by removing the hazard, for 
example by using a non-toxic substance. 

Containment
System

PH1 B2B1 T1

Toxic
Fumes

PPE Worker

 

Figure 2. A typical H-B-T diagram. PH1 is a primary hazard symbol, T1 a target symbol, and B1 & B2 
are barrier symbols 

 
SML models hazards in a more complex manner than the basic H-B-T model in Figure 2. A hazard 

is something that has the potential to cause an adverse effect to a target. A hazard is a ‘label’ that 
humans apply to complex phenomena perceived as hazardous. SML does not provide insight into the 
hazardous phenomenon itself but into the relations this phenomenon has with the rest of the 
design/system. It is modelled using two components: Causal elements that provide a link to the 
mechanism of the hazard, and effects, that provide the link to the targets. For instance, when the 
elements ‘flammable substance’, ‘oxygen’, and ‘ignition source’ are present in a design, these will 
cause a fire hazard, having heat radiation, smoke and high temperature as effects. This is shown in 
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Figure 3a. An example of a human factors related hazard is a misdiagnosis in interpreting an X-ray 
photograph in a medical domain. This can for instance be caused by the causal elements ‘training’, 
‘available time’, and issues such as ‘X-ray clarity’. 

 

Figure 3: SML representation of (a) fire hazard, (b) a human error hazard, and (c) recursion. FH1 & 
FH2 are functional hazard symbols, MB1 a mitigative barrier, PB2 a protective barrier 

 
To model the failure of barriers, SML defines primary and functional hazards. Primary hazards 

cause direct harm to humans, neighbouring installations, and the environment. The barriers in 
between primary hazards and primary targets are called primary barriers. Functional hazards are 
phenomena due to either human factors or other causes that adversely affect other barriers, thus 
making these fail. Poor fire detection causes a sprinkler system to become inoperable, a testing 
procedure protects against this, as shown in Figure 3c. In this way, a risk reduction problem is defined 
recursively; when a barrier is used, it can fail due to a functional hazard  

A consequence of this is that the list of primary hazards quickly provides insight into why the 
systems’ safety is critical. Next, accident mechanisms, and the role humans play in these can be 
understood via recursions. This and many other aspects of the language such as the different kind of 
symbols and barriers are not further explained in this paper though Figure 3 shows some. For further 
information on SML see [8]. 

2.2 System Modelling, Petri Nets, and the ICO formalism 

Whilst SML helps to define the barriers and their role in risk reduction, we need to understand which 
tasks are defined by these barriers, and how they must be integrated in the system. SML is not helpful 
here. We use the ICO formalism based on Petri nets to achieve that. The ICO barrier models built 
using the SML model represents both human and system behaviour, thus allowing task analysis. The 
advantages of the use of formalisms are that they provide non-ambiguous, complete and concise 
notations. Moreover, they allow to check and prove properties of the design, thus to verify that the 
barrier will function.  

2.2.1 Petri nets 
Petri nets are a widely used formal description technique in systems engineering. In this paper, a 
dialect of Petri nets is used to model both the system and the behaviour of barriers. Brevity prevents a 
detailed introduction to the Petri net notation however interested readers can look at [9]. 

Petri Nets are a formalism composed of four elements: the states (called places, depicted as 
ellipses), state changing operators (called transitions, depicted as rectangles), arcs (relating 
transitions and places) and tokens (representing the current state of the Petri net).   

2.2.2 Informal presentation of the ICO formalism 
The Interactive Cooperative Objects (ICOs) formalism is a formal description technique dedicated to 
the specification of interactive systems [4]. It uses concepts borrowed from the object-oriented 
approach (dynamic instantiation, classification, encapsulation, inheritance, client/server relationship) to 
describe the structural or static aspects of systems, and uses high-level Petri nets [10] to describe 
their dynamic or behavioural aspects. 
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An ICO specification fully describes the potential interactions that users may have with the 
application. The specification encompasses both the "input" aspects of the interaction (i.e. how user 
actions impact on the inner state of the application, and which actions are enabled at any given time) 
and its "output" aspects (i.e. when and how the application displays information relevant to the user). 
An ICO specification is fully executable, which gives the possibility to prototype and test an application 
before it is fully implemented [11]. The specification can also be validated using analysis and proof 
tools developed within the Petri nets community. In subsequent sections, we use the symbols in 
Figure 4. 

 

 

• States of the system are represented by 
the distribution of tokens into 

places  
 
• Actions triggered in an autonomous way 

by the system are called transitions and 

are represented as follows  
 

 
• Actions triggered by users are 

represented by half bordered 

transition  
 

Figure 4. An ICO model of the operation of a pump and its motor 

3. Case Study 

We use an example to further explain our approach. It is based on an existing design of a fuel line, 
which feeds the burners in a cement kiln1.  

We will focus at the start-up procedure of the fuel line. We will analyse why some of these tasks 
should have been defined as safety critical, and how our method is of help here. We will investigate 
how using barriers improves design by helping to define safety critical operator tasks. Lastly we will 
discuss the integration of these barriers with the system.  

3.1 System Analysis, starting point 

In a real world design situation a natural starting point for our analysis would exist, provided by 
drawings or other documentation of the design. We therefore shortly discuss the design of the fuel line 
before proceeding with explaining the proposed method. At this point, hazards and barriers are not yet 
known, hence we start from a purely a functional description. We will discuss a hazard analysis as 
well, though this is not strictly part of our method. 

  
Figure 5: Piping and Instrumentation Diagram of fuel line. See text for explanation.  

                                                      
1 This case is based on a fatal accident [13] that took place in the US.  
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The exact manner in which the design is represented is domain dependent. Here we use a Piping 

and Instrumentation Diagram (P&ID), and a formal model. A formal system model is a required input 
to our method. Conversely, the P&ID is only required to understand the design, and may be 
substituted or complemented by other forms of documentation. In a real world situation, the formal 
model may have to be created before proceeding.  

3.1.1 Functional system design 
Figure 5 shows the Piping and Instrumentation Diagram (P&ID) describing the Fuel delivery system.  

V-1 and V-4 represent check valves, V-2 and V-6 are section valves, V-3 and V-5 are for bleeding, 
and V-7 is a ball valve used to control the start-up procedure. Bleeding is done before system start-up 
to make the pipes free of air, and to prime the pumps. Without priming, the pumps cannot create 
suction, and thus do not pump. MCU-1&2 are the Motor Control Units, PI-1&2 are Pressure Indicators, 
FSystem-1&2 are the implementations of the pump control loops.  

3.1.2 Formal system description  
The formal system description is achieved using the ICO formalism described in section 2.2. The 
model is here only briefly discussed, see [12] for a more in depth discussion. 

In [12], we have modelled each individual component of the plant (e.g. pumps, grinders, fuel tanks 
etc0 using the ICO formalism. These individual components have been interconnected based on fuel 
flow, because that most accurately describes how the process functions. With this configuration, we 
are able to see what happens to fuel if for example a motor is not turned on, or a valve is left open etc. 
Figure 6 illustrates the complete system model for the fuel system. The complete model can be found 
on our project ADVISES web site http://www.cs.york.ac.uk/hci/ADVISES/paperSBPW. For explanatory 
purposes, the components have been grouped and labelled. 
 

A) Fuel tank 
B) Pump-S Motor and corresponding fuel flow  
C) Pump-S Bleeding Valve (V0 in Figure 5)  
D) Pump-S Section Valve (V3 in Figure 5) 
E) Grinder Motor and corresponding fuel flow 

F) Pump-G Motor and corresponding fuel flow 
G) Pump-G Bleeding Valve (V5 in Figure 5)   
H) Pump-G Section Valve (V6 in Figure 5) 
I) Ball valve (V7 in Figure 5) 
J) Plant Kilns 

 

 
Figure 6. Petri net system model of the fuel line 
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3.2 Step 1: HBT analysis 

In this example hazard identification is relatively straightforward. A group of experts using a common 
identification method (e.g. a Hazop) would for instance quickly realise that both too much static 
pressure and pressure waves which may compromise containment can occur in this system. Though 
other hazards might be identified as well, we will concentrate on these pressure related hazards here.  
Our method however becomes important after hazard identification. Now two steps must be taken. 
Firstly, potential consequences and risk must be estimated, then barriers to reduce the risk must be 
designed. Though both steps are supported by the method, this paper focuses at designing the 
barriers, and in particular at integrating and understanding tasks carried out by humans as part of 
these barriers. In this example, typical barriers may include surge arrestors, emergency shutdown or 
procedural barriers (e.g. limiting pump power during start-up). The method helps to select, specify and 
verify these. 

In Figure 7 the results of a Hazard-Barrier-Target analysis using SML are shown. The primary 
hazard is a fire hazard, as this will cause harm to for instance, operators. Many potential barriers are 
available that may stop them from receiving such harm. Fire normally is caused by the presence of 
fuel, air and an ignition source. In this case fire is prevented by an Inherent Barrier (IB1), containment, 
which keeps the fuel separated from air and ignition sources. In case containment (IB1) fails, and fire 
occurs, a sprinkler system is present to mitigate the effects of the fire. Figure 7A shows a SML 
representation of this. More complicated and precise models are probably appropriate here, for 
instance to include failure modes of the barrier (e.g. spraying fuel or just leaking). SML facilitates 
these, but for brevity we will omit further discussion. 

Containment thus is an important barrier here. Our further discussion focuses on protecting this 
barrier against functional hazards. That is, the integrity of pipe work and casing of equipment such as 
the pumps and the grinder must remain. This may however be compromised by high pressure in the 
system. Therefore pressure surges must not occur in the system. In other words, these are functional 
hazards. A pressure surge may for instance occur because of starting a pump in the wrong way. For 
this to happen, four causal elements must be present; the pump must be running, but it must contain 
air as is shown in Figure 7B. Then the air must be bled from it, which will cause sudden flow. In an 
inelastic system, this will cause a pressure surge. Hence, bleeding the pump (also called priming; fill it 
with liquid as it cannot otherwise create suction), and starting the pump must not occur in the wrong 
order. Two alternative causes of high pressure are possible as well; water hammer due to sudden stop 
of flow, and static high pressure, see Figure 7C.  

 
Figure 7. SML representation of hazards, barriers and targets discussed in this text. 

 
The system designers may now evaluate alternative barriers that potentially reduce the risk of a 

pressure surge.  SML notation allows system designers to conceptually understand which barrier is 
best to use. Although PB1, the pump priming procedure, will prevent pressure surges (FH1) 
altogether, MB2 will protect against most transient pressure waves (FH2), now also including water 
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hammers. PB3 will protect containment against both transient (FH1 and FH2) and non-transient 
(static) high pressure (FH3), as the dotted arrows indicate.  

In deciding, designers also have to take into account factors like probability of failure on demand, 
economic viability, and ease of design, construction and operation. This is not subject of further 
discussion here. As we are interested in a sociotechnical barriers, we continue building an ICO model 
of PB1 (MB2 and PB3 only involve hardware, no human action).  

3.3 Step 2: Barrier modelling using Petri Nets & ICO formali sm: Pump Priming Procedure 

In this section we discuss the analysis and design of PB1. In this step the focus thus is on the barrier, 
not on the system as a whole. In our view, this is an important improvement over current design 
practices as the design of barriers and systems often becomes intermingled, causing people to loose 
track of which elements of the system actually are part of barriers. 

As discussed a pump in this system should not run dry or be started unless it has been sufficiently 
"primed". Before describing the model of this procedural barrier, we first present informally the priming 
process exemplified on the fuel delivery system (that is graphically presented in Figure 5).  

The principle of this procedural barrier is simple. First prime the pump, then switch it on. As the 
system contains two pumps and some other components, the actual barrier is more complex. A 
domain expert might design it as follows: 

1. Before and during the priming procedure, no motor must be on (i.e. both pump motors and 
grinder motor) 

2. Open the fuel storage tank by opening V0 Storage Valve. (Assumption: gravity will cause fuel 
to flow through the piping until V3 Section Valve) 

3. Open V2 Bleeding Valve to release any air in piping. 
4. When all air is removed, close V2 Bleeding Valve 
5. Open V3 Section Valve. (Assumption: gravity will cause fuel to continue flowing to the next 

Section Valve V6). 
6. Open V5 Bleeding Valve to release any air in piping. 
7. When all air is removed, close V5 Bleeding Valve 
8. Open V6 Section Valve. (Assumption: gravity will cause fuel to continue flowing to the kiln 

section). 
9. If required, close V3 and V6 Section Valves (when the system is not to be used immediately). 

 

2

3

4

3

4

6

7

6

7

1

8

9

5

9

 
Figure 8. PB1 Pipe Priming Procedure Barrier 

 
Notice that this barrier reuses some functionality already present in the system. For instance, the 

pumps do not pump without being primed, therefore priming is part of the functionality with or without 
this barrier. The PB1 barrier imposes constraints on this existing functionality to ensure safety. This 
becomes explicit by modelling the barrier this way. At the same time the barrier also defines new 
functionality, and implements it in other system components. For instance, the first step demands that 
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the pump motors must remain off until the procedure defined by PB1 is completed. This is simple to 
implement in the barrier model, however in practice this can be more complicated, and detailed 
discussion of this is beyond the scope of our discussion. It may perhaps be achieved using signs near 
the switches referring to the procedure.  

We have modelled PB1 using the ICO formalism - see Figure 8. The diagram has been segregated 
into several sections for explanatory purposes. The model of this barrier is a combination of hardware 
and human actions. The hardware concerns the three motors, modelled in Figure 8-1, the Pump-G 
motor, Grinder motor and Pump-S motor. It also concerns the valves. However these are modelled 
together with their interaction with the required operator’s actions in the remainder of the figure.  

The barrier is mainly made up of arcs connecting transitions and places rather than the transitions 
and places themselves. It can be decomposed into three main parts. The first part concerns 
preventing the three motors (part 1 of Figure 8) from running before the procedure is completed. This 
is modelled by means of test arcs which impose a pre-condition on operating the bleeding valves (V2 
and V5) or the section valves (V3 and V6) preventing them from being opened during the priming 
procedure if the motors are running. 

The second part of PB1 is the obligation of order of events for the operator’s interaction with the 
system. For instance part 5 shows the opening of the 1st section valve which cannot be opened 
before air has been bled from the first section of piping (part 3). 

The third part is also an obligation of order. It prevents the operator from closing the section valves 
(as shown in part 9) before fuel arrives at the plant kilns (a token is set into place 
PlantKiln123ReceivingFuel). Once fuel arrives at the plant kilns, the task is complete. The closing of 
the section valves (step 9 in the procedure) is optional and depends on whether the fuel delivery 
system will be started immediately in which case the section valves are left open, or later, in which 
case they can both be closed. 

Now the barrier model is established it can be analysed further. For instance human factors 
methods can be used to understand whether humans can achieve the tasks that the barrier specifies. 

3.4 Step 3: Connecting technical and human barriers in the syste m model 

Integrating the barrier in the system in the real world obviously involves much more then just 
integrating the ICO models. As discussed, the initial state required by PB1 might be implemented by 
adding a sign to a power switch on pump, which refers to the procedure specified by PB1. Such 
implementation issues are beyond the scope of this paper however, and require additional methods. 
Here we only have space to briefly discuss what happens to the ICO models.  

The initial ICO system model as presented in Figure 6 significantly changes because of the 
connection of PB1. For space and readability reasons we cannot include the extended system model 
in this paper the interested reader can find it on the website mentioned earlier. The complexity of the 
model has significantly increased, mainly because of the number of added arcs. Also several places 
and transitions have been added for instance to represent the existence of air in the pipes which was 
previously not represented in the system model as this has nothing to do with the initial functional 
specification of the system. 

Two further issues must be noted. Firstly the addition of the barrier to the system model must not 
change the behaviour of the system, except of course for excluding the hazardous state it is designed 
for. That is to say, an action or task that was previously available on the system side or via interaction 
with the user must not be changed and must be still available. Secondly, the actual modelling of the 
barrier inevitably involves direct integration with the system model because the barrier not only takes 
existing components, but may also rely on adding extra arcs to existing components. Hence it is not 
possible to model the barrier without taking notion of the system model; barriers exploit a subset of the 
system model, sometimes with extra transitions and places. Thus step 3 of the approach is the 
addition of the complete barrier, including any additional components that were not present in the 
existing system model.  

Using the ICO model representing the system behaviour, it becomes possible to verify that the 
system still works, to prove that the hazardous state is no longer reachable and to analyse in which 
way the newly integrated barrier may fail.  
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4. Conclusion and future work 

This paper presented a three-step approach for identifying, modelling and formally specifying safety 
critical human tasks, interactive system and their associated barriers. The Safety Modelling Language 
is used to model existing as well as identify new socio-technical barriers. We then used the Interactive 
Cooperative Objects (ICO) formalism to specify the behaviour of the barriers. Finally we integrate 
these barriers with a system model, also specified using the ICO formalism. 

The approach presented is part of a larger framework of research centred on model based design, 
aiming to improve the design of safety critical interactive systems by accounting for errors (technical 
and human related) early in the design process. We believe that by identifying and incorporating 
socio-technical barriers such as those discussed in this paper within their relevant models, we can 
obtain an early verification of some potential problems before the application is actually implemented. 
This will ultimately lead the design of safer safety critical interactive systems by embedding reliability, 
efficiency and error-tolerance in the system. For instance, as part of this larger framework, we have 
shown in previous papers [3] how system design can be improved by using accident investigation 
techniques.  
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1 INTRODUCTION 
 
Argumentation is an important part of the develop-
ment of safety critical systems.  It provides informa-
tion about why a system can be assumed to be suffi-
ciently safe, and it may convey a measure of 
confidence.  In many safety-critical industries such 
information is documented in a safety case. 

Increasingly, incremental approaches to safety 
case development are employed and are mandated 
by standards such as UK Def-Stan 00-56 (UK MoD, 
2004) or the Eurocontrol Safety Regulatory Re-
quirement 4 (Eurocontrol, 2001c).  The analysis that 
lies behind such argumentation may assist system 
design during the early stages of the life-cycle, for 
example by outlining the principal structure of the 
safety argument and the type of evidence required 
(Kelly, 2001).  This can avoid the need to re-design 
parts of the system late in the life-cycle on realising 
that no adequate safety argument can be constructed 
for the proposed design.   

Toulmin’s work on arguments in general, and de-
velopments relating to safety arguments in particu-
lar, have emphasised the importance of structure in 
argumentation.  It is now generally accepted that 
safety arguments should have a structure consisting 
of claim, argument, and evidence.  A graphical nota-
tion has been developed (GSN) (Kelly, 1999), to fa-
cilitate construction and communication of struc-
tured safety arguments.  Explicit reasoning about the 
structure and the quality of arguments leads to no-
tions such as confidence, rigour, coverage, uncer-
tainty, depth and breadth.  Structural analysis of 

safety arguments based on these concepts may pro-
vide useful insights for the development and assess-
ment of safety arguments.      

Hazard mitigation arguments operate at a lower 
level of system detail.  In a safety case they provide 
evidence to support claims that all hazards have 
been mitigated, that training requirements have been 
identified, and so on.  They have a risk-based struc-
ture, and they appeal to barriers with understood and 
verifiable mitigation characteristics as their evi-
dence.  They are derived through a multidisciplinary 
social negotiation process, and as a result do not as-
sume (deliberately) a single underlying background 
or model.   

In this paper we consider:  (a) how the concepts 
and notions derived from general considerations of 
argument quality can be interpreted and applied use-
fully to the specific category of hazard mitigation 
arguments; (b) the utility of making explicit the im-
plied (barrier) model of system safety. 

The structure of the paper is as follows.  In sec-
tion 2 we consider issues of structure and quality in 
safety arguments.  We then discuss (section 3) the 
role that barriers can play in providing mitigation 
against potential hazards.  These ideas (section 4) 
are then considered in the specific context of the 
RSVM hazard analysis.  A discussion (section 5) 
concludes the paper.      

Investigation of Structural Properties of Hazard Mitigation Arguments 

Mark A. Sujan  
Department of Computer Science, University of York, UK 

Michael D. Harrison 
Informatics Research Institute, University of Newcastle upon Tyne, UK 

 
 

 
 

 

ABSTRACT: Arguing that a system is sufficiently safe to operate in a particular context is an important ele-
ment in the development of safety-critical systems.  Hazard mitigation arguments support safety claims by 
providing evidence.  They do this, typically, by appealing to barriers intended to prevent and to protect from a 
specific hazard.  The paper summarises work on the structure of arguments, and then addresses two research 
questions:  how understanding of the quality of arguments can be applied to hazard mitigation arguments; 
how making the underlying implied barrier model explicit can improve the argumentation and provide useful 
insights for managing risks.  The EUROCONTROL Reduced Vertical Separation Minima Functional Hazard 
Analysis (RVSM FHA) is used to demonstrate these ideas.         
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2 STRUCTURAL CHARACTERISTICS OF 
ARGUMENTS 

2.1 The role of structure in arguments 
Consider the simple example depicted in Figure 1 
arguing that the reduction of vertical separation be-
tween aircraft has a positive effect on the perform-
ance of air traffic controllers1. 

 
Toulmin (Toulmin, 1958), in analysing the struc-

ture of arguments in general, identified six compo-
nents that contribute to an argument’s well-
formedness thereby facilitating its assessment.  The 
claim C is the property or statement that is asserted 
and argued for (“Performance of Controller after the 
introduction of RVSM is acceptable”).  To support 
this claim specific evidence D (“RVSM will double 
the number of flight levels and will thus reduce 
workload of the controller”) is produced that should 
relate to the claim.  The argument or warrant W ex-
plains how the evidence supports the claim. The re-
lationship between claim and evidence is made ex-
plicit as rules, principles, inferences and so on 
(“Reduction in workload generally may be assumed 
to have positive effects on a person’s workload”).  
The warrant can itself be backed by specific evi-
dence referred to as backing B (“Studies, which have 
shown a strong negative correlation between the 
level of workload and the person’s performance”).  
The backing used to support the warrant consists of 
concrete, factual information.  The warrant, on the 
other hand, posits a general and practical rule ex-
plaining how, given these facts, certain evidence 
may be used within an argument to support specific 
claims.  Since it is the case that the warrant need not 
necessarily authorize the step from evidence to 
claim unconditionally, a qualification Q on the 
strength of its inference needs to be provided (“Pre-
sumably”).  Finally, known exceptions or rebuttals 
R should be explicitly stated (“Unless controllers 
become negligent”).   

                                                 
1 Note that this argument is a hypothetical example created 

for the purpose of illustration.  

Dependability arguments are no different struc-
turally than other types of arguments.  The claims in 
safety arguments often represent safety require-
ments, safety objectives, target levels of safety or 
derived sub-claims.  Dependability arguments in-
clude a wide range of different pieces of evidence 
including results from HAZOP studies, Fault Trees, 
qualitative descriptions of the processes that have 
been followed, descriptions of procedures and train-
ing materials.  However, in order to engender confi-
dence in the argument it is important to express the 
relationship between all these pieces of evidence and 
the claims they are intended to support explicitly.   

It is also critically important that the context, 
within which dependability arguments are developed 
and expressed, is presented explicitly as well as a 
statement of assumptions that have been made.  
Contextual elements include definitions of systems 
or components under consideration, definitions of 
terms such as “tolerable” and “negligible”, descrip-
tions of standards followed and so on.   

Assumptions also deserve special attention. They 
are often implicit rather than explicit in the argu-
ment.  These assumptions may concern the safety of 
a system prior to a planned modification, or may 
concern the independence of components or events 
for example.  Assumptions also make explicit rebut-
tals, such as from Figure 1, which could be ex-
pressed as “Assumption 1: It is assumed that con-
trollers monitor traffic as vigilant as before the 
introduction of RVSM.”   

Goal Structuring Notation (GSN) (Kelly, 1999) 
explicitly represents the elements of importance in 
dependability arguments (claims, evidence, assump-
tions, justifications, context etc.).  It also makes ex-
plicit the relationship between these elements by de-
scribing graphically how claims are broken down 
into sub-claims until the point where evidence is 
provided to support the claims.  The strategy and ra-
tionale adopted in the argument development are 
also represented via strategy and justification ele-
ments.  GSN retains all the essential elements identi-
fied by Toulmin, while at the same time facilitating 
the formulation, presentation and assessment of de-
pendability arguments. 

2.2 The quality of an argument 
The aim of safety arguments (or arguments in gen-
eral) is to instil confidence in a third party that a set 
of particular claims is true2.  Confidence in an argu-
ment can be increased by ensuring that the evidence 
(Govier, 1988): 
 

• is acceptable or true 
                                                 
2 There are, of course, further aims, such as supporting the 

development process by pointing out safety-related issues early 
on etc. 

Figure 1: Elements of an argument 

Reduced Vertical Separation 
Minimum will double the 
number of flight levels 
and reduce the workload 
of the controller (D)

Since reduction in 
workload generally may 

be assumed to have positive 
effects on a person’s 

performance (W)

On account of studies 
a, b, and c in domains 
x, y, z which showed

a strong negative correlation 
between the level of workload 

and the person’s performance (B)

So, presumably (Q), performance of 
Controller after introduction of 
RVSM is acceptable (C)

Unless controllers become
negligent (R)
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• is relevant to the claim 
• taken together, provides sufficient grounds to 

move to the conclusion.  
 
Uncertainty on the other hand can arise from: 
 

• uncertainty attached to the evidence (for ex-
ample, experimental assessments of work-
load levels),  

• uncertainty attached to the warrant or argu-
ment (for example, the basic rule that a re-
duction in workload results in improved per-
formance),  

• the coverage of the evidence (for example, a 
reduction in workload by itself might not be 
sufficient to claim that controller perform-
ance is acceptable). 

 
Dependence of the pieces of supporting evidence on 
one another is also an important aspect of the struc-
ture of an argument that can be analysed.  Govier, 
when describing “Support Pattern Types” (Govier, 
1988), makes a distinction between single, linked 
and diverse (‘convergent’ in Govier’s terminology) 
argument support.  A single support type implies 
that a claim is supported by a single argument (i.e., a 
single evidence-warrant-backing structure).  A claim 
may also be supported interdependently by a number 
of arguments, where each argument’s support rests 
on the validity of the other arguments (linked sup-
port).   Finally, a number of arguments may also 
support a claim independently of one another (di-
verse support).  This qualitative description of ar-
gument structures has limitations as it does not an-
swer questions, such as how much confidence can be 
justifiably placed in an argument.  Bloomfield and 
Littlewood have argued that a formal theory of un-
certainty based on probability is required to assess 
these issues, and they have provided a tentative for-
malism (Bloomfield & Littlewood, 2006).  As this 
paper is concerned with general structural concepts, 
no quantitative probabilistic framework is employed.       

The general structure of arguments may be used 
to derive generic ways of strengthening specific ar-
guments or to increase confidence in their validity 
(see Sujan et al., 2006 for a more extensive discus-
sion).  Increasing the depth of arguments can ad-
dress uncertainty related to the rigour demanded by 
the third party.  For example, in order to increase 
confidence in the evidence that RVSM leads to a re-
duction in workload, a further argument could be 
constructed, taking the original piece of evidence as 
a claim in its own right.  Additional evidence, such 
as reference to an experimental assessment of work-
load under conditions comparable to those expected 
under RVSM could be used to support this claim 
(which was previously treated as evidence).  Depth 
approaches ‘explain better’ (or in more detail) the 
argument, thereby increasing confidence, and poten-

tially also pointing out hidden assumptions and other 
problems.  In the example above, such an assump-
tion would be the expectation that the experimental 
assessment of workload is indicative of workload 
levels experienced during actual operation.     

To address uncertainty inherent in the evidence 
or in the warrant, the breadth of an argument should 
be increased.  For example, even though experimen-
tal workload assessments may be indicative of work-
load experienced in real environments, it is not clear 
that this will be true in the proposed context. There 
is inherent uncertainty attached to this kind of evi-
dence.  Breadth approaches give diversity to the ar-
gument and to the evidence.  Diverse evidence could 
consist of the reference to statistics from the experi-
ences of RVSM in the transatlantic airspace, where 
this mode of separation management has been opera-
tional for many years.  The characteristics of the 
transatlantic airspace are different from the charac-
teristics of the European airspace, and may therefore 
lead to conjecture as to whether these statistics can 
be transferred.  However, in conjunction with the 
experimental workload assessment, the auditor may 
now entertain a higher degree of confidence in the 
overall claim.   

A common approach to arguing for the depend-
ability of a system in the context of a breadth-
approach is by means of a ‘product-leg’ and a ‘proc-
ess-leg’.  However, as pointed out in (Bloomfield & 
Littlewood, 2006) it may often be the case that dif-
ferent argument legs are not independent or fully di-
verse, and this poses a problem in determining the 
confidence that can be placed in the argument.   

2.3 Hazard mitigation arguments 

Safety-critical systems in the contexts assumed 
here require systematic risk assessment with an as-
sociated mitigation of all relevant risks to acceptable 
levels.  The evidence provided by risk assessment is 
an essential building block of a safety argument or 
safety case.  It may be presented as evidence to the 
claim that all hazards have been sufficiently miti-
gated, as well as evidence to other claims, such as 
the claim that all relevant training requirements have 
been identified etc.   

Hazard identification and assessment is fre-
quently performed with the aid of structured tech-
niques such as HAZOP (Kletz, 1992) and FMEA 
(IEC, 1985), or more recently, comparable tech-
niques taking into account specifically human activi-
ties, such as PHEA (Embrey, 1992), or TRACEr 
(Shorrock & Kirwan, 2003).  These techniques are 
typically applied by groups in sessions that bring to-
gether participants with different backgrounds and 
areas of expertise.  In an aviation setting, partici-
pants could include air traffic controllers, pilots, en-
gineers, risk managers, and human factors experts.  
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The output of such group sessions is often recorded 
in tabular form, for example HAZOP tables, specify-
ing the applied guide word, the description of the 
hazard, possible causes, expected consequences, as 
well as possible mitigation mechanisms.  As the sys-
tems under consideration are becoming increasingly 
complex (or as their complexity is increasingly be-
ing recognised), reasoning about hazard mitigation 
often turns into a more complex argument in its own 
right, where the simple tabular form may not be an 
adequate representation anymore (in particular when 
socio-technical aspects are considered).     

Hazard mitigation arguments have a risk based 
structure.  Their overall strategy is to demonstrate 
that the risk associated with a particular hazard is 
tolerable by breaking this claim down into the two 
components of risk, namely the probability of occur-
rence of the hazard and severity of the conse-
quences.  Both these argument legs appeal to barri-
ers to demonstrate that the respective claims hold.     

The next section takes a closer look at barriers, 
and investigates how the notions of depth and 
breadth should be interpreted in the context of haz-
ard mitigation arguments, as well as how the barriers 
appealed to could be made explicit.    

3 BARRIERS 

3.1 Barrier concept  
Hollnagel (Hollnagel, 1999) defines a barrier as an 
obstacle, an obstruction or a hindrance that may ei-
ther (a) prevent an action from being carried out or 
an event from taking place, or (b) thwart or lessen 
the impact of the consequences.  Hazard mitigation 
arguments appeal to barriers to demonstrate that the 
probability of occurrence of a particular hazard has 
been reduced (preventive barrier) or that the severity 
of the consequences of the hazard has been con-
tained (protective barrier).  Hollnagel further distin-
guishes between the function that a barrier fulfils 
and the system providing this function (barrier sys-
tem).  Barrier functions could involve the prevention 
of a particular hazard or the protection from the haz-
ard’s consequences.  Barrier systems, on the other 
hand, can be classified in the following way (Holl-
nagel, 1999):  

• Material barrier:  A barrier that prevents a 
hazard or protects from a hazard through its 
physical characteristics, e.g., a physical con-
tainment protecting against the release of 
toxic liquid.   

• Functional barrier:  A barrier that prevents a 
hazard or protects from a hazard by setting 
up certain pre-conditions which have to be 
met before a specific action can be carried 
out or before a specific event can take place, 
e.g., a door lock requiring a key, or a logical 
lock requiring a password.   

• Symbolic barrier:  A symbolic barrier re-
quires an interpretation by an agent to 
achieve its purpose.   Examples include all 
kinds of signs and signals.   

• Immaterial barrier:  A barrier that has no 
physical manifestation, but rather depends on 
the knowledge of people.  Examples include 
rules or expected types of behaviour with re-
spect to a safety culture.  

 As safety-critical systems are increasingly being 
understood in terms of the fact that they are large, 
complex socio-technical organisations, the barriers 
that are being described become socio-technical sys-
tems themselves.  Many barriers now take the form 
of a person (or several people) interacting with 
equipment or advisory systems and relying on pro-
cedures.  For example, the Lost Communication 
Procedure, used when an aircraft is not fulfilling the 
required equipment standard in the RVSM space be-
cause of a communication equipment failure, defines 
actions to be carried out by the air traffic controller, 
as well as by the aircraft crew with their respective 
supporting technology.  Hence the barrier, abbrevi-
ated as Lost Communication Procedure, comprises 
many socio-technical aspects (and further barriers at 
lower levels of abstraction). 

3.2 Depth and breadth 
As descriptions of hazard mitigation can be regarded 
as arguments, all the concepts identified above that 
relate to the quality of arguments should apply.  
Adding depth to an argument increases confidence 
by explaining in more detail a particular piece of 
evidence, and by pointing out assumptions and de-
pendencies.  In the case of hazard mitigation argu-
ments where an appeal to barriers is involved, it may 
be useful to equate the notion of depth with the level 
of abstraction of a barrier.  This implies (considering 
the example above) that confidence in the mitigation 
argument for communication equipment failures 
could be increased by specifying in greater detail at 
lower levels of abstraction the Lost Communication 
Procedure.  This would not mitigate any uncertainty 
inherent in the procedure (such as the probability 
that the procedure will not be followed etc), but it 
would none-the-less increase the confidence in the 
overall argument.  Measuring the depth of an argu-
ment does not provide any measure of the ‘quality’ 
of such an argument.  However, it does provide an 
indication as to the level of abstraction and rigour 
used throughout the argument.      

Adding breadth to hazard mitigation arguments 
implies appealing to diverse barriers.  In this way, 
any uncertainties relating to the success of a particu-
lar barrier can be mitigated.  For example, if there is 
uncertainty as to whether the Lost Communication 
Procedure sufficiently mitigates equipment failures, 
additional barriers, such as the introduction of com-
pulsory reporting points at the entry and exit of 
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RVSM space could be proposed.  Such reporting 
points would allow air traffic controllers to reason 
about the position of an aircraft in case of communi-
cation equipment failures.  However, as in all cases 
where diversity is used, it is very difficult and im-
portant at the same time to assess any kind of de-
pendencies that may exist between the diverse ele-
ments.  In this particular example, it may be 
assumed that the success of the calculation of the air 
traffic controller will depend on the pilots’ following 
the Lost Communication Procedure (e.g., not to de-
viate from previously assigned flight paths etc).  

3.3 Explicit model 
The evidence provided in a safety argument or a 

safety case is derived from a large number of 
sources and from various underlying models.  In par-
ticular, the evidence provided by hazard mitigation 
arguments usually stems from multi-disciplinary 
group discussions and negotiation processes, where 
different perceptions and models are invoked.  This 
is done on purpose, in order to make best use of the 
different experiences and the different expertise of 
all the relevant stakeholders.  As such, there is no 
unifying underlying model of whole system safety.  
However, the safety argument implicitly defines a 
structure for describing how these barriers are used 
in mitigation.  This structure describes relationships 
between barriers both temporal and logical.   

Temporal order describes whether a barrier is in-
tended to prevent a hazard or to protect from its con-
sequences (and it describes temporal order within 
these categories).  Order also describes different de-
grees of mutual dependence, in particular simple 
logical relationships.  Barriers may prevent a hazard 
or protect from its consequences interdependently by 
forming a logical AND-relationship.  They may also 
perform the function of prevention or protection in-
dependently (thus forming an OR-relationship).  It is 
also possible that a barrier is the only preventive or 
protective obstacle for a particular hazard.  These 
idealised relationships ignore the different degrees 
of dependence and relevance of each barrier, but can 
none the less serve as the basis for further analysis.  
Making the implied barrier model explicit may have 
a number of benefits for safety case developers and 
risk managers.  The activity of defining the barrier 
model explicitly requires the developer to define the 
relationship between the barriers within an argu-
ment, as well as the relationship to barriers appealed 
to in other arguments.  Further anticipated benefits 
include:  

• Possibility to check for inconsistencies 
and contradictions  

• Identification of potentially weak configu-
rations 

• Verification of the configuration in actual 
practice 

• Assistance with planning future changes 
and with assessing the impact of proposed 
changes 

The first issue refers to the fact that hazard miti-
gation arguments are not usually considered to-
gether, but rather during the process of hazard iden-
tification and assessment, one after the other (even 
though there may be some thought during the miti-
gation stage as to how a barrier may mitigate several 
hazards for efficiency and economic reasons).  How-
ever, in order to pick up inconsistencies or even pos-
sible contradictions (within the assumptions) of dif-
ferent mitigation argument, these would need to be 
explicitly related to one another (e.g. how does the 
introduction of compulsory reporting points interact 
with other newly introduced procedures or assump-
tions about workload made elsewhere?).  

The second issue is concerned with the identifica-
tion of potentially weak configurations, such as sin-
gle barriers guarding against high-risk hazards or 
multiple hazards.   

As was discussed, barriers may be described at 
varying levels of abstraction, and in practice they are 
realised through a combination of human, technical 
and organisational resources.  An explicit represen-
tation of the assumed or proposed barriers can serve 
as the basis for an evaluation of how these perform 
in actual practice (e.g. how is the barrier of compul-
sory reporting points actually put in place, what kind 
of interactions does it entail, what kind of equipment 
is used, what kind of representations are invoked?).   

Finally, an explicit representation of barriers that 
have been appealed to may also serve as a useful 
tool in planning changes and in assessing the impact 
of proposed changes.  The tight integration of proc-
esses and activities in complex socio-technical sys-
tems means that the impact of changes on activities 
that are immediately affected cannot be assessed 
properly within their local context.  Assumptions 
and hidden dependencies may influence and conflict 
with assumptions made elsewhere.  A model making 
explicit all the barriers appealed to and the various 
assumptions made, could facilitate the assessment of 
both direct and secondary effects of change.  

4 RVSM FUNCTIONAL HAZARD ANALYSIS 
CASE STUDY 

4.1 Description of RVSM FHA 
RVSM is an EATMP programme established to con-
tribute to the overall objective of enhancing capacity 
and efficiency while maintaining or improving 
safety within the European Civil Aviation Confer-
ence (ECAC) airspace.  The main scope of RVSM is 
to enhance airspace capacity.  The introduction of 
RVSM will permit the application of a 1000 ft verti-
cal separation minimum (VSM) between suitably 
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equipped aircraft in the level band FL290 - FL410 
inclusive.  Before the introduction of RVSM the 
VSM was 2000 ft (referred to as CVSM).  

A prerequisite for the introduction of RVSM was 
the production of a safety case to ensure that mini-
mum safety levels were maintained or improved.  
The Functional Hazard Analysis (FHA) constitutes 
an essential part of the Pre-Implementation Safety 
Case (PISC).  The FHA document which forms the 
basis for the study of this section is publicly avail-
able (Eurocontrol, 2001a) as is the Pre-
Implementation Safety Case (Eurocontrol, 2001b).   

The availability of these documents is a welcome 
opportunity for the research community to demon-
strate and to assess their theoretical concepts and 
tools.  It should be pointed out that the analysis per-
formed in this paper is not intended as a criticism of 
the way the RVSM safety case and FHA were de-
veloped.  Rather, the FHA simply serves as an 
example to demonstrate and to contextualise some 
theoretical principles.         

Three areas have been considered in the FHA: 
 

1. Mature / Core European air traffic region 
(EUR) RVSM area 

2. Mature / Transition space 
3. Switchover 

 
For each area a number of scenarios were created for 
the FHA sessions.  In total 72 valid hazards have 
been analysed during the FHA and safety objectives 
have been established for each of them.  The report 
concludes that 70 hazards achieved their safety ob-
jectives but that two hazards were assessed as safety 
critical and not tolerable.  

In the analysis below the FHA Session 1 / Sce-
narios 1 and 2 are considered.  Session 1 was con-
cerned with the identification and analysis of haz-
ards relating to the core EUR RVSM airspace 
focussing on both ground-related and airborne haz-
ards.  These two sessions identified 30 valid hazards.  
In the analysis below 15 hazard mitigation argu-
ments are analysed.   

The FHA arguments in the document are pro-
vided in textual form which makes it difficult to ana-
lyse and describe structure and dependencies pre-
cisely.  The top-level arguments of the Pre-
Implementation Safety Case (PISC), of which this 
FHA is a part, have been articulated fully in GSN.  

All hazard mitigation arguments follow the same 
top-level structure: the claim that the risk arising 
from a hazard is tolerable is broken down into a 
claim that the severity is at most x, and a second 
linked claim that the probability of occurrence of 
this hazard is not greater than y. 

4.2 Structural analysis: depth and breadth of 
arguments 

Structural analysis proceeds by investigating the 
depth and the breadth of the arguments conducted 
separately for both the severity and the probability 
branch.  Different support pattern types were identi-
fied to consider breadth.  The depth and breadth of 
arguments were measured (somewhat arbitrarily) by 
considering the deepest and broadest paths respec-
tively.     

Table 1 shows that out of the total of 30 argu-
ments (i.e., 15 arguments each consisting of a sever-
ity and a probability branch), the majority (17) pos-
sesses a depth of 2 and the maximum depth of any 
argument is 4.   

 
Table 1: Analysis results showing distribution of depth, 
breadth, and support type (Single, Linked, Diverse) in the 
probability and severity branches   

Depth (#30) Breadth (#30) Support 
(#74) 

 

1 2 3 4 1 2 3 4 7 S L D 
Probabil-
ity 

5 8 2 - 5 8 - 1 1 20 - 17 

Severity - 9 5 1 8 5 2 - - 29 5 3 
Σ 5 17 7 1 13 13 2 1 1 49 5 20 

 
On the severity side, the most common form of 

argument (possessing a depth of 2) is the claim that 
the severity is at most Cat. x, supported by a descrip-
tion of the safety implications giving rise to a Cat. x 
classification.  This, in turn, is supported by a de-
scription of operational consequences (see Figure 2).  
This would be recorded as a Depth 2 – Breadth 1 – 
Single Support – Single Support Argument (D2-B1-
S-S).  Greater breadth is used for a linked descrip-
tion of operational consequences, and for appeal to 
barriers.  In the cases analysed there is one instance 
of linked barriers and one instance of diverse barri-
ers.   

Probability arguments typically take one of two 
forms:  either the claim that the probability of occur-
rence of a hazard is at most x is directly supported 
by expert judgement (D1-B1-S), or this claim is sup-
ported by first noting that the probability currently is 
y > x (i.e. larger than required), but that it will be re-
duced to x.  The former claim is supported by expert 
judgement as before, while the latter claim is sup-
ported by appeal to one or more barriers (usually a 
D2-B2-D-S-S) construct.  See Figure 2 for an illus-
tration of a simple, yet common type of argument.      

The amount of diversity used is both limited and 
difficult to assess.  In the severity branch only 3 out 
of 37 support patterns were diverse support.  In the 
probability branch 17 out of 37 support patterns 
were diverse.  However, only one of these occur-
rences was assessed as providing fully diverse sup-
port.  The majority of the other diverse constructs 
were such that only one provided sufficient support, 
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while the other added some additional support (e.g. 
monitoring programmes in order to be able to re-
spond quickly to incidents).  Also, within the 17 oc-
currences of diverse support 10 were of the type “P 
is y > x now, but will be reduced to x”.  We broke 
this down into two claims, each providing independ-
ently some support to the overall claim to preserve 
the structure of the narrative argument.  It is con-
ceivable that this could also be treated as a single 
support (see also the discussion for problems related 
to deriving a unique argument structure).   

 
 
This type of analysis reveals that the FHA con-

sists predominantly of simple arguments at a very 
high level of abstraction.  Many of the mitigating 
factors are not explained to a high level of detail. 
This makes a thorough analysis of potential depend-
encies or hidden assumptions in particular more dif-
ficult.  A further issue complicating the analysis is 
the fact that the FHA was concerned specifically 
with RVSM mitigation. This means that the argu-
ment lacks details as far as other aspects are con-
cerned. In practice these details would have in-
creased the comprehensiveness of the argument. 

4.3 Barrier analysis 
A final stage in the analysis was to consider the use 
of barriers in the hazard mitigation arguments, see 
also (Smith et al., 2004) conducted a similar fre-
quency assessment of medical and aviation related 
systems. 

Overall, 21 preventive and 13 protective barriers 
were identified, see Table 2.  The large majority of 
barriers (29 out of 34) were procedural, awareness-
raising, or symbolic. As such they require interpreta-
tion by a human (e.g. application of CVSM, com-
munication procedures, compulsory reporting points 

etc).  Only 5 barriers were of a different nature, e.g., 
the layout of the airspace, regulatory requirements, 
and monitoring programmes.  However, it should be 
noted that apart from the layout of the airspace, the 
barriers in this class are to a certain extent organisa-
tional barriers equally relying on the interpretation 
and enactment of people.    

 
Table 2:  Types of barriers identified (the number in brackets 
refers to the number of different claims the barriers have been 
derived from).   
 Pro-

cedure 
Train-
ing / 
Aware
ness 

Represen-
tation / 
Symbolic 

Organ-
isational 

Air-
space 

Σ 

Pre-
ventive 

5 (2) 4 8 (2) 3 1 21 

Protec-
tive 

12 0 0 0 1 13 

Σ 17 4 8 3 2 34 
 
Given that air traffic control is such a technology-

intensive domain it is surprising that there is little 
mention of any kind of technological barriers or 
technological support.  As was mentioned in relation 
to the discussion of argument depth and breadth, 
there seems to be a tendency to regard barriers at 
high levels of abstraction, e.g. ‘compulsory report-
ing points at the entry and exit of RVSM space’, 
without explicit reference to how the barrier is real-
ised and on what kind of support it relies.   

This observation applies also to a number of as-
sumptions made, for example ‘The crew will regain 
control’, without further specification how this 
would be achieved or what it is dependent on.   

The way barriers are used (or left to be inferred) 
may be shaped by the type of argument that is con-
structed.  The RVSM safety case argues that air traf-
fic management will remain safe after modification 
to the existing air space.  This is a special type of ar-
gument, which argues the safety of a new system by 
relying on an existing system and that system’s 
safety.  In the case of the introduction of RVSM to 
the European air space the FHA does not make ref-
erence to or mention existing barriers.  It does not 
provide a comprehensive account of how system 
safety is achieved but focuses on added features 
such as procedures that will be introduced with 
RVSM.  This makes assessment more difficult be-
cause the dependence of certain barriers on other al-
ready existing barriers cannot be assessed. 

The use of diverse barriers is based on breadth 
and diverse support patterns.  There is only one in-
stance of the use of diverse protective barriers, 
namely the introduction of compulsory reporting 
points, and the application of CVSM after a commu-
nication failure.  Even here it may be assumed that 
the barriers are not independent, since the successful 
application of CVSM will depend on an approximate 
knowledge of the position of the aircraft, ensured by 

G1: Risk associated with 
Hazard H is tolerable

G1.1: Severity is
Cat x G1.2: Probability < y

G1.1.1: Description of safety 
implications e.g. 
major reduction in safety margin,
but crew remains in control

Description of 
operational 
consequences, e.g. 
crew will have 
difficulty keeping 
the assigned flight 
level, which may 
result in loss 
of separation

Expert
judgement

Figure 2: Example of a simple, but common argu-
ment structure.   
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the introduction of reporting points.  There were two 
instances of fully diverse preventive barriers.  In one 
case, however, the four diverse barriers were evalu-
ated as having no impact on the risk classification.  
In the other case, the barrier function was to high-
light the presence of a non-RVSM approved aircraft 
in RVSM space, which in turn is achieved by 7 or 
more (7 examples were given) diverse barrier sys-
tems, such as information on the radar, information 
on the flight strips etc.   

5 CONCLUSION 

This paper addresses two issues.  Concepts and no-
tions derived from considerations about the quality 
of arguments are investigated. These are interpreted 
in the particular case of hazard mitigation argu-
ments. The paper explores how these concepts might 
facilitate the generation and representation of high-
quality hazard mitigation arguments.   

 Hazard mitigation arguments appeal to barriers 
to demonstrate that hazards have been sufficiently 
controlled.  This process typically brings together 
people from different backgrounds and of different 
areas of expertise.  Arguments therefore integrate 
more or less successfully different conceptions of 
system safety.  The paper also addresses the ques-
tion of how the underlying model of system safety 
may be made explicit, so that it can be used subse-
quently in considerations of system safety, for ex-
ample during the assessment of change implications.     

Notions of depth and breadth of arguments are 
equated with the level of abstraction and the diver-
sity of barriers that are appealed to in order to dem-
onstrate that a hazard has been sufficiently con-
trolled.  The analysis of the RVSM FHA shows that 
the arguments have both limited depth and breadth.  
They represent high levels of abstraction and offer 
little diversity.  However, depth and breadth are not 
to be adopted as measures of argument quality.  
There are various ways of measuring depth and 
breadth, and these may generate different values.  In 
addition, a simple measure of depth and breadth by 
itself, does not offer any consistent insights. Argu-
ments may be constructed in a number of different 
ways (in particular as far as depth is concerned), and 
the complexity of an argument does not necessarily 
correlate with the quality of an argument.  The bene-
fit of structural considerations is really that these 
concepts assist the developer of safety arguments in 
reasoning about the arguments, and they force peo-
ple to consider explicitly the relationship of the vari-
ous strands of the argument.   

A small subset of hazards was analysed from one 
FHA and as such this does not present a representa-
tive picture.  In addition, the amount of detail avail-
able was very low.  As a consequence no meaningful 
representation of overall system safety can be de-

rived from the arguments provided in the functional 
hazard analysis.  It was possible to deduce, however, 
that the number of diverse barriers used was low.  
From the analysis it can be concluded potentially 
that hazard mitigation arguments can provide a use-
ful model of system safety. Making this model ex-
plicit could be used to assess dependencies, assump-
tions, and implications of future changes. The 
difficulty associated with this is a result of the com-
plexity of the systems under consideration. For ex-
ample, the argument for RVSM was concerned only 
with the effects introduced by this change. This ar-
gument would need to be integrated with all the 
other arguments, together making up an overall ar-
chitecture of system safety.  Therefore tools and 
mechanisms are required that can cope with this 
complexity and allow integration. 
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Abstract. The paper describes the current regulatory situation in 
England with respect to medical devices and healthcare providers.  
Trusts already produce evidence to the Healthcare Commission that 
they operate in accordance with standards set out by the Department of 
Health and the NHS.  The paper illustrates how the adoption of an 
explicit goal-based argument could facilitate the identification and 
assessment of secondary implications of proposed changes.  The NHS 
is undergoing major changes in accordance with its 10-year 
modernisation plan.  These changes cannot be confined to the Trust 
level, but will have NHS-wide implications.  The paper explores the 
possibility of an organisational safety case, which could be a useful tool 
in the management of such fundamental changes. 

1. Introduction 

Healthcare1 organizations are undergoing major changes everywhere, both 
technical and organizational.  The NHS in England is currently implementing a 10-
year modernization plan [1] that will have implications for all areas of healthcare 
provision.  Managing change in a safe and effective way poses major challenges.  
Similar restructurings of this scale have had serious implications, compare for 
example the privatisation and reorganisation of the UK railways.  To deal with these 
implications in aviation, Eurocontrol explored the possibility of producing a whole-
airspace safety case [2].  While there are substantial differences in the nature of these 
different domains, there are shared characteristics that lead to speculation about the 

                                                           
1 All necessary clearances for the publication of this paper have been obtained.  If accepted, the 

author will prepare the final manuscript in time for inclusion in the conference proceedings 
and will present the paper at the conference.  
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role of safety cases in healthcare.  The shared characteristics include (with examples 
from healthcare):         
 

• Integration of services and systems can mean that safety in one area is now 
more dependent on the behavior and performance of people and systems in 
other areas.  This has occurred through the introduction of the Electronic 
Patient Record, through increased patient movements, and through the 
distributed location of patient data and of samples taken from the patient.   

• Institutional and organisational changes can have many and far reaching 
consequences for system safety.  This has occurred through new specialist 
roles mediating between primary and secondary care, and the trend to 
relocate large amounts of the budget to Primary Care Trusts.   

 
This paper explores safety challenges within the health sector and how these might 

be addressed by supporting risk and change management through the construction and 
use of system-wide safety cases.  The present exploration may be set within our 
broader work agenda.  In particular there are a number of concerns: 
 

• Institutional and organizational issues (the scope of this paper):   
In this paper the institutional and regulatory background is discussed in order 
to identify, for example, relevant requirements, standards, stakeholders and 
the organisational structure.  This is used to present the formal, structural and 
dynamic characteristics of a system-wide argument including appropriate 
level, ownership and structure.   

• Technical issues (future work): 
The discussion of the paper raises questions about how a safety case could be 
realised in practice.  The last 10 years has seen substantial progress in safety 
case development.  There has been a shift from prescriptive to goal-based 
regulation [3], and a graphical notation (GSN) has been developed [4], which 
facilitates the construction and communication of safety cases of large-scale 
systems.  A study needs to investigate how this and subsequent work on 
maintenance [5] and on modularisation of safety cases [6] may render the 
construction of safety cases for healthcare organisations feasible.   

• Application of the safety case (future work):  
The activity of producing a safety case requires explicit consideration of 
safety-related issues, and provides assurance to both the organisation and to 
regulators that the system is adequately safe.  The safety case has also the 
potential to be a useful tool in assessing the implications of change, both 
technical and organisational.  A methodology for systematically utilising a 
system-wide safety case to support the management of change will be 
explored.  

  
The next section describes the regulatory context in England.  In this context two 

simplified yet realistic examples are considered.  Firstly a technical change within a 
hospital environment is used to discuss how a goal-based argument could facilitate 
the assessment of implications of that change.  Secondly an organisational change is 
considered in the context of the modernisation plan of the NHS in order to discuss the 
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possibility that a safety case could be used to support the management of this change.  
The concluding section discusses ongoing work and reflects on possible limitations.     

2. The Regulatory Context in England 

In England, as in other comparable European healthcare systems, there is a 
differentiation between manufacturers of medical devices on the one hand and 
healthcare providers as users or consumers of such devices on the other hand.   Both 
are regulated by and are accountable to the Department of Health, albeit through 
different agencies and institutions.  In general, manufacturers have to provide 
evidence that their devices are tolerably safe for a particular use in a specific 
environment.  Healthcare providers, on the other hand, are audited to ensure that the 
care they provide meets national standards.  A part of this is the requirement to utilise 
only previously certified medical devices.   

The certification of medical devices within the UK environment 

The UK Medical Devices Regulations 2002 (MDR 2002) implement a number of 
European directives relevant to the certification of medical devices:   

 
1. Medical Devices Directive 93/42/EEC 
2. IV-Diagnostic MDD 98/79/EC 
3. Active Implantable MDD 90/385/EEC 

 
The definition of what constitutes a medical device is broad and comprises devices as 
diverse as radiation therapy machines, syringes and wheelchairs.  The Medicines and 
Healthcare Products Regulatory Agency (MHRA) acts as the Competent Authority 
overseeing the certification of medical devices.  Notified Bodies of experts provide 
evaluation of high and medium risk medical devices undergoing certification to the 
Competent Authority.   

The medical devices directive has three parts:  
 

1. Essential Requirements that have to be met by any medical device to be marketed 
in the EU.  Six requirements are regarded as essential including: defining acceptable 
levels of risk; applying safety principles during design and construction; establishing 
and meeting performance criteria, ensuring that undesirable side effects constitute an 
acceptable level of risk. Design and construction requirements are concerned with 
chemical, physical and biological properties, infection and contamination control, 
protection against radiation, protection against electrical, mechanical and thermal risk 
etc.  
2. Classification Rules that specify four classes for medical devices.  Class I devices 
pose little risk and are non-invasive.  Classes IIa and IIb devices pose medium risk 
(medium to low risk, and medium to high risk, respectively), while Class III devices 
pose high risk.   
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3. Conformity Routes specifying different ways of manufacturer compliance with the 
Essential Requirements.  In the case of Class I devices the manufacturer has to declare 
through a self-documentation process (no Notified Body is involved) that the 
Essential Requirements are met, and compile adequate technical documentation.  For 
devices of the other classes a number of methods for demonstrating conformity are 
available.  This is frequently done through a Full Quality Assurance System 
assessment, according to ISO13485:2003 (Quality Systems - Medical Devices:  
Particular Requirements for the Application of ISO9001).  In the case of Classes IIa 
and IIb it is possible to provide evidence, including the results of risk analysis, test 
and inspection reports, design documentation, instructions for use and so on. The 
manufacturer is expected to have a systematic risk management process in place.  
ISO14971 (Medical Devices - Application of Risk Management to Medical Devices) 
is a harmonised standard specifying such a risk management process, focusing on risk 
analysis, risk evaluation, risk control and post-production information.  Senior 
management is required to define acceptable levels of risk.  Risk control through 
safety by design, mitigation measures, and appropriate warnings in the instructions for 
use must ensure that risks are reduced below a tolerable level and that residual risks 
do not exceed acceptable risk levels.  Throughout the process a risk management file 
is maintained, which documents the activities of the risk management process.     

 
All of these standards are addressed to the manufacturer of medical devices.  When 
healthcare providers assemble different devices to create a system, the safety of the 
resulting system will not have been assured.  As indicated in [7], the role of a systems 
integrator, with the responsibility of installing medical devices according to the 
manufacturers' instructions for use, of demonstrating the safety of the resulting 
system, and of providing documentation, training and support to the actual end users 
would be an important contribution to ensuring patient safety.  
Apart from issuing instructions for use, the manufacturer has little influence on the 
way the devices are actually used in practice.  More importantly, the manufacturer 
does not have detailed information about the specific environment and the processes 
within which the device will be operated within a particular healthcare provider's 
setting.  It is reasonable to expect healthcare providers to demonstrate that the 
services they are providing are acceptably safe.  Such a demonstration should make 
use of data supplied by the manufacturers.   

Auditing of Healthcare Providers 

Healthcare in England involves a diversity of actors.  The Department of Health is 
responsible for setting the overall strategic direction of the NHS, for setting national 
standards for improving the quality of health services, and for securing adequate 
funding for the NHS.  28 Strategic Health Authorities (SHA) are responsible for 
setting and managing the local strategic direction of the NHS.  The SHA develops 
plans to improve local services, and monitors the performance of healthcare providers 
within their region.  The monitoring function is increasingly being taken over by the 
Healthcare Commission (HC), which assesses all healthcare providers against 
national standards.  Primary Care Trusts (PCT) are local healthcare organisations 
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responsible for assessing the healthcare needs of the local communities, and for 
commissioning services from GPs, hospitals and so on.  NHS Hospital Trusts manage 
hospitals ensuring healthcare provision is of sufficient quality, and that finances are 
managed effectively.  PCTs purchase these services on behalf of their patients.  On 

top of all this there are a large number of additional actors such as pharmacies, 
dentists, walk-in centres and so on.  For the purpose of this paper it is sufficient to 
give a simplified version of the organisational structure including regulatory bodies 
and agencies, see fig. 1. 
  
In 2004 the Department of Health published the Standards For Better Health [8] to set 
out quality expectations for all organisations providing NHS care in England.  The 
standards focus on a broad spectrum of seven domains designed to cover the full 
spectrum of healthcare:  safety; clinical and cost effectiveness; governance; patient 
focus; accessible and responsive care; care environment and amenities; public health. 
Each domain incorporates two types of standards:  core standards and developmental 
standards.  The 24 core standards are based on a number of standards or requirements 
that already exist.  Developmental standards, on the other hand, outline requirements 
towards which continuous progress is expected.   

Safety and risk management aspects are covered in particular in domains 1 (Safety) 
and 3 (Governance).  For example, the Domain Outcome for Safety is specified as: 

 
Patient Safety is enhanced by the use of health care processes, working practices 

and systemic activities that prevent or reduce the risk of harm to patients.   
 

The corresponding core standards focus on learning from incident, fast response to 
incidents, adherence to NICE (National Institute for Clinical Excellence) guidance, 
decontamination of medical devices, minimisation of risks associated with the 
acquisition and use of medical devices etc.  The developmental standard requires 

Primary Care Trusts
Local Services

NHS Trusts
Hospital Services

Purchases
from

SHA
Local strategic 
direction

DoH
Strategic direction
Funding

HC
Auditing

NHSLA
Claims Management
Risk Management audit

NICE
Best practice

NSFs
Standards

Strategic direction
Improvement Plan
Standards for Better Health

Strategic direction
Improvement Plan
Standards for Better Health

Improvement Plan
Standards for Better Health

DirectsAudit

Provide guidance
CNST standards
Assessment criteria
Best-practice guidance

Figure 1: Simplified structure of regulatory context of 
healthcare provision in England 
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healthcare providers to continuously review and improve all aspects of their activities 
that directly affect patient safety, and to apply best practice in assessing and managing 
risks to patients, staff and others.   
The Healthcare Commission (HC) undertakes annual reviews of the provision of 
healthcare by each NHS organisation in England including PCTs, ambulance trusts, 
mental health trusts and acute trusts.  These reviews aim to verify compliance with the 
core standards, as well as the achievement against the developmental standards.  The 
HC has published guidance [9] that specifies the type of evidence to be produced in 
order to fulfil the standards set out by the Department of Health (e.g. participation in 
the National Reporting and Learning System).     
The HC builds up a profile of information for every trust annually aimed at 
identifying trusts most at risk of not complying with the core standards, and areas 
where more thorough examination is required.  The HC derives these profiles from its 
assessment and work programmes (e.g. improvement reviews, national staff surveys) 
as well as from other agencies and is active in seeking closer cooperation with bodies 
such as the NHS Litigation Authority (NHSLA), which audits risk management 
activities in healthcare organisations [10][11].   
In conclusion therefore, within the regulatory context both manufacturers of medical 
devices and healthcare service providers are regulated and are required to provide 
evidence that their devices and services are tolerably safe and meet acceptable 
standards of quality.  The producer - consumer relationship of manufacturers and 
healthcare has led to two regulatory contexts, which show little integration.  
Healthcare service providers are required to use only certified medical devices, and 
they have to react to patient safety alerts (with respect to medical devices) quickly, 
but there is no integration of assumptions and evidence produced by the 
manufacturers into a demonstration of safety produced by the healthcare organisation.  
The standards against which healthcare organisations are audited set out requirements 
that go beyond a given status-quo, and that emphasise continuous achievement and 
progress.  As part of the requirement of Clinical Governance, healthcare providers are 
required to have a systematic risk management process in place.  To demonstrate 
compliance with this requirement, healthcare providers produce prescribed evidence 
such as an official risk management strategy, including full allocation of 
responsibility and accountability, as well as evidence that the strategy is actually 
operational, such as minutes of risk management meetings.  The regulator collects 
data throughout the year from a number of different sources.  However, no formal 
argument (as required in aviation, for example) on the part of the healthcare 
organisation is required.  This implies that assumptions and dependencies may not be 
documented properly, and that there are no formal notions of issues such as 
confidence in the evidence or diverse evidence to mitigate possible uncertainty.     

3. Assessment of Technical Changes 

This section describes a possible technical change in a hospital context.  It is argued 
that a hospital-wide goal-based safety argument could facilitate the assessment of 
potentially adverse implications of the change and would enable an analysis of 
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dependencies that might otherwise go unnoticed.  
Medication administration on a typical ward within a hospital relies on the nurse 

matching patient to the identity and quantity of drugs to be administered (see [12] for 
more details about the activities of the nurse and the checks performed).  Patients and 
drugs are associated with one or more identifiers, including a unique case number, the 
patient’s name, the patient’s date of birth, and the drug name and dose.  Since this 
practice has been established over many years it may be safely assumed that no risk 
assessment is or has been conducted.  It may be assumed, however, that clinical risk 
management will aim to ensure that all incidents concerning patient mismatching are 
reported, and best-practice guidance issued by agencies such as the NPSA is 
implemented.   
 

A formal hospital-wide safety case would include, as evidence, a risk assessment of 
the above activities that would support the claims that all hazards have been 
identified, risk assessed, and eliminated or reduced to be as low as reasonably 
practicable.  This in turn could support the claim that all relevant hazards have been 
controlled.  For the sake of illustration a simplistic top-level argument fragment is 
presented in fig. 2 and fig. 3.     

The hazard mitigation argument forming part of the Functional Hazard Analysis 
(FHA) is depicted in fig. 4.  Hazard mitigation arguments are usually described in 
narrative form. A graphical representation is chosen here to make the structure of the 
argument more clear.  The argument is intended to demonstrate that the risk 
associated with wrong drug labels is tolerable.  The argument relies on three key 
claims as well as one essential assumption: 

 
• Claim G1.1.1: The most severe adverse events are caught in time, thus 

G1: Services provided are safe

G1.1.2: Health care processes and working 
practices prevent or reduce the 
risk of harm to patients

G1.1.2.1: Patient safety incidents are identified
and lead to improvements in practice
based on local and national experience  

G1.1.2.2: Patient safety alerts are acted
upon within the required time scales   

G1.1.1: All relevant hazards controlled

Description of services, 
environment etc

List of assumptions, e.g. 
ASS1: Staff will remain of 
the same quality
ASS2: Number of patients
will increase by max. 5%

Local incident
reporting system

Participation in 
NPSA NRLS

C

AArgue that there is 
sufficient direct evidence
and that it is sufficiently
reliable S

G1.1: Sufficient direct 
evidence available

G1.2: Evidence is 
sufficiently reliable

Minutes of 
risk 
management
meetings

Figure 2: Simple top-level argument fragment 
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reducing overall severity  
• Claim G1.2.2: The probability of wrong labels is than p2 
• Claim G1.2.1: The probability of the nurse not performing the cross-check 

is less than p1 
• The assumption (ASS1) is that there is always a nurse or a doctor close by 

and that they are attentive to changes in the symptoms of the patient. 
 

Consider a situation where the nurse (G1.2.1) and pharmacy (G1.2.1) claims are 
considered to be untenable and a technology solution, namely bar-coding, is proposed 
as a means of conforming to both targets.  We can assume that because the bar-coding 
hardware and software is identified as a medical device the manufacturer will have 
conducted and documented a clinical trial and risk assessment of the device.  
Documentation associated with the device will include descriptions of the expected 
environment and procedures for use.  Other assumptions will also have been made 
explicit, for example about maintenance and so on.  The device would either be self-
certified or certified by a Notified Body for marketing within the UK.  The hospital as 
a consumer would purchase the device possibly with initial support for installation 
and operation.  In purchasing the equipment the hospital would be required to conduct 
their own risk assessment.  As a result of introducing the device it may be assumed 
that a number of activities will change substantially.  The risk assessment would 
therefore identify and assess all changes to people directly involved, for example 
nurses and pharmacy staff.  The corresponding hazard mitigation argument (if there 
was one) would modify the support for the claim G1.2.1 (nurse fails to perform cross-
check).  An assumption (ASS2) would now be required that the nurse follows the 
procedures (i.e., uses the bar-coding device to identify patients, and then administers 
drugs to the previously identified patient), and a claim that the bar-coding error rate is 
less than n (G1.2.1.2).  An implicit assumption that the bar-coding hardware is 
available to the nurse would need to be made explicit, by claiming that the availability 

G1.1.1: All relevant hazards controlled

G1.1.1.1: Relevant 
hazards identified   

G1.1.1..2: Relevant 
hazards risk 
assessed   

G1.1.1..3: Relevant 
hazards eliminated   

G1.1.1.4: Relevant 
hazards ALARP 

G1.1.1.5: Effectiveness 
measured   

Ref. to 
relevant sections 
of FHA

Ref. to 
description
of monitoring
process

Figure 3: Simple top-level argument fragment (ctd.) 
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of the hardware is > m (G1.2.1.1).  This claim would require further evidence that the 
hardware is regularly maintained (fig. 5).   

To ensure that the availability claim is supported by valid evidence, sufficient 
technical staff time has to be allocated, training will have to be provided, facilities 
may have to be changed and so on.  Establishing that this evidence is required may 
have the effect of altering the activities of the technicians (they may have to come to 
wards now when they previously did not), it requires their time, and it may conflict 
with similar statements made elsewhere for other hardware.  Potential conflicts are of 
particular concern in the sense that they represent a class of assumptions about 
dependencies that often remain undetected. 
     

Two problematic issues have been outlined through this scenario:  the problem of the 
producer - consumer relationship of manufacturer and healthcare provider, and the 
problem associated with the tight integration of the healthcare organization.  The first 
problem arises from the fact that medical devices and healthcare providers are 
certified and audited separately.  Assumptions and information "hidden" within the 
documentation of the medical device may not be acknowledged or used properly 
within the auditing process of the healthcare provider.  The tight integration of the 
various activities within the healthcare organization implies that changes cannot be 
assessed properly within their local context in relation to the activities that are 
immediately affected.  Secondary effects may propagate throughout the organization. 
These effects may have unintended or adverse consequences if not properly taken into 
account.  A (more) formal demonstration of safety in the form of an explicit argument 
could be a valuable tool.  Such a demonstration would need to integrate information 
and assumptions of arguments produced by manufacturers into the larger perspective 
of an organization-wide safety argument.  The process of producing a formal 
argument could in itself prove to be valuable, as it would prompt risk managers and 

G1: Hazard:  Risk associated with 
patient receiving wrong drug due 
to wrong labels is tolerable

G1.1: Severity < x G1.2: Probability < y

G1.1.1: Severe adverse events are 
detected within an appropriate 
time frame

Periodic checks 
by nurse / dr

ASS1: 
Nurse / doctor are close 
by and conduct checks

Argument over probability of failure 
in pharmacy and of nurse

G1.2.1: Probability of nurse 
failing to perform x-check < p1

G1.2.2: Probability of 
pharmacy labelling drugs 
wrong < p2

HRA Past experience

S

A

Figure 4: Hazard mitigation argument 
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other stakeholders to reason about such issues.  In addition, once such an 
organization-wide argument exists that makes all assumptions explicit, it will 
facilitate the assessment of both direct and secondary effects of changes, as well as 
previously hidden or undocumented dependencies.  This could follow a systematic 
process similar to the one outlined in [5] for safety case maintenance.       

4. Assessment of Organisational Changes 

The successful management of organisational change is a major challenge in all 
industries.  It can have far reaching consequences for the safety and the quality of the 
services provided, as well as for the service providers themselves.  Modern 
organisations are complex systems characterised by emergent properties including 
those relating to safety.  These properties arise from numerous, widespread and often 
unexpected interactions between internal and external actors and systems.  Typically 
no formal representation justifying safe and efficient operation exists for such 
systems.  Comprehensive representations of how the various actors and systems 
interact for the whole system are more or less completely absent even though limited 
safety cases of sub-systems sometimes do exist for the local environment.  This 
makes the identification of interactions and dependencies accompanying changes 
difficult if not impossible.  Prior assumptions made elsewhere and the complex 
propagation of secondary effects of change in other areas of the organisation are 
difficult to assess.  We illustrate the effects of these changes by outlining a specific 
change scenario within the NHS that we will use to discuss some of the issues that 
may impact patient safety.  The illustration will be used to motivate the formal and 
structural requirements of an organisation-wide safety case and how it might be used 
to manage organisational change.   

G1.2: Probability < y

Argument over probability of failure 
in pharmacy and of nurse

G1.2.1: Probability of 
x-check failing < p1

G1.2.2: Probability of 
pharmacy labelling drugs 
wrong < p2

Maintenance 
schedule

S

ASS2: 
Nurse follows procedures

A

G1.2.1.1: Device 
availability > m

G1.2.1.2: Device
pfd  < n

Reference to
manufacturer
data

•Assumptions of the manufacturer?
•Assumptions about maintenance 
elsewhere? 
•Implications for technical staff 
and arguments elsewhere? 

Figure 5: Hazard mitigation argument after introduction of 
bar-coding 
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Through the process of modernisation of the NHS [1][13] there is a transfer of 
responsibility to local authorities providing autonomous administration (via 
organizations such as the SHA and PCTs).  The aim is that this change will enable 
service providers to respond flexibly and quickly to the different demands of their 
respective local communities.  The rhetoric is that the service should transform itself 
from a sickness-service to a health-service, with stronger emphasis on prevention of 
disease and chronic disease management.  As part of the personalisation of services, 
greater choice will be given to patients, and a stronger integration of local services 
will be achieved (e.g. mental health, social services).  Overall this implies that all 
practitioners will increasingly be required to interact with teams of diverse 
characteristics.  A further strand of the modernisation is the drive towards the 
utilisation of IT and of the internet.  New services will be provided, for example 
electronic health spaces that contain the patient’s medical history and data, as well as 
personalised information.  Finally, there is a stronger focus on quality and safety of 
the services provided.  This has already resulted in the establishment of new agencies 
such as NPSA and the HC, as well as in the provision of new standards such as the 
Standards for Better Health [8].   

A major concern that has been a driver for many of these changes had been the 
problem of patient waiting times.  Treatment waiting times of up to 18 months are to 
be reduced to a target of 18 weeks for the entire “patient journey” thereby leading to 
the patient perception that waiting times are no longer the main concern.  One of the 
changes directed at achieving the aims of higher quality, personalised care, and 
reduced waiting times is the introduction of specialist nurses as mediators between 
primary and secondary care.  A detailed description of the introduction of the role of a 
specialist nurse for urinary tract infections in children is given in [14].  In this paper 
we describe a simplified scenario in order to explore the implications of such change.   

Urinary tract infections (UTI) in children may lead to renal scarring and other 
adverse consequences (hypertension, renal transplant etc) when not diagnosed and 
treated quickly and adequately.  Previous published work has shown that GPs often 
lack a thorough understanding of proper management of such infections and of their 
possible consequences.  The previous referral pathway for the investigation of 
childhood UTI required often a minimum of three interactions between practitioners 
and the children and their parents, taking up to a year.  The patient presents to the GP, 
the GP may send a letter of referral to the hospital for further tests if there is any 
reason for suspecting an infection.  In the hospital (some months later) the child and 
family are seen by a consultant paediatrician, a number of tests are organised and 
carried out at a later visit. Multiple tests may require multiple visits.  A further visit to 
the hospital consultant or GP is required when the results are returned.   

The aims of the introduction of a urinary tract infections specialist nurse included 
improved awareness among primary care teams, increased detection rates, reduction 
in time required of patients and parents, streamlined working with other agencies 
involved in the investigation process, reduction in overall duration of the process, and 
improved relationship with patients and parents.  

The new solution is a nurse-led service for childhood UTI, combined with an 
education package for primary care teams, and available telephone support.  The 
specialist nurse is autonomous, not supervised directly by a consultant.  The nurse 
acts across the interface between primary care and secondary care.  A consultant gets 

Part Socio - APPENDIX [Sujan et al. 2006a] p 11



12      Mark A. Sujan et al. 

involved only when the nurse determines that a particular case requires such attention 
based on clinical judgment.   The primary care team member is required to complete a 
form that addresses a number of questions, and this form is passed to the nurse who 
assesses whether additional tests or consultant involvement are required.  In cases 
where further tests are required, the nurse requests the tests and books the patients 
into the respective units in such a way that once the patient arrives in the hospital, all 
required tests have been organised for that day.  In case of an abnormality of the test 
results, the respective unit can get in touch with the nurse directly.  The nurse will 
make a decision based on the test result, and she will inform both the GP and the 
patient and parents promptly.   

Proactive assessment of such change is not straightforward.  The interface between 
primary and secondary care leads to a large number of interactions.  The GP decision-
making process is now different, from a diagnosis to a fast referral for in-depth 
consideration by the specialist nurse.  This will release GP resource and will modify 
the GP’s communication and relationship with hospital consultants.  Testing services 
will interact only with the specialist nurse.  The consultant will deal with a smaller 
proportion of cases.  There will be a redistribution of resources to finance the new 
role for part of the Hospital Trust.  The far-reaching consequences of this change 
(consequences that have only been hinted at) can only be assessed with proper models 
of the organisation, and in particular with models of how the organisation achieves 
safe operations.  This becomes even more relevant when this change is seen in the 
broader view of all the other changes taking place concurrently.  In addition to the 
UTI specialist nurse, it may be assumed that there are other similar specialist roles 
being introduced, all changing the activities of GPs, consultants, test facilities, 
patients and so on, and all possibly interacting with one another.   

A formal safety argument could be used to make explicit how the overall 
organisation is achieving safe operations by making explicit the assumptions, 
dependencies and interactions that could be used to identify and to resolve 
interactions between changes.  To make the use of such a safety argument possible a 
number of problems would need to be addressed.  Currently, manufacturers of devices 
are certified by the Competent Authority.  Healthcare providers (PCT, NHS Trust 
etc.), on the other hand, are audited independently by the HC.  As already discussed 
changes often cut across sub-systems and responsibilities and may involve transfer of 
responsibility, transfer of resources and introduction of new technologies all at the 
same time.  Any overarching safety argument would need to integrate information 
from all of these actors and, for this to happen, one actor would need to take overall 
responsibility.  The SHA seems a possible candidate for this as it is involved in the 
process of performance monitoring of the healthcare providers, whereas auditing is 
increasingly being taken over by the HC.  The SHA could thus assume the 
responsibility of compiling a safety argument for its area of responsibility.  This 
safety argument would function as a tool within the management of change process 
rather than being part of the auditing process (as the HC does not audit the SHA) and 
would contribute to the achievement of the SHA’s aim of providing higher-quality 
care within its region.   

Achieving management of change through such arguments presents problems for 
the developers of safety arguments.  They would need to integrate a substantial 
number of autonomous actors and would need to develop an underlying model upon 
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which the argument could be constructed.  Traditional analytical models often fall 
short of providing adequate representations of organisations.  A decomposition of the 
organisation into its elements for analytical reasons would not be an appropriate way 
of dealing with the emergent properties resulting from the manifold and complex 
interactions of all the elements of an organisation.  Alternative models and 
representations are required that can interpret the organisation’s defences or barriers 
in terms of human activity, and make this explicit to prevent unwanted and unsafe 
interactions.   

5. Conclusion 

This paper discusses the role that a safety argument might play in managing the 
safety (and other) implications of organizational change.  Specifically, healthcare 
organizations are complex systems characterized by a large number of interactions 
and inter-relationships.  Safety of such complex systems is an emergent property of 
these interactions.  The complexity of healthcare organisations, the large number of 
autonomous actors, and the disjoint regulation of healthcare providers and medical 
device manufacturers renders the assessment of the implications of change very 
difficult.   

The paper considers the introduction of technology in a hospital and demonstrates 
the problematic issues arising from producer-consumer relationship of manufacturer 
and healthcare provider, and from the tight integration of the healthcare organization. 

We then considered the broader organisational issues associated with change and 
the role of whole-system arguments in managing organisational change.  The very 
complexity of whole-system safety arguments makes the possibility of their 
construction and management a matter of concern.  The example we used to illustrate 
this issue was relatively simple involving few organisations and yet many issues 
emerged through the discussion.  For example no one actor in the organisation has 
responsibility for maintaining the whole safety of the system and therefore the overall 
safety argument.  It is not clear how well existing argumentation techniques would 
manage the unforeseen emergent properties of these complex systems, nor is it clear 
how the overall high level complexity of the argument can be seen in relation to lower 
level issues, for example associated with the way that technologies like databases are 
used and shared and maintained safely across this complexity. 

As yet no systematic techniques exist for managing effectively change through 
these arguments – an issue that we wish to explore in our future research agenda. 

In terms of future agenda, we are particular interested in exploring two models that 
might make it possible to relate barriers or defenses (and thus system safety) to the 
activities of the work environment and provide a means of managing the complexity.  
For example, consider the hazard arising from mixed-up drugs in the technological 
example of section 3.  Barriers intended to prevent harm to the patient may include 
drug identity checks in the pharmacy before dispatch as well as drug identity checks 
at the bedside.  As barriers do not simply exist as abstract entities, but are part of and 
realized through human activity, we aim to embed and to understand the operation of 
the barriers within the activities of the people carrying out the drug identity checks.  
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In the case of the nurse performing the final bedside check, for example, this barrier 
would be embedded in an activity of drug administration and the analysis would focus 
on the available tools and technologies (e.g. drug chart, labels, bar code system etc.) 
as well as the official procedures and less formal social rules.  In addition, other 
activities, which may impact on the successful completion of this activity (and thus on 
the performance of the barrier) would be analyzed, e.g. the nurse’s activity of 
providing assistance to other nurses (expressed in the division of labor within another 
activity).  Expressing the barrier concept in such a way as meaningful, practical 
human activity provides a more meaningful model of the organization’s emergent 
properties, and could thus be a useful underlying model for arguing safety of complex 
systems.         
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Abstract 

This paper aims at providing some precise information regarding the various steps that attackers go through in 
order to take control over a vulnerable machine. More importantly, it describes what can be learned from the 
observation of the attackers when logged on a compromised machine. The results are based on a six months 
period during which a controlled experiment has been run with a high interaction honeypot. We correlate our 
findings with those obtained with a worldwide distributed system of low-interaction honeypots. We provide 
precise information that can be used by those who are working, for instance, on intrusion detection systems or 
correlation engines. Indeed, detectors of various kinds make assumptions about the supposed behavior of 
attackers but few papers offer some concrete analysis of the characteristics of a large set of attacks of the same 
kind. This paper wishes to be one of the first of a kind in order to improve the global understanding of the threats 
against which we have to find efficient countermeasures. 

1. Introduction 

During the last decade, the Internet users have been facing a large variety of malicious threats and activities 
including viruses, worms, denial of service attacks, phishing attempts, etc. Several surveys and indicators, 
published at a regular basis, provide useful information about new vulnerabilities and security threats, with an 
indication of their estimated severities with respect to the potential damage that they might cause. On the other 
hand, several initiatives have been developed to monitor real world data related to malware and attacks 
propagation on the Internet. Among them, we can mention the Internet Motion Sensor project[4], CAIDA[16] 
and Dshield[9]. These projects provide valuable information for the identification and analysis of malicious 
activities on the Internet. Nevertheless, such information is not sufficient to model attack processes and analyze 
their impact on the security of the targeted machines. The CADHo project [2] in which we are involved is 
complementary to these initiatives and is aimed at filling such a gap by carrying out the following activities: 

                                                        

*  A short version of this paper will appear in the Proceedings of EDCC-6, the 6th European Dependable Computing 
Conference, Coimbra, Portugal, October 18-20, 2006. 
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• deploying and sharing with the scientific community a distributed platform of honeypots[15] that gathers 
data suitable to analyze the attack processes targeting a large number of machines connected to the 
Internet; 

• validating the usefulness of this platform by carrying out various analyses, based on the collected data, to 
characterize the observed attacks and model their impact on security. 

A honeypot is a machine connected to a network but that no one is supposed to use. In theory, no connection to 
or from that machine should be observed. If a connection occurs, it must be, at best an accidental error or, more 
likely, an attempt to attack the machine. Two types of honeypots can be distinguished depending on the level of 
interactivity that they offer to the attackers. Low-interaction honeypots do not implement real functional 
services. They emulate simple services that cannot be compromised. Therefore, these machines cannot be used 
as stepping stones to carry out further attacks against third parties. On the other hand, high-interaction honeypots 
offer real services to the attackers to interact with which makes them more risky than low-interaction honeypots. 
As a matter a fact, they offer a more suitable environment to collect information on attackers activities once they 
manage to get the control of a target machine and try to progress in the intrusion process to get additional 
privileges. It is noteworthy that recently, hybrid honeypots combining the advantages of low and high-interaction 
honeypots have been also proposed [11, 6]. Both types of honeypots are investigated in the CADHo project to 
collect information about malicious activities on the Internet and to build models that can be used to characterize 
attackers behaviors and to support the definition and the validation of the fault assumptions considered in the 
design of secure and intrusion tolerant systems. 

During the first stage of the project, we have focused on the deployment of a data collection environment (called 
Leurré.com[1]) based on low-interaction honeypots. As of today, around 40 honeypot platforms have been 
deployed at various sites from academia and industry in almost 30 different countries over the five continents. 
Each platform emulates three computers running Linux RedHat, Windows 98 and Windows NT, respectively, 
and various services such as ftp, http, etc. The data gathered by each platform are securely uploaded to a 
centralized database with the complete content, including payload of all packets sent to or from these honeypots, 
and additional information to facilitate its analysis, such as the IP geographical localization of packets' source 
addresses, the OS of the attacking machine, the local time of the source, etc. 

Several analyses carried out on the data collected so far have revealed that very interesting conclusions can be 
derived with respect to the attack activities observed on the Internet [2, 12-15]. Nevertheless, with such 
honeypots, hackers can only scan ports and send requests to fake servers without ever succeeding in taking 
control over them. The second stage of the CADHo project is aimed at setting up and deploying high-interaction 
honeypots to allow us to analyse and model the behavior of malicious attackers once they have managed to 
compromise and get access to a new host, under strict control and monitoring. We are mainly interested in 
observing the progress of real attack processes and the activities carried out by the attackers in a controlled 
environment. 

In this paper, we describe the preliminary lessons learned from the development and deployment of such a 
honeypot. It is important to stress the fact that the goal of this paper is not to present yet another architecture to 
build high interaction honeypots. Instead, it is about the rigorous definition of an environment to carry out a well 
thought off experiment aiming at better understanding and modeling the threats we are facing once an attacker 
has succeeded in taking over a machine connected to the Internet. 
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The main contributions of this paper are threefold. First, we do confirm the findings discussed in [14] showing 
that different sets of compromised machines are used to carry out the various stages of planned attacks. Second, 
we do outline the fact that, despite this apparent sophistication, the actors behind those actions do not seem to be 
extremely skillful, to say the least. Last, the geographical location of the machines involved in the last step of the 
attacks and the link with some phishing activities shed a geopolitical and socio-economical light on the results of 
our analysis. 

The paper is organized as follows. Section 2 discusses some existing techniques for developing high-interaction 
honeypots and the design rationales for our solution. Section 3 describes our proposed solution. The lessons 
learned from the attacks observed over a period of almost 4.5 months are discussed in Section 4. Finally, Section 
5 offers some conclusions as well as some ideas for future work. 

2. Related work 

The most obvious approach for setting up a high-interaction honeypot consists in the use of a physical 
machine and to dedicate it to record and monitor attackers activities. The installation of this machine is as easy 
as a normal machine. Nevertheless, probes must be added to store the activities. Operating in the kernel is by far 
the most frequent manner to do it. Sebek[7] and Uberlogger[3] operate in that way by using Linux Kernel 
Module (LKM) on Linux. More precisely, they launch a homemade module to intercept interesting system calls 
in order to capture the activities of attackers. Data collected in the kernel are stored on a server through the 
network. Communications with the server are hidden on all installed  honeypots. 

Another approach consists in using a virtual operating system [17]. User Mode Linux (UML) is a Linux 
compiled kernel which can be executed as other programs on a Linux operating system. It is possible to have 
several virtual operating systems running together on a single machine. Thanks to probes, activities on virtual 
operating systems are logged into the machine. In [18], an architecture of a honeypot using UML is presented. 
Uberlogger [3] can also be implemented in such an environment. VMware is also a tool used for emulation, but 
it emulates a whole machine instead of an operating system. Various operating systems (Windows, Gnu/Linux, 
etc) can be installed and executed together. It can also be used to deploy honeypots[19]. The problem with 
virtual honeypots is the possibility for the intruder to detect the presence of this virtual operating system [8]. 
Some well-known methods, available on Internet, allow the intruder to fingerprint VMware for example. Some 
solutions have been developed to hide the presence of VMware (see e.g. [10]). 

Compared to honeypot-solutions based on physical machines, virtual honeypots provide a cost effective and 
flexible solution that is well suited for running experiments to observe attacks. In particular, the number of 
emulated systems and their configuration can be easily changed if needed. 

3. Architecture of our honeypot 

In our implementation, we have decided to use the VMware software and to install virtual operating system upon 
VMware. Our objective is to setup a high-interaction honeypot that can be easily configured and upgraded for 
different experimental studies. In particular, our intention is to emulate in the initial setup a limited number of 
machines, and then increase the number of emulated machines at a later stage of the project to have a more 
realistic target for attack that is representative of a real network. 
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As we explained in the Section 2, VMware workstation software [24] allows multiple operating systems to be 
run simultaneously on a single real host. With virtual operating systems, the cloning, the reconfiguration and the 
modification of the operating system are very simple. Furthermore, if the attacker succeeds in destroying some 
part of the operating system, the recovery procedure is simplified compared to the case of a real operating 
system. 

In the following, we describe the configuration of the honeypot, and the data capture mechanisms. 

3.1. Configuration 

The objective of our experiment is to analyse the behavior of the attackers who succeed in breaking into a 
machine (a virtual host in our experiment). The vulnerability that he exploits is not as crucial as the activity he 
carries out once he has broken into the host. That's why we chose to use a simple vulnerability: weak passwords 
for ssh user accounts. In this way, our honeypot is not particularly hardened but this is intentional for two 
reasons. First, we are interested in analyzing the behavior of the attackers even when, once logged in, they 
exploit a buffer overflow and become root. So, if we use some kernel patch such as Pax [21] for instance, our 
system will be more secure but it will be impossible to observe some behavior. Secondly, if the system is too 
hardened, the intruders may suspect something abnormal and then give up. 

In our setup, only ssh connections to the virtual host are authorized so that the attacker can exploit this 
vulnerability. A firewall blocks all connection attempts, but those to port 22 (ssh), from the Internet  (see 
Figure 1). 

 

Figure 1- Topology of the honeypot 

In order to prevent that intruders attack remote machines form the honeypot, a firewall blocks any connection 
from the virtual host to the outside. This does not prevent the intruder from downloading code, because he can 
use the ssh connection for that.1 

                                                        

1 As many intruders use outgoing http connections, we have sometimes authorized http connections in our experiments for a short time under our strict 

control by checking constantly that the attackers were not trying to attack other remote hosts. 
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This being said, as discussed later on, the lack of connectivity to the rest of the world by means of another 
protocol than ssh may look suspicious to a malicious user. We discuss the influence of this design choice in the 
section devoted to the analysis of the results of the experiments. We show that, instead of be
ing a nuisance, it helps us discriminating between the various types of malicious users. 

Our honeypot is a standard Gnu/Linux installation, with kernel 2.6, with the usual binary tools (compiler, usual 
commands, etc). No additional software was installed except the http apache server. This kernel was modified 
as explained in the next subsection. The real host is of course never used by regular users. The real operating 
system executing VMware is also a Gnu/Linux distribution with kernel 2.6. 

3.2. Attackers activity logging 

Our first objective is to log the activity of the intruders (the commands they use once they have broken into the 
honeypot) in a stealthy way. In order to log what the intruders do on the honeypot, we chose to modify some 
drivers functions tty_read and tty_write as well as the exec system call in the Linux kernel. The 
modifications of the functions tty_read and tty_write enable us to intercept the activity on all the terminals 
and pseudo-terminals of the system. The modification of the exec system call enables us to record the list of the 
system calls used by the intruder.  These functions are modified in such a way that the captured information is 
logged directly into a buffer of the kernel memory. This means that the activity of the attacker is logged on the 
kernel memory of the honeypot itself. This approach is not common: in most of the approaches we have studied, 
the information collected is directly sent to a remote host through the network. The advantage of our approach is 
that logging into the kernel memory is difficult to detect by the intruder (more difficult at least than detecting a 
network connection). 

The kernel memory of the virtual host is in fact an area of the whole memory of the real host. So, from the real 
host, an automatic script regularly inspects the area of the memory used by the virtual host, looking for a magic 
word indicating the beginning of the information logged into the kernel. This information is then recorded on the 
hard disk of the real host and then transferred to a database server (see Figure 2). This logging activity is 
executed on the real host, not on the virtual host, thus it is not easily detectable by the intruder (he cannot find 
anything suspicious in the list of the processes for example). Furthermore, we also decided to log this activity in 
such a way that it is not directly readable, even if the intruder succeeds in parsing the kernel memory of the 
honeypot. This activity information is compressed using the algorithm LZRW1[25] before being logged into the 
kernel memory. This makes it even more difficult for an intruder to detect that he is observed. 

Our second objective is to record all the logins and passwords tried by the different attackers to break into the 
honeypot. For that purpose, we chose to add a new system call into the kernel of the virtual operating system and 
we have modified the source code of the ssh server so that it uses this new system call. The logins and 
passwords are then logged in the kernel memory, in the same buffer as the information related to the commands 
used by the attackers. As the whole buffer is regularly stored on the hard disk of the real host, we do not have to 
add other mechanisms to record these logins and passwords. 

The activities of the intruder logged by the honeypot are preprocessed and then stored into an SQL database. The 
raw data are automatically processed to extract relevant information for further analyses, mainly: i) the IP 
address of the attacking machine, ii) the login and the password tested, iii) the date of the connection, iv) the 
terminal associated (tty) to each connection, and v) each command used by the attacker. 
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Figure 2- Data Collection 

4. Experimental results 

In this section, we present the results of our experiments. We give global statistics first, in order to give an 
overview of the activities observed on the honeypot, then we characterize the various intrusion processes. 
Finally, we analyse in detail the behavior of the attackers once they manage to break into the honeypot. In this 
paper, an intrusion corresponds to the activities carried out by an intruder who has succeeded to break into the 
system. 

4.1. Global statistics 

The high-interaction honeypot has been deployed on the Internet and has been running for 131 days during 
which 480 IP addresses have tried to contact its ssh port.  It is worth comparing this value to the amount of hits 
observed against port 22, considering all the other low-interaction honeypot platforms we do have in the rest of 
the world (40 platforms). In the average, each platform has received hits on port 22 from around approximately 
100 different IPs during the same period of time. Only four platforms have been contacted by more than 300 
different IP addresses on that part and only one was hit by more visitors than our high interaction honeypot. 
Even better, the low-interaction platform maintained in the same subnet as the high-interaction studied in this 
paper experimented only 298 visits, i.e. less than two thirds of what the high-interaction did see. This very 
simple and first observation confirms the fact already described in [14] that some attacks are driven by the fact 
that attackers know in advance, thanks to scans done by other machines, where potentially vulnerable services 
are running. The existence of such a service on a machine will trigger more attacks against it. This is what we 
observe here: the low interaction machines do not have the ssh service open, as opposed to the high interaction 
one, and, therefore get less attacked than the one where some target has been identified. 
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The number of ssh connection attempts to the honeypot we have recorded is 248717 (we do not consider here 
the scans on the ssh port). This represents about 1900 connection attempts a day. Among these 248717 
connection attempts, only 344 were successful. Table 1 represents the user accounts that were mostly tried (the 
top ten) as well as the total amount of different passwords that have been tested by the attackers. It is noteworthy 
that many user accounts corresponding to usual first names have also regularly been tested on our honeypot. The 
total number of accounts tested is 41530. 

Before the real beginning of the experiment (approximately one and a half month), we had deployed a machine 
with a ssh server correctly configured, offering no weak account and password. We have taken advantage of this 
observation period to determine which accounts were mostly tried by automated scripts. 

 
Account Number of 

connection 
attempts 

Percentage of 
connection 
attempts 

Number of 
passwords 

tested  
root 34251 13.77% 12027 
admin 4007 1.61% 1425 
test 3109 1.25% 561 
user 1247 0.50% 267 
guest 1128 0.45% 201 
info 886 0.36% 203 
mysql 870 0.35% 211 
oracle 857 0.34% 226 
postgres 834 0.33% 194 
webmaster 728 0.29% 170 

Table 1- ssh connection attempts and number of passwords tested 

Using this acquired knowledge, we have created 17 user accounts and we have started looking for successful 
intrusions. Some of the created accounts were among the most attacked ones and others not. As we already 
explained in the paper, we have deliberately created user accounts with weak passwords (except for the root 
account). Then, we have measured the time between the creation of the account and the first successful 
connection to this account, then the duration between the first successful connection and the first real intrusion 
(as explained in section 4.2, the first successful connection is very seldom a real intrusion but rather an automatic 
script which tests passwords). Table 2 summarizes these durations (UAi means User Account i). 
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User Account Duration between creation and 
first successful connection 

UA1 1 day 
UA2 Half a day 
UA3 15 days 
UA4 5 days 
UA5 5 days 
UA6 1 day 
UA7 5 days 
UA8 1 day 
UA9 1 day 
UA10 3 days 
UA11 7 days 
UA12 1 day 
UA13 5 days 
UA14 5 days 
UA15 9 days 
UA16 1 day 
UA17 1 day 

Table 2- Duration between the creation and the first successful connection for the broken accounts 

4.2. Intrusion process 

In the section, we present the conclusions of our analyses regarding the process to exploit the weak password 
vulnerability of our honeypot. The observed attack activities can be grouped into three main categories: 1) 
dictionary attacks, 2) interactive intrusions, 3) other activities such as scanning, etc. 

 

 

Figure 3- Classification of observed IP addresses 

As illustrated in figure 3, among the 480 IP addresses that were seen on the honeypot, 197 performed dictionary 
attacks and 35 performed real intrusions on the honeypot (see below for details). The 248 IP addresses left were 
used for scanning activity or activity that we did not clearly identified. Among the 197 IP addresses that made 
dictionary attacks, 18 succeeded in finding passwords. The others (179) did not find the passwords either 
because their dictionary did not include the accounts we created or because the corresponding weak password 
had already been changed by a previous intruder. We have also represented in Figure 3 the corresponding 
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number of IP addresses that were also seen on the low-interaction honeypot deployed in the context of the 
project in the same network (between brackets). Whereas most of the IP addresses seen on the high interaction 
honeypot are also observed on the low interaction honeypot, none of the 35 IPs used to really log into our 
machine to launch commands have ever been observed on any of the low interaction honeypots that we do 
control in the whole world ! This striking result is discussed here after. 

4.2.1. Dictionary attack 

The preliminary step of the intrusion consists in dictionary attacks2. In general, it takes only a couple of days for 
newly created accounts to be compromised. As shown in Figure 3, these attacks have been launched from 197 IP 
addresses. By analysing more precisely the duration between the different ssh connection attempts from the 
same attacking machine, we can say that these dictionary attacks are executed by automatic scripts. As a matter 
of fact, we have noted that these attacking machines try several hundreds, even several thousands of accounts in 
a very short time. 

We have made then further analyses regarding the machines that succeed in finding passwords, i.e., the 18 IP 
addresses. By searching the database containing information about the activities of these addresses against the 
other low interaction honeypots we found four important elements of information. First, we note that none of our 
low interaction honeypot has an ssh server running, none of them replies to requests sent to port 22. These 
machines are thus scanning machines without any prior knowledge on their open ports. Second, we found 
evidences that these IPs were scanning in a simple sequential way all addresses to be found in a block of 
addresses. Moreover, the comparison of the fingerprints left on our low interaction honeypots highlights the fact 
that these machines are running tools behaving the same way, not to say the same tool. Third, these machines are 
only interested in port 22, they have never been seen connecting to other ports. Fourth, there is no apparent 
correlation as far as their geographical location is concerned: they are located all over the world. 

In other words, it comes from this analysis that these IPs are used to run a well known program. The detailed 
analysis of this specific tool lies outside the scope of the paper but, nevertheless, it is worth mentioning that the 
activities linked to that tool, as observed in our database thanks to all our platforms, indicate that it is unlikely to 
be a worm but rather an easy to use and widely spread tool. 

4.2.2. Interactive attack: intrusion 

The second step of the attack consists in the real intrusion. We have noted that, several days after the guessing of 
a weak password, an interactive ssh connection is executed on our honeypot to issue several commands. We 
have reason to believe that, in those situations, a real human being, as opposed to an automated script, is 
connected to our machine. This is explained and justified in Section 4.3. As shown in Figure 3, these intrusions 
come from 35 IP addresses never observed on any of the low-interaction honeypots. 

Whereas the geographic localisation of the machines performing dictionary attacks is very blur, the machines 
that are used by a human being for the interactive ssh connection are, most of the time, clearly identified. We 

                                                        

2 Let us note here that we consider as “dictionary attack” any attack that tries more than 10 different accounts and passwords. 
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have a precise idea of their country, geographic address, the responsible of the corresponding domain. 
Surprisingly, these machines, for half of them, come from the same country, an European country not usually 
seen as one of the most attacking ones as reported, for instance, by the www.leurrecom.org web site. 

We then made analyses in order to see if these IP addresses had tried to connect to other ports of our honeypot 
except for these interactive connections; and the answer is no. Furthermore, the machines that make interactive 
ssh connections on our honeypot do not make any other kind of connections on this honeypot, i.e, no scan or 
dictionary attack. Further analyses, using the data collected from the low-interaction honeypots deployed in the 
CADHo project, revealed that none of the 35 IP addresses have ever been observed on any of our platforms 
deployed in the word. This is interesting because it shows that these machines are totally dedicated to this kind 
of attack (they only targeted our high-interaction honeypot and only when they knew at least one login and 
password on this machine). 

We can conclude for these analyses that we face two groups of attacking machines. The first group is composed 
of machines that are specifically in charge of making dictionary attacks. Then the results of these dictionary 
attacks are published somewhere. Then, another group of machines, which has no intersection with the first 
group, comes to exploit the weak passwords discovered by the first group. This second group of machines is, as 
far as we can see, clearly geographically identified and commands are executed by a human being. A similar two 
steps process was already observed in the CADHo project when analyzing the data collected from the low-
interaction honeypots (see [14] for more details). 

4.3. Behavior of the attackers 

This section is dedicated to the analysis of the behavior of the intruders. We first characterize the intruders, i.e. 
we try to know if they are humans or programs. Then, we present in more details the various actions they have 
carried out on the honeypot. Finally, we try to figure out what their skill level seems to be. 

• We concentrate the analyses on the last three months of our experiment. During this period, some 
intruders have visited our honeypot only once, others have visited it several times, for a total of 38 ssh 
intrusions. These intrusions were initiated from 16 IP addresses and 7 accounts were used. Table 3 
presents the number of intrusions per account, IP addresses and passwords used for these intrusions.  

 
Account Number of 

intrusions 
Number of 
passwords 

Number of IP 
addresses 

UA2 1 1 1 
UA4 13 2 2 
UA5 1 1 1 
UA8 1 1 1 

UA10 9 2 2 
UA13 6 1 5 
UA16 5 1 3 
UA17 2 1 1 

Table 3- Number of intrusions per account 
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It is of course very difficult to be sure that all the intrusions for a same account are initiated by the same person. 
Nevertheless, in our case, we noted that: 

• most of the time, after his first login, the attacker changes the weak password into a strong which, from 
there on, remains unchanged. 

• when two different IP addresses access the same account (with the same password), they are very close 
and belong to the same country or company. 

4.3.1. Types of the attackers: human or programs 

Before analyzing what intruders do when connected, we can try to identify who they are. They can be of two 
different natures. Either they are humans, or they are programs which reproduce simple behaviors. For all 
intrusions but 12, intruders have made mistakes when typing commands. Mistakes are identified when the 
intruder uses the backspace to erase a previously entered character. So, it is very likely that such activities are 
carried out by a human, rather than programs. 

 

Figure 4- Characterization of the intrusions 

When an intruder did not make any mistake, we analyse how the data are transmitted from the attacker machine 
to the honeypot. We can note that, for ssh communications, data transmission between the client and the server 
is asynchronous. Most of the time, the ssh client implementation uses the function select() to get user input. 
So, when the user presses a key, this function ends and the program sends the corresponding value to the server. 
In the case of a copy and a paste into the terminal running the client, the select() function also ends, but the 
program sends all the values contained in the buffer used for the paste into the server. We can assume that, when 
the function tty_read() returns more than one character, these values have been sent after a copy and a paste. If 
all the activities during a connection are due to a copy and a paste, we can strongly assume that it is due to an 
automatic script. Otherwise, this is quite likely a human being who uses shortcuts from time to time (such as 
CTRL-V to paste commands into its ssh session). For 7 out of the last 12 activities without mistakes, intruders 
have entered several commands on a character by character basis. This, once again, seems to indicate that a 
human being is entering the commands. For the 5 others, their activities are not significant enough to conclude: 
they have only launched a single command, like w, which is not long enough to highlight a copy and a paste. 

4.3.2 Attackers activities 

The first significant remark is that all of the intruders change the password of the hacked account. The second 
remark is that most of them start by downloading some files. In all, but one, cases the attackers have tried to 
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download some malware to the compromised machines. In a single case, the attacker has first tried to download 
an innocuous, yet large, file to the machine (the binary for a driver coming from a known web site). This is 
probably a simple way to assess the quality of the connectivity of the compromised host. 

The command used by the intruders to download the software is wget. To be more precise, 21 intrusions upon 38 
include the wget command. These 21 intrusions concern all the hacked accounts.  As mentioned in section 3.1, 
outgoing http connections are forbidden by the firewall. Nevertheless, the intruders still have the possibility to 
download files through the ssh connection using sftp command (instead of wget). Thus, it is interesting to 
analyse the percentage of the attackers that continue their attack despite this wget problem.   Surprisingly, we 
noted that only 30% of the intruders did use this ssh connection.  70% of the attackers were unable to download 
their malware due to the absence of http connectivity! Three explanations can be envisaged at this stage. First, 
they follow some simplistic cookbook and do not even known the other methods at their disposal to upload a 
file. Second, the machines where the malware resides do not support sftp. Third, the lack of http connectivity 
made the attacker suspicious and he decided to leave our system. Surprisingly enough, the first explanation 
seems to be the right one in our case as we observe them leaving the machine after an unsuccessful wget and 
coming back a few hours or days later, trying the same command again as if they were hoping it to work at that 
time. Some of them have been seen trying this several times. It comes out of this that i) they are apparently 
unable to understand why the command fails, ii) they are not afraid to come back to the machine despite the lack 
of http connectivity, iii) applying such brute force attack reveals that they are not aware of any other method to 
upload the file. 

Once they manage to download their malware using sftp, they try to install it (by decompressing or extracting 
files for example). 75% of the intrusions that installed software did not install it on the hacked account but rather 
on standard directories such as /tmp, /var/tmp or /dev/shm (which are directories with write access for 
everybody). This makes the activity of the hacker more difficult to identify because these directories are 
regularly used by the operating system itself and shared by all the users. 

Additionally, we have identified four main activities of the intruders. The first one is launching ssh scans on 
other networks but these scans have never tested local machines. Their idea is to use the targeted machine to 
scan other networks, so that it is more difficult for the administrator of the targeted network to localize them. 
The program used by most intruders, which is easy to find on the Internet, is pscan.c. 

The second type of activity consists in launching irc clients, e.g., emech [20] and psyBNC. Names of binary files 
have regularly been changed by intruders, probably in order to dissimulate them. For example, the binary files of 
emech have been changed to crond or inetd, which are well known binary file names and processes on Unix 
systems. 

The third type of activity is trying to become root. Surprisingly, such attempts have been observed for 3 
intrusions only. Two rootkits were used. The first one exploits two vulnerabilities: a vulnerability which 
concerns the Linux kernel memory management code of the mremap system call [23] and a vulnerability which 
concerns the internal kernel function used to manage process's memory heap [22]. This exploit could not succeed 
because the kernel version of our honeypot does not correspond to the version of the exploit. The intruder should 
have realized this because he checked the version of the kernel of the honeypot (uname -a). However, he 
launched this rootkit anyway and failed. The other rootkit used by intruders exploits a vulnerability in the 
program ld. Thanks to this exploit, three intruders became root but the buffer overflow succeeded only 
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partially. Even if they apparently became root, they could not launch all desired programs (removing files for 
example caused access control errors). 

The last activity observed in the honeypot is related to phishing activities. It is difficult to make precise 
conclusions because only one intruder has attempted to launch such an attack. He downloaded a forged email 
and tried to send it through the local smtp agent. But, as far as we could understand, it looked like a preliminary 
step of the attack because the list of recipient emails was very short. It seems that is was just a preliminary test 
before the real deployment of the attack. 

4.3.3. Attackers skill 

Intruders can roughly speaking be classified into two main categories. The most important one is relative to 
script kiddies. They are inexperienced hackers who use programs found on the Internet without really 
understanding how they work. The next category represents intruders who are more dangerous. They are named 
``black hat''. They can make serious damage on systems because they are expert in security and they know how 
to exploit vulnerabilities on various systems. 

As already presented in §4.3.2. (use of wget and sftp), we have observed that intruders are not as clever as 
expected. For example, for two hacked accounts, the intruders don't seem to really understand the Unix file 
access rights (it's very obvious for example when they try to erase some files whereas they don't have the 
required privileges). For these two same accounts, the intruders also try to kill the processes of other users. Many 
intruders do not try to delete the file containing the history of their commands or do not try to deactivate this 
history function (this file depends on the login shell used, it is .bash_history for example for the bash). 
Among the 38 intrusions, only 14 were cleaned by the intruders (11 have deactivated the history function and 3 
have deleted the.bash_history file). This means that 24 intrusions left behind them a perfectly readable 
summary of their activity within the honeypot. 

The IP address of the honeypot is private and we have started another honeypot on this network. This second 
honeypot is not directly accessible from the outside, it is only accessible from the first honeypot. We have 
modified the /etc/motd file of the first honeypot (which is automatically printed on the screen during the login 
process) and added the following message: “In order to use the software XXX, please connect to 

A.B.C.D”. In spite of this message, only one intruder has tried to connect to the second honeypot. We could 
expect that an experienced hacker will try to use this information. In a more general way, we have very seldom 
seen an intruder looking for other active machines on the same network. 

One important thing to note is relative to fingerprinting activity. No intruder has tried to check the presence of 
VMware software. For three hacked accounts, the intruders have read the contents of the file /proc/cpuinfo but 
that's all. None of the methods discussed on Internet was tested to identify the presence of VMware software 
[8][5]. This probably means that the intruders are not experienced hackers. 

Conclusion 

In this paper, we have presented the results of an experiment carried out over a period of 6 months during which 
we have observed the various steps that lead an attacker to successfully break into a vulnerable machine and his 
behavior once he has managed to take control over the machine. 

Part Eval - APPENDIX [Alata et al. 2006] p 13



    

 14 

The findings are somehow consistent with the informal know how shared by security experts. The contributions 
of the paper reside in performing an experiment and rigorous analyses that confirm some of these informal 
assumptions. Also, the precise analysis of the observed attacks reveals several interesting facts. First of all, the 
complementarity between high and low interaction honeypots is highlighted as some explanations can be found 
by combining information coming from both set ups. Second, it appears that most of the observed attacks against 
port 22 were only partially automatised and carried out by script kiddies. This is very different from what can be 
observed against other ports, such as 445, 139 and others, where worms have been designed to completely carry 
out the tasks required for the infection and propagation. Last but not least, honeypot fingerprinting does not seem 
to be a high priority for attackers as none of them has tried the known techniques to check if they were under 
observation. It is also worth mentioning a couple of important missing observations. First, we did not observe 
scanners detecting the presence of the open ssh port and providing this information to other machines in charge 
of running the dictionary attack. This is different from previous observations reported in [14]. Second, as most of 
the attacks follow very simple and repetitive patterns, we did not observe anything that could be used to derive 
sophisticated scenarios of attacks that could be analysed by intrusion detection correlation engine. Of course, at 
this stage it is to early to derive definite conclusions from this observation. 

Therefore, it would be interesting to keep doing this experiment over a longer period of time to see if things do 
change, for instance if a more efficient automation takes place. We would have to solve the problems of weak 
passwords being replaced by strong ones though, in order to see more people succeeding in breaking into the 
system. Also, it would be worth running the same experiment by opening another vulnerability into the system 
and verifying if the identified steps remain the same, if the types of attackers are similar. Could it be, at the 
contrary, that some ports are preferably chosen by script kiddies while others are reserved to some more elite 
attackers? This is something that we are in the process of assessing. 
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Abstract 

Device driver programs compose the larger part of operating systems. Previous studies have shown that such 
kernel extensions contribute the most to the sources of operating system misbehavior. Their failure can have 
significant impact on the kernel and cause significant damages to the system as a whole. This chapter aims at 
assess objectively and efficiently the robustness of an operating system in the presence of faulty drivers. 
Towards this ends we propose to conduct fault injection experiments targeting the DPI (Driver Programming 
Interface) that implements the way driver programs interact with the kernel. Faults are injected on the parameters 
of these kernel core functions. This allows for the derivation of useful results about the failure modes induced 
and thus on the characterization of the robustness of a target kernel with respect to faulty drivers. To conduct 
comprehensive analyses, complementary benchmarking measures are considered that span three viewpoints: 
kernel responsiveness, kernel availability and workload safety. The experimental data gathered can also help 
isolate weaknesses and reveal potential error propagation channels; such insights might be useful to derive 
protection mechanisms focusing on identified malfunctions. The various forms of awareness brought in by these 
results are useful for a large set of end-users: system user, system integrator and operating system developer. 

1.  Introduction 

Dependability concerns, encompassing robustness assessment, is an essential question before a developer can 
make the decision whether to integrate off-the-shelf (OTS) components into a dependable system. Here, and in 
what follows, robustness is understood as the degree to which a system operates correctly in the presence of 
exceptional inputs or stressful environmental conditions, in compliance with the generic definition 
(dependability with respect to external faults) given in [Avižienis et al. 2004]. 

From cost-effectiveness viewpoint, operating systems and kernels are privileged OTS components as candidates 
for integration into a system. However, integrators are often reluctant to make such a move without obtaining a 
deeper knowledge and understanding about such a component beyond functional issues, in particular with 
respect to its failure modes and its behavior in presence of faults. Due to the opacity that is often attached to the 
commercial offer and to the difficulty and significant cost associated to the availability of the source code, the 
Open Source option, for which access to the source code is granted, is progressively making its way as an 
attractive and promising alternative. Also, results of many studies have shown that Open Source solutions did 

                                                        
* To appear in: K. Kanoun and L. Spainhower, Eds., Dependability Benchmarking, IEEE CS Press, 2007.  
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not exhibit significantly more critical failure modes and in some cases they were even found to demonstrate 
superior behaviors than commercial options [Koopman & DeVale 1999, Arlat et al. 2002, Marsden et al. 2002, 
Vieira & Madeira 2003]. In this chapter, we will simply denote such components (either Commercial or Open-
Source), as OTS components. 

In the past years, several experimental studies have addressed this important issue from different perspectives 
[Koopman & DeVale 1999, Arlat et al. 2002, Madeira et al. 2002]. This has also led to the proposal of tentative 
dependability benchmarking approaches, aimed at characterizing the robustness of computer systems and OTS 
[Tsai et al. 1996, Mukherjee & Siewiorek 1997, Brown & Patterson 2000, Zhu et al. 2003]. However, such 
proposals are still preliminary, and they did not reach yet the level of recognition attached to performance 
benchmarks. The DBench project, in which this work was included, was another major contribution aimed at 
promoting such a kind of approach by defining a comprehensive framework for the definition and 
implementation of dependability benchmarks [Kanoun et al. 2002, Kanoun et al. 2005a].  

A large part of the code that makes up an operating system consists of device driver programs. For example, in 
the case of Linux, drivers have consistently represented more than half of the source code [Godfrey & Tu 2000]. 
This ratio is smoothly increasing: recent releases account for about 60 percent of the code [Gu et al. 2003]. More 
importantly, as the whole size of the kernel is rapidly growing, this results in an exponential increase of the 
number of lines of code of the driver programs. Such programs are commonly developed by third-party 
hardware device experts and integrated by kernel developers. This process is not always well mastered and an 
erroneous behavior of such programs that are intimately connected to the kernel may have dramatic effects. As 
pointed out in [Murphy & Levidow 2000] for Windows and as shown by the analysis of the Linux source code 
carried out in [Chou et al. 2001], a significant proportion of operating system failures can be traced to faulty drivers. 
Things are not improving much: indeed, as quoted in [Swift et al. 2004], in Windows XP, driver programs are 
reported to account for 85% of recently reported crash failures. 

It is thus necessary to investigate and propose new methods, beyond the collection of field data, for specifically 
analyzing the impact of faulty drivers on operating systems. Fault injection techniques, where faulty behaviors 
are deliberately provoked to simulate the activation of faults provide a pragmatic and well-suited approach to 
support such an analysis. Among the fault injection techniques, the software-implemented fault injection 
(SWIFI) technique (e.g., see [Carreira et al. 1998]) provides the proper level of flexibility and low intrusiveness 
to address this task. Based on these principles, we have developed an experimental environment for the 
evaluation of the robustness of the Linux kernel when faced to abnormal behaviors of its driver programs. 

To our knowledge, very few research studies have been reported on this topic. The work reported in [Edwards & 
Matassa 2002] concerns also the Linux kernel, but focuses rather on the dual problem of characterizing the 
robustness of driver programs when subjected to hardware failures. The authors have devised a sophisticated 
approach to inject faults in the driver under test that is relying on the appealing notion of Common Driver 
Interface (CDI) that specifies the driver interactions within the kernel space. In [Gu et al. 2003], the authors have 
conducted a comprehensive dependability analysis of the Linux kernel. However, in this study fault injection has 
been related to the execution stream of the kernel code: more precisely, a selected set of functions of the kernel 
has been targeted: namely, the processor dependent code, the file system support code, the core kernel code, and 
the memory management code. Our concern is rather the analysis of the robustness of an operating system kernel 
in presence of faulty drivers. In line with this objective, but considering several instances of the Windows series, 
in [Durães & Madeira 2003] the authors have used mutations of the executable code of the driver to simulate a 
faulty driver.  
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The work reported in this chapter is rather complementary, in the sense that we investigate an alternative 
approach: fault injection is targeting the parameters of the kernel core functions at the specific interface between 
the driver programs and the kernel. To support this approach, we revisit and adapt the notion of common driver 
interface of [Edwards & Matassa 2002] by focusing the injection on the service/system calls made by the drivers 
to the kernel via the core functions. This way the definition of the fault injection experiments more thoroughly 
impact the interactions between the drivers and the kernel. Also, the errors provoked can simulate both the 
consequences of design faults or hardware-induced faults. It is worth noting that a subsequent and 
complementary work has been reported recently that adopt the same system model (explicit separation between 
the kernel and the drivers) and a similar fault model to study the impact of faulty drivers on a Windows CE-based 
system [Johansson & Suri 2005]. The main goal was to study the error propagation process to support the 
placement of protection wrappers (e.g., see [Fraser et al. 2003]), as was already carried out in [Arlat et al. 2002]. 

The material reported herein elaborates on the work reported in a previous paper [Albinet et al. 2004]. More 
detailed insights can also be found in [Albinet 2005]. The organization of the chapter is as follows. Section 2 
describes the specific issues addressed by the approach we propose, in particular in the light of other work 
dealing with the characterization of operating system robustness. In Section 3, we briefly describe the various 
types of driver programs and introduce the specific interface considered to simulate faulty drivers for the Linux 
kernel: the Driver Programming Interface. Section 4 presents the experimental context: namely, the faultload, 
the workload and the measurements that define the conducted experiments and the testbed that supports these 
experiments: the RoCADE (Robustness Characterization Against Driver Errors) platform. Section 5 proposes a 
framework for supporting the analysis of the experimental results that can accommodate several end-user 
viewpoints. Section 6 presents a sample of results and illustrates how the framework proposed in Section 4 can 
support the analysis of the results. Finally, Section 7 concludes the chapter. 

2.  Context and Definition of the Approach 

Due to their central role in the function of a computer system, operating systems are the privileged target for 
developing dependability benchmarks. Figure 1 depicts the software architecture of a computer system. In this 
chapter, due to the emphasis put on the analysis of the impact of the driver programs, the benchmark target (BT), 
according to the terminology put forward by the DBench project (e.g., see [Kalakech et al. 2004]), is the operating 
system kernel. Further drawing on that terminology, the whole figure describes the System Under Benchmark (SUB), i.e., 
the supporting environment and context within which the analyses are conducted.  

 
Figure 1 - Interactions between an operating system kernel and its environment 
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As shown on the figure, the kernel features three main interfaces with its environment. The first one is basically 
concerned with hardware interactions, while the other two are software related. The “lightning” symbols in 
Figure 1 identify possible locations where faults can be applied. The interfaces and related faults are briefly 
described as follows:  

1) The bottom interface is primarily related to the hardware layer; the main interactions are made via the raising 
of hardware exceptions. Several studies (e.g., see [Arlat et al. 2002, Gu et al. 2003]) have been reported in 
which faults were injected by means of bit-flips into the memory of the SUB. 

2) The interface at the top corresponds to the classical Application Programming Interface (API). The main 
interactions are made by means of system calls. A significant number of studies were reported that target the 
API to assess the robustness of the operating systems (e.g., under the form of code mutations [Durães & 
Madeira 2002]), by means of bit-flips [Jarboui et al. 2003] or by altering the system calls [Koopman & 
DeVale 1999, Kanoun et al. 2005b]). 

3) The third type of interactions, that is the one we are specifically focusing on in this chapter, are made via the 
interface between the drivers and the kernel. Previous related work addressing the assessment of the kernel 
robustness has concentrated on drivers code mutation [Durães & Madeira 2003]. We propose an alternative 
approach where we explicitly consider the specific exchanges made between the drivers and the kernel, via 
what can be termed as the Driver Programming Interface (DPI). The precise definition of the DPI will be 
presented in Section 3. 

Concerning the third item, we would like to refer to the work carried out in [Jarboui et al. 2003]. In this work, 
assertions issued from traces characterizing the actual erroneous behavior induced by faulty drivers were used to 
assess whether similar error patterns could be obtained by using several fault injection techniques (either bit flip 
or parameter corruption) at the API level. This study showed that API-level fault injection was not able to 
produce errors that were matching the error patterns provoked by real faults in drivers. This result further 
substantiates the need to conduct investigations specifically aimed at closely simulating the impact of faulty 
drivers. To this ends, we have concentrated our efforts on intercepting and corrupting the parameters of the 
system calls issued by the drivers at the DPI [Edwards & Matassa 2002]. Compared with the mutation of the code 
of the drivers used in [Durães & Madeira 2003], this approach allows for carrying out a more focused and 
efficient set of experiments that is suitable to thoroughly test the various kinds of interactions between the 
drivers and the kernel. The price to pay is a precise identification of the DPI upon which the faults are specified. 
However, it is worth noting that (as for the approaches targeting the API), such a preliminary analysis has to be 
carried out only once for each kernel family and can be reused for analyzing most drivers. More details on the 
types of faults considered are given in Section 4.1. 

The interfaces depicted in Figure 1 (especially the API and the DPI) also provide suitable locations where to observe 
the consequences of the injected faults. At the API-level, the typical relevant behaviors include error codes returned to 
the calling application processes and kernel hangs. In practice, while a lot of exceptions are raised by the SUB at the 
hardware layer, for sake of efficiency they are often caught at the API when reported via the kernel. The DPI provides 
a privileged level of observation for the detailed characterization of the reactions of the kernel to the corrupted service 
calls issued by the drivers. The related measurements include error codes returned to the driver. Comprehensive 
measurements can also be made at the application-level, e.g., workload abort and completion. Then, time 
measurements can be collected to evaluate the workload execution in presence of faults [Kalakech et al. 2004]. 
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In this chapter, we concentrate the conducted analyses on two levels of observation: the DPI and the API. The 
reported results only consider non-timed robustness measures, expressed as frequencies of occurrence of each 
considered outcomes. More details on the experimental measurements are provided in Section 4. 

3.  The Driver Programming Interface 

In this section, we briefly recall the functional interactions that characterize the communication between the 
drivers and the kernel. This allows for the kernel functions and parameters involved into these interactions to be 
identified, and thus the DPI on which we define the types of faults to be injected. 

3.1  Application Processes, Kernel and Drivers 

The kernel and the drivers are executed in privileged mode whereas application processes execute in non-
privileged mode in a restricted address space. This reduces the risk for an application process to corrupt the 
kernel addressing space. It is thus likely that the errors caused by a faulty application process mainly impact its 
own address space, and thus are limited to its execution. Nevertheless, this is different when an application 
process requires a service from the kernel by publishing a system call (e.g., interrupt #0x30 for Pentium or 
#0x87 for PowerPC). 

Because the drivers execute in kernel space, any faulty behavior in a driver is thus much prone to impact the 
operation of the kernel. Due to the fact that it is not always possible to associate a “pedigree” to the whole set of 
drivers that can potentially be integrated, drivers are thus a potential threat for the kernel. This is further 
exacerbated by the programming languages (such as C language) that use pointer arithmetic without IMM 
(Integrated Memory Management). This applies to several popular general purpose operating systems 
(e.g., Linux, Windows9x, etc.). The drivers can also access the whole set of functions of the kernels, not only 
those that are used to carry out operations on the kernel space, but also on the application space. 

3.2.  The Various Drivers 

An interesting comparative study of driver interfaces for several popular operating systems is presented in [Zaatar 
& Ouaiss 2002], as an initial step towards the standardization of the Linux driver interface. Irrespective of the 
different solutions adopted for a specific operating system family, in practice two main categories of drivers can 
be distinguished: 

• Software drivers: they have no direct access to the hardware layer of the devices, but rather to an 
abstraction (e.g., tcp/ip stack, file system).  

• Hardware drivers: they are concerned with hardware devices, either peripheral (network card, disk, 
printer, keyboard, mouse, screen etc.) or not (bus, RAM, etc.).  

In both cases, the role of a driver is to provide an abstract interface for the operating system to interact with the 
hardware and the environment:  

• More specifically, a driver is meant to implement a set of basic functions (read, write, etc.) that will 
activate peripheral devices.  

• On top of drivers, the input-output instructions no longer depend on the hardware architecture. 
• Drivers define when and how the peripheral devices interact with the kernel. 
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For example, in the case of a driver relying on polling, an application process issues a request, via a system call 
(open, read or ioctl), to access a peripheral device (network card, disk, printer, keyboard, mouse, screen 
etc.). The processor enters the supervisor mode — via a stub in the case of Linux — and executes the code of the 
driver corresponding to the proper operation. After completion of the operation, the driver frees the processor 
and the processor then resumes the execution of the application process in user mode. 

Although device drivers may induce a strong influence on the kernel, as most of them are run in kernel mode, 
they are often developed by third parties and then integrated to the kernel after its distribution. This explains why 
it has been found that they significantly contributed to the failure of the operating system [Chou et al. 2001].  

3.3.  Specification of the DPI  

The drivers make use of specific system calls (denoted symbols for dynamic module drivers in the case of Linux) 
in order to perform tasks. The most salient categories are depicted in Table 1. 
 

Categories Examples of Typical Symbols 

Memory Management Kmalloc, kfree, free_pages, exit_mm ,... 

Interrupt Management add_timer, del_timer, request_irq, free_irq, irq_stat, add_wait_queue, 
_wait_queue, finish_wait, ... 

File System Management fput, fget, iput, follow_up, follow_down, filemap_fdatawrite, 
filemap_fdatawait, lock_page, ... 

Control Block Management blkdev_open, blkdev_get, blkdev_put, ioctl_by_bdev, ... 

Registration register_sysctl_table, unregister_sysctl_table, sysctl_string, sysctl_intvec, ... 

Others: Software interrupts, dma management, 
buffering management, resource handling, 
process management, interfaces, debug, 
miscellaneous “tools” 

raise_softirq, open_softirq, cpu_raise_softirq,  dump_stack,ptrace_notify, 
current_kernel_time, sprintf, snprintf, sscanf, vsprintf, kdevname 

Table 1 - Outline of the categories of symbols for Linux 

Each of these categories gathers a set of functions that are devoted to the programming of the kernel and drivers 
using execution privileges within the kernel address space. For example, in the case of Linux, functions allow for 
acquiring and releasing of an interrupt channel (request_irq, free_irq) and for retrieving the status of 
such a channel (irq_stat). These symbols form the basis for the development of drivers for managing the interrupt 
channels. All such symbols feature a calling protocol that is similar to the system calls of the Linux API.  This is 
illustrated by the signature of the request_irq that is shown hereafter: 

int request_irq(unsigned int irq, 
void (*handler)(), 
unsigned long irqflags, 
const char * devname, 
void *dev_id) 

The request_irq function allocates a peripheral device to an interrupt channel. The function returns a success 
(error) code (an integer value) to inform the calling driver program of the proper (or not) handling of the 
reservation of the channel. The first argument irq is an unsigned integer that designates the channel to allocate. 
The second one handler is a pointer to the interrupt manager. The third one is an unsigned long integer that 
represents the flags that define the type of the reservation (exclusive, or not, etc.). Devname is the name of the 
peripheral device that is reserving the channel. The last parameter is a pointer to a “cookie” for the interrupt 
manager. 
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From more than thousand symbols (including functions, constants and variables), Linux release 2.4.18 includes 
about 700 kernel functions. Some are more used than others. The kernel functions devoted to memory 
reservation are definitely much more solicited than the ones attached to the handling of a pcmcia device. The 
types of the parameters being used in kernel programming are voluntarily restricted to integers (short or long, 
signed or unsigned) and pointers. We have referenced all these functions along with their signature, which 
allows for the number of parameters and their types to be specified for each symbol. These types are defined 
over a validity space (see extreme values in Section 4.1) 

In the same way as the API that gathers all the available system calls issued by the application processes, the 
DPI gathers all the functions of the kernel that are available to be used by the drivers. These kernel symbols 
constitute the features offered to the developers in kernel mode. 

4.  The Experimental Framework 

This section briefly describes the execution profile and the measures that are considered for the benchmarking 
analysis. The execution profile includes both, the workload (the processes that are executed to activate the 
drivers and the kernel) and the faultload (the set of faults that are applied during the fault injection experiments 
via the DPI). The experimental measures, that are meant to characterize the reaction and/or behavior of the 
kernel in presence of a faulty driver, are elaborated from a set of observations (readouts and measurements) that 
are collected during each experiment. 

In order to illustrate how measurements can be used to derive useful measures, we will consider several 
dependability viewpoints according to the perception that different users can have from the observed behaviors. 
In the sequel of this section we concentrate first on the faultload, workload and measurements attributes and then 
we provide a brief description of the testbed (the RoCADE platform) set up to run the experiments. The way the 
measurements are exploited to derive relevant measures with an objective of dependability benchmarking will be 
addressed in Section 5.  

4.1.  The Faultload  

For corrupting the parameters of the symbols of the DPI, we have used the SWIFI technique for its flexibility 
and ease of implementation. More precisely, in order to generate more efficient test conditions, we have focused 
the corruption of function parameters to a set of specific values. In particular, this procures a better control of the 
types of corruptions that are made, which significantly facilitates the interpretation of the results obtained. Faults 
are injected on each parameters of each relevant function of the DPI, as sketched by Figure 2. 

void foo (type1 arg1, type2 arg2, type3 arg3, …);

Bad_arg 1-3

Bad_arg 1-2

Bad_arg 1-1

type1

Bad_arg 3-3

Bad_arg 3-2

Bad_arg 3-1

type3type2

Bad_arg 2-3

Bad_arg 2-2

Bad_arg 2-1

 
Figure 2 - Principle of corruption of the parameters of a function 
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The principle of the method is to intercept a function when it is called, to substitute the value of its parameters by 
a corrupted value and then to resume the execution of the function with this faulted value. The value that is 
substituted to the original value of the faulted parameter depends upon the type of the parameter. Table 2 shows 
the values considered for each relevant type. For the first three types, bounding and mid values are considered. 
For pointers the set of corrupted values are: NULL, a max bounding value and a random value. 

 
Type Bad_Arg 1 Bad_Arg 2 Bad_Arg 3 

int INT_MIN 0 INT_MAX (0x7FFFFFFF) 

uint 0 INT_MIN (0x80000000) ULONG_MAX (0xFFFFFFFF) 

ushort 0 SHRT_MIN (0x8000) USHRT_MAX (0xFFFF) 

pointer NULL random( ) All bits = 1 (0xFFFFFFFF) 

Table 2 - The faulty parameters for each type  

4.2.  The Workload 

In order to provoke the activation of the DPI by the driver programs, so as to mimic the nominal behavior, we 
rely on an indirect activation procedure by means of a workload applied at the level of the API. 

We consider a synthetic and modular workload combining several activation processes, each targeting one (or 
several) of the drivers evaluated. Each application process carries out a set of elementary operations concerning 
a specific hardware or software driver component: i) de-installation of the target component that permits (only if 
the driver is currently used by the system) to start the test later on by registering the component,  
ii) (re-)installation of the component allowing for testing component registration, iii) series of requests meant for 
testing driver’s operation, iv) de-installation where the unregistration of the component is tested, v) re-
installation, whenever needed, in particular if the driver is mandatory for SUB’s operation (e.g., network card or 
file system). 

For example, in the case of a network card, the application process disables the network, unloads the network 
driver, reloads it, enables the network, runs a test on a private Ethernet network (Intranet), disables the network, 
unloads the driver, reloads it and enables the network. 

The main differences between the application processes that form the workload concerns the specific requests to 
be applied to stimulate the driver. 

In order to better assess the impact of the fault on the whole SUB, a subsequent workload execution is carried out after 
the fault has been withdrawn; this is particularly useful to improve the diagnosis in the cases when no outcome is 
observed as the result of the run when a fault is injected (the so-called “Silent” behavior as reported in the CRASH scale 
proposed in [Koopman & DeVale 1999]). In the reported experiments the workload that is executed for improving the 
diagnosis is the same as the workload used for the fault injection experiments. Accordingly, hereafter we will refer to it 
as the “replay” workload. 
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4.3.  The Measurements 

The goal of the set of experiments reported here is to determine the set of relevant observations to be 
incorporated into a prototype dependability benchmark, focusing on the robustness with respect to faulty drivers. 
Accordingly, to get relevant insights from the conducted experiments, it is necessary to obtain a good variety of 
results. To that respect, we have specified two levels of observation: i) external or user-oriented, that is meant to 
characterize the faulty behavior, as perceived at the level of the API, ii) internal or peripheral device oriented, 
that details the impact of the faults on the kernel, as perceived at the level of the DPI.  

The external level includes the observation of the errors reported by the kernel to the application processes in the 
workload (exceptions, error codes, etc.). These observations can be augmented by a more user-oriented 
perception by means of observations directly related to the application processes (e.g., the execution time of the 
workload or the restart time). The internal level focuses on the exchanges between the kernel and the faulted 
driver. The specific observations made at each level as well as the related appraisals are depicted in Table 3. 

The error code returned by a function of the kernel provides an essential insight on the impact of the fault on the 
intimate behavior of the kernel. Indeed, from a robustness viewpoint, the kernel symbol should be able to react to a 
service call including an argument with a corrupted value by returning an error code that matches the type of fault 
being injected. When a hardware exception is raised, while a process executes in the kernel address space, the kernel 
tries to abort the process or enters the “panic” mode. The consideration of Workload related events (WA or WI) 
allows for additional insights to be obtained, especially in cases when no error is notified by the kernel. In that 
respect, the “replay” workload that is executed after each run during which a parameter is corrupted, allows for 
the damage caused by the application of faulty call to be assessed by identifying whether the SUB was able to 
recover a stable state on its own or a specific restart is necessary. 

 

Level Event (= “1” when observed) 
Appraisal 
good / bad 

Internal DPI Call Return Code(EC): Code returned by the kernel  1 / 0 

External Exception (XC): Processor’s exceptions observed at the API level  
Kernel Hang (KH): The kernel no longer replies to a request issued via the API 
Workload Abort (WA): The workload has been abruptly interrupted (some API service requests 
could not be made) 
Workload Incorrect (WI): The workload completes, but not all the return codes are “success” 
Workload Completion (WC): This event allows for the execution time of the workload programs to 
be measured 
NB. Completion of the workload cannot be observed when the WA event is observed. 

1 / 0 
0 / 1 
0 / 1 

 
0 / 1 
1 / 0 

Table 3 - Observation levels, events and appraisals 

A hang of the kernel is diagnosed when the kernel is no longer replying to requests. Main reasons for such a 
blocking are either because it executes an infinite loop or it is waiting for an event while interrupts are masked. 
Such outcomes cannot be observed by the system and thus requires external monitoring. 

While measuring the execution time of the workload programs provides useful information on the capacity of the kernel 
to handle the applications processes in presence of faults, and is thus a desirable feature from the benchmarking point of 
view. Due to the specific nature of the workload (synthetic workload), such a measurement was not carried out in the 
study described here. The interested reader can refer to the work reported in [Koopman & DeVale 1999] ; the 
technique used therein can be applied to obtain the corresponding measurements. 
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4.4.  The RoCADE Platform  

Figure 3 describes the RoCADE (Robustness Characterization Against Driver Errors) platform that has been set 
up for conducting the experiments (only one target machine is shown). The experiments were carried out using a 
rack of four Intel Pentium machines each featuring 32 Mb of RAM and several commonly used peripheral 
devices: a hard disk, a floppy disk, a CD ROM, two network cards, a graphic card, a keyboard, etc. All four 
machines run the GNU/Linux distribution. Three of them are the Target Machines on which faults are injected 
and behaviors observed; each is supporting two versions of the Linux kernel: 2.2.20 and 2.4.18. The use of three 
target machines is meant to speed up the conduct of the experiments. The fourth machine (Control Machine) is 
connected to the target machines via a private Ethernet network to control the experiments and provide an 
external means for monitoring these machines. In particular, it is used to restart the target machines, should they 
be blocked after an experiment. Indeed, for sake of repeatability, for each experiment the SUB is restored to a 
specific (fault free) state. 

 
Figure 3 – Overview of the RoCADE platform 

The injection of faulty parameters into each target machine is carried out via the RAM. The processor uses a 
stack residing in RAM to store various data, including the parameters of the calls to the functions of the DPI. 
This stack is accessible via the registers of the processor. At the same time, another area in the memory stores 
the instructions to be executed. When a DPI function is being used, the processor raises an interrupt. Upon 
occurrence of this interrupt the fault injection process takes over: it modifies a parameter in the stack and 
resumes the execution of the program. When the fault has been applied once, the fault injection process is 
disabled. The corruptions provoked in this way correspond to transient faults. This choice for the fault model 
illustrates the kind of pragmatic compromise one has to make among benchmarking properties (e.g., see 
[Kanoun et al. 2002]), namely here: fault representiveness and low intrusiveness. 

In order to recognize the symbols used by the driver, we have developed scripts that automatically extract their 
names from the driver’s object code file. Then, thanks to the list referencing all symbols, we can determine what 
faults can be injected on these symbols. Hence, all parameters of the selected functions are subjected to fault 
injection (according to all the fault types defined in Table 2). The codes returned after a system call are obtained 
with similar technique. The code returned by the symbol subjected to a fault is collected from the stack. In addition 
to these error codes, the symbols may also display other error messages, such as “blue screen” or “panic”. Such error 
messages are collected at the end of each experiment. 

Part Eval - APPENDIX [Albinet et al. 2007] p 10



  

11 

At the start of each experiment that is indicated by the target machine, the control machine sets a timer. At the 
end of each experiment, the target machine is rebooted and it is expected to be able to retrigger this timer at the 
end of the reboot. If the timer overruns, the control machine provokes a hardware restart of the target machine. 
This situation is interpreted as a hang of the kernel. The hardware exceptions are collected via the log of the 
target machine. The duration of each fault injection experiment ranges from 2.5 to 5 minutes (the latter when a 
Kernel Hang occurs).  

The diagram in Figure 4 presents the nominal scheduling of a fault injection experiment. The various important 
events are identified and described in the associated table, where related actions are also detailed. 

 
IDs Events Actions 

tExpStart 
Insertion X 

System verification 
Set up of the modules of the tool and selection of the fault to 
be injected 

Launch of e2fsck utility to check the file system integrity*  
Count down start (on the control machine) 
Insertion of a breakpoint 

tWStart Initiation of the workload Start up of the workload 

DPI call Injection of the fault on the targeted kernel function call. 
Wait for (error) code returned by the kernel function 

Raise of an interrupt and injection of the fault  
Insertion of the breakpoint for observing the returned code 

tContinue Resumption of the workload after execution of the function 
being faulted 

Observation (internal) of the error code returned 

tResponse Observation of the events perceived externally Collection of the results provided by the workload  

TWEnd Termination of the workload Signaling of workload termination 

tWrStart Initiation of the replay workload Start up of the replay workload 

tWrEnd Termination of the replay workload and observation of the 
related events perceived externally 

Signaling of replay workload termination and collection of 
the related results provided 

TExpEnd 
Removal X 

End of current experiment Removal of the modules of the tool and restart 

* This proved a very useful procedure as in several instances the file system had been damaged due to the corruption of the system call. 

Figure 4 - Scheduling of relevant events for an experiment 

5.  Interpretation of Measurements and Measures 

The observations described in Section 4 offer a basis upon which various types of analyses can be carried out 
depending on how one assumes the impact of the combined behaviors observed from various dependability 
concerns. In practice, different interpretations of the measurements are possible depending on the specific 
context where the kernel is to be integrated. In particular, when one is favoring a safe behavior of the workload, 
then error notification via error code return or even kernel hangs might be proper or acceptable behaviors. 
Conversely, returned error codes or selective application process aborts are much more suited for cases when 
availability of the kernel is the desired property. This is further exacerbated in cases when several outcomes 
(e.g., error code return and hangs) are observed simultaneously within the same experiment run. So as to reliably 
account for various points of view, one has to carefully analyze such cases. It is worth pointing out that the types 
of analyses that we are proposing herein are in line and elaborate on the related study reported in [Rodríguez et 
al. 2002] and on the assessment framework used in [Durães & Madeira 2003].  
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5.1.  Outcomes and Diagnoses  

Table 4 provides an attempt at characterizing these issues. The first set of columns shows the possible outcomes 
(i.e., combinations of the events defined in Table 3): two categories are distinguished: error notification (explicit 
error reporting) and failure modes. The second part of the table illustrates how the outcomes when several events 
are collected per experiment can be diagnosed according to a set of simple criteria (order of occurrence of 
observed events and priority given either to error notification or failure modes). 
 

 Outcomes Priority to 
# Notification Failure Modes First Error Failure 
 EC XC WA WI KH Event Notification Modes 

O1 1 0 0 0 0 EC EC EC 
O2 1 1 0 0 0 EC EC+XC EC+XC 
O3 0 1 0 0 0 XC XC XC 
O4 1 1 0 0 1 EC EC+XC KH 
O5 1 0 0 0 1 EC EC KH 
O6 0 1 0 0 1 XC XC KH 
O7 0 0 0 0 1 KH KH KH 
O8 1 1 1 X 1 EC EC+XC KH+WA 
O9 1 0 1 X 1 EC EC KH+WA 
O10 0 1 1 X 1 XC XC KH+WA 
O11 0 0 1 X 1 KH KH+WA KH+WA 
O12 0 0 0 0 0 No Obs. No Obs. No Obs. 
O13 1 1 1 X 0 EC EC+XC WA 
O14 1 0 1 X 0 EC EC WA 
O15 0 1 1 X 0 XC XC WA 
O16 0 0 1 X 0 WA WA WA 
O17 1 1 0 1 0 EC EC+XC WI 
O18 1 0 0 1 0 EC EC WI 
O19 0 1 0 1 0 XC XC WI 
O20 0 0 0 1 0 WI WI WI 
O21 1 1 0 1 1 EC EC+XC WI+KH 
O22 1 0 0 1 1 EC EC WI+KH 
O23 0 1 0 1 1 XC XC WI+KH 
O24 0 0 0 1 1 WI WI+KH WI+KH 

Table 4 - Possible outcomes and diagnoses 

First, it is worth noting that all events considered are not fully independent; accordingly, not all combinations are 
valid. In particular, this is the case for Workload Abort (WA) and Workload Incorrect (WI): indeed WA 
dominates WI, i.e., no WI can be observed when a WA has been diagnosed. This is identified by symbol “X” in 
Table 4. This explains why the table has only 24 rows. Among these, row O12 designates cases when none of 
the events has been observed. This is classical issue in testing and experimental studies when no impact is 
observed. This might be due to several alternatives (fault was not activated, error masked, etc.); we will come 
back on this in Section 6.1. 

When several events are observed within the same experiment, various decisions can be made in order to 
categorize the outcomes. One usual approach is to give priority to the first event that has been observed. 
However, it is not always possible to have precise timing measurements for all events. Indeed, in some cases this 
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may require a sophisticated and heavy instrumentation (e.g., see [Rodríguez et al. 2003]), which might be out of 
the scope for a dependability benchmark that should be portable, minimally intrusive and cost effective. 

Other alternatives include giving priority: i) to error notifications (e.g., error codes returned - EC and exceptions 
- XC) or ii) to the failure modes observed (Workload Abort, Workload Incorrect and Kernel Hang - KH). 
Considering the last two strategies, clearly the first one is optimistic (it assumes that notification will be able 
preempt and confine any subsequent impact) while the second one is rather pessimistic (the system is assumed to 
always fail, irrespective of the possible handling of the error ensuing the notification). In both cases, when 
multiple events are observed pertaining to the prioritized category, they are recorded for further analysis. The 
order of occurrence is also highlighted in the table. For example, when priority is given to failure modes, 
“WI + KH” in row O21 means that WI precedes KH. It is worth noting that, due to the way the considered 
events are collected, “Priority to Error Notification” closely matches “Priority to First Event”, because error 
notifications always precede all considered failure modes. Adopting a classification relying only on end-user 
perception would have resulted in discarding EC events. For example, in that case, O1 would have been merged 
into O12 and it would not be possible to discriminate O2 from O3.  

5.2.  Viewpoints and Interpretation 

More elaborate interpretations can be defined that feature more dependability-oriented measures. We will 
consider three of such interpretations that correspond to three distinct contexts: Responsiveness of the Kernel 
(RK), i.e., maximize error notification, Availability of the Kernel (AK), i.e., minimize kernel hangs, and Safety 
of the Workload (SW), i.e., minimize the delivery of incorrect service by the applications processes. 

The main rationale for the interpretation associated to RK is to positively consider outcomes gathering both 
notification events and failure modes. The fact that the kernel is able to notify an error is considered as positive, 
even when failure modes are observed at workload-level. Conversely, AK will rank differently the cases when 
either a KH or a WA is observed: indeed, the occurrence of a KH has a dramatic impact on the availability of the 
system, while an abort of the workload can be recovered more easily. The measure associated to SW 
characterizes the case when a safe behavior of the workload is required. Accordingly, we advocate that most 
favorable outcomes correspond to events prone to induce “fail-safe” or “fail-silent” behaviors, i.e., error 
notifications and kernel hangs, while workload abort is assumed to correspond to a critical event, and incorrect 
completion an even worse one. Nevertheless, as safety is typically an application-level property, alternative 
viewpoints could have been devised; in particular, from a “fail-fast” perspective, one may well consider that 
workload abort could be preferred to error notification. 

Table 5 shows how these measures are linked to the outcomes described in Table 4. For sake of tractability, 
several outcomes are grouped into clusters that can be considered as equivalent with respect to a specific 
measure: each cluster characterizes a relevant “accomplishment level” for the considered measure. These 
clusters are ranked according to an increasing severity level (i.e., index 1 indicates most favorable case). We 
have appended labels (+) and (-) to explicitly indicate what we are considering as positive and negative clusters. 
However, we recommend keeping the data for each cluster so that a finer tuning of these categorizations is 
always possible. The rightmost column gives the rationale that defines the various clusters. 
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Viewpoint: Responsiveness/Feedback of the Kernel 

 # Outcomes [-O12] Rationale 
+ RK1 O1-O3 An error is notified by the kernel before the workload completes correctly 
+ RK2 O4-O6, O8-O10, O13-O15,  

O17-O19, O21-O23 
An error is notified by the kernel before a failure is observed  

- RK3 O16 No error is notified and the workload is aborted  

- RK4 O7, O11, O24 No error is notified and the kernel hangs 

- RK5 O20 No error is notified and the workload completes incorrectly 

 
Viewpoint: Availability of the Kernel 

 # Outcomes [-O12] Rationale 
+ AK1 O1-O3 The workload completes correctly and an error is notified by the kernel 

+ AK2 O13-O20 The workload is aborted or completes incorrectly 

- AK3 O4-O7 The workload completes correctly and the kernel hangs 

- AK4 O8-O11,O21-O24 The workload is aborted or completes incorrectly and the kernel hangs 

 
Viewpoint: Safety of the Workload 

 # Outcomes [-O12] Rationale 
+ SW1 O1-O3 The workload completes correctly and an error is notified by the kernel 

+ SW2 O4-O7 The workload completes correctly and the kernel hangs 

+ SW3 O8-O11,  O13-O16 The workload is aborted or the kernel hangs 

- SW4 O21-O24 The workload completes incorrectly and the kernel hangs 

- SW5 O17-O20 The workload completes incorrectly and the kernel does not hang 

Table 5 - Viewpoints and dependability measures  

6.  Results and Analyses  

This section illustrates how the insights one can get from the measurements obtained vary according to the 
priorities or dependability measures that are considered. We present and analyze a restricted set of results 
obtained with the RoCADE platform for three representative drivers running on the Linux kernel. We restrict the 
presentation of the results to a selected set, in order to facilitate the exposition of the analyses. We voluntarily 
emphasize two drivers supporting the network card (namely the SMC-ultra and the Ne2000). Network drivers 
account for the largest part of the code among the drivers and whose size is increasing the most [Godfrey & Tu 
2000]; we consider also another driver (namely, SoundBlaster) that ranges in the mid-size category. An 
additional set of drivers has been tested (e.g., file system, process memory, etc.).  

The main goal that supports the selection of this set of results is to be able to carry out the following types of 
analyses on: 

• Two distinct drivers running on the same version of the kernel: SB 2.2 and SMC 2.2; 
• Two implementations of the same functionality running on the same kernel: SMC 2.4 and NE 2.4; 
• The same driver1 running on two different versions of the kernel: SMC 2.2 and SMC 2.4. 

Based on the workload and fault types considered, about 100 experiments were carried out for each driver/kernel 
combination. 

                                                        
1 It is worth pointing out that the code of the driver is adapted to fit each version of the kernel. 
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6.1.  Basic Results and Interpretation 

Table 6 illustrates the distribution of the basic results obtained when considering the “first event” approach to 
diagnose outcomes for which multiple events were collected. 
 

Driver Not Act. No Obs. EC XC KH WA WI 
SB 2.2 0% 18% 47% 22% 3% 1% 9% 
SMC 2.2 7% 22% 19% 23% 21% 0% 9% 
SMC 2.4 17% 17% 21% 34% 11% 0% 0% 
NE 2.4 14% 10% 15% 30% 17% 0% 13% 

Table 6 - Distribution of events according to first event collected 

In addition to the specific events previously defined (see Table 4), two interesting outcomes are included: 
• Not Activated (Not Act.): injected faults could not be activated (i.e., the workload was not able to 

activate the function on which the fault was meant to be injected). 
• No Observation (No Obs.): none of the notification or failure modes events were observed; of course 

when the fault is not activated, none of these events can be observed. 

The proportion of “Not Activated” cases varies significantly, both among the tested drivers and Linux versions 
— from 0% (SB 2.2) to 17% (SMC 2.4). The fact that in most cases non-null ratios are observed, means that the 
respective workloads have to be improved from a testability viewpoint — more precisely controllability here. 
However, these rates are much lower than those reported in related studies on the Linux kernel (e.g., see [Gu et 
al. 2003]). To our understanding, this better controllability is most likely due to the fact that, in our case, faults 
are targeting the parameters of the system calls made by the driver, rather than the flow of execution of the 
whole kernel. In the sequel, for further analyses, we will normalize the results presented with respect to 
experiments where faults were actually activated. 

As already pointed out, the interpretation of the “no observation” cases is highly subject to the specific context 
where the analysis is conducted. These outcomes may be counted either as positive or negative depending on the 
responsiveness/safety/availability viewpoints. However, as is commonly accepted in testing scenarios, 
uncertainties still remain about the real situations that such an outcome describe. Accordingly, we have preferred 
to adopt a conservative approach that consists in ignoring these outcomes. Besides, the “replay” mode has been 
devised to increase the confidence in our analyses, a “No Obs” outcome probably still reveals a lack of 
observability of the tests conducted. But, such an outcome may also be due to controllability-related problems: 
the kernel does not (or no longer) use(s) the faulted parameter, the faulted parameter has no impact on the kernel, 
or the error provoked is masked (in our case, injecting a “0” value on a parameter already equal to “0”, etc.). 
However, although the “No Obs.” ratios reported are higher than the “Not activated”, the values are significantly 
lower than the ones presented in [Gu et al. 2003]. 

Figure 5 illustrates the relative distribution among the events observed still considering the “first event” 
collected — which is a classical approach in most related experimental studies. A quick examination of these 
results shows a very low proportion of Workload Aborts for all tests conducted. The results also reveal that a 
large percentage of experiments are notified by the kernel (this includes the Error Code and Exception events). 
Should it be possible to handle equally both types notifications, then as the provision of an error code usually 
features a lower latency such a notification would be preferable to an exception in order to carry out a successful 
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recovery action. Accordingly, in that respect, the results for SBL 2.2 are more positive than those observed for 
the experiments concerning network card drivers. However, adopting a end-user perspective would lead to a 
different assessment: indeed, in that case, only exceptions would actually matter.  

 

  
a) SB 2.2 b) SMC 2.2 

           
 

c) SMC 2.4 d) NE 2.4 
Figure 5 - Distribution among observed events according to first event collected 

The comparison of the results obtained for the SMC driver for the two releases indicates clearly an improvement 
of the robustness for SMC 2.4 due to the increased percentage of exceptions raised. This results in a reduction of 
the ratios of Kernel Hangs and more importantly, in the “disappearance” of critical cases where a Workload 
Incorrect event was reported. Indeed, due to the precedence in the collection of the events, the fact that a WI 
event is counted as a first event means that neither a notification has been made nor an abort has been observed. 
It is also very likely to be the only event to be collected, unless a hang has occurred after the end of the workload 
(such cases are actually very seldom). But, in practice, a deeper analysis of the data collected is necessary to 
ascertain this statement. 

6.2.  Impact of the Comprehensive Viewpoints 

In this section we revisit the observations made during the conducted experiments in the light of the three 
comprehensive viewpoints defined in Section 5. Figure 6 summarizes the corresponding measures for the four 
series of experiments reported here. In each case, the percentages of the various clusters that support the 
corresponding measure are detailed. It is important to note that the clusters corresponding to the most positive 
outcomes appear on the top of the histograms (light grey) while the critical ones are at the bottom (darker shade). 
Here we consider the set of outcomes defined in Table 4.  
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a) Kernel responsiveness viewpoint 

 
b) Kernel availability viewpoint 

  
c) Workload safety viewpoint 

Figure 6 - Interpretation of the results according to the considered viewpoints 

Let us consider first the kernel responsiveness (RK) viewpoint. Here we assume that RK1 and RK2 form the 
most positive outcomes (Table 5). The distribution observed for SB 2.2 indicates a very positive behavior: 84 % 
of the outcomes observed correspond to error notifications (RK1=51% + RK2=33%). However, among the 16% 
of outcomes for which a failure mode was observed without prior notification, more than 2/3 corresponds to WI 
events (RK5=11%). The remaining 1/3 is dominated by KH events and few WA events. It is worth noting that 
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this is the only set of experiments for which not notified WA events have been diagnosed. The network driver 
considered for this version of Linux (SMC 2.2) features a much less positive behavior. For example, the 
distribution shows that 41% of the outcomes observed correspond to failure modes without prior notification. 
This is mainly due to KH events (RK4=29%), the RK5 cluster (not notified WI events) amounts to a similar 
12%. This also means that almost 30% of the workload failures that are not notified led to an incorrect 
completion. The results shown for SMC 2.4 indicate that the evolution to release 2.4 has significantly improved 
the behavior: the percentage of failures without prior notification is reduced to 17% and corresponds to KH 
events only. Globally, more than 3/4 (60/77) of the failure modes observed are preceded by an error notification. 
This confirms the observations already made on the basis of the analysis of the pie charts displaying the 
distributions of the first event collected (Figure 5). The results for NE 2.4 indicate a much lower error 
notification ratio, which is similar to the one reported for the SMC 2.2 case. 

For the kernel availability viewpoint (AK), the most critical issue is characterized by a KH event, because this has a 
dramatic impact on the ability to keep delivering the service. This is why AK3 and AK4 are considered as the most 
critical clusters. The results shown for SB 2.2 indicate that faults have also a significant impact with respect to 
availability. Indeed, cases when a KH event is observed amount to 23% and in more than 78% of these cases a WI event 
is also observed. The results also show that faults associated to network drivers have consistently a very significant 
impact: about 1/2 of the fault injection experiments conclude with a KH event.  

Concerning the workload safety viewpoint (SW), what matters most is the ability to avoid the delivery of 
incorrect results. This is why SW4 and SW5 are considered as the most critical clusters. The results shown for 
SB 2.2 suggest a much less positive behavior that what was deduced from the analysis of the results from the RK 
viewpoint: the occurrence of the most severe cluster SW5 (WI and no KH) amounts to 22%. In addition, it is 
possible to mention that the significant improvement observed with respect to responsiveness (error notification) 
between SMC 2.2 and SMC 2.4 has not impact (actually slightly the opposite) in reducing the WI events. Such a 
behavior can be explained by the fact that most additional error notifications correspond to exceptions, rather 
than error codes returns (see Figure 5). As a matter of fact, such exceptions signal already severe erroneous 
behavior. The rather poor behavior observed with respect to responsiveness is also confirmed by the safety 
viewpoint: in 53% of the cases (SW5=42% + SW4=11%) the observed outcome is a WI event. 

Figure 7 illustrates how these various viewpoints — and the associated properties — can be used by system integrators 
in making a decision whether to incorporate a driver into their system. The histograms plot the percentage for cases when 
these properties were not verified (i.e., the cases corresponding to the clusters labeled with index “-” in Table 5) when 
considering the experiments involving the tested network drivers. In this case, the figures being considered 
explicitly account for the ratios of “No Obs.” that already appeared in Table 6. It is worth noting that these ratios 
contribute negatively to the evaluation of the responsiveness property (i.e., RK is not verified2); however, they 
correspond to the verification of AK and SW.  

                                                        
2 This is consistent with the rationale underlying this viewpoint (i.e., a reaction from the kernel is expected in presence 

of activated faults). Still, considering the complete “No Obs.” ratio as contributing to a deficiency of the RK property 
might lead to a pessimistic assessment. This is why the related percentages are explicitly recalled in the figure. 
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Figure 7 - Comparison of the property deficiencies induced by the network card drivers 

The histograms concerning the two versions of the SMC driver clearly illustrate that the significant decrease in 
lack of error signaling obtained for version 2.4 does not result in a significant reduction in the weaknesses with 
respect to the other viewpoints (actually, a slight increase is observed for safety): the improvement in the 
coverage procured by the error detection mechanisms was not accompanied by an improvement in the handling 
of error signals. For example, the application of the concept of shadow driver reported in [Swift et al. 2004] 
would help improve the behavior by complementing such a problem revealing only strategy with a specific low-
level recovery strategy. During normal operation, the shadow tracks the state of the real driver by monitoring all 
communication between the kernel and the driver. When a failure occurs, the shadow driver substitutes 
temporarily the real driver, servicing requests on its behalf, thus shielding the kernel and applications from the 
failure. The shadow driver then restores the failed driver to a state where it can resume processing requests. It is 
also interesting to observe that, while the network driver Ne 2000 features similar or slightly better behaviors than the 
SMC driver with respect to responsiveness and availability, it exhibits a much poorer behavior with respect to safety. 
This reflects the fact that very distinct implementation choices were made for these two drivers.  

6.3.  Detailed Analysis 

In addition to the comparison of distinct benchmark targets (kernels and related device driver interfaces) with 
respect to various assessment properties as was reported in the preceding sub-section, it is also possible to 
conduct more in-deep analysis of a given target in presence of faults. As was shown in [Arlat et al. 2002], such 
detailed analysis is instrumental in order to devise and incorporate suitable protection mechanisms. 

As an example, Figure 8 plots the frequency of the experimental results concerning the external behavior of the 
workload and of the kernel (including also the “No Observation” category), so that the total for the four 
categories sum up to the number of injections carried out for each function. Due to the fault model used 
(see Table 2), this number is directly related to the number and the types of the parameters of the function.  
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Figure 8 - Distribution of results per function (Linux 2.4.18) 

While the request_irq function feature a signature with a large number of parameters, conversely the 
signature for the ei_close function has only one parameter. The results show that the fault injection 
experiments provoked very distinct impacts both qualitatively and quantitatively. For example, the 
ei_interrupt function appears to be very sensitive to the injected faults: a large proportion the faults induce 
errors that led the kernel to hang, in which case a specific operation (launched by the control machine) was 
necessary to resume the activity on the SUB machine. Two experiments resulted in the abort of the workload and 
a single one had no perceived effect. Conversely, for the free_pages function (that is in charge of freeing 
unused memory pages) none of the experiments had an observable effect. The test carried out on the 
release_region function (that is in charge of freeing a used memory region) had a very critical impact: all the 
27 experiments impaired the results produced by the workload. Indeed, this function cannot carry out the same 
verifications before freeing the memory, as the concerned memory space is being used and busy with a system 
process. 

As a final and prospective comment, it is worth pointing out that such detailed experimental readouts concerning 
the distribution of the reported errors and of the failure modes for each function implementing the kernel DPI 
(such as shown in Figure 8) provides a reference robustness data set that could be exploited to derive an 
averaged coarse grain benchmarking figure by combining this data with the activation profile monitored on the 
DPI for a target driver. 

7.  Conclusion 

Popular operating systems (COTS or open source) rapidly evolve into increasingly complex software 
components. Drivers are known to account for the major part in the increase in terms of lines of source code. 
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These components are often crafted by third-party developers and then integrated within the operating system. 
This whole process is not always well mastered, as evidenced by the vast consensus that attributes a large 
proportion of operating system failures to driver malfunctions. 

The work reported in this chapter proposed a practical approach to characterize the robustness of operating 
systems with respect to faulty device drivers. In order to facilitate the conduct of fault injection experiments we 
have introduced the notion of Driver Programming Interface (DPI) that precisely identifies the interface between 
the drivers and the kernel, under the form of a set of kernel functions. In the same way as the API is used to 
simulate the consequences of faulty application processes, the DPI provides a suitable interface for simulating 
the potential erroneous behaviors induced by a faulty driver. In practice, we have used a SWIFI technique to 
corrupt the parameters of these functions. In order to collect relevant outcomes for a detailed characterization of 
the faulty behaviors, we have considered both internal (error codes returned by the kernel) and external 
measurements (e.g., exceptions raised, kernel hangs, and workload behavior). 

To analyze the experimental results, we have proposed a comprehensive framework for interpreting the results 
that accounts for several dependability viewpoints. We have considered three viewpoints, namely, 
responsiveness of the kernel (maximize error notification), availability (minimize kernel hangs) and safety of the 
workload (minimize delivery of incorrect service). They provide a practical means for analyzing three different 
facets of the dependability requirements that one can be expecting from a robust operating system, either 
simultaneously or individually. 

In order to illustrate and assess our approach, we have set up an experimental platform RoCADE (Robustness 
Characterization Against Driver Errors). We have focused here on the series of experiments conducted on two 
releases of the Linux kernel and on three drivers (sound: sound blaster and network: SMC and Ne2000). The 
analyses carried out have evidenced that although the sound blaster driver got a very good rating according to 
responsiveness, it exhibited a poor behavior with respect to the safety and availability viewpoints. The 
experiments conducted on the SMC driver were able to reveal a significant improvement with respect to 
responsiveness between the two releases considered, but this did not result in any improvement from safety and 
availability viewpoints. Finally, we identified a slightly better behavior concerning availability for the 
experiments conducted on the Ne 2000 driver than for those on the SMC driver, while the opposite was obtained 
from safety and responsiveness. 

The results we have obtained and the analyses we have carried out thanks to RoCADE comfort us in the interest 
and viability of the proposed methodology. The whole approach can thus be considered as a sound basis on 
which to develop a set of practical dependability benchmarks focusing on the characterization of the impact of 
faulty drivers on the behavior of an operating system kernel. As was witnessed by the insights gained from the 
measures obtained, while the proposed frame is primarily geared towards the characterization of kernel 
behaviors, it is also suitable to support the choice of drivers to be associated to a given kernel. 

We consider the fact that a large proportion of error codes had been observed (especially as first collected event) 
as a positive result in order to perform a detailed characterization of the erroneous behaviors induced by the 
corrupted parameters. In addition, these codes form a useful basis on which specific error handling could be 
implemented. Another recommended approach to restrict the impact of faulty drivers would be to enforce a clear 
separation between the driver address space and the kernel address space (e.g., see [Härting et al. 1997]). The 
use of specific languages excluding pointer arithmetic and explicitly including IMM (e.g., see [Réveillère & 
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Muller 2001]) is another promising approach to develop more robust drivers. More recently, several proposals 
have been made to attain a clear separation of concern using virtual machine constructs, e.g., see [Fraser et al. 
2004, LeVasseur et al. 2004]. The contemporary Nooks approach and its extension, under the form of shadow 
drivers [Swift et al. 2004] offer other attractive approaches.  

Finally, it is worth pointing out that the notion of DPI (Driver Programming Interface) that we have advocated 
and defined in order to structure the conducted experiments, matches very well the concept of separation of 
concerns that is underlying several frameworks that were proposed recently — both by academic studies (e.g., 
see [Swift et al. 2004]) and by an increasingly number of operating system and hardware manufacturers. Let us 
simply mention the various CDI (Common Driver Interface), DDI (Device Driver Interface) or DKI (Driver 
Kernel Interface) proposals that are been put forward for several operating systems. Among these initiatives, the 
Extensible Firmware Interface (EFI) that was recently promoted by the Unified EFI Forum3 as an emerging 
standard, deserves special attention. The EFI defines a new model for the interface between operating systems 
and platform firmware. The UEFI is primarily meant to provide a standard environment for booting an operating 
system. Nevertheless, the data tables (containing platform-related information, plus boot and runtime service 
calls) that implements it can be useful also to facilitate runtime access to internal variables and thus better 
structure the design of device drivers. Accordingly, it should be possible to reuse the principles underlying the 
DPI identified herein and/or to adapt them easily in the forthcoming arena that this emerging standard is 
promising for structuring the interactions between the operating systems and the related hardware layers, 
including the device drivers.  

Acknowledgement  

This work was partly supported by the European Commission (Project IST-2000-25425: DBench and Network 
of Excellence IST-026764: ReSIST). Arnaud Albinet was also supported in part by the Réseau d’Ingénierie de la 
Sûreté de fonctionnement (Network of Dependability Engineering); he has now joined Siemens VDO, Toulouse, 
France. 

References 
[Albinet 2005]  A. Albinet, Dependability Characterization of Operating Systems in presence of Faulty Drivers, 

PhD Dissertation, National Polytechnic Institute, Toulouse, 2005 (In French - also LAAS Report 05-248). 
[Albinet et al. 2004]  A. Albinet, J. Arlat and J.-C. Fabre, “Characterization of the Impact of Faulty Drivers on 

the Robustness of the Linux Kernel”, in Proc. IEEE/IFIP Int. Conf. on Dependable Systems and Networks 
(DSN-2004), (Florence, Italy), pp.867-876, IEEE CS Press, 2004. 

[Arlat et al. 2002]  J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles, “Dependability of COTS Microkernel-
Based Systems”, IEEE Transactions on Computers, 51 (2), pp.138-163, February 2002. 

[Avižienis et al. 2004]  A. Avižienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts and Taxonomy 
of Dependable and Secure Computing”, IEEE Transactions on Dependable and Secure Computing, 1 (1), 
pp.11-33, Jan.-March 2004. 

                                                        
3 http://www.uefi.org 

Part Eval - APPENDIX [Albinet et al. 2007] p 22



  

23 

[Brown & Patterson 2000]  A. Brown and D. A. Patterson, “Towards Availability Benchmarks: A Case Study of 
Software RAID Systems”, in Proc. 2000 USENIX Annual Technical Conference, (San Diego, CA, USA), 
USENIX Association, 2000. 

[Carreira et al. 1998]  J. Carreira, H. Madeira and J. G. Silva, “Xception: A Technique for the Experimental 
Evaluation of Dependability in Modern Computers”, IEEE Transactions on Software Engineering, 24 (2), 
pp.125-136, February 1998. 

[Chou et al. 2001]  A. Chou, J.-F. Yang, B. Chelf, S. Hallem and D. Engler, “An Empirical Study of Operating 
System Errors”, in 18th Symposium on Operating Systems Principles, (Chateau Lake Louise, Banff, 
Canada), ACM Press, 2001, http://www.cs.ucsd.edu/sosp01. 

[Durães & Madeira 2002]  J. Durães and H. Madeira, “Emulation of Software Faults by Selective Mutations at 
Machine-code Level”, in Proc. 13th Int. Symp. on Software Reliability Engineering (ISSRE-2002), 
(Annapolis, MD, USA), pp.329-340, IEEE CS Press, 2002. 

[Durães & Madeira 2003]  J. Durães and H. Madeira, “Mutidimensional Characterization of the Impact of Faulty 
Drivers on the Operating Systems Behavior”, IEICE Transactions on Information and Systems, E86-D 
(12), pp.2563-2570, December 2003. 

[Edwards & Matassa 2002]  D. Edwards and L. Matassa, “An Approach to Injecting Faults into Hardened 
Software”, in Proc. Ottawa Linux Symposium, (Ottawa, ON, Canada), pp.146-175, 2002. 

[Fraser et al. 2004]  K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield and M. Williamson, “Safe 
Hardware Access with the Xen Virtual Machine Monitor”, in First Workshop on Operating System and 
Architectural Support for the On-Demand IT Infrastructure (OASIS), (Boston, MA, USA), 2004. 

[Fraser et al. 2003]  T. Fraser, L. Badger and M. Feldman, “Hardening COTS Software with Generic Software 
Wrappers”, in Foundations of Intrusion Tolerant Systems — Organically Assured and Survivable 
Information Systems (OASIS) (J. H. Lala, Ed.), pp.399-413, IEEE CS Press, 2003. 

[Godfrey & Tu 2000]  M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case Study”, in Proc. 
IEEE Int. Conf. on Software Maintenance (ICSM-200), (San Jose, CA, USA), pp.131-142, IEEE CS Press, 
2000. 

[Gu et al. 2003]  W. Gu, Z. Kalbarczyk, R. K. Iyer and Z. Yang, “Characterization of Linux Kernel Behavior 
under Errors”, in Proc. IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN-2003), (San 
Francisco, CA, USA), pp.459-468, IEEE CS Press, 2003. 

[Härting et al. 1997]  H. Härting, M. Ohmuth, J. Liedtke, S. Schönberg and J. Wolter, “The Performance of µ-
Kernel-Based Systems”, in Proc. 16th ACM Symp. on Operating Systems Principles (SOSP-16) (Saint-
Malo, France), pp.66-77, 1997. 

[Jarboui et al. 2003]  T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun and T. Marteau, “Impact of Internal and 
External Software Faults on the Linux Kernel”, IEICE Transactions on Information and Systems, E86-D 
(12), pp.2571-2578, December 2003. 

[Johansson & Suri 2005]  A. Johansson and N. Suri, “ Error Propagation Profiling of Operating Systems”, in 
Proc. IEEE/IFIP Int. Conference on Dependable Systems and Networks (DSN-2005), (Yokohama, Japan), 
pp.86-95, IEEE CS Press, 2005. 

[Kalakech et al. 2004]  A. Kalakech, T. Jarboui, J. Arlat, Y. Crouzet and K. Kanoun, “Benchmarking Operating 
System Dependability: Windows 2000 as a Case Study”, in Proc. 10th Pacific Rim Int. Symp. on 
Dependable Computing (PRDC-2004), (Papeete, French Polynesia), pp.261-270, IEEE CS Press, 2004. 

 [Kanoun et al. 2002]  K. Kanoun, H. Madeira and J. Arlat, “A Framework for Dependability Benchmarking”, in 
Supplemental Volume of the 2002 Int. Conf. on Dependable Systems and Networks (DSN-2002) - 
Workshop on Dependability Benchmarking, (Washington, DC, USA), pp.F.7-F.8, 2002, see also 
http://www.laas.fr/DBench. 

Part Eval - APPENDIX [Albinet et al. 2007] p 23



  

24 

[Kanoun et al. 2005a]  K. Kanoun, H. Madeira, M. Dal Cin, F. Moreira and J. C. Ruiz Garcia, “DBench 
(Dependability Benchmarking)”, in 5th European Dependable Computing Conference (EDCC-5) - Project 
Track, (Budapest, Hungary), 2005, Available as LAAS Report n°05197, 4p., see 
http://www.laas.fr/DBench. 

[Kanoun et al. 2005b]  K. Kanoun, Y. Crouzet, A. Kalakech, A. E. Rugina and P. Rumeau, “Benchmarking the 
Dependability of Windows and Linux using Postmark Workloads”, in Proc. 16th IEEE Int. Symp. on 
Software Reliability Engineering (ISSRE 2005), (Chicago, IL, USA), pp.11-20, IEEE CS Press, 2005. 

 [Koopman & DeVale 1999]  P. Koopman and J. DeVale, “Comparing the Robustness of POSIX Operating 
Systems”, in Proc. 29th Int. Symp. on Fault-Tolerant Computing (FTCS-29), (Madison, WI, USA), pp.30-
37, IEEE CS Press, 1999. 

[LeVasseur et al. 2004]  J. LeVasseur, V. Uhlig, J. Stoess and S. Götz, “Unmodified Device Driver Reuse and 
Improved System Dependability via Virtual Machines”, in Proc. 6th Symp. on Operating Systems Design 
and Implementation (OSDI '04), (San Francisco, CA, USA), pp.17-30, USENIX Association, 2004. 

[Madeira et al. 2002]  H. Madeira, R. Some, F. Moreira, D. Costa and D. Rennels, “Experimental Evaluation of 
a COTS System for Space Applications”, in Proc. Int. Conference on Dependable Systems and Networks 
(DSN-2002), (Washington, DC, USA), pp.325-330, IEEE CS Press, 2002. 

[Marsden et al. 2002]  E. Marsden, J.-C. Fabre and J. Arlat, “Dependability of CORBA Systems: Service 
Characterization by Fault Injection”, in Proc. 21st Int. Symposium on Reliable Distributed Systems 
(SRDS-2002), (Osaka, Japan), pp.276-285, IEEE CS Press, 2002. 

[Mukherjee & Siewiorek 1997]  A. Mukherjee and D. P. Siewiorek, “Measuring Software Dependability by 
Robustness Benchmarking”, IEEE Transactions on Software Engineering, 23 (6), pp.366-378, June 1997. 

[Murphy & Levidow 2000]  B. Murphy and B. Levidow, “Windows 2000 Dependability”, in Digest Workshops 
and Abstracts of the 2000 Int. Conference on Systems and Networks (DSN-2000), (New York, NY, USA), 
pp.D.20-D.28, 2000. 

[Réveillère & Muller 2001]  L. Réveillère and G. Muller, “Improving Driver Robustness: An Evaluation of the 
Devil Approach”, in Proc. Int. Conference on Dependable Systems and Networks (DSN-2001), (Göteborg, 
Sweden), pp.131-140, IEEE CS Press, 2001. 

[Rodríguez et al. 2002]  M. Rodríguez, A. Albinet and J. Arlat, “MAFALDA-RT: A Tool for Dependability 
Assessment of Real Time Systems”, in Proc. IEEE/IFIP Int. Conf. on Dependable Systems and Networks 
(DSN-2002), (Washington, DC, USA), pp.267-272, IEEE CS Press, 2002. 

[Rodríguez et al. 2003]  M. Rodríguez, J.-C. Fabre and J. Arlat, “Building SWIFI Tools from Temporal Logic 
Specifications”, in Proc. IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN-2003), (San 
Francisco, CA, USA), pp.95-104, IEEE CS Press, 2003. 

[Swift et al. 2004]  M. M. Swift, M. Annamalai, B. N. Bershad and H. M. Levy, “Recovering Device Drivers”, 
in Proc. 6th ACM/USENIX Symposium on Operating Systems Design and Implementation, (San Francisco, 
CA, USA), 2004, http://nooks.cs.washington.edu. 

[Tsai et al. 1996]  T. K. Tsai, R. K. Iyer and D. Jewitt, “An Approach Towards Benchmarking of Fault-Tolerant 
Commercial Systems”, in Proc. 26th Int. Symp. on Fault-Tolerant Computing (FTCS-26), (Sendai, Japan), 
pp.314-323, IEEE CS Press, 1996. 

[Vieira & Madeira 2003]  M. Vieira and H. Madeira, “Benchmarking the Dependability of Different OLTP 
Systems”, in Proc. IEEE/IFIP Int. Conference on Dependable Systems and Networks (DSN-2003), (San 
Francisco, CA, USA), pp.305-310, IEEE CS Press, 2003. 

[Zaatar & Ouaiss 2002]  W. Zaatar and I. Ouaiss, “A Comparative Study of Device Driver APIs: Towards a 
Uniform Linux Approach”, in Proc. Ottawa Linux Symposium, (Ottawa, ON, Canada), pp.407-413, 2002. 

[Zhu et al. 2003]  J. Zhu, J. Mauro and I. Pramanick, “Robustness Benchmarking for Hardware Maintenance 
Events”, in Proc. IEEE/IFIP Int. Conference on Dependable Systems and Networks (DSN-2003), (San 
Francisco, CA, USA), pp.115-122, IEEE CS Press, 2003.  

Part Eval - APPENDIX [Albinet et al. 2007] p 24



 

A. Horváth and M. Telek (Eds.): EPEW 2006, LNCS 4054, pp. 166 – 180, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Dependability Evaluation of Web Service-Based 
Processes∗ 

László Gönczy1, Silvano Chiaradonna2, Felicita Di Giandomenico2, 
András Pataricza1, Andrea Bondavalli3, and Tamás Bartha1 

1 DMIS, Budapest University of Technology and Economics 
Magyar Tudósok krt. 2. H-1117, Budapest, Hungary 

gonczy@mit.bme.hu 
2 ISTI-CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy 

+39 50 315 2904 
{silvano.chiaradonna, felicita.digiandomenico}@isti.cnr.it 

3 DSI - Universita' di Firenze, Viale Morgagni 65, I-50134 Firenze, Italy 
+39 55 479 6776 

bondavalli@unifi.it 

Abstract. As Web service-based system integration recently became the main-
stream approach to create composite services, the dependability of such systems 
becomes more and more crucial. Therefore, extensions of the common service 
composition techniques are urgently needed in order to cover dependability as-
pects and a core concept for the dependability estimation of the target compos-
ite service. Since Web services-based workflows fit into the class of systems 
composed of multiple phases, this paper attempts to apply methodologies and 
tools for dependability analysis of Multiple Phased Systems (MPS) to this 
emerging category of dependability critical systems. The paper shows how this 
dependability analysis constitutes a very useful support to the service provider 
in choosing the most appropriate service alternatives to build up its own com-
posite service. 

1   Introduction 

Recently, the main paradigm of creating large scale information systems is shifting 
more and more towards integrating services instead of integrating components as in 
traditional technologies. Open standards like Web Service Description Language 
(WSDL) assure system interoperability. This integration and development paradigm 
is called Service Oriented Architecture (SOA). The top level description of a SOA 
process describes the main business logic and it is usually very close to the traditional 
business process models (BPM). Recent development tools provide a quite powerful 
support for functional service integration but they lack the support of the description 
and analysis of the non-functional aspects in the system. However, service level 
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26979) and the “Quality of Service and Dependable Computer Networks” Project of the Ital-
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integration raises new problems as the service provider is composing its main services 
from elementary services as building blocks without having a complete control over 
them. Thus, the result of the main service may be invalidated by simple faults and 
errors in imported services. Dependability analysis has to focus on creating a system-
wide dependability model of the component models and evaluating the impact of the 
faults in the individual components, including the identification of dependability bot-
tlenecks and the sensitivity analysis of the overall system to the components’ depend-
ability characteristics [1]. 

Based on the observation that Web services-based workflows fit into the class of 
systems composed of multiple operational phases characterized by potentially differ-
ent requirements and goals, the paper attempts to apply methodologies and tools for 
dependability analysis based on the paradigm of Multiple Phased Systems (MPS, [2], 
[6], [7]) to this emerging category of dependability critical systems. A methodology 
for transforming workflow description of composite Web services into an MPS de-
scription is proposed, and, once such a description is derived, appropriate tools for 
MPS modeling and evaluation are applied to quantitatively assess specified depend-
ability indicators. Hereby we use the DEEM tool to describe dependability models 
and to evaluate the indicators. 

This paper is organized as follows. Section 2 describes the Web service flows and 
exposes the need for evaluating dependability indicators and discusses the related 
work. Section 3 introduces the MPS paradigm and the DEEM tool for dependability 
analysis. Section 4 discusses the possible ways of combining Web service flows as an 
implementation-close description of processes running in a distributed environment 
and MPS as a dependability modeling paradigm. Section 5 describes the model trans-
formations performed in the VIATRA 2 framework [5] which enables a (semi-) 
automatic transformation of business processes (such as those built of Web services) 
to formal analytical models (e.g. Deterministic and Stochastic Petri Nets). Section 6 
illustrates the methodology by a case study. Section 7 concludes the paper and sum-
marizes further research directions. 

2   Dependability Aspects of Web Service Flows 

Present BPM tools (e.g. [26]) enable performance analysis/simulation with the restric-
tion that all resources are available. Therefore, no faulty states can be modeled in a 
consistent way, failure rates and repair times cannot be considered during the analysis 
and no dependability analysis can be performed on the model. Similarly, there is a lack 
of error handling, despite the fact that some languages (for instance, Business Process 
Execution Language [8]) can handle exceptions. A BPEL exception handling routine, 
however, may contain only compensation actions which try to eliminate the effect of an 
uncommitted transaction, transaction time-outs, non-atomic operations etc. 

The service-based approach to system integration raises the problem of defining 
Service Level Agreements [9] (SLA) between the provider and user of the main ser-
vice. In this context, SLAs are used to describe the required quantitative parameters of 
a service, related to a particular client or class of clients.  In general, an SLA contains 
measurement objectives, their guaranteed values, a measurement methodology and 
some goals and obligations for the participating parties. An SLA can be attached to all 
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service invocations, described as simple activities in a BPM, although no unified 
formalization of such documents exists. 

As the service level of the system depends on external providers, a standardized 
description of the QoS parameters of Web services is needed in order to have a con-
sistent view of the QoS at the level of composed services. Several descriptions of the 
QoS parameters of Web services were proposed, e.g. in [11], [12],  and [13], however, 
no single, standardized description format was generally accepted. Accordingly, in the 
current paper, no specific syntax will be assumed on the service quality description, 
but merely only those core concepts which can be found in an arbitrary QoS defini-
tion will be referred. 

To illustrate the importance of dependability analysis of Service Oriented Architec-
ture, consider a sample process of three simple steps: receiving a request, forwarding 
it to an external partner (“outsourcing”) and then returning the answer to the client. 
The first and the last activities use internal resources (e.g. a Web server) having 
known performance and dependability characteristics. The second activity is however 
deployed on an external system, therefore its resource usage is unknown, it is de-
scribed only by its Service Level Agreement parameters, for instance,  “AverageRe-
sponseTime” etc. The provider of the main service has to estimate the guaranteed 
QoS parameters of his service, for instance the failure rate, which depends on the 
failure rates of the internal resources and the failure rate of the external service over 
which he has no control.  

 

Fig. 1. A sample process with external method invocation 

The model based analysis of a process necessitates additional information to the 
basic functionality of the process, such as failure rates of components, required and 
guaranteed response times, availability, repair times (for instance, time interval be-
tween retrying to invoke a service), etc. Non-functional design patterns such as 
Recovery Block should also be considered, e.g. in case of a failure, the invocation of 
the fastest service can be followed by calling a slower but more robust variant. The 
system dependability model [14] has to be created from rather different engineering 
models. The external service is described only by a black box model, describing the 
functional interface, performance and dependability-related quantitative parameters 
while the internal services have to be extracted from a model indicating both the func-
tionality and the deployment to resources, extended by the non functional parameters. 
A uniform system-wide model has to be derived from these engineering models for 
the further analysis. 

Available extensions of BPM lack a support of the usage of dependability parame-
ters and fault tolerance patterns in the model. There are, however, numerous evolving 
standards, specifications and research in this field such as [17]. XML-based descrip-
tion languages such as WS-Reliability[16], WS-BaseFaults  [18] can describe the 
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characteristics of a certain endpoint, i.e. a Web service or a port/method of a Web 
service. These descriptions can be associated with WSDL files [19].  

As the actual description language is irrelevant from the analysis point of view, a 
general description language is adopted among the several emerging languages and 
technologies such as Web Service Level Agreements (WSLA) which contains lan-
guage elements for at least a subset of the performance and dependability characteris-
tics. As this language is quite flexible and extensible, we propose to use this for the 
description of non-functional parameters, as this way the external services and the 
internal resources could be characterized using the same description, using Service 
Level Agreements. A typical SLA contains the objectives to be measured, such as the 
transactional throughput of a web server or the response time of a remote web service, 
the measurement algorithm (e.g. how to compose an average measure), the fee of the 
service and the punishments related to violating the requirements. Guaranteed values 
of SLA parameters can be negotiated with the client. After such a negotiation, a com-
plex process can be composed based on elements having well-defined QoS guaran-
tees. The process of this negotiation is out of the scope of this paper; several ideas are 
discussed in [21], [22]. In our research the emphasis is on the evaluation of the proc-
ess models extended with the dependability description. Hereby we suppose a WSLA-
like description for the resources and the services.  

Evaluation of Web Service compositions has been addressed in the literature by 
using Petri Net-based techniques ([29], [31]), Timed Automata [30], non-
deterministic automata [32] or some kind of pi-calculus [31], [33]. PEPA models are 
also used to derivate quantitative characteristics of the systems and are the basis of 
SLA evaluation [28]. However, to our best knowledge, none of these were applied 
directly on a high-level (for instance, BPM) description to perform quantitative de-
pendability analysis without the need to create a lower level model of the system, only 
basic verification is fully automatized. 

The availability of a versatile and highly efficient tool dealing with dependability 
analysis of Multiple Phased Systems, combined with the appropriateness to include 
web-service based processes in the category of MPS systems as shown in the sequel, 
motivated the choices at the basis of our work. 

3   Dependability Modeling: Multiple Phased Systems and DEEM 

This paper elaborates on characterizing Web services-based workflows as Multiple-
Phased Systems for the purpose of dependability analysis. In this section, a brief over-
view of MPS is provided, together with a short description of the tool DEEM for the 
dependability analysis of MPS.  

Multiple-Phased Systems (MPS) is a class of systems whose operational life can be 
partitioned in a set of disjoint periods, called “phases”. During each phase, MPS exe-
cute tasks, which may be completely different from those performed within other 
phases. The performance and dependability requirements of MPS (such as through-
put, response time, availability, etc.) can be utterly different from one phase to 
another. The configuration of MPS may change over time, in accordance with 
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performance and dependability requirements of the phase being currently executed, or 
simply to be more resilient to an hazardous external environment. As the so-called 
MPS goal may change over time, the sequence of phases of which the MPS execution 
is composed (the execution of a given workflow) may depend on the state (such as 
success/failure) of previous phases. Phased Mission Systems (PMS) and Scheduled 
Maintenance Systems (SMS) are two typical subtypes of MPS. Examples of MPS can 
be found in various application domains, such as nuclear, aerospace, telecommunica-
tions, transportation, electronics, and many other industrial fields. Because of their 
deployment in several critical application domains, MPS have been widely investi-
gated, and their dependability analysis has been the object of several research studies 
([2], [3], [4], [6], [7], the complete expose of the literature can be found in [2]).  

Recently, a dependability modeling and evaluation tool, DEEM, specifically tai-
lored for MPS, has been developed at the University of Florence, and ISTI-CNR [4]. 
DEEM relies upon Deterministic and Stochastic Petri Nets (DSPN) as the modeling 
formalism, and on Markov Regenerative Processes (MRGP) for the model solution 
[2]. When compared to existing general-purpose tools based on similar formalisms, 
DEEM offers advantages on both the modeling side (sub-models neatly model the 
phase-dependent behaviors of MPS), and on the evaluation side (a specialized algo-
rithm allows a considerable reduction of the solution cost and time).  

The rich set of modeling features provides DEEM with a two-level modeling ap-
proach in which two logically separate parts are used to represent MPS models. One 
is the SystemNet (SN), which represents the resource states and the failure/repair 
behavior of system components for each phase, and the other is the PhaseNet (PhN), 
which represents the execution of the various phases, as illustrated later in Figure 6. 
Each net is made dependent on the other one by marking-dependent predicates which 
modify transition rates, enabling conditions, transition probabilities, multiplicity func-
tions, etc., to model the specific MPS features. 

In DEEM, very general dependability measures for the MPS evaluation can be de-
fined by a reward function. Among the measures assessable through such approach 
are the probability of successful mission completion, the relative impact of each sin-
gle phase on the overall dependability figures, and the amount of useful work that can 
be carried out within the mission. The main motivation of using DEEM was that −as 
it was shown in [2]− it is a versatile and highly efficient tool for dependability model-
ing and evaluation of MPS systems. 

4   Combining BPM as a Modeling Language and MPS as a 
Dependability Analysis Paradigm 

As it was discussed earlier in Sect. 2., BPM models can be extended to capture non-
functional parameters of the system. Therefore, an approach is needed which exploits 
the possibility of modeling multiple states of a resource. The modeling methodology 
and the evaluation procedure implemented in DEEM allow to describe the flow mod-
els of the web service systems and to analyze their dependability attributes, as shown 
in the next subsections. 
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4.1   Considering Business Process Flows as MPS 

Processes in the SOA context can be considered as Multiple Phased Systems in a 
natural way. The two layer-representation of Multiple Phased Systems corresponds 
exactly to the logic of workflow-like integrated component services. The upper layer 
corresponds to the workflow sequence consisting of the sub-service elements while 
the detailed model may be used to describe the individual component services. Re-
mind that the possibility of splitting the description into functional and non-functional 
aspects allows the natural expression of different parameterization of the invocation 
of the services and data-dependent branching in the main workflow. To illustrate the 
modeling issues of a business process, a more detailed view of the process in Fig.1. is 
presented, as shown in Figure 2. 

 

Fig. 2. Sample business process and the underlying resources 

The “Receiving request” and “Return answer” activities are executed locally, i.e. 
on controllable and observable internal resources. Resource parameters can be mod-
eled in a standard way using the General Resource Model UML [20] profile of the 
OMG. The resource faults and their effects can also be described by using the nota-
tions defined in this profile as it was shown in  [10], [15]. The “Invoke external ser-
vice” activity corresponds to a Web service invocation, therefore the quantitative 
parameters of this activity can be derived from the SLA descriptions of the service as 
pointed out in Sect. 2. 

The dynamics of the business process flow can be treated as a Multiple Phased 
System in the following way. The phases (partitions of system operation) are the tasks 
of the BPM, unless consecutive tasks use the same internal resource. This way the 
context of the operation (the environment of the mission) will be different for each 
phase. The resource parameters –appearing in SystemNet if modeled in DEEM– such 
as failure rates, repair times, number of identical resources (e.g. the number of possi-
ble retransmissions of a request or the number of Web servers) may depend on the 
operation context, thus on the actual phase. The mission goal can change over the 
time and the execution of the process (i.e. the mission goal) may depend on the result 
of previous phases and the system state. For instance, if validating a credit card does 
not terminate within a predefined timeout, then a flight ticket reservation cannot be 
confirmed, but is saved as a conditional reservation. 

The chosen method to evaluate the dependability of the web service systems is de-
scribing the model in BPM and transforming it to a MPS model, since the basic 
description language −in which the process is built− is easy to use, a wide range of 
tools are available, and an implementation skeleton (i.e. the workflow control descrip-
tion) can be generated directly from the model after passing the dependability 
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analysis. Moreover, BPM activities can be converted into phases of a MPS in a quite 
natural way while the opposite direction (i.e. generating the skeleton of a control flow 
from a MPS model) raises several questions as many activities can be described in 
one phase, if their dependability parameters are the same. Using model transforma-
tions instead of describing the model in a meta-language brings the benefit of easy 
implementation of additional transformations (for instance, model checking based on 
qualitative properties of the mode) as the model is stored in the format of the graph 
transformation tool. The transformation tool also enables the generation of practically 
any type of output (which can be further the basis of a runtime validation).  

The basic BPM model should be extended with some information about the re-
quired behavior of components (basic activities), such as maximum response time, 
maximum number of timeouts in a given time interval, guaranteed rate of good an-
swers for a prefixed number of requests, availability, etc. All these characteristics can 
be derived from the characteristics of the resources and the software implementation 
(if known) in the case of internal services (those we have control over) or from the 
Service Level Agreements in the case of external service. The business process model 
can be transformed to a MPS according to the following rules: 

- The different activities will be different phases in PhaseNet with different goals, 
dependability metrics and resources. 

- The performance and dependability characteristics of resources and services will 
determine the SystemNet parameters such as transition rate, initial marking, etc. 

- The dependencies between PhaseNet and SystemNet are given by the task-
resource bindings and SLAs of the (both internal and external) services. 

- The measurements of a MPS analysis are determined by the “business measures” 
of the BPM, i.e. the QoS parameters of the main service.  

 

Fig. 3. The sample process seen as a MPS system and modeled in DEEM 

Figure 3 shows the sample process as a Multiple Phased System. Note that the pa-
rameters of the DSPN are derived from the BPM parameters based on the resource 
descriptions and SLAs. The expected durations of the timed transitions of the Phase-
Net correspond to the estimated execution time for activities of the business process. 
For instance, the expected duration of the transition “do_Receive” results from the 
average execution time of “Receive request” activity while the expected duration of 
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the transition “do_Invoke” is derived from the average response time of the external 
service, described in the corresponding SLA. Error manifestation is expected to hap-
pen at the invocation of an operation using a resource. Resource faults inducing errors 
are modeled by the timed transitions of the SystemNet while the enabling conditions 
of these transitions model the resource allocation.  

For instance, the transition “Web server fails” is enabled during the phases which 
correspond to tasks using the web server while the transition rate corresponds to the 
expected failure rate of a server during a typical transaction. These parameters are 
represented in the IBM WBI as the “description” of the resources (since the definition 
of failure rates of resources is not supported by the present BPM tool). For external 
services, such as “External service” in this example, the failure rate is derived from 
the Service Level Agreement, also using a textual field in the modeling tool. The 
main difference between the internal resource usage and the external service invoca-
tion is that in the former case, multiple resources can be used simultaneously and a 
fault in any of them prohibits the proper service while in the latter case only a single 
service and −at most− one resource, namely the application server is used. 

5   Model Transformations with VIATRA2 

As it was mentioned in Sect. 4., the dependability indicators of business processes can 
be evaluated if they are transformed into a MPS model. The model transformation-
based analysis of business process descriptions consists of the steps shown in Figure 4.  

 

Fig. 4. Transformation of business processes 

Using model transformations for the analysis of high-level system models is part of 
the Model Driven Architecture (MDA) concept. The motivation for using model 
transformations in the VIATRA (Visual Automated Model Transformations) frame-
work was the extensibility of the transformation engine by additional parsers and 
plugins which enable the decoupling of the format of the source model and the target 
analysis platform. 

First, the engineering model of the functionality −enriched by dependability pa-
rameters− is taken to be analyzed by formal methods. This model will be generated by 
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a BPM tool [26] and transformed by the VIATRA2 framework into a DEEM model. 
To build a mathematical model from the high level business description in an auto-
mated way, the BPM is parsed into a graph representation (“BPM Graph”). In our 
case, this will be the inner representation language of the VIATRA2 tool, which is a 
public domain model transformation framework, developed at BUTE [23]. It is now 
part of the Eclipse GMT project [5]. In the VIATRA2, graph pattern matching [24] is 
controlled by Abstract State Machines [25]. 

Then, graph transformations are performed upon this parsed model in order to gen-
erate a graph which represents the relevant elements of the system in the target para-
digm (“MPS Graph”). In this case, the target paradigm is MPS and the target model 
representation format is that of the DEEM tool. However, as it will be discussed later, 
the transformation itself was implemented in two steps. Once the model can be read 
by the target analysis tool, a precise analysis method (in this case, the Markov Regen-
erative Process-based dependability evaluation) can be performed.  

The transformations were implemented with the VIATRA2 model transformation 
framework. The automatic generation of a DEEM model consists of three basic steps: 

1. Importing the XML files which contain the description of different aspects of the 
BPM model (“BPM description”), such as the basic process model and the actual 
values of the variables which determine the runtime behavior of the system, e.g. 
the probabilities of paths to be followed after decisions. This step was implemented 
using the built-in BPM parser component of the VIATRA2 framework, which cre-
ates an inner graph representation –in the VPML language of the tool– of the busi-
ness process (“BPM Graph”). 

2. Transforming the graph representation of the BPM structures and concepts into a 
graph representation of a multiple phased system. The model transformation 
(“bpm2mps”) itself is implemented in this step. The metamodel of a general MPS 
description contains the elements of a DSPN-based representation of MPS, such as 
the places, the transitions and the arcs of the SystemNet and the PhaseNet (“MPS 
Graph”). The transformation is described by precondition patterns matching to the 
concepts of the BPM metamodel and the corresponding postcondition patterns give 
the equivalent Petri Net structures, describing a Phase Mission System still in the 
graph representation language. As this transformation is based on a generic MPS 
metamodel, the analysis tool can be replaced by another Petri Net based tool with-
out any change in this transformation. 

3. Code generation: once a graph representation of the MPS is available, the text file 
in the DEEM format can be generated by a simple transformation (“mps2deem”). 
This transformation is designed to take a graph, in which the elements are stored in 
a tree structure and references between them describe the logical connections, and 
generate a text file (“DEEM model”). The main reason of the separation of model 
transformation and the code generation is twofold; first, this way the changes in the 
tool representation format (or even the replacement of the DEEM by another 
analysis tool) can be easily tracked and do not interfere with algorithm of the trans-
formation of the main concepts. Therefore, the transformations are maintainable. 
Second, since the DEEM representation is a flat format, the whole graph tree is 
needed for the code generation, and therefore this step cannot be started before the 
entire model transformation is finished.  
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In order to analyze business processes with DEEM (“Analysis results”), the two 
transformations (“bpm2mps” and “mps2deem”) were implemented in the VIATRA2 
framework. At the moment there are some limitations on BPM elements due to the 
BPM parser of the framework, but anyway they do not affect the essence of the meth-
odology. 

6   Case Study 

Consider an insurance company with a database containing client data (e.g. previous 
accidents) wanting to provide a premium calculator service which receives client data 
and returns an estimated insurance fee for the given person. Consider that this com-
pany wants to interact with other companies to complete its knowledge about a cli-
ent’s insurance record. This interaction is done via Web service interface; the partners 
provide similar premium calculator services. 

The clients of such an application are employees of the company, individual 
brokers, other companies, registered users, etc. The company implements this func-
tionality as a Web service to support communication between heterogeneous, loosely-
coupled systems. The company wants to assure QoS parameters for the clients. 
Therefore, its own resources and services have to match several expectations just as 
the external services.  

There are different types of clients with different QoS requirements against the 
premium calculator service. For instance, a client with a “Golden value” contract 
(another insurance company) may have different expectations against the system than 
a registered user accessing the service from a home PC. 

Requests which mean a big risk (a calculation for an insurance of big amount or for 
a client with missing personal data) have to be checked by other partners to eliminate 
the chance of failure or cheating. On the other hand, different partner companies offer 
their calculator services (which are external activities in the process flow) for 
different prices. 

The measures of interest are −among others− the following: 

- The probability that a client request fails (for different types of clients). 
- Performability metrics which show the cost of dependability, i.e. which external 

services to invoke at given QoS parameters and price. Requests of different client 
types, of course, can be forwarded to different external partners in order to assure 
the required QoS at a reasonable price. 

Finally, sensitivity analysis is required to evaluate the effect of component failure 
rates on above measures. 

6.1   The Example Model in BPM 

This section describes the high-level BPM model of the example. The concrete mod-
eling tool is IBM WBI Modeler which, on the one hand, supports the modeling of 
resources (in this case, the quantitative parameters of the services) and, on the other 
hand, has a BPEL export feature. 
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Fig. 5. The example in IBM WBI modeler 

The rounded rectangles represent the internal and external activities. Parameters 
of the resources and the services are stored in the model repository but are not 
visualized. To comply with the BPEL standard, internal activities can also be 
accessed via a SOAP interface, but their QoS parameters depend on resources with 
known characteristics. 

6.2   The Example Model as an MPS 

This section describes the MPS model of the example business flow, showing the 
general method of transforming a BPM to a MPS. The system can be considered as a 
MPS in the following way.  

 

Fig. 6. The MPS model of the example 

The Web server is modeled in the SystemNet (the lower partition of Fig. 6) which 
can be reconfigured according to that actual phase. The Web server can fail with a 
failure rate which is the parameter of the “webServer_fails” transition. This motivates 
the usage of the same topology (places and transitions) for representing all resources; 
the transition rates may change over time, according to the actual phase.  
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The first phase of the system is receiving a message from the client. This corre-
sponds to the first activity of the business process. The second phase is upon a deci-
sion; whether the request can be served locally (in this case, no remote web service is 
invoked) or it needs to be sent to a remote partner. In the latter case, the answer is 
verified against some basic requirements, for instance, the presence and the consis-
tency of all required data fields are checked. 

If additional information is needed, the request is sent to a backup service, pro-
vided by another partner, and built upon another database. The first activity of the 
workflow (“Process request”) is the only element of a sequence of internal service 
invocations. Therefore, it is the first phase of the system. The length of the phase 
will be represented by a timed transition (processRequest in Fig. 6) with a transition 
duration determined by the length of the task in the business process. During this 
phase, the system can fail if the internal resource, in this case the Web server, 
crashes.  

The next phase is selected according to the user type; the simple calculations are 
served locally while the difficult calculations, e.g. those of users with missing data or 
big value of insurance, are sent to external partners. In this version, the “Recovery 
Block” pattern is implemented in a service oriented environment, which could be 
called “Recovery Block-like Service Invocations”. This means the invocation of a 
primary service, and if the answer is not acceptable –for instance, some user record is 
empty– then the invocation of a backup service. 

The parameters of external service invocations (modeled by phase “service1” and 
“service2”) are determined by the SLAs. The failure rate of the services comes from 
the UpTimeRatio parameter from the SLA (which is represented in the BPM tool as a 
resource parameter of the services which represent the remote partners). The possible 
reconfiguration of the system, i.e. the resending of the request to the “backup ser-
vice”, is represented by the transition “conf” in the SystemNet. 

6.3   Dependability Analysis Results 

To illustrate how dependability analysis constitutes a support to the provider of the 
composed service, we answer the questions “What is the probability of the failure of a 
client request?” and “Which is the most appropriate external service provider from the 
set of available providers?”. 

In a real scenario, the parameters of the services and resources are described by 
Service Level Agreements. As our aim is to present a methodology for the evaluation 
of dependability indicators, we used some sample values based on a measurement 
performed against public domain web services, such as the web service interface of 
google [27].  Hereby we suppose ten available service alternatives for Service1, 
which have their parameters described in Table 1 (considering the same response 
time). Please remember that these do not have realistic meanings, but have been cho-
sen just to illustrate the possibilities of such an analysis. Due to the space problems, 
we do not include a table with the fix parameters used for the evaluations (e.g., the 
costs in the reward measure, the duration of the phases, etc.). 
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Table 1. Parameters of services in the example 

Service 
alternatives 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

Failure 
rate 

0.010 0.012 0.017 0.020 0.025 0.030 0.040 0.042 0.048 0.070 

Service 
price 

14.0 13.5 13.3 13.0 12.8 12.6 12.5 12.2 12.0 11.5 

The aim of this analysis is at determining the impact of the price and dependability 
characteristics of an external web service on the probability of the failure of a client 
request and on the income of the composite service. This income is the fee that a 
client pays for the service minus the sum of the prices of the invoked local and exter-
nal services. As the client receives a compensation for every failed request, this value 
has to be considered as a penalty. The measures of interest are defined in DEEM as 

probServiceFail = IF ( MARK(webServer_down)=1 OR 
MARK(localServ_down)=1 OR MARK(serv1_down)=1 OR 
MARK(serv2_down)=1 ) THEN (1) ELSE (0) //failure prob 

ServiceReward = [VAR(ClientFee) - 
VAR(serv1Price)*FUN(serv1Succ) - 
VAR(serv2Price)*FUN(serv2Succ)- 
VAR(localPrice)*FUN(localServSucc)]* 

(1-FUN(serviceFail)) - 
FUN(serviceFail)*VAR(servicePenalty) //service reward 

The results of the analysis is shown in Fig. 7.  
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Fig. 7. Results of the dependability analysis 

Based on dependability aspects only, 1.service is obviously the best choice as the 
number of failed requests has a minimum for this service. However, if the services are 
evaluated against the performability measure, then 10.service seems to be optimal as 
it has the highest reward value. If both aspects are considered, 9.service should be 
chosen instead, as it has almost as good performability measure as that of 10.service 
with a significantly lower probability of failure of a client request. 
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7   Conclusions 

We presented a methodology for transforming higher level models of Service 
Oriented Architectures into a formal description in order to perform dependability 
analysis. Based on the observation that Web services-based workflows fit within the 
Multiple Phased Systems, model transformations were implemented in the VIATRA2 
framework to perform precise mathematical analysis. Business process descriptions 
extended with quantitative parameters taken from SLAs were transformed, by using 
semi-automated transformations, into a precise mathematical model, a formal descrip-
tion of a Multiple Phased System, which can be solved by the dependability evalua-
tion tool DEEM. 

The current research direction is to extend the proposed methodology to analyze 
high level models described in BPEL and XML-based Web service description lan-
guages to provide a dependability analysis for a wider toolset. This way, a really plat-
form (and vendor) independent analysis framework can be established. SLA-driven 
synthesis of web service compositions is another important research direction. 

References 

1. M. Martinello. Availability modeling and evaluation of web-based services –A pragmatic 
approach. PhD Thesis. LAAS-CNRS, 2005. 

2. I. Mura, A. Bondavalli, X. Zang, and K. S. Trivedi, “Dependability modelling and evalua-
tion of phased mission systems: a DSPN approach,” in IEEE DCCA-7 - 7th IFIP Int. Con-
ference on Dependable Computing for Critical Applications, San Jose, CA, USA, 1999, 
pp. 299–318.  

3. I. Mura and A. Bondavalli, “Markov regenerative stochastic Petri nets to model and evalu-
ate phased mission systems dependability,” IEEE Transactions on Computers, vol. 50, no. 
12, pp. 1337–1351, 2001.  

4. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and I. Mura. Dependability modeling 
and evaluation of ultiple-phased systems, using DEEM. IEEE Transactions on Reliability, 
53(4):509-522, 2004. 

5. The VIATRA2 Model Transformation Framework, Generative Model Transformer Pro-
ject, The Eclipse Foundation. http://eclipse.org/gmt/ 

6. M. Smotherman and K. Zemoudeh, “A non-homogeneous Markov model for phased-
mission reliability analysis,” IEEE Transactions on Reliability, vol. 38, no. 5, pp. 585–590, 
1989.   

7. M. Alam and U. M. Al-Saggaf, “Quantitative reliability evaluation of repairable phased- 
mission systems using Markov approach,” IEEE Transactions on Reliability, vol. R-35, 
no. 5, pp. 498–503, 1986. 

8. Specification: Business Process Execution Language for Web Services Version 1.1, May 
2003. http://www-128.ibm.com/developerworks/library/ws-bpel/ 

9. D. Menasce, V. A. F. Almeida. Capacity Planning for Web Services: Metrics, Models, and 
Methods. Prentice Hall, 2001. 

10. I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic dependability analysis of system ar-
chitecture based on UML models. In R. De Lemos, C. Gacek, and A. Romanovsky, 
editors,  Architecting Dependable Systems, LNCS 2677,  pp. 219-244. Springer-Verlag, 
Berlin, Heidelberg, New York, 2003. 

Part Eval - APPENDIX [Gönczy et al. 2006] p 14



180 L. Gönczy et al. 

 

11. Web Service Level Agreements Project. http://www.research.ibm.com/wsla/ 
12. Web Services Flow Language (WSFL 1.0) - Appendix C: Endpoint Property Extensibility 

Elements. IBM Software Group, 2001. 
13. V. Tosic, B. Paguerk, K.Patel. WSOL – A Language for the Formal Specification of Vari-

ous Constraints and Classes of Service for Web Services. Research Report, Carleton 
University, 2002 

14. A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of 
Dependable and Secure Computing IEEE Transactions on Dependable and Secure Com-
puting, Vol.1, N.1, pp.11-33, 2004 

15. A. Pataricza: From the General Resource Model to a General Fault Modeling Paradigm? 
Workshop on Crititcal Systems Development with UML at UML 2002, Dresden, Germany 

16. WS–Reliability. OASIS Standard 
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf 

17. A. Graziano, S. Russo, V. Vecchio, P. Foster,Metadata models for QoS-aware information 
management systems. In Proc. of SEKE 2002, Ischia, Italy, 2002. 

18. Web Services Base Faults. Oasis. 
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-02.pdf 

19. Web Service Description Language 1.1. W3C.org. http://www.w3.org/TR/wsdl 
20. OMG Group, General Resource Model (GRM), URL: http://www.omg.com 
21. L. Zeng, B. Benatallah, M. Dumas. Quality Driven Web Services Composition. In Pro-

ceedings of WWW2003, May 20-24, 2003, Budapest, Hungary. 
22. S. Ran. A model for web services discovery with QoS. ACM SIGecom Exchanges, Vol. 

4., N.1, pp. 1-10.  ACM Press, 2003. 
23. D. Varró, G. Varró, A. Pataricza, “Designing the Automatic Transformation of Visual 

Languages,” Science of Computer Programming, 44:205-227 2002. 
24. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (eds.). Handbook on Graph Gram-

mars and Computing by Graph Transformation, vol. 2: Applications, Languages and 
Tools, World Scientific, 1999.  

25. E. Börger and R. Stark. Abstract State Machines. A method for High-Level System Design 
and Analysis. Springer-Verlag, 2003. 

26. IBM Corporation. WebSphere Business Integrator 5.1 
http://www-06.ibm.com/software/integration/ 

27. Google Web API (beta). http://www.google.com/apis/index.html  
28. J.T. Bradley, N.J. Dingle, S.T. Gilmore, W.J. Knottenbelt. Derivation of Passage-time 

Densities in PEPA Models using ipc: the Imperial PEPA Compiler. In Proc. of 
MASCOTS'03, Orlando, USA, 2003, pp. 344.351. 

29. C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter 
Hoftstede WofBPEL: A Tool for Automated Analysis of BPEL Processes. In. Proc. of 
ICSOC 2005, Amsterdam, The Netherlands. 2005. pp. 484-489. 

30. R. Kazhamiakin, P. Pandya, M. Pistore. Modelling and Analysis of Time-related Proper-
ties in Web Service Compositions. In Proc. of WESC’05, Amsterdam, The Netherlands, 
2005. 

31. W. M.P. van der Aalst, M. Dumas, A.H.M ter Hofstede, N. Russell, P. Wohed, H. M. W. 
Verbeek. Life After BPEL?. In Proc. of WS-FM, Versailles, France. 2005. pp 35-50. 

32. J. Koehler, G. Tirenni, S. Kumaran, From Business Process Model to Consistent Imple-
mentation: A Case for Formal Verification Methods, EDOC, Lausanne, Switzerland, 2002, 
pp. 96-106.  

33. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge University 
Press, Cambridge, UK, 1999. 

Part Eval - APPENDIX [Gönczy et al. 2006] p 15



  

Empirical Analysis and Statistical Modeling  
of Attack Processes based on Honeypots* 

 

M. Kaâniche1, E. Alata1, V. Nicomette1, Y. Deswarte1, M. Dacier2  

1LAAS-CNRS, 2Eurecom 

 

Abstract 

Honeypots are more and more used to collect data on malicious activities on the Internet and to better 
understand the strategies and techniques used by attackers to compromise target systems. Analysis and 
modeling methodologies are needed to support the characterization of attack processes based on the data 
collected from the honeypots. This paper presents some empirical analyses based on the data collected from 
the Leurré.com honeypot platforms deployed on the Internet and presents some preliminary modeling studies 
aimed at fulfilling such objectives. 

1. Introduction 

Several initiatives have been developed during the last decade to monitor malicious threats and activities on 
the Internet, including viruses, worms, denial of service attacks, etc. Among them, we can mention the 
Internet Motion Sensor project [1], CAIDA [2], DShield [3], and CADHo [4]. These projects provide 
valuable information on security threats and the potential damage that they might cause to Internet users. 
Analysis and modeling methodologies are necessary to extract the most relevant information from the large 
set of data collected from such monitoring activities that can be useful for system security administrators and 
designers to support decision making. The designers are mainly interested in having representative and 
realistic assumptions about the kind of threats and vulnerabilities that their system will have to cope with 
once it is used in operation. Knowing who are the enemies and how they proceed to defeat the security of 
target systems is an important step to be able to build systems that can be resilient with respect to the 
corresponding threats. From the system security administrators’ perspective, the collected data should be 
used to support the development of efficient early warning and intrusion detection systems that will enable 
them to better react to the attacks targeting their systems. 

As of today, there is still a lack of methodologies and significant results to fulfill the objectives described 
above, although some progress has been achieved recently in this field. The CADHo project “Collection and 

                                                        

*  This paper was published in the Supplemental Proceedings of the 2006 IEEE International Conference on 
Dependable Systems and Networks (DSN 2006), Workshop on Empirical Evaluation of Dependability and 
Security (WEEDS), Philadelphia, USA, pp. 119-124, October 18-20, 2006. 
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Analysis  of Data from Honeypots” [4], an ongoing research action started in September 2004, is aimed at 
contributing to filling such a gap by carrying out the following activities: 

• deploying a distributed platform of honeypots [5] that gathers data suitable to analyze the attack 
processes targeting a large number of machines connected to the Internet; 

• developing analysis methodologies and modeling approaches to validate the usefulness of this 
platform by carrying out various analyses, based on the collected data, to characterize the observed 
attacks and model their impact on security. 

A honeypot is a machine connected to a network but that no one is supposed to use. In theory, no connection 
to or from that machine should be observed. If a connection occurs, it must be, at best an accidental error or, 
more likely, an attempt to attack the machine. 

The Leurré.com data collection environment  [5], set up in the context of the CADHo project, has deployed, 
as of to date, thirty five honeypot platforms at various locations from academia and industry, in twenty five 
countries over the five continents. Several analyses carried out based on the data collected so far from these 
honeypots have revealed that very interesting observations and conclusions can be derived with respect to 
the attack activities observed on the Internet [4, 6-9]. In addition, several automatic data analyses and 
clustering techniques have been developed to facilitate the extraction of relevant information from the 
collected data. A list of papers detailing the methodologies used and the results of these analyses is available 
in [6]. 

This paper focuses on modeling-related activities based on the data collected from the honeypots. We first 
discuss the objectives of such activities and the challenges that need to be addressed. Then we present some 
examples of models obtained from the data. 

The paper is organized as follows. Section 2 presents the data collection environment. Section 3 focuses on 
the modeling of attacks based on the data collected from the honeypots deployed. Modeling examples are 
presented in Section 4. Finally, Section 5 discusses future work. 

2. The data collection environment 

The data collection environment (called Leurré.com [5]) deployed in the context of the CADHo project is 
based on low-interaction honeypots using the freely available software called honeyd [10]. Since September 
2004, 35 honeypot platforms have been progressively deployed on the Internet at various geographical 
locations. Each platform emulates three computers running Linux RedHat, Windows 98 and Windows NT, 
respectively, and various services such as ftp, web, etc. A firewall ensures that connections cannot be 
initiated from the computers, only replies to external solicitations are allowed. All the honeypot platforms 
are centrally managed to ensure that they have exactly the same configuration. The data gathered by each 
platform are securely uploaded to a centralized database with the complete content, including payload of all 
packets sent to or from these honeypots, and additional information to facilitate its analysis, such as the IP 
geographical localization of packets’ source addresses, the OS of the attacking machine, the local time of the 
source, etc. 

3. Modeling objectives 

Modeling involves three main steps: 

1) The definition of the objectives of the modeling activities and the quantitative measures to be evaluated. 
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2) The development of one (or several) models that are suitable to achieve the specified objectives. 

3) The processing of the models and the analysis of the results to support system design or operation 

activities.  

The data collected from the honeypots can be processed in various ways to characterize the attack processes 
and perform predictive analyses. In particular, modeling activities can be used to: 

• Identify the probability distributions that best characterize the occurrence of attacks and their 
propagation through the Internet. 

• Analyze whether the data collected from different platforms exhibit similar or different malicious 
attack activities. 

• Model the time relationships that may exist between attacks coming from different sources (or to 
different destinations). 

• Predict the occurrence of new waves of attacks on a given platform based on the history of attacks 
observed on this platform as well as on the other platforms. 

For the sake of illustration, we present in the following sections simple preliminary models based on the data 
collected from our honeypots that are aimed at fulfilling such objectives. 

4. Examples 

The examples presented in the following address: 

1) The analysis of the time evolution of the number of attacks taking into account the geographic location of 

the attacking machine. 

2) The characterization and statistical modeling of the times between attacks. 

3) The analysis of the propagation of attacks throughout the honeypot platforms. 

The data considered for the examples has been collected from January 1st, 2004 to April 17, 2005, 
corresponding to a data collection period of 320 days.  We take into account the attacks observed on 14 
honeypot platforms among those deployed so far. The selected honeypots correspond to those that have been 
active for almost the whole considered period. The total number of attacks observed on these honeypots is 
816476. These attacks are not uniformly distributed among the platforms. In particular, the data collected 
from three platforms represent more than fifty percent of the total attack activity. 

4.1. Attack occurrence and geographic distribution 

The preliminary models presented in this sub-section address: i) the time-evolution modeling of the number 
of attacks observed on different honeypot platforms, and ii) the analysis of potential correlations for the 
attack processes observed on the different platforms taking into account the geographic location of the 
attacking machines and the proportion of attacks observed on each platform, wrt. the global attack activity. 

Let us denote by: 
− Y(t) the function describing the evolution of the number of attacks per unit of time observed on all 

the honeypots during the observation period, 
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− Xj(t) the function describing the evolution of the number of attacks per unit of time observed on all 

the honeypots during the observation period for which the IP address of the attacking machine is 

located in country j . 

In a first stage, we have plotted, for various time periods, Y(t) and the curves Xj(t) corresponding to different 
countries j. Visual inspection showed surprising similarities between Y(t) and some Xj(t). To confirm such 
empirical observations, we have then decided to rigorously analyze this phenomenon using mathematical 
linear regression models.  

Considering a linear regression model, we have investigated if Y(t) can be estimated from the combination of 
the attacks described by Xj(t), taking into account a  limited number of countries j. Let us denote by Y*(t) the 
estimated model. 

Formally, Y*(t) is defined as follows: 

Y*(t) = Σαj Xj(t) + β         j= 1, 2, .. k (1) 

Constants αj and β  correspond to the parameters of the linear model that provide the best fit with the 
observed data, and k is the number of countries considered in the regression.  

The quality of fit of the model is measured by the statistics R2 defined by: 

R2 = Σ(Y*(i) – Yav) 2/ Σ(Y (i) – Yav) 2 (2) 

Y (i) and Y*(i) correspond to the observed and estimated number of attacks for unit of time i, respectively. Yav 

is the average number of attacks per unit of time, taking into account the whole observation period.  

Indeed, R is the correlation factor between the estimated model and the observed values. The closer the R2 
value is to 1, the better the estimated model fits the collected data.  

We have applied this model considering linear regressions involving one, two or more countries. 
Surprisingly, the results reveal that a good fit can be obtained by considering the attacks from one country 
only. For example, the models providing the best fit taking into account the total number of attacks from all 
the platforms are obtained by considering the attacks issued from either UK, USA, Russia or Germany only. 
The corresponding R2 values are of the same order of magnitude (0.944 for UK, 0.939 for USA, 0.930 for 
Russia and 0.920 for Germany), denoting a very good fit of the estimated models to the collected data. For 
example, the estimated model obtained when considering the attacks from Russia only is defined by equation 
(3): 

Y*(t) = 44.568 X1(t) + 1555.67 (3) 

X1(t) represents the evolution of the number of attacks from Russia. Figure 1 plots the evolution of the 
observed and estimated number of attacks per unit of time during the data collection period considered in 
this example. The unit of time corresponds to 4 days. It is noteworthy that, similar conclusions are obtained 
if we consider another granularity for the unit of time, for example one day, or one week. 

These results are even more surprising that the attacks from Russia and UK represent only a small proportion 
of the total number of attacks (1.9% and 3.7% respectively). Concerning the USA, although the proportion is 
higher (about 18%), it is not sufficient to explain the linear model. 
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Figure 1- Evolution of the number of attacks per unit of time observed on all the platforms and estimated 
model considering attacks from Russia only 

We have applied similar analyses by respectively considering each honeypot platform in order to investigate 
if similar conclusions can be derived by comparing their attack activities per source country to their global 
attack activities. The results are summarized in Table 1. The second column identifies the source country that 
provides the best fit. The corresponding R2 value is given in the third column. Finally, the last three columns 
give the R2 values obtained when considering UK, USA, or Russia in the regression model.  

It can be noticed that the quality of the regressions measured when considering attacks from Russia only is 
generally low for all platforms (R2 less than 0.80). This indicates that the property observed at the global 
level is not visible when looking at the local activities observed on each platform. However, for the majority 
of the platforms, the best regression models often involve one of the three following countries: USA, 
Germany or UK, which also provide the best regressions when analyzing the global attack activity 
considering all the platforms together. Two exceptions are found with P6 and P8 for which the observed 
attack activities exhibit different characteristics with respect to the origin of the attacks (Taiwan, China), 
compared to the other platforms.  

 
Platform Country 

providing 
the best 
model 

R2  
Best 

model 

R2 

UK 
R2 

USA 
R2 

Russia 

P1 Germany 0.895 0.873 0.858 0.687 
P2 USA 0.733 0.464 0.733 0.260 
P4 Germany 0.722 0.197 0.373 0.161 
P5 Germany 0.874 0.869 0.872 0.608 
P6 UK 0.861 0.861 0.699 0.656 
P8 Taiwan 0.796 0.249 0.425 0.212 
P9 Germany 0.754 0.630 0.624 0.631 
P11 China 0.746 0.303 0.664 0.097 
P13 Germany 0.738 0.574 0.412 0.389 
P14 Germany 0.708 0.510 0.546 0.087 
P20 USA 0.912 0.787 0.912 0.774 
P21 SPAIN 0.791 0.620 0.727 0.720 
P22 USA 0.870 0.176 0.870 0.111 
P23 USA 0.874 0.659 0.874 0.517 
Global UK 0.944 0.944 0.939 0.930 

Table 1 – Estimated models for each platform: correlation factors for the countries providing the best fit and 
for UK, USA and Russia 
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The trends discussed above have been also observed when considering a different granularity for the unit of 
time (e.g., 1 day or 1 week) as well as different data observation periods. 

To summarize, two main findings can be derived from the results presented above: 
• Some trends exhibited at the global level considering the attack processes on all the platforms together 

are not observed when analyzing each platform individually (this is the case, for example, of attacks 
from Russia). On the other hand, we have observed the other situation where the trends observed 
globally are also visible locally on the majority of the platforms (this is the case, for example, of 
attacks from USA, UK and Germany). 

• The attack processes observed on each platform are very often highly correlated with the attack 
processes originating from a particular country. The country providing the best regressions locally, 
does not necessary exhibit high correlations when considering other platforms or at the global level. 
These trends seem to result from specific factors that govern the attack processes observed on each 
platform. 

4.2. Distribution of times between attacks 

In this example, we focus on the analysis and the modeling of the times between attacks observed on 
different honeypot platforms.  

Let us denote by ti, the time separating the occurrence of attack i and attack (i-1). Each attack is associated to 
an IP address, and its occurrence time is defined by the time when the first packet is received from the 
corresponding address at one of the three virtual machines of the honeypot platform. All the packets received 
from the same IP address within 24 hours are supposed to belong to the same attack session.  

We have analyzed the distribution of the times between attacks observed on each honeypot platform. Our 
objective was to find analytical models that faithfully reflect the empirical data collected from each platform. 
In the following, we summarize the results obtained considering 5 platforms for which we have observed the 
highest attack activity. 

4.2.1. Empirical analyses 

Table 2 gives the number of intervals of times between attacks observed at each platform considered in the 
analysis as well as the corresponding number of IP addresses. As illustrated by Figure 2, most of these 
addresses have been observed only once at a given platform. Nevertheless, some IP addresses have been 
observed several times, the maximum number of visits per IP address for the five platforms was 57, 96, 148, 
183, and 83 (respectively). Indeed, the curves plotting the number of IP addresses as a function of the 
number of attacks for each address follow a heavy-tailed power law distribution. It is noteworthy that such 
distributions have been observed in many performance and dependability related studies in the context of the 
Internet, e.g., transfer and interarrival times, burst sizes, sizes of files transferred over the web, error rates in 
web servers, etc. 

 
 P5 P6 P9 P20  P23 
Number of ti 85890 148942 46268 224917 51580 
Number of IP 
addresses 

79549 90620 42230 162156 47859 

Table 2 – Numbers of intervals of times between attacks (ti) and of different IP addresses at each platform 
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Figure 2- Number of IP addresses versus the number of attacks per IP address at each platform  
(log-log scale) 

4.2.2. Modeling 

Finding tractable analytical models that faithfully reflect the observed times between attacks is useful to 
characterize the observed attack processes and to find appropriate indicators that can be used for prediction 
purposes. We have investigated several candidate distributions, including Weibull, Lognormal, Pareto, and 
the Exponential distribution, which are traditionally used in reliability related studies. The best fit for each 
platform has been obtained using a mixture model combining a Pareto and an exponential distribution.  

Let us denote by T the random variable corresponding to the time between the occurrence of two consecutive 
attacks at a given platform, and t a realization of T. Assuming that the probability density function pdf(t) 
associated to T is characterized by a mixture distribution combining a Pareto distribution and an exponential 
distribution, then pdf(t) is defined as follows. 

 

! 

pdf (t) = Pa
k

(t +1)
k+1

+ (1" Pa )#e
"#t

 

k is the index parameter of the Pareto distribution, λ is the rate associated to the exponential distribution and 
Pa is a probability. 

We have used the R statistical package [11] to estimate the parameters that provide the best fit to the 
collected data. The quality of fit is assessed by applying the Kolmogorov-Smirnov statistical test. The results 
are presented in Figure 3. It can be noticed that for all the platforms, the mixed distribution provides a good 
fit to the observed data whereas the exponential distribution is not suitable to describe the observed attack 
processes. Thus, the traditional assumption considered in hardware reliability evaluation studies assuming 
that failures occur according to a Poisson process does not seem to be satisfactory when considering the data 
observed form our honeypots. These results have been also confirmed when considering the data collected 
during other observation periods. 
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4.3. Propagation of attacks 

Besides analyzing the attack activities observed at each platform in isolation, it is useful to identify 
phenomena that reflect propagation of attacks through different platforms. In this section, we analyze simple 
scenarios where a propagation between two platforms is assumed to occur when the IP address of an 
attacking machine observed at a given platform is also observed at another platform. Such a situation might 
occur for example as a result of a scanning activity or might be resulting from the propagation of worms.  

For the sake of illustration, we restrict the analysis to the five platforms considered in the previous example. 
For each attacking IP address in the data collected from the five platforms during the period of the study, we 
identified: 1) all the occurrences with the same source address, 2) the times of each occurrence and 3) the 
platform on which each occurrence has been reported. A propagation is said to occur for this IP address 
from platform Pi to platform Pj when the next occurrence of this address is observed on Pj after visiting Pi.  

Based on this information we build a propagation graph where each node identifies a platform and a 
transition between two nodes identifies a propagation between the nodes. A probability is associated to each 
transition to characterize its likelihood of occurrence.  
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Figure 3- Observed and estimated times between attacks probability density functions. 
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Figure 4 presents the propagation graph obtained for the five platforms included in the analysis. Considering 
platforms P6 and P20, it can be seen that only a few IP addresses that attacked these platforms have been 
observed on the other platforms. The situation is different when considering platforms P5, P9, and P23.  In 
particular, it can be noticed that propagation between P5 and P9 is highly probable. This is related in 
particular to the fact that the addresses of the corresponding platforms belong to the same /8 network 
domain. More thorough and detailed analyses are currently carried out based on the propagation graph in 
order to take into account timing information for the corresponding transitions and also the types of attacks 
observed, in order to better explain the propagation phenomena illustrated by the graph. 

 

Figure 4- Propagation graph 

Conclusion 

This paper presented simple examples and preliminary models illustrating various types of empirical analysis 
and modeling activities that can be carried out based on the data collected from honeypots in order to 
characterize attack processes. The honeypot platforms deployed so far in our project belong to the family of 
so-called “low interaction honeypots”. Thus, hackers can only scan ports and send requests to fake servers 
without ever succeeding in taking control over them. In our project, we are also interested in running 
experiments with “high interaction” honeypots where attackers can really compromise the targets. Such 
honeypots are suitable to collect data that would enable us to study the behaviors of attackers once they have 
managed to get access to a target and try to progress in the intrusion process to get additional privileges. 
Future work will be focused on the deployment of such honeypots and the exploitation of the collected data 
to better characterize attack scenarios and analyze their impact on the security of the target systems. The 
ultimate objective would be to build representative stochastic models that will enable us to evaluate the 
ability of computing systems to resist to attacks and to validate them based on real attack data. 
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Abstract 

Dependability evaluation is playing an increasing role in system and software engineering together with 
performance evaluation. Performance benchmarks are widely used to evaluate system performance while 
dependability benchmarks are hardly emerging. A dependability benchmark for operating systems is 
intended to objectively characterize the operating system's behavior in the presence of faults, through 
dependability and performance-related measures, obtained by means of controlled experiments. This paper 
presents a dependability benchmark for general-purpose operating systems and its application to three 
versions of Windows operating system and four versions of Linux operating system. The benchmark 
measures are: operating system robustness (as regards possible erroneous inputs provided by the application 
software to the operating system via the application programming interface), operating system reaction and 
restart times in the presence of faults. The workload is JVM (Java Virtual Machine), a software layer, on top 
of the operating system allowing applications in Java language to be platform independent. 

1.  Introduction 

Software dependability is usually evaluated based on data related to failures and corrections, observed on the 
software under development or during its operational life. However, when considering Off-The-Shelf 
software systems (which is the case of operating systems, OSs), most of the time no dependability data is 
available from their development. Only data collected during operation (if available) can be used to evaluate 
their dependability, which may be too late for selecting the right OS for building a new computer system 
based on an OS. In which case controlled experiments are of great help. The latter can either be carried out 
case-by-case (i,e., ad hoc way) or in a well-structured and standardized way, in order to characterize 
objectively the system behavior in the presence of faults. This is the aim of dependability benchmarks. 
Benchmarking the dependability of a system consists in evaluating dependability or performance-related 
measures, experimentally or based on experimentation and modeling, in a standard way. To be meaningful, a 
benchmark must satisfy a set of properties (e.g., representativeness, reproducibility, repeatability, portability, 
cost effectiveness). These properties must be taken into consideration from the earliest phases of the 
benchmark specification.  

Our dependability benchmark is a robustness benchmark. Robustness is defined as the degree to which a 
system operates correctly in the presence of exceptional inputs or stressful environmental conditions. 
Robustness of OS can be viewed as its capacity to resist/react to faults induced by the applications running 
on top of it, or originating from the hardware layer or from device drivers.  

                                                        
* Has been published in International Journal of Performability Engineering, Vol. 2, No. 3, July 2006, 275-287 

Part Eval - APPENDIX [Kanoun and Crouzet 2006] p 1



    

2 

We address here the OS robustness as regards possible erroneous inputs provided by the application 
software to the OS via the Application Programming Interface (API). More explicitly, we consider corrupted 
parameters in system calls, shortly referred to as faults. 

The benchmark presented in this paper is based on JVM (Java Virtual Machine), a software layer on top 
of the OS, allowing applications in Java language to be platform independent. It is applied to three Windows 
and four Linux OSs. The main concepts of the benchmark have been developed within the European project 
on Dependability Benchmarking, DBench [1]. 

The set of JVM dependability benchmarks is to the third set of OS benchmarks we have built up for 
Windows and Linux, based on the same high-level specification of the benchmark, using different 
workloads. The two previous ones used TPC-C Client performance benchmark for transactional systems [2] 
and PostMark, a file system performance benchmark [3]. Sensitivity analyses of the results with respect to 
the OS family benchmarked, the workload used and the faultload applied helped us to gain progressively 
confidence in the benchmark specification and in the results obtained.  

The work reported in [4] is the most similar to ours, it addressed the "non-robustness" of the POSIX and 
Win32 APIs. Pioneer work on robustness benchmarking is published in [5]. Since then, a few studies have 
addressed OS dependability benchmarks, considering real time microkernels [6-8] or general purpose OSs 
[9, 10]. Robustness with respect to faults in device drivers is addressed in [11-13]. 

The remainder of the paper is organized as follows. Section 2 gives the specification of our OS 
benchmark. Section 3 is devoted to the benchmark implementation for Windows and Linux families. 
Section 4 presents benchmark results. Section 5 addresses benchmark properties and Section 6 concludes the 
paper. 

2.  Specification of the Benchmark  

A dependability benchmark is specified through the definition of i) the benchmark target, ii) measures to be 
evaluated, iii) benchmark execution profile to be used to activate the operating system, iv) guidelines for 
conducting benchmark experiments and implementing the benchmark. The benchmark results are 
meaningful, useful and interpretable only if all the above items are supplied together with the results.  

2.1.  Benchmarking Target  

An OS is a generic software layer providing basic services to the applications through the API, and 
communication with peripherals devices via device drivers. The benchmark target corresponds to the OS 
with the minimum set of device drivers necessary to run the OS under the benchmark execution profile. 
However, the benchmark target runs on a hardware platform whose characteristics impact the results. Thus, 
all benchmarks must be performed on the same hardware platform. 

Although, in practice, the benchmark measures characterize the target system and the hardware platform, 
we state simply that the benchmark results characterize the OS.  

Our benchmark addresses the user perspective, i.e., it is intended to be performed by (and to be useful 
for) someone who has no thorough knowledge about the OS and whose aim is to improve her/his knowledge 
about its behavior in the presence of faults. In practice, the user may well be the developer or the integrator 
of a system including the OS.  
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As a consequence, the OS is considered as a “black box”. The only required information is its 
description in terms of system calls and in terms of services provided. 

2.2.  Benchmark Measures 

The OS receives a corrupted system call. After execution of such a call, the OS is in one of the following 
states: 

SEr (Error code): the OS generates an error code that is delivered to the application.  

SXp (Exception): in the user mode, the OS processes the exception and notifies the application. 
However, for some critical situations, the OS aborts the application. In the kernel mode an exception is 
automatically followed by a panic state (e.g., blue screen for Windows and oops messages for Linux). 
Hence, the latter exceptions are included in the panic state and the term exception refers only to the first 
case of user mode exception. 

SPc (panic): the OS is still “alive” but it is not servicing the application. In some cases, a soft reboot is 
sufficient to restart the system.  

SHg (Hang): a hard reboot of the OS is required.  

SNS (No Signaling): the OS does not detect the erroneous parameter and executes the erroneous system 
call. SNS is presumed when none of the previous situations (SEr, SXp, SPc, SHg) is observed. 

Panic and hang situations (SPc, SHg) are actual states in which the OS can stay for a while. SEr and 
SXp characterize events. They are easily identified when the OS provides an error code or notifies an 
exception. 

The benchmark measures include a robustness measure and two temporal measures.  

OS Robustness (POS) is defined as the percentages of experiments leading to any of the states listed 
above. POS is thus a vector composed of 5 elements. 

Reaction Time (Treac) corresponds to the average time necessary for the OS to respond to a system call 
in presence of faults, either by notifying an exception or by returning an error code or by executing the 
required instructions.  

Restart Time (Tres) corresponds to the average time necessary for the OS to restart after the execution of 
the workload in the presence of faults. Although under nominal operation the OS restart time is almost 
deterministic, it may be impacted by the corrupted system call. The OS might need additional time to 
make the necessary checks and recovery actions, depending on the impact of the fault applied. 

The OS reaction time and restart time are also evaluated by experimentation in absence of faults for 
comparison purposes. They are respectively denoted τreac and τres.  

2.3. Benchmark Execution Profile 

For performance benchmarks, the benchmark execution profile is a workload that is as realistic and 
representative as possible for the system under benchmarking. For a dependability benchmark, the execution 
profile includes, in addition to the workload, a set of faults, referred to as the faultload.  
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In the current benchmark, the workload is JVM, solicited through a program allowing to display «Hello 
World» on the screen. This program activates 76 system calls for Windows family and 31 to 37 system calls 
for Linux Family. 

The faultload consists of corrupted parameters of system calls. For Windows, system calls are provided 
to the OS through the Win32 environment subsystem. In Linux OSs, these system calls are provided to the 
OS via the POSIX API. During runtime, the system calls activated by the workload are intercepted, 
corrupted and re-inserted.  

The parameter corruption technique relies on thorough analyses of system call parameters to define 
selective substitutions to be applied to these parameters (similarly to the one used in [14]). A parameter is 
either a data or an address. The value of a data can be substituted either by an out-of-range value or by an 
incorrect (but not out-of-range) value, while an address is substituted by an incorrect (but existing) address 
(that could contain an incorrect or out-of-range data). We use a mix of these three techniques. More details 
can be found in [3]. 

2.4.  Benchmark Conduct 

Since disturbing the operating system may lead the OS to hang, a remote machine, referred to as the 
benchmark controller, is required to control the benchmark experiments, mainly in case of OS Hang or Panic 
states or workload hang or abort states (that cannot be reported by the machine hosting the benchmark 
target). Hence, we need at least two computers as shown in Figure 1. The Target Machine hosts the 
benchmarked OS and the workload, and ii) the Benchmark Controller is in charge of diagnosing and 
collecting part of benchmark data.  

 

Figure 1: Benchmark Environment  

The two machines perform the following: i) restart of the system before each experiment and launch of 
the workload, ii) interception of system calls with parameters, ii) corruption of system call parameters, iii) 
re-insertion of corrupted system calls, vi) observation and collection of OS states. The experiment steps in 
case of workload completion are illustrated in Figure 2 and will be detailed in the next section. In case of 
workload non-completion state (i.e., the workload is in abort or hang state), the end of the experiment is 
governed by a watchdog timeout, fixed to 3 times the workload execution time without faults. 
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3. Benchmark Implementation  

3.1. Prototype 

In order to obtain comparable results, all the experiments are run on the same target machine, composed of 
an Intel Pentium III Processor, 800 MHz, and a memory of 512 Mega Bytes. The hard disk is 18 Giga Bytes, 
ULTRA 160 SCSI. The benchmark controller in both prototypes for Windows and Linux is a Sun 
Microsystems workstation. 

To intercept Win32 functions, we use the Detours tool [15], a library for intercepting arbitrary Win32 
binary functions on X86 machines. We added three modules for i) substituting parameters of system calls by 
corrupted values ii) observing the reactions of the OS after execution of a corrupted system call, and iii) 
collecting the required measurements.  

To intercept POSIX system calls, we used another interception tool, Strace [16] to which we added 
modules similar to those added to Detours. 

3.2. Benchmark Preparation 

Before each benchmark run (i. e., execution of the series of experiments related to a given OS), the target 
kernel is installed, and the interceptor is compiled for the current kernel (interceptors are kernel-dependent 
both for Windows and Linux). Once the benchmarking tool is compiled, it is used to identify the set of 
system calls activated by the workload. Parameters of these system calls are then analyzed and a database of 
corrupted values is built accordingly. 

3.3. Benchmark Execution 

At the beginning of each experiment, the target machine (TM) records the experiment start instant tExpStart 
and sends it to the benchmark controller (BC) along with a notification of experiment start-up. The workload 
starts its execution. The Observer module records, in the experiment execution trace, the start-up instant of 
the workload, tWStart, the activated system calls and their responses. This trace also collects the relevant data 
concerning states SEr, SXp and SNS. The recorded trace is sent to the BC at the beginning of the next 
experiment. 

The parameter substitution module identifies the system call to be corrupted. The execution is then 
interrupted, a parameter value is substituted and the execution is resumed with the corrupted parameter value 

Figure  2: Benchmark Execution Sequence in Case of Workload Completion 
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(tResume is saved in the experiment execution trace). The state of the OS is monitored so as to diagnose SEr, 
SXp, SNS. The corresponding OS response time (tResponse) is recorded in the experiment execution trace. For 
each run, the OS reaction time after the experiment is calculated as the difference between tResponse and 
tResume. At the end of the execution of the workload, the OS notifies the end of the experiment to the BC by 
sending an end signal along with the experiment end instant, tExpEnd. If the workload does not complete, then 
tExpEnd is governed by the value of a watchdog timer. If, at the end of the watchdog timer, the BC has not 
received the end signal from the OS, it then attempts to connect to the OS. If this connection is successful, 
and if the soft reboot is successful, then a workload abort or hang state is diagnosed. If the soft reboot is 
unsuccessful, then a panic state, SPc, is deduced and a hard reboot is required. Otherwise SHg is assumed. 

At the end of a benchmark execution, all files containing raw results corresponding to all experiments 
are on the BC. A processing module extracts automatically the relevant information from these files (two 
specific modules are required for Windows and Linux families). The relevant information is then used to 
evaluate automatically the benchmark measures (the same module is used for Windows and Linux). 

3.4.  Benchmark Characteristics 

For each system call activated by the workload, several parameters are corrupted leading to several 
experiments for the same system call. The number of system calls (activated by JVM under the program 
allowing to display «Hello World» on the screen) and the associated number of experiments for the OSs 
considered are indicated in Table 1. 

Table 1: Number of System Calls and Experiments for each OS 

Windows family  Linux family 

 W- NT4 W- 2000 W- XP L- 2.2.26 L- 2.4.5 L- 2.4.26 L- 2.6.6 

# System Calls 76 76 76 37 32 32 31 

# Experiments 1285 1294 1282 457 408 408 409 

4. Benchmark Results  

4.1.  Measures 

OSs robustness is given in Figure 3. It shows that all OSs of the same family are equivalent. It also shows 
that none of the catastrophic states (Panic or Hang OS states) occurred for all Windows and Linux OSs. 
Linux OSs notified more error codes (58-66%) than Windows (25%), while more exceptions were raised 
with Windows (22-23%) than with Linux (7-10%). More no-signaling cases have been observed for 
Windows (52-54%) than for Linux (27-36%).  

Windows family  Linux family 
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Figure  3: OS Robustness (%)  

These results are in conformance with our previous results, related to Windows using TPC-C Client [2] 
and to Windows and Linux using PostMark [3]. In [4] it was observed that on the one hand Windows 95, 98, 
98SE and CE had a few catastrophic failures and on the other hand Windows NT, Windows 2000 and Linux 
are more robust and did not have any catastrophic failures as in our case.  

The reaction times in the presence of faults (and without fault) are given in Figure 4. Note that for the 
Windows family, XP has the lowest reaction time, and for the Linux family, 2.6.6 has the lowest one. 
However, the reaction times of Windows NT and 2000 are very high. A detailed analysis showed that the 
large response time for Windows NT and 2000 are mainly due to system calls LoadLibraryA, LoadLibraryExA 
and LoadLibraryEXW. Not including these system calls when evaluating the average of the reaction time in the 
presence of faults leads respectively to 388µs, 182µs and 205µs for NT4, 2000 and XP (the associated 
average restart times without fault become respectively 191µs, 278µs and 298µs). For Linux the high values 
of the reaction times in presence of faults are also due to three system calls (execve, getdents64, nanosleep). 
Not including the reaction times associated to these system calls leads respectively to 88µs, 241µs, 227µs 
and 88µs for Linux 2.2.26, 2.4.5, 2.4.26 and 2.6.6. 

The restart times are shown in Figure 5. The average restart time without faults, τres, is always lower 
than the benchmark restart time (with faults), Tres, but the difference is not significant. The standard 
deviation is very large for all OSs. Linux 2.2.26 and Windows XP have the lowest restart time (71 seconds, 
in the absence of fault) while Windows NT and 2000 restart times are around 90 seconds and those of Linux 
versions 2.4.5, 2.4.26 and 2.6.6 are around 80 seconds.  

Windows family    Linux family 

    
 With faults (Treac) 

Figure  4: OS Reaction Times (in µseconds) 

Windows family    Linux family 

    
  With faults (Tres) 

Figure 5: OS Restart Times (in seconds) 

 

Part Eval - APPENDIX [Kanoun and Crouzet 2006] p 7



    

8 

4.2.  Restart Time Refinement 

It is worth to mention that the average restart times mask interesting phenomena. Detailed analyses show that 
all OSs of the same family have similar behavior and that the two families exhibit very different behaviors.  

For Windows, there is a correlation between the restart time and the workload state at the end of the 
experiment. When the workload is completed, the restart time is almost the same as the average restart time 
without substitution. On the other hand, the restart time is statistically larger for all experiments with 
workload abort/hang. Moreover, statistically, the same system calls lead to workload abort/hang.  

This is illustrated in Figure 6 in which the benchmark experiments are executed in the same order for the 
three Windows versions. Similar behaviors have been observed when using TPC-C [2] and PostMark 
workloads [3]. 

Linux restart time is not affected by the workload state. Detailed restart time analyses show high values 
appearing periodically. These values correspond to a check-disk performed by the Linux kernel every 26 
restarts (which explains the important standard deviation on this measure). This is illustrated in Figure 7 for 
Linux 2.2.26, as an example. The same behavior has been observed when using the PostMark workload [3]. 

 

Figure 6: Detailed Restart Time for Windows 

 

Figure 7: Detailed Restart Time for Linux 2.2.26 
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5. Benchmark Properties  

To be accepted and adopted by the scientific and industrial communities, a benchmark must satisfy a set of 
key properties, such as representativeness, repeatability, reproducibility, portability and cost-effectiveness. 
Representativeness concerns essentially the workload (that is without any doubt the most critical component 
of any dependability benchmark). All properties should be accounted for from the early phase of the 
benchmark specification as they directly impact the specification of all benchmark components. Some 
properties can be ensured by construction, some others have to be checked experimentally too.  

In our previous work using TPC-C and PostMark as workloads, we have shown how the various 
properties have been taken into consideration what has been done to check some of them experimentally. In 
this section, we summarize the various properties and the kinds of verification carried out using JVM. 

5.1  Faultload representativeness  

It is very hard to guarantee that the faults used in our benchmark (corrupted values in system call parameters) 
are representative of all application software faults. Indeed, the OS is not expected to detect all application 
faults, but it is expected to avoid some application faults that may lead to OS misbehavior. At least it is 
expected to detect system calls with obvious errors (such as out-of-range data or incorrect addresses). We 
have thus performed sensitivity analyses with respect to the parameter corruption technique.  

The selective substitution technique used is composed of a mix of three corruption techniques as 
mentioned in Section 2.3: out-of-range data (OORD), incorrect data (ID) and incorrect addresses (IA). Let us 
denote the faultload used in our benchmarks by FL0. To analyze the impact of the faultload, we consider two 
subsets, including respectively  
i) IA and ODRD only (denoted FL1), and ii) ODRD only (denoted FL2). Taking Windows NT4 and Linux 
2.2.26 as examples, moving from FL0 to FL2 the number of experiments decreases respectively from 1285 
to 264 and from 457 to 119.  

We ran the benchmarks of all OSs considered using successively FL0, FL1 and FL2. The results 
obtained confirm the equivalence between Linux family OSs as well as the equivalence between Windows 
family OSs, using the same faultload (FL0, FL1 or FL2). Indeed, for each OS, its robustness with respect to 
FL0, FL1 or FL2 is different but the robustness of all OSs of the same family with respect to each of the 
three faultloads is equivalent. The same results have been obtained using TPC-C Client and PostMark as 
workloads. This shows that using a mix of the three corruption techniques is meaningful.  

5.2.  Repeatability and Reproducibility 

Repeatability is the property that guarantees statistically equivalent results when the benchmark is run more 
than once in the same environment (i.e., using the same system under benchmark and the same prototype). 
Our OS dependability benchmark is composed of a series of experiments. Each experiment is run after a 
system restart. The experiments are independent from each other and the order in which the experiments are 
run is not important at all. Hence, once the system calls to be corrupted are selected and the substitution 
values defined, the benchmark is fully repeatable. We have repeated all the benchmarks presented three 
times to check for repeatability. 

Reproducibility is the property that guarantees that another party obtains statistically equivalent results 
when the benchmark is implemented from the same specification and is used to benchmark the same system 
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under benchmarking. Reproducibility is strongly related to the amount of details given in the specification. 
The specification should be at the same time i) general enough to be applied to the class of systems 
addressed by the benchmark and ii) specific enough to be implemented without distorting the original 
specification. We managed to satisfy such a tradeoff. Unfortunately, we have not checked explicitly the 
reproducibility of the benchmark results by developing several prototypes by different people. On the other 
hand, the results seem to be independent from the faultload. This makes us confident about reproducibility.  

5.3.  Portability 

Portability concerns essentially the faultload (i.e., its applicability to different OS families).  

At the specification level, in order to ensure portability of the faultload, the system calls to be corrupted 
are not identified individually. We decided to corrupt all system calls of the workload. This is because OSs 
from different families do not necessarily comprise the very same system calls as they may have different 
APIs. However, most OSs feature comparable functional components.  

At the implementation level, portability can only be ensured for OSs from the same family because 
different OS families have different API sets.  

5.4.  Cost  

If a benchmark is very expensive, industry may not be ready to adopt it. Cost is expressed in terms of effort 
required to develop the benchmark, run it and obtain results. These steps require some effort that is, from our 
point of view, relatively affordable. In our case, most of the effort was spent in defining the concepts, 
characterizing the faultload and studying its representativeness.  

The JVM benchmark benefited a lot from TPC-C and PostMark benchmarks as all benchmark 
components did exist and we had only to adapt them. The first step consisted in executing JVM for each OS 
to be benchmarked, to identify system calls activated. The second step was devoted to define, for each 
system call, the parameters to be corrupted and the exact substitution values, to prepare the database to be 
used in the Interception /substitution/ observation modules. This step took a couple of days for Linux family 
(activating 31-37 system calls depending on the version considered) and the double for Windows as it 
activates 76 system calls. Adaptation of the benchmark controller and of the 
Interception/substitution/observation modules required about one day for each family.  

The benchmark duration ranges from one day for each Linux OS to less than three days for each Windows 
OS. More precisely, the duration of an experiment with workload completion is less than 3 minutes 
(including the time to workload completion and the restart time), while it is less than 6 minutes without 
workload completion (including the watchdog timeout and the restart time). Thus, an experiment lasts less 
than 5 minutes for all OSs. The series of experiments of a benchmark is fully automated. 

6. Conclusions 

The dependability benchmark presented in this paper is the third benchmark we have developed for 
Windows and Linux, based on the same high-level specification of the benchmark but using different 
workloads. The results obtained are in conformance with those obtained with the two other workloads and 
increase our confidence in the benchmark specification and in the results obtained.  
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This benchmark and more generally the three benchmarks developed and applied show that all OSs of 
the same family are equivalent. They also show that none of the catastrophic states of the OS (Panic or 
Hang) occurred for any of the Windows and Linux OSs considered.  

Linux OSs notified more error codes than Windows while more exceptions were raised with Windows 
than with Linux. More no-signaling cases have been observed for Windows than for Linux.  

Concerning the OS reaction time measure, results show a great variation around the average due to a 
minority of system calls with large execution times that dodge the average. When these system calls are not 
considered, the reaction times of all the OSs of the same family become equivalent.  

With respect to the restart time measure, Linux seems to be globally faster compared to Windows even 
though Windows XP and Linux 2.2.26 have the same restart times. Detailed analysis of the restart time 
showed i) a correlation between Windows restart time and the workload final state (in case of workload hang 
or abort, the restart time is higher than in case of workload completion) and ii) that Linux performs a “check 
disk” after each 26 restarts after which the restart time is four times higher than the average. 

We paid a particular attention to representativeness of faultload, and to the properties of repeatability, 
reproducibility, portability and cost effectiveness of the benchmark. 
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Abstract 

This chapter presents the specification of dependability benchmarks for general-purpose operating systems 
with respect to application erroneous behavior, and shows examples of benchmark results obtained for 
various versions of Windows and Linux operating systems. The benchmark measures are: operating system 
robustness (as regards possible erroneous inputs provided by the application software to the operating system 
(OS) via the application programming interface), the OS reaction and restart times in the presence of faults. 
Two workloads are used for implementing the benchmark: PostMark, a file system performance benchmark 
for operating systems, and the Java Virtual Machine (JVM) middleware, a software layer on top of the OS 
allowing applications in Java language to be platform independent.  
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1. Introduction 

Software is playing an increasingly important role in our day-to-day life. In particular, operating systems 
(OSs) are more and more used even in critical application domains. Choosing the operating system that is 
best adapted to one’s needs is becoming a necessity. For a long time, performance was the main selection 
criterion for most users and several performance benchmarks were developed and are widely used. However, 
an OS should not only have good performance but also a high dependability level. Dependability 
benchmarks emerged as a consequence. Their role is to provide useful information regarding the 
dependability of software systems [Tsai et al. 1996, Brown & Patterson 2000, Chevochot & Puaut 2001, 
Brown et al. 2002, Zhu et al. 2002]. This chapter is devoted to the specification, application and validation 
of two dependability benchmarks of OSs using two different workloads: PostMark, a file system 
performance benchmark, and JVM (Java Virtual Machine), a software layer on top of the OS allowing 
applications in Java language to be platform independent. 

Benchmarking the dependability of a system consists of evaluating dependability or performance-related 
measures, experimentally or based on experimentation and modeling, in order to characterize objectively the 
system behavior in the presence of faults. Such an evaluation should allow non-ambiguous comparison of 
alternative solutions. Non-ambiguity, confidence in results and meaningfulness are ensured by a set of 
properties a benchmark should satisfy. For example, a benchmark must be representative, reproducible, 
repeatable, portable and cost effective. These properties should be taken into consideration from the earliest 
phases of the benchmark specification as they have a deep impact on almost all benchmark components. 
Verification of the benchmark key properties constitutes a large part of the benchmark validation.  

Our dependability benchmark is a robustness benchmark. Robustness is defined as the degree to which a 
system operates correctly in the presence of exceptional inputs or stressful environmental conditions. 
Robustness of OS can be viewed as its capacity to resist/react to faults induced by the applications running 
on top of it, or originating from the hardware layer or from device drivers. In this chapter we address the OS 
robustness as regards possible erroneous inputs provided by the application software to the OS via the 
Application Programming Interface (API). More explicitly, we consider corrupted parameters in system 
calls. For sake of conciseness, such erroneous inputs are referred to as faults. 

The work reported in this chapter is a follow up of the European project on Dependability Benchmarking, 
DBench [DBench]. Our previously published work on OS dependability benchmarks was based on i) TPC-C 
Client performance benchmark for transactional systems [Kalakech et al. 2004b], ii) PostMark [Kanoun et 
al. 2005] and on JVM workload [Kanoun & Crouzet 2006].  

The work reported in [Shelton et al. 2000] is the most similar to ours, it addressed the "non-robustness" of 
the POSIX and Win32 APIs (while we are interested in robust and non-robust behavior). Pioneer work on 
robustness benchmarking is published in [Mukherjee & Siewiorek 1997]. Since then, a few studies have 
addressed OS dependability benchmarks, considering real time microkernels [Chevochot & Puaut 2001, 
Arlat et al. 2002, Gu et al. 2004] or general purpose OSs [Tsai et al. 1996, Koopman & DeVale 1999]. 
Robustness with respect to faults in device drivers is addressed in [Chou et al. 2001, Durães & Madeira 
2002, Albinet et al. 2004]. 

The remainder of the chapter is organized as follows. Section 2 gives the specification of the OS 
benchmarks. Section 3 presents benchmark implementation and results related to PostMark workload for 
Windows and Linux families. Section 4 presents benchmark implementation and results related to JVM 
workload. Section 5 refines the benchmark results for PostMark and JVM. Section 6 outlines the main 
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benchmark properties that are meaningful to OS benchmarks, and briefly shows what has been achieved to 
ensure and check them. Section 7 concludes the chapter.  

2. Specification of the Benchmark  

In order to provide dependability benchmark results are meaningful, useful and interpretable it is essential to 
define clearly the following benchmark components:  

1) The benchmarking context. 

2) The benchmark measures to be evaluated and the measurements to be performed on the system to 
provide the information required for obtaining them. 

3) The benchmark execution profile to be used to activate the operating system.  

4) Guidelines for conducting benchmark experiments and implementing benchmark prototypes. 

These components are ppresented hereafter..  

2.1. Benchmarking Context 

An OS can be seen as a generic software layer that manages all aspects of the underlying hardware. The OS 
provides i) basic services to the applications through the API, and ii) communication with peripheral devices 
via device drivers. From the viewpoint of dependability benchmarking, the benchmark target corresponds to 
the OS with the minimum set of device drivers necessary to run the OS under the benchmark execution 
profile. However, for the benchmark target to be assessed, it is necessary to run it on top of a hardware 
platform and to use a set of libraries. Thus, the benchmark target along with the hardware platform and 
libraries form the system under benchmarking. Although, in practice, the benchmark measures characterize 
the system under benchmarking (e.g., the OS reaction and restart times are strongly dependent on the 
underlying hardware), for clarity purpose we will state that the benchmark results characterize the OS.  

The benchmark addresses the user perspective, i.e., it is primarily intended to be performed by (and to be 
useful for) someone or an entity who has no in depth knowledge about the OS and whose aim is to 
significantly improve her/his knowledge about its behavior in the presence of faults. In practice, the user may 
well be the developer or the integrator of a system including the OS.  

The OS is considered as a “black box” and the source code does not need to be available. The only required 
information is the description of the OS in terms of system calls (in addition of course to the description of 
the services provided by the OS). 

2.2. Benchmark Measures 

The benchmark measures include a robustness measure and two temporal measures.  

After execution of a corrupted system call, the OS is in one of the states summarized in Table 1. 
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SEr An error code is returned 
SXp An exception is raised, processed and notified  
SPc Panic state 
SHg Hang state 
SNS No-signaling state 

Table 1: OS outcomes  

SEr: corresponds to the case where the OS generates an error code that is delivered to the application.  

SXp: corresponds to the case where the OS issues an exception. Two kinds of exceptions can be 
distinguished depending on whether it is issued during the application software execution (user mode) or 
during execution of the kernel software (kernel mode). In the user mode, the OS processes the exception and 
notifies the application (the application may or may not take into account explicitly this information). 
However, for some critical situations, the OS aborts the application. An exception in the kernel mode is 
automatically followed by a panic state (e.g., blue screen for Windows and oops messages for Linux). 
Hence, hereafter, the latter exceptions are included in the panic state and the term exception refers only to 
user mode exceptions. 

SPc: In the panic state, the OS is still “alive” but it is not servicing the application. In some cases, a soft 
reboot is sufficient to restart the system.  

SHg: In this state, a hard reboot of the OS is required.  

SNS: In the no-signaling state, the OS does not detect the presence of the erroneous parameter. As a 
consequence, it accepts the erroneous system call and executes it. It may thus abort, hang or complete its 
execution. However, the response might be erroneous or correct. For some system calls, the application may 
not require any explicit response, so it simply continues execution after sending the system call. SNS is 
presumed when none of the previous outcomes (SEr, SXp, SPc, SHg) is observed. 

Panic and hang outcomes are actual states in which the OS can stay for a while. They characterize the OS’s 
non-robustness. Conversely, SEr and SXp characterize only events. They are easily identified when the OS 
provides an error code or notifies an exception. These events characterize the OS’s robustness. 

OS Robustness (POS) is defined as the percentages of experiments leading to any of the outcomes listed in 
Table 1. POS is thus a vector composed of 5 elements. 

Reaction Time (Treac) corresponds to the average time necessary for the OS to respond to a system call in 
the presence of faults, either by notifying an exception or by returning an error code or by executing the 
system call.  

Restart Time (Tres) corresponds to the average time necessary for the OS to restart after the execution of the 
workload in the presence of one fault in one of its system calls. Although under nominal operation the OS 
restart time is almost deterministic, it may be impacted by the corrupted system call. The OS might need 
additional time to make the necessary checks and recovery actions, depending on the impact of the fault 
applied. 

The OS reaction time and restart time are also observed in absence of faults for comparison purpose. They 
are respectively denoted τreac and τres.  

Note that our set of measures is different of the one used in [Shelton et al. 2000]. Shelton et al. only take into 
account non-robust behavior of the OS. They use the CRASH scale to measure the OS non-robustness 
(Catastrophic, Restart, Abort, Silent and Hindering failures). Our aim is to distinguish as clearly as possible 
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the proportions of robust versus non-robust behavior of the OS. Also, we completed the set of measures by 
adding to it the two temporal measures (Texec and Tres) presented above. 

2.3. Benchmark Execution Profile 

For performance benchmarks, the benchmark execution profile is a workload that is as realistic and 
representative as possible for the system under benchmarking. For a dependability benchmark, the execution 
profile includes, in addition, corrupted parameters in system calls. The set of corrupted parameters is referred 
to as the faultload.  

The benchmark is defined so that the workload could be any performance benchmark workload (and, more 
generally, any user specific application) intended to run on top of the target OS. In [Kalakech et al. 2004b] 
we have used the workload of TPC-C Client [TPC-C 2002], and in this work we use two workloads 
PostMark [Katcher 1997] and JVM [Lindholm & Yellin 1999]. The two workloads will be discussed further 
in Sections 3 and 4.  

The faultload consists of corrupted parameters of system calls. For Windows, system calls are provided to 
the OS through the Win32 environment subsystem. For Linux OSs, these system calls are provided to the OS 
via the POSIX API. During runtime, the workload system calls are intercepted, corrupted and re-inserted.  

We use a parameter corruption technique relying on thorough analysis of system call parameters to define 
selective substitutions to be applied to these parameters (similar to the one used in [Koopman et al. 1997]). A 
parameter is either a data or an address. The value of a data can be substituted either by an out-of-range 
value or by an incorrect (but not out-of-range) value, while an address is substituted by an incorrect (but 
existing) address (containing usually an incorrect or out-of-range data). We use a mix of these three 
corruption techniques. Note that non-existing addresses are always detected. Hence they are not considered 
as interesting substitution values. 

To reduce the number of experiments, the parameter data types are grouped into classes. A set of substitution 
values is defined for each class. They depend on the definition of the class. Some values require a pre and a 
post processing such as the creation and the destruction of temporary files. For example, for Windows, we 
group the data types into 13 classes. Among these classes, 9 are pointer classes. Apart from pvoid (pointer 
which points to anything), all other pointers point to a particular data type. Substitution values for these 
pointers are combination of pointer substitution values and the corresponding data type substitution values. 
Similarly, for Linux, we group the data types into 13 classes among which 5 are pointer classes. We use the 
same substitution values for basic data types (i.e., integer) both for Windows and Linux. Nevertheless, some 
data types are system-dependent. Consequently, they have specific substitution values. In Linux, for 
example, we define a class corresponding to the type mode. A mode is an integer with a particular meaning: 
read/write modes or permission flags. As the validity domain of this data type can be identified precisely, 
pertinent substitution values are defined for it. Table 2 reviews the substitution values associated with the 
basic data type classes.  

2.4. Benchmark Conduct and Implementation 

Since perturbing the operating system may lead the OS to hang, a remote machine, referred to as the 
benchmark controller, is required to reliably control the benchmark experiments, mainly in case of OS Hang 
or Panic states or workload hang or abort states (that cannot be reported by the machine hosting the 
benchmark target). Accordingly, for running an OS dependability benchmark we need at least two 
computers: i) the Target Machine for hosting the benchmarked OS and the workload, and ii) the Benchmark 
Controller that is in charge of diagnosing and collecting part or all benchmark data. The two machines 
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perform the following functions: i) restart of the system before each experiment and launch of the workload, 
ii) interception of system calls with parameters, ii) corruption of system call parameters, iii) re-insertion of 
corrupted system calls, iv) observation and collection of OS outcomes.  

 

Data type   class Substitution values 

 Pvoid NULL 0xFFFFFFFF 1 0xFFFF -1 Random 

 Integer 0 1 MAX INT MIN INT 0.5  

 Unsigned  integer 0 1 0xFFFFFFFF -1 0.5  

 Boolean 0 0xFF (Max) 1 -1 0.5  

 String Empty 
Large  

(> 200) 

Far  

(+ 1000) 
   

Table 2: Parameter substitution values 

The experiment steps in case of workload completion are illustrated in Figure 1. In case of workload non-
completion state (i.e., the workload is in abort or hang state), the end of the experiment is provided by a 
watchdog timeout as illustrated in Figure 2. The timeout duration is fixed to a value that is three times 
greater than the largest workload execution time without faults. 

 

Figure 1: Benchmark execution sequence in case of workload completion 

 

Figure 2: Benchmark execution sequence in case of workload abort or hang 

To intercept Win32 functions, we use the Detours tool [Hunt & Brubaher 1999], a library for intercepting 
arbitrary Win32 binary functions on X86 machines. The part of Detours in charge of system call interception 
is composed of 30 Kilo lines of code (KLOC). The modifications we carried out on this tool concern i) the 
replacement of system call parameters by corrupted values (this module is 3 KLOC) and ii) the addition of 
modules to observe the reactions of the OS after parameter corruption, and to collect the required 
measurements (this module is 15 KLOC). To intercept POSIX system calls, we used another interception 
tool, Strace [McGrath & Akkerman 2004]. Strace is composed of 26 KLOC. Also, we added two modules to 
this tool to allow i) substitution of the parameters and ii) observation of Linux behavior after parameter 
corruption (these modules correspond to 4 KLOC together). The reaction time is counted from the time the 
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corrupted system call is re-inserted. Hence the time to intercept and substitute system calls is not included in 
the system reaction time, as shown in Figures 1 and 2. 

Figure 3 summarizes the various components of the benchmark environment. All the experiments have been 
run on the same target machine, composed of an Intel Pentium III Processor, 800 MHz, and a memory of 512 
Mega Bytes. The hard disk is 18 Giga Bytes, ULTRA 160 SCSI. The benchmark controller in both 
prototypes for Windows and Linux is a Sun Microsystems workstation. 

 

Figure 3. Benchmark environment  

Before each benchmark run (i. e., before execution of the series of experiments related to a given OS), the 
target kernel is installed, and the interceptor is compiled for the current kernel (interceptors are kernel-
dependent both for Windows and Linux as they depend on kernel headers that are different from one version 
to another). Once the benchmarking tool is compiled, it is used to identify the set of system calls activated by 
the workload. All parameters of all these system calls are then analyzed and placed into the corresponding 
class. A database of substitution values is then generated accordingly. 

Following the benchmark execution sequence presented in Figures 1 and 2, at the beginning of each 
experiment, the target machine (TM) records the experiment start instant tExpStart and sends it to the 
benchmark controller (BC) along with a notification of experiment start-up. The workload starts its 
execution. The Observer module records, in the experiment execution trace, the start-up instant of the 
workload, the activated system calls and their responses. This trace also collects the relevant data concerning 
states SEr, SXp and SNS. The recorded trace is sent to the BC at the beginning of the next experiment. 

The parameter substitution module checks whether the current system call has parameters. If it is not the 
case, the execution is simply resumed; otherwise, the execution is interrupted, a parameter value is 
substituted and the execution is resumed with the corrupted parameter value (tResume is saved in the 
experiment execution trace). The state of the OS is monitored so as to diagnose SEr, SXp, SNS. The 
corresponding OS response time (tResponse) is recorded in the experiment execution trace. For each run, the 
OS reaction time is calculated as the difference between tResponse and tResume. 

At the end of the execution of the workload, the OS notifies the end of the experiment to the BC by sending 
an end signal along with the experiment end instant, tExpEnd and then it restarts so that the current 
experiment does not have any effects on the following experiment. If the workload does not complete, 
then tExpEnd is governed by the value of a watchdog timer. The BC collects the SHg state and the workload 
abort/hang states. It is in charge of restarting the system in such cases. When no faultload is applied, the 
average time necessary for the OS to execute PostMark or JVM is less than 1 minute for Windows and for 
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Linux. We considered that three times the normal execution time is enough to conclude on the experiment’s 
result. Thus, we have fixed the watchdog timer to 3 minutes. If, at the end of this watchdog timer, the BC has 
not received the end signal from the OS, it then attempts to ping the OS. If the OS responds (ping 
successful), the BC attempts to connect to it. If the connection is successful, then a workload abort or hang 
state is diagnosed. If the connection is unsuccessful, then a panic state, SPc, is deduced. Otherwise, SHg is 
assumed. If workload abort / hang or SPc or SHg are observed, tResponse does not take any value for the 
current experiment. Thus, the measure Treac is not skewed by the watchdog timer value. 

At the end of a benchmark execution, all files containing raw results corresponding to all experiments are on 
the BC. A processing module extracts automatically the relevant information from these files (two specific 
modules are required for Windows and Linux families). The relevant information is then used to evaluate 
automatically the benchmark measures (the same module is used for Windows and Linux). 

3. PostMark Dependability Benchmark Implementation and Results  

PostMark creates a large pool of continually changing files and measures the transaction rates for a workload 
emulating Internet applications such as e-mail or netnews. It generates an initial pool of random text files 
ranging in size from a configurable low bound to a configurable high bound. The file pool is of configurable 
size and can be located on any accessible file system. The workload of this benchmark, referred to as 
PostMark for simplicity, is responsible for realizing a number of transactions. Each transaction consists of a 
pair of smaller transactions: i) create file or delete file and ii) read file or append file. PostMark is developed 
in C language.  

From a practical point of view PostMark needs to be compiled separately for each OS. Six versions of 
Windows OSs are targeted: Windows NT4 Workstation with SP6, Windows 2000 Professional with SP4, 
Windows XP Professional with SP1, Windows NT4 Server with SP6, Windows 2000 Server with SP4 and 
Windows 2003 Server. In the rest of this chapter, Windows 2000 Professional and Windows NT4 
Workstation will be referred to as Windows 2000 and Windows NT4 respectively. Four Linux OSs (Debian 
distribution) are targeted: Linux 2.2.26, Linux 2.4.5, Linux 2.4.26 and Linux 2.6.6. Each of them is a 
revision of one of the stable versions of Linux (2.2, 2.4, 2.6). Table 3 summarizes the number of system calls 
targeted by the benchmark experiments carried out along with the number of corresponding parameters and 
the number of experiments for each OS.  

Windows family     Linux family 

 W- NT4 W- 2000 W- XP W- NT4S W- 2000S W- 2003S L- 2.2.26 L- 2.4.5 L- 2.4.26 L- 2.6.6 

# System Calls  25 27 26 25 27 27 16 16 16 17 

# Parameters 53 64 64 53 64 64 38 38 38 44 

# Experiments 418 433 424 418 433 433 206 206 206 228 

Table 3: Number of system calls, corrupted parameters and experiments for each OS, using 
PostMark 

OS robustness is given in Figure 4. It shows that all OSs of the same family are equivalent, which is in 
conformance with our previous results, related to Windows using TPC-C Client [Kalakech et al. 2004b]. It 
also shows that none of the catastrophic outcomes (Panic or Hang OS states) occurred for all Windows and 
Linux OSs. Linux OSs notified more error codes (59-67%) than Windows (23-27%), while more exceptions 
were raised with Windows (17-22%) than with Linux (8-10%). More no-signaling cases have been observed 
for Windows (55-56%) than for Linux (25-32%). In [Shelton et al. 2000] it was observed that on the one 
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hand Windows 95, 98, 98SE and CE had a few Catastrophic failures and on the other hand Windows NT, 
Windows 2000 and Linux are more robust and did not have any Catastrophic failures, as in our case.  
 

Windows family    Linux family 

 

Figure 4: OS Robustness (%), using PostMark  

The reaction time is given in Figure 5. Globally, Windows OSs have shorter response times than Linux 
OSs. The standard deviation is significantly larger than the average for all OSs. Except for the two revisions 
of Linux 2.4, τreac is always larger than Treac, the reaction time in the presence of faults. This can be 
explained by the fact that after parameter corruption, the OS detects the anomaly in almost 45% of cases for 
Windows and 75% of cases for Linux, and stops system call execution, returns an error code or notifies an 
exception.  

 
Windows family 

 

Linux family 

 
                       Without faults (τreac)  With faults (Treac)  

Figure 5: Reaction time (in micro seconds), using Postmark 

Note that for the Windows family, Windows XP has the lowest reaction time in the presence of faults and for 
the Linux family, Linux 2.6.6 has the lowest reaction time. For Linux 2.6.6, we notice that  τreac is almost 
two times larger than for the other revisions. A detailed analysis of the results showed that this is due to one 
system call, execve, for which the execution time is 15000 µs for Linux 2.6.6 and 6000 µs for other versions. 

The restart times are shown in Figure 6. The average restart time without faults, τres, is always lower than 
the average restart time with faults (Tres), but the difference is not significant. Linux seems to be globally 
faster (71-83s) than Windows (74-112s). However, if we consider only OS versions introduced in the market 
after 2001, the other OSs rank as follows: Linux 2.2.26 (71s), Windows XP (74s), Windows 2003 server 
(77s), Linux 2.4.5 (79s), Linux 2.6.6 (82s), Linux 2.4.26 (83s). 

Part Eval - APPENDIX [Kanoun et al. 2007] p 9



 

10 

 

Windows family 

 

Linux family 

 

            Without faults   With faults 

Figure 6: Restart time (in seconds), using Postmark 

Concerning Linux family, we note that the restart time increases with new versions or revisions, except for 
Linux 2.6.6. This progression is due to the increasing size of kernels with the version evolution. The 
exception of Linux 2.6.6 is justified by the fact that the Linux kernel was restructured in its version 2.6.  

4. JVM Dependability Benchmark Implementation and Results 

Java Virtual Machine (JVM) is a software layer between the OS and Java applications, allowing applications 
in Java language to be platform independent. The specifications of the virtual machine [Lindholm & Yellin 
1999] are independent from the hardware platform but each platform requires a specific implementation. The 
benchmark based on JVM has been applied to three Windows versions (NT, 2000 and XP) and to the four 
Linux versions considered in the previous section. In this benchmark, JVM is solicited through a small 
program allowing to display «Hello World» on the screen. This program activates 76 system calls with 
parameters for Windows family and 31 to 37 system calls with parameters for Linux Family, as indicated in 
Table 4. These system calls are intercepted and corrupted using the corruption technique presented in Section 
2.3, which leads to the number of experiments indicated in the last line for each OS.  

           Windows family   Linux family 

 W- NT4 W- 2000 W- XP L- 2.2.26 L- 2.4.5 L- 2.4.26 L- 2.6.6 

# System Calls 76 76 76 37 32 32 31 

# Parameters 216 214 213 86 77 77 77 

# Experiments 1285 1294 1282 457 408 408 409 

Table 4: Number of system calls, corrupted parameters and experiments for each OS, using JVM 

Robustness is given in Figure 7. As for PostMark workload, no Hang or Panic states have been observed. It 
can be noticed that the three Windows versions are equivalent, as well as the Linux versions.  

Comparison with Figure 4 shows that the robustness of each family is the same using PostMark or JVM 
workloads (within 5% discrepancy). Further more, we have observed the same robustness for Windows 
versions using TPC-C as workload in our previous work [Kalakech et al. 2004a]. The three workloads solicit 
different numbers of systems calls and only some of them are the same. Nevertheless they lead to the same 
robustness. 
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Windows family Linux family 

 

Figure 7: Robustness measures with JVM 

The reaction times in the presence of faults (and without fault) are given in Figure 8. Note that for the 
Windows family, XP has the lowest reaction time, and for the Linux family, 2.6.6 has the lowest one. 
However, the reaction times of Windows NT and 2000 are very high. A detailed analysis showed that the 
large response time for Windows NT and 2000 are mainly due to system calls LoadLibraryA, LoadLibraryExA 
and LoadLibraryEXW. Not including these system calls when evaluating the average of the reaction time in the 
presence of faults leads respectively to 388µs, 182µs and 205µs for NT4, 2000 and XP. For Linux, the 
extremely high values of the reaction times without faults are due to two system calls (sched_getparam and 

sched_getscheduler). Their execution times are significantly larger without fault than in the presence of faults. 
A detailed analysis of the results showed that for these two system calls, most of the corruption experiments 
ended with an error code (SEr). Thus, we assume that the system calls were abandoned after an early 
anomaly detection by the OS. Also for Linux, the reaction times in the presence of faults are relatively high. 
This is due to three system calls (execve, getdents64 and nanosleep). Not including the reaction times 
associated with these system calls leads respectively to a Treac of 88µs, 241µs, 227µs and 88µs for the 
2.2.26, 2.4.5, 2.4.26 and 2.6.6 versions.  

 
Windows family 

 

Linux family 

 
                         Without faults (τreac)  With faults (Treac)  

Figure 8: OS reaction time (in micro seconds), using JVM 

The restart times are given in Figure 9. As for PostMark workload, the average restart time without faults, 
τres, is always lower than the benchmark restart time (in the presence of faults), Tres, but the difference is 
not significant. The standard deviation is very large for all OSs. Linux 2.2.26 and Windows XP have the 
lowest restart time (71 seconds, in the absence of fault)) while Windows NT and 2000 restart times are 
around 90 seconds and those of Linux versions 2.4.5, 2.4.26 and 2.6.6 are around 80 seconds.  

It is interesting to note that the order of the OSs considered is the same for PostMark and for JVM, except for 
Windows NT and 2000 (which have the highest restart times). Indeed, the only change concerns Windows 
2000 whose restart time is slightly decreased for JVM, making it better than Windows NT. 
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Windows family 

 

Linux family 

 
        Without faults   With faults 

Figure 9: OS restart time (in seconds), using JVM  

5. Results Refinement 

The benchmark temporal measures are refined to provide more insights into those presented in Sections 3 
and 4. We first consider PostMark, then JVM. For each of them, we mainly detail the temporal measures. 

5.1. PostMark 

5.1.1 Reaction time 

Table 5 presents the detailed reaction times with respect to OS outcomes after execution of corrupted system 
calls (Error Code, Exception and No Signaling). Thus, three average times are added to detail Treac: TSEr, 
TSXp (the times necessary to return respectively an error code or an exception) and TSNS (the execution time 
of the corrupted system call, in case of no-signaling state). 

For Windows family, it can be seen that for versions 2000, 2000 Server, XP and 2003 Server, returning an 
error code takes less time than notifying an exception. This can be explained by the fact that when returning 
an error code, tests are carried out on the parameter values at the beginning of the system call code and the 
system call is abandoned, while the exceptions are raised from a lower level of the system under 
benchmarking. Nevertheless, in the cases of Windows NT4 and NT4 Server, TSEr is higher than TSXp. The 
cause of this anomaly lies in the long time necessary to GetCPInfo system call to return an error code when its 
first parameter is corrupted.   

Concerning Linux family, the averages presented in this table do not take into account execve system call 
execution time. Cells in grey correspond to high values of the standard deviation and are commented 
hereafter. We notice the high values of TSNS corresponding to the two revisions of version 2.4, compared to 
the two other versions. The very high standard deviation suggests a large variation around the average, which 
is confirmed in Figure 10 that gives the OS reaction time for all system calls leading to the no-signaling state 
for all Linux OSs. We can clearly see that for Linux 2.4 the average time necessary for executing mkdir is 
more than 10 times larger than for all other system calls. We have noticed that mkdir has an extremely long 
execution time when its second parameter (which corresponds to the permissions to apply on the newly 
created folder) is corrupted. 
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Windows Family 
 NT4 2000 XP 
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev. 
Treac 148 µs 219 µs 118 µs 289 µs 114 µs 218 µs 
TSEr 45 µs 107 µs 34 µs 61 µs 45 µs 118 µs 
TSXp 40 µs 15 µs 37 µs 15 µs 50 µs 96 µs 
TSNS 234 µs 437 µs 186 µs 375 µs 168 µs 265 µs 

 NT4 Server 2000 Server 2003 Server 
Treac 110 µs 221 µs 131 µs 289 µs 102 µs 198 µs 
TSEr 41 µs 66 µs 29 µs 33 µs 25 µs 61 µs 
TSXp 35 µs 15 µs 37 µs 15 µs 48 µs 20 µs 
TSNS 166 µs 280 µs 210 µs 396 µs 156 µs 252 µs 
Linux Family 
 2.2.26 2.4.5 2.4.26 2.6.6 
Treac 167 µs 300 µs 466 µs 2276 µs 425 µs 2055 µs 93 µs 12 µs 
TSEr 208 µs 361 µs 92 µs 105 µs 84 µs 6 µs 91 µs 10 µs 
TSXp 88 µs 5 µs 91 µs 8 µs 91 µs 8 µs 106 µs 13 µs 
TSNS 85 µs 5 µs 1545 µs 4332 µs 1405 µs 3912 µs 91 µs 11 µs 

Table 5:  Detailed reaction time, using PostMark 

Also, a very large average time to return an error code is observed for Linux 2.2.26, with a high standard 
deviation. Figure 11 details the times necessary to return error codes for Linux system calls. It is clear that 
these times are very similar except for unlink system call in Linux 2.2.26, which explains the high TSEr of 
Linux 2.2.26 compared to the other versions. After discarding the exceptional values corresponding to 
execve, mkdir and unlink system calls, the average reaction times  Treac of the four targeted Linux OSs become 
very close. The largest difference is of 8µs. Also, the average reaction times with respect to OS outcomes 
after execution of corrupted system calls (TSEr, TSXp, TSNS) become very close. The largest difference is of 
18µs. Furthermore, τreac and  Treac become very close. 

 
Figure 10: Linux reaction time in case of SNS (in micro seconds), using PostMark 
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Figure 11: Linux reaction time in case of SER (in micro seconds), using PostMark 

5.1.2 Restart time 

Detailed analyses show that all OSs of the same family have similar behavior and that the two families 
exhibit very different behaviors.  

For Windows, there is a correlation between the restart time and the state of the workload at the end of the 
experiment. When the workload is completed, the average restart time is statistically equal to the restart time 
without parameter substitution. On the other hand, the restart time is larger and statistically equal for all 
experiments with workload abort/hang. This is illustrated in Figure 12 in case of Windows NT, 2000 and 
NT. For example, the average restart time in case of workload completion is 73 s and 80 s in case of 
workload abort/hang, for Windows XP. 

Linux restart time is not affected by the workload final state. Detailing Linux restart times shows high values 
appearing periodically. These values correspond to a “check-disk” performed by the Linux kernel every 26 
Target Machine restarts. This is illustrated for Linux 2.2.26 and 2.6.6 in Figure 13, and induces an important 
standard deviation on this measure. Also, it is interesting to note that the check-disk duration decreases with 
the version evolution, while the regular restart time increases. It seems natural for the time needed to 
complete a check-disk to decrease while the Linux kernel evolves. The increase of the regular restart time 
may be due to the increasing size of Linux kernels.  
5.2. JVM  

5.2.1 Reaction time 

Similarly to Table 5, Table 6 presents the detailed reaction times with respect to OS outcomes after 
execution of corrupted system calls (Error Code, Exception and No Signaling). 
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Figure 12: Detailed Windows restart time, using PostMark  

 

Figure 13: Detailed Linux restart time, using PostMark  
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Windows Family 
 NT4 2000 XP 
 Avg. S. Dev. Avg. S. Dev. Avg. S. Dev. 
Treac 388 µs 3142 µs 190 µs 451 µs 214 µs 483 µs 
TSEr 298 µs 3006 µs 47 µs 110 µs 51 µs 103 µs 
TSXp 424 µs 3862 µs 84 µs 168 µs 98 µs 209 µs 
TSNS 417 µs 2858 µs 307 µs 588 µs 344 µs 625 µs 
Linux Family 
 2.2.26 2.4.5 2.4.26 2.6.6 
Treac 88 µs 85 µs 241 µs 1479 µs 227 µs 1438 µs 88 µs 26 µs 
TSEr 90 µs 101 µs 79 µs 6 µs 84 µs 30 µs 86 µs 8 µs 
TSXp 87 µs 7 µs 85 µs 8 µs 87 µs 8 µs 98 µs 15 µs 
TSNS 84 µs 6 µs 572 µs 2545 µs 523 µs 2545 µs 89 µs 43 µs 

Table 6:  Detailed reaction time, using JVM 

For Windows family, the averages presented in this table do not take into account LoadLibraryA, 
LoadLibraryExA and LoadLibraryExW system call execution times. As in the case of the use of the PostMark 
workload, we notice that for Windows 2000 and Windows XP TSEr is higher than TSXp, which is higher 
than TSNS. The standard deviations for these measures are rather small. On the other hand, for Windows 
NT4 TSEr is lower than TSXp. Figure 14 details the times necessary to raise exceptions for Windows system 
calls. It is clear that these times are similar except for the system call FindNextFileW. The execution time of 
this system call is greater than  
13400 µs for Windows NT4 while for the other Windows OSs it is smaller than 75 µs. It is noteworthy that 
the execution time of this system call is also the cause for the large values for TSE and TSXp in the case of 
NT4. 

Concerning Linux family, the averages presented in this table do not take into account execve, getdents64 and 
nanosleep system call execution times. As in the case of the use of the PostMark workload, we notice the 
high values of TSNS corresponding to the two revisions of version 2.4, compared to the two other versions. 
The very high standard deviation suggests a large variation around the average, which is confirmed in Figure 
15 that gives the OS reaction time for all system calls leading to the no-signaling state for all Linux OSs. As 
in the case of the use of PostMark workload, for Linux 2.4 the average time necessary for executing mkdir is 
more than 10 times larger than for all other system calls. 

After discarding the exceptional values corresponding to execve, getdents64, nanosleep and mkdir system calls, 
the average reaction times Treac of the four targeted Linux OSs become very close. The largest difference is 
of 15µs. Also, the average reaction times with respect to OS outcomes after execution of corrupted system 
calls (TSEr, TSXp, TSNS) become very close. The largest difference is of 28µs. Furthermore,  τreac and 
 Treac become very close (if we discard the executions times for sched_getparam and sched_getscheduler 
system calls).  
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Figure 14: Windows reaction time in case of SXp (in micro seconds), using JVM 

 

 

Figure 15: Linux reaction time in case of SNS (in micro seconds), using JVM 

5.2.2 Restart time 

As in the case of the use of PostMark workload, for Windows, there is a correlation between the restart time 
and the state of the workload at the end of the experiment. When the workload is completed, the average 
restart time is statistically equal to the restart time without parameter substitution. On the other hand, the 
restart time is larger and statistically equal for all experiments with workload abort/hang. This is illustrated 
in Figure 16. For example, for Windows XP, the average restart time in case of workload completion is 68 s 
and 82 s in case of workload abort/hang. 

As in the case of PostMark workload, Linux restart time is not affected by the workload final state. Detailing 
the restart times shows high values appearing periodically, due to a “check-disk” performed by the kernel 
every 26 Target Machine restarts. This is illustrated for Linux 2.2.26 and 2.6.6 in Figure 17. Also, it is 
noteworthy that the check-disk duration decreases with the version evolution, while the regular restart time 
increases. 
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Figure 16: Detailed Windows restart time, using JVM  

 

  

Figure 17: Detailed Linux restart time, using JVM  

5.3. PostMark and JVM  

OS robustness of all OSs with respect to PostMark and JVM workloads is synthesized in Table 7. It shows 
that none of the catastrophic outcomes (Panic or Hang OS states) occurred for all Windows and Linux OSs. 
It also shows that Linux OSs notified more error codes (57%-67%) than Windows (23%-27%), while more 
exceptions were raised with Windows (17%-25%) than with Linux (7%-10%). More no-signaling cases have 
been observed for Windows (52%-56%) than for Linux (25%-33%). For Linux family, Linux 2.2.26 seems 
to have the most robust behavior (the smallest proportion of no-signaling) while for Windows family, the 
differences between OSs are too small to differentiate them clearly. 
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 PostMark JVM 

 SEr SXp SNS SEr SXp SNS 

Linux 2.2.26 67.5% 7.8% 24.8% 65.6% 7.4% 26.9% 
Linux 2.4.x 66.0% 7.8% 26.2% 57.1% 9.8% 33.1% 
Linux 2.6.6 58.8% 9.7% 31.6% 57.7% 8.8% 33.5% 

Windows NT4 27.0% 17.5% 55.5% 24.5% 21.8% 53.6% 
Windows 2000 24.5% 20.3% 55.2% 24.8% 22.8% 52.3% 
Windows XP 23.1% 20.7% 56.1% 24.7% 22.8% 52.4% 

Table 7: Linux and Windows robustness using PostMark and JVM 

The reaction times in the presence of faults are globally smaller for Windows family OSs than for Linux 
family OSs (if we exclude a few systems calls for which the reaction time is exceptionally very long). We 
have noticed that the execution times of a minority of system calls can have important consequences on the 
mean reaction time values. For instance, the execution time of mkdir system call for Linux 2.4 biases the 
Treac measure. High standard deviations on this measure are due to a minority of system calls with very 
large reaction time compared to the majority. If we discard these exceptional values, Treac and τreac become 
very close. Moreover, Treac for Windows and Linux families become close.  

The restart times in the presence of faults (Tres) are always higher than the restart times without faults 
(τres). The lowest Tres was observed for Linux 2.2.26 and Windows XP (71 s). For Windows family, the 
restart time is higher in case of workload abort/hang both when using PostMark and JVM as workloads. For 
Linux family, the standard deviation on this measure is high because of check-disks performed every 26 
Target Machine restarts. We have noticed that check-disks take a longer time to perform when using JVM as 
workload than when using PostMark. The regular restart time is the same both when using PostMark and 
JVM. 

The ordering of the OSs with respect to the restart time is the same for Postmark and JVM except for 
Windows 2000, for which the restart time is better than Windows NT using JVM while it is worse when 
using PostMark. 

6. Benchmark Properties 

In order to gain confidence in dependability benchmark results, one has to check that the key properties are 
fulfilled. These properties are addressed successively in the rest of this section. We first define the property 
then we show what has been achieved to satisfy and check it. 

6.1. Representativeness 

Representativeness concerns the benchmark measures, the workload and the faultload. 

6.1.1 Measures 

The measures evaluated provide information on the OS state and temporal behavior after execution of 
corrupted system calls. We emphasize that these measures are of interest to a system developer (or 
integrator) for selecting the most appropriate OS for his/her own application. Of course other measures 
would help. 
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6.1.2 Workload 

We have selected two benchmark workloads whose characteristics, in terms of system calls activated, are 
detailed hereafter. Nevertheless, the selection of any other workload does not affect the concepts and 
specification of our benchmark. 

PostMark workload activates system calls belonging to functional components: file management, thread 
management, memory management and system information. Most of system calls belong to the file 
management functional component (62% for Linux, 48% for Windows). However, a significant amount of 
system calls belong to the thread management (32% for Linux, 12% for Windows) and to the memory 
management (8% for Linux, 19% for Windows) functional components. PostMark workload is 
representative if the OS is used as a file server.  

JVM workload activates system calls belonging to various functional components (file management, thread 
management, memory management, user interface, debugging and handling, inter-process communication). 
Most of the activated system calls belong to the following components: file management (40% for Linux, 
26% for Windows), thread management (24% for Linux, 36% for Windows), memory management (24% for 
Linux, 11% for Windows). JVM workload insures a fair distribution of system calls with respect to 
functional components. It is noteworthy that, among all system calls (available in Linux), most of them 
belong to functional components file, thread and memory management. 

6.1.3 Faultload 

The faultload is without any doubt the most critical component of the OS benchmark and more generally of 
any dependability benchmark. Faultload representativeness concerns i) the parameter corruption technique 
used and ii) the set of corrupted parameters.  

Parameter corruption technique 

In our previous work [Jarboui et al. 2002], performed for Linux, we have used two techniques for system 
call parameter corruption: the systematic bit-flip technique consisting in flipping systematically all bits of the 
target parameters (i.e., flipping the 32 bits of each considered parameter) and the selective substitution 
technique described in Section 2. This work showed the equivalence of the errors induced by the two 
techniques. In [Kalakech et al. 2004b] we obtained the same robustness for Windows 2000 using the 
systematic bit-flip technique and the selective substitution technique.  

The application of the bit-flip technique requires much more experimentation time compared to the 
application of selective substitution technique. Indeed, in the latter case, the set of values to be substituted is 
simply determined by the data type of the parameter (see Section 2), which leads to a more focused set of 
experiments. We have thus preferred the selective substitution technique for pragmatic reasons: it allows 
derivation of results that are similar to those obtained using the well-known and accepted bit-flip fault 
injection technique, with much less experiments. Our benchmark is based on selective substitutions of 
system call parameters to be corrupted.  

Parameters to be corrupted  

The selective substitution technique used is composed of a mix of three corruption techniques as mentioned 
in Section 2: out-of-range data (OORD), incorrect data (ID) and incorrect addresses (IA). Let us denote the 
faultload used in our benchmarks by FL0. To analyze the impact of the faultload, we consider two subsets, 
including respectively i) IA and OORD only (denoted FL1), and ii) OORD only (denoted FL2). For each 
workload (PostMark and JVM), we ran the benchmarks of all OSs considered using successively FL0, FL1 
and FL2. The results obtained confirm the equivalence between Linux family OSs as well as the equivalence 
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between Windows family OSs, using the same faultload (FL0, FL1 or FL2). Note that for each OS, its 
robustness with respect to FL0, FL1 or FL2 is different but the robustness of all OSs of the same family with 
respect to the same faultload is equivalent. The same results have been obtained in [Kalakech et al. 2004b], 
using TPC-C Client as workload.  

The number of substitutions (hence the number of experiments) decreases significantly when considering 
FL1 and F2. By way of examples, Table 8 gives the number of experiments for Windows NT4 and Linux 2.4 
for PostMark and Figure 18 shows the robustness of Windows NT4, 2000 and XP with respect to FL1 and 
FL2, for PostMark. (robustness with respect to FL0 is given in Figure 3). 

 
 ID IA OORD 

# experiments, PostMark 
Windows NT4 

# experiments, PostMark  
(Linux 2.4) 

FL0 x x x 418 206 
FL1  x x 331 135 
FL2   x 77 55 

Table 8: Faultloads considered 

FL1   FL2 

 

Figure 18: OS Robustness using FL1 and FL2 (%), using PostMark 

Further validation concerning selective substitution 

For each parameter type class, we performed a sensitivity analysis regarding specific values of parameter 
substitution. This analysis revealed that different random values chosen to substitute the original parameter 
lead to the same outcome of benchmark experiments. Hence the benchmark results are not sensitive to the 
specific values given to the corrupted parameters as substitution values. 

Moreover, we checked the representativeness of incorrect data faults. One could argue that the OS is not 
assumed to detect this kind of faults as the substitution values are inside the validity domain of the parameter 
type. The analysis of the execution traces corresponding to experiments with incorrect data substitution that 
led to notification of error codes in the case of Linux, revealed that 88.6% of the faults correspond to out-of-
range data in the very particular context of the workload execution. Consequently, the notification of error 
codes was a normal outcome in these cases. Incorrect data are thus very useful: they can provide a practical 
way for generating out-of-range data in the execution context. Note that an enormous effort would be needed 
to analyze all execution contexts for all system calls to define pertinent substitution values for each execution 
context.  
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6.2. Repeatability and Reproducibility 

The benchmarking of a given system can be based either on an existing benchmark implementation (an 
existing prototype) or on an existing specification only. Repeatability concerns the benchmark prototype 
while reproducibility is related to the benchmark specification.  

Repeatability is the property that guarantees statistically equivalent results when the benchmark is run more 
than once in the same environment (i.e., using the same system under benchmark and the same prototype). 
This property is central to benchmarking. Our OS dependability benchmark is composed of a series of 
experiments. Each experiment is run after system restart. The experiments are independent from each other 
and the order in which the experiments are run is not important at all. Hence, once the system calls to be 
corrupted are selected and the substitution values defined, the benchmark is fully repeatable. We have 
repeated all the benchmarks presented three times to check for repeatability. 

Reproducibility is the property that guarantees that another party obtains statistically equivalent results when 
the benchmark is implemented from the same specification and is used to benchmark the same system. 
Reproducibility is strongly related to the amount of details given in the specification. The specification 
should be at the same time i) general enough to be applied to the class of systems addressed by the 
benchmark and ii) specific enough to be implemented without distorting the original specification. We 
managed to satisfy such a tradeoff. Unfortunately, we have not checked explicitly the reproducibility of the 
benchmark results by developing several prototypes by different people. On the other hand, the results seem 
to be independent from the technique used to corrupt system call parameters. This makes us confident about 
reproducibility. However, more verification is still required. 

6.3. Portability 

Portability concerns essentially the faultload (i.e., its applicability to different OS families).  

At the specification level, in order to ensure portability of the faultload, the system calls to be corrupted are 
not identified individually. We decided to corrupt all system calls of the workloads. This is because OSs 
from different families do not necessarily comprise the very same system calls as they may have different 
APIs. However, most OSs feature comparable functional components.  

At the implementation level, portability can only be ensured for OSs from the same family because different 
OS families have different API sets.  

Let us consider the case of PostMark as an example, the first prototype developed concerns Windows 2000. 
It revealed to be portable without modification for Windows 2000 Server and Windows 2003 Server 
(PostMark activates the same 27 system calls with parameters), and with minor adaptations for the others. 
One system call (FreeEnvironmentStringA) is not activated under Windows NT4, NT4 Server and XP and 
another system call (LockResource) is not activated under NT4 and NT4 Server. In these cases, the system 
calls that are not activated are dropped from the substitution values database.  

For Linux, the prototype revealed to be portable across all OSs except the interceptor Strace that is kernel-
dependent. Consequently, we used one version of Strace for Linux 2.2 and 2.4 and another version for Linux 
2.6. Also, PostMark activates the same system calls for Linux 2.2.26 and 2.4 while it activates a 
supplementary system call (mmap2) for Linux 2.6.6. Consequently, we added this system call to the set of 
activated system calls and an entry in the substitution values database.  
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6.4. Cost  

Cost is expressed in terms of effort required to develop the benchmark, run it and obtain results. These steps 
require some effort that is, from our point of view, relatively affordable. In our case, most of the effort was 
spent in defining the concepts, characterizing the faultload and studying its representativeness. The 
implementation of the benchmark itself was not too time consuming.  

Let's first consider PostMark, then JVM (which benefited a lot from the PostMark benchmarks as all 
benchmark components did exist and we had only to adapt them). 

For PostMark, the benchmark implementation and running took us less than one month for each OS family, 
spread as follows:  

• The installation of PostMark took one day both for Windows and Linux. 
• The implementation of the different components of the controller took about two weeks for each 

OS family, including the customization of the respective interceptors (Detours and Strace).  

• The implementation of the faultload took one week for each OS family, during which we have 
i) defined the set of substitution values related to each data type and ii) created the database of 
substitution values. Both databases are portable on OSs belonging to their family (one database 
for Windows family and one database for Linux family). However, small adaptations were 
necessary (see Section 6.3). 

• The benchmark execution time for each OS is less than two days. 

The duration of an experiment with workload completion is less than 3 minutes (including the time to 
workload completion and the restart time), while it is less than 6 minutes without workload completion 
(including the watchdog timeout and the restart time). Thus, on average, an experiment lasts less than 5 
minutes. The series of experiments of a benchmark is fully automated. Hence, the benchmark execution 
duration ranges from one day for Linux to less than two days for Windows (25-27 system calls are activated 
by PostMark on Windows, while only 16-17 system calls are activated on Linux). 

For JVM, the first step consisted in executing JVM for each OS to be benchmarked, to identify system calls 
activated. The second step was devoted to define, for each system call, the parameters to be corrupted and 
the exact substitution values, to prepare the database to be used in the Interception/substitution/observation 
modules. This step took a couple of days for Linux family (activating 31-37 system calls depending on the 
version considered) and the double for Windows as it activates 76 system calls. Adaptation of the benchmark 
controller and of the Interception/substitution/observation modules required about one day for each family. 
The benchmark duration ranges from one day for each Linux OS to less than three days for each Windows 
OS.  

7. Conclusion 

We presented the specification of a dependability benchmark for OSs with respect to erroneous parameters 
in system calls, along with prototypes for two families of OSs, Windows and Linux and for two workloads. 
These prototypes allowed us to obtain the benchmark measures defined in the specification. We stress that 
the measures obtained for the different OSs are comparable as i) the same workloads (PostMark and JVM) 
were used to activate all OSs, ii) the faultload corresponds to similar selective substitution techniques applied 
to all system calls activated by the workload and iii) the benchmark conduct was the same for all OSs. 

Concerning the robustness measure, the benchmark results show that all OSs of the same family are 
equivalent. They also show that none of the catastrophic states of the OS (Panic or Hang) occurred for any 
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of the Windows and Linux OSs considered. Linux OSs notified more error codes than Windows while more 
exceptions were raised with Windows than with Linux. More no-signaling cases have been observed for 
Windows than for Linux. 

Concerning the OS reaction time, results show that globally Linux reaction time, related to system calls 
activated by the workload is longer than Windows reaction time. Refinement of this measure revealed a great 
variation around the average and that a minority of system calls with large execution times dodged the 
average. When these system calls are not considered, the reaction times of all the OSs of the same family 
become equivalent.  

With respect to the restart time measure, Windows XP and Linux 2.2.26 have the shortest restart times in the 
presence of faults (71 s). Detailed analysis showed i) a correlation between Windows restart time and the 
workload final state (in case of workload hang or abort, the restart time is 10 % higher than in case of 
workload completion) and ii) that Linux performs a check-disk after each 26 restarts. A restart with a check-
disk is three to four times longer than the average. 

We validated our benchmark paying a particular attention to representativeness of faultload, and to the 
properties of repeatability, reproducibility, portability and cost effectiveness of the benchmark.  
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Abstract2 
Web Service security is an important factor for 
Web Services to gain increased acceptance. 
This paper presents how message level security 
is achieved in web services interactions and we 
evaluate a number of commonly used 
cryptographic algorithms to determine which 
are most suitable for the task. In particular we  
explore whether VeriSign’s Trusted Services 
Integration Kit (TSIK) is a viable option for 
realising this. Furthermore, through 
measurement of TSIK as well as of an 
implementation using Java Cryptography 
Extensions (JCE), we conclude that TSIK 
provides an adequate level of security with 
minimal additional overheads. However, it 
would benefit from using SHA-256 and IDEA 
in future releases as well as decreasing 
algorithm operation time when processing 
larger messages. 

  
 
1. Introduction 
 
Since the advent of the World Wide Web, e-
commerce has become a major source of 
interest for both businesses and customers. 
Since most transactions typically occur over 
the Internet, in the public domain, much 
research has been undertaken to use 
cryptographic algorithms to secure messages 
during these online transactions. Though 
emphasis has been primarily placed on the 
level of security which such algorithms 
provide, it is also of interest to evaluate their 
efficiency at doing so. This is particularly 
relevant in areas such as stock trading or online 

                                                 
1 Communicating author, 
C.J.Lamprecht@ncl.ac.uk 

bidding where the dynamic nature of the data 
accessed imposes real-time constraints on the 
transaction. 

 
More recently Web Services have been met 
with growing interest from academia as well as 
industry due to its potential to provide a 
generic global service oriented network which 
is flexible enough to cater for individual 
service needs as well as providing increased 
interoperability between services. As such, e-
commerce could benefit greatly from adopting 
Web Services technologies. 
 
In this paper we will present three different 
cryptographic methods typically used to secure 
messages during online transactions. For each 
we will consider the available algorithms and 
conduct a comparative evaluation based on 
their performance. This will aid in determining 
suitable cryptographic algorithms for 
transactions with real-time constraints. We also 
consider Web Services’ claim as a potential 
solution environment and evaluate Verisign’s 
Trusted Services Integration Kit (TSIK), a 
hybrid solution based on a set of cryptographic 
algorithms, with respect to the level of security 
it provides as well as its efficiency at doing so.  
 
We first discuss, in Section 2, what 
cryptographic methods are required to secure 
messages in online transactions and in Section 
3 provide a comparative analysis of available 
algorithms using the Sun Java Cryptography 
Extensions (JCE) [SunJCE2005] as well as the 
Cryptix extensions for Java [Cryptix2005]. 
Section 4 details a comparative evaluation of 
TSIK’s performance and level of security it 
provides with respect to using the Sun Java 
Cryptography Extensions. The paper concludes 
with a summary in Section 5. 
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2. Securing Transactions 
 
Online transactions typically require: message 
integrity to ensure messages are unaltered 
during transit; message confidentiality to 
ensure message content remain secret; non-
repudiation to ensure that the sending party 
cannot deny sending the received message; and 
sender authentication to prove sender identity. 
 
We provide a brief overview of the well-
known cryptographic techniques available to 
achieve the above. 
 
2.1 Symmetric cryptography 
 
Symmetric cryptography tries to ensure 
message confidentiality by encrypting the 
message (the plaintext) using a secret key to 
produce an encrypted version of the message 
(the cipher text), which is then sent instead of 
the original message. Message integrity is 
implicitly provided, as altering the cipher text 
would result in an illegible decrypted message. 
‘Symmetric’ refers to the fact that the same 
secret key is required to decrypt the message 
on the recipient’s side. Typical symmetric 
encryption algorithms include DES, Triple 
DES, RC2, RC5, Twofish, Blowfish, IDEA 
and AES. Most symmetric algorithms can 
operate in two modes, namely Cipher Block 
Chaining Mode (CBC) or Electronic Codebook 
Mode (ECB). The former of which is 
considered more secure as it ensures that 
encrypting the same plaintext never produces 
the same cipher text. The main problem in this 
scheme is the key distribution problem; since 
the same secret key is used to decrypt the 
message, one must find a way to securely 
transport the key from sender to recipient. 
 
2.2 Asymmetric cryptography (public key 
cryptography) 
 
Asymmetric cryptography provides the same 
message security guarantees as symmetric 
cryptography, but additionally provides the 
non-repudiation guarantee. ‘Asymmetric’ 
refers to the fact that different keys are used 
for encryption and decryption. One key is kept 
secret (‘secret key’) and the other is made 
public (‘public key’), and are both unique. The 
recipient’s public key should be used during 

the encryption process to ensure message 
confidentiality as only the recipient has the 
necessary secret key to decrypt the message. If, 
however, the message is encrypted using the 
sender’s private key the sender cannot deny 
sending the message as his private key is 
unique and is only known to him. Typical 
asymmetric algorithms include RSA, ElGamal 
and DSA. Asymmetric cryptography is 
extremely powerful, but this comes at a cost. 
Especially for longer messages and keys, it is 
much slower than its symmetric cryptography 
counterparts [Adams2003]. This is due in part 
to the fact that, in order to achieve comparable 
security, asymmetric keys are generally around 
an order of magnitude longer than symmetric 
keys.  
 
2.3 Hashing 
 
Hashing tries to ensure message integrity by 
producing a condensed version of the message, 
known as the message digest, which is unique 
to that message. The hashing algorithm is 
publicly known and so the recipient can 
perform the same hash on the received 
message, to produce another message digest, 
and compare it to the received digest to asses 
whether the original message has been altered. 
Typical hashing algorithms include MD2, 
MD4, MD5, RIPEMD, SHA-1, SHA-256, 
SHA-384 and SHA-512. Hashing does not 
provide confidentiality, non-repudiation or 
authentication. On its own, hashing does not 
provide message integrity either as both the 
hash and the message could be replaced by a 
third party and so prevent the recipient from 
detecting the attack. Section 4.1 explains how 
hashing is utilized to ensure message integrity. 
 
 
3. Cryptographic Techniques 
 
The following section details a performance 
evaluation of the most common cryptographic 
algorithms for each cryptographic technique to 
determine their suitability for systems with 
real-time constraints. All experiments were 
conducted on a 1GHz machine with 256MB 
RAM running Linux Fedora Core. For each 
experiment a 1,137 byte plaintext file was 
used. All results for symmetric and asymmetric 
algorithms include key generation, algorithm 
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initialization and message encryption times. 
The experiments were repeated several times 
with negligible variance in the results. 
 
3.1 Symmetric cryptography 
 
This section details a comparative performance 
evaluation of a subset of symmetric encryption 
algorithms. Sun Java Cryptography Extensions 
[SunJCE2005] (referred to hereafter as JCE) as 
well as Java Cryptix Libraries [Cryptix2005] 
(referred to hereafter as Cryptix) are used for 
this purpose. Using Cryptix we furthermore 
investigate whether either Cipher Block 
Chaining Mode (CBC) or Electronic Codebook 
Mode (ECB) boasts a performance advantage. 
128 bit key size was used for all algorithms 
with the exception of DES (56 bits), DESede 
(Triple DES using 112 bits) and Skipjack (80 
bits) as they require fixed key sizes. Unless 
stated CBC mode was used. 
 
3.1.1 Algorithms 
 
Looking at Figures 1 and 2, the first 
observation to make is that there are significant 
differences between the observed durations 
shown in each graph; JCE took much longer 
than Cryptix for the same algorithm. The 
conclusion we draw from this is that the 
implementation has a large impact on the 
efficiency of the execution. This is further 
emphasized when individual algorithms are 
compared. Naively one would expect that 
Triple DES would take three times as long as 
DES. However, this is evidently not the case, 
being only about 25% slower in Cryptix and 
only very marginally slower in JCE. Clearly 
this is influenced by the implementation, and 
conceivably the Java Virtual Machine 
optimizations are also playing a part in 
apparently “speeding up” Triple DES. 
 
The algorithm which consistently performed 
the best in our evaluation was IDEA. 
According to Schneier [Schneier1996], IDEA 
is approximately twice as fast as DES; in our 
experiments it was closer to three times as fast. 
Perhaps surprisingly, Blowfish was much 
slower, only a little better than DES and slower 
than algorithms such as Skipjack and Serpent. 
Blowfish was designed to be fast and requires 

little memory [Schneier1996], but we did not 
find this Cryptix distribution particularly 
efficient in our experimental set up. AES 
(Rjindael) performed particularly badly in the 
JCE distribution, but less poorly in the Cryptix 
distribution. We were unable to satisfactorily 
explain this difference, except as further 
evidence of how the implementation of an 
algorithm can severely impact the actual 
performance. 
 
What is not evident in these plots is the relative 
security of the different algorithms. In this 
respect key length is a good indicator, and so 
DES and Skipjack may be considered to be 
potentially less secure than others. Overall 
therefore it appears that IDEA is the best 
choice among the symmetric algorithms tested, 
as it provides adequate security as well as a 
fast execution time. 
 
3.1.2 Encryption Mode 
 
Figure 3 clearly indicates that neither mode 
shows a significant performance advantage. It 
would therefore seem prudent to use CBC 
mode during message encryption as discussed 
in Section 2.1.  
 
3.2 Asymmetric cryptography (public key 
cryptography) 
 
The results presented in Figure 4 were 
obtained using the standard Java Cryptography 
Extensions (JCE). The graph shows the 
average time to generate keys and encrypt 
1,137 bytes of data. It can be seen that the RSA 
algorithm family outperforms that of Diffie-
Hellman at all key lengths in our experiments. 
A key length of 1024 bits is currently 
considered to be the minimum secure length 
for both RSA and Diffie-Hellman. Diffie-
Hellman with a key length of 1024 was also 
considered but yielded results 30 times slower 
than that of its RSA counterpart, and so is not 
shown for reasons of clarity. DSA also 
performed well but can only be used for non-
repudiation purposes and not for data 
confidentiality. RSA and Diffie-Hellman are 
able to support both. 
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A Bar Chart to Show how Symmetric Algorithms Performed
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Figure 1: Average time to encrypt a 1137B file using JCE distributions 

 
 
 

A Graph to show how Symmetric Algorithms Performed
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Figure 2: Average time to encrypt a 1137B file using Cryptix distributions 
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A Comparison of Symmetric Algorithms Operating in ECB mode and CBC mode
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Figure 3: A comparison of symmetric algorithms operating in ECB mode and CBC mode 
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Figure 4: Average time for key generation and encryption using public key algorithms 
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A Graph to Show how Message Digest Functions Performed
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Figure 5: Average time to generate a message digest 
 
 

 
3.3 Hashing 
 
Java Cryptix Libraries were used in this 
experiment. 128 bit key size was used for all 
MD algorithms, 160 bits for SHA (unless 
otherwise stated) and 190 bits for Tiger.  
 
As can be seen in Figure 5, SHA-1 
significantly outperforms all other considered 
algorithms. Unfortunately SHA-1 has recently 
been shown to be less secure than initially 
anticipated and SHA-256 is currently 
recommended [Lenstra2005]. RIPEMD with 
key sizes 128 bits and 160 have been 
developed to replace the 128 bit MD 
algorithms. Both RIPEMD algorithms seem to 
achieve comparable performance to that of 
SHA-256, though clearly have shorter key 
sizes and so potentially less secure. 
 

3.4 Summary 
 
The results presented suggest that RSA-1024 
and SHA-256 are the most suitable 
cryptographic algorithms for use during 
transactions in systems with real-time 
constraints. Almost any of the symmetric 
algorithms could be selected, but IDEA was 
shown to be the fastest in our evaluation. 
 
 
4. Hybrid system 
 
Web Services are built on open standards to 
provide a generic way of communication 
between heterogeneous environments. It 
therefore shows particular potential to be 
exploited within the e-commerce domain. In 
this section we investigate this further. In 
particular, we consider the combination of 
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cryptographic algorithms used in VeriSign’s 
Trusted Services Integration Kit (TSIK) and 
evaluate them based on the level of security 
they provide as well as their performance and 
so conclude whether it is a suitable alternative 
for transactions with real-time constraints. 
TSIK’s performance is evaluated through 
direct comparison with Java’s Cryptography 
Extensions (JCE). 
 
We therefore first detail the concepts that 
constitute such a hybrid system in Section 4.1. 
Section 4.2 analyses one element of the hybrid 
system, namely asymmetric cryptography, to 
aid in evaluating the level of security provided 
by TSIK, as detailed in Section 4.3, as well as 
understanding the results in Section 4.4. Final 
conclusions are drawn in Section 4.5. 
 
4.1 System functionality 
 
The hybrid system exhibits the following 
functionality, in which the techniques detailed 
in Section 2 are combined to achieve a more 
effective security solution through signing, 
verifying, encryption and decryption. They are 
combined as follows: 

 
The key, in symmetric cryptography, can be 
securely transported using public key 
cryptography by encrypting the symmetric key 
using the receiver’s public key. The receiver, 
and only the receiver, can then first decrypt the 
symmetric key using his private key and then 
decrypt the message using the decrypted 
symmetric key. Also note that only the key, 
which is relatively short, is encrypted using 
public key cryptography and so reduces 
encryption overhead. 
 
The message digest, produced by the hash 
function, can be encrypted using an 
asymmetric cryptography algorithm to avoid 
and interception attack. Thus, if the message 
digest is encrypted using the sender’s private 
key, only the message can be replaced during 
transit and not the message digest, since the 
interceptor does not have the sender’s private 
key to encrypt the new message digest.  
 
Generating a message digest and then 
encrypting the message digest using a private 
key is referred to as signing the message. 

Decrypting the message digest using the 
sender’s public key, generating a new message 
digest of the received message and then 
comparing the digests is called verifying the 
message. The performance results of these two 
techniques, among others, are analysed in this 
paper. 
 
Sender authentication is achieved when the 
sender’s public key is signed by a mutually 
trusted third party. The receiver can then 
verify the public key as the third party’s public 
key is trusted. 
 
4.2 RSA [Rivest1978] 
 
Understanding the security implications and 
performance results in Section 4.3 and Section 
4.4 requires a deeper understanding of public 
key cryptography. In particular RSA, which 
was developed by Ron Rivest, Adi Shamir and 
Leonard Adleman in 1977 and is used by 
VeriSign’s TSIK toolkit. We do not explain all 
the details of RSA, but instead focus on the 
particular use of RSA in our measurement 
setup. 
 
4.2.1 The algorithm [Rivest2003, Sun2005] 
 
• Choose 2 large primes p and q such that 

pq = N 
• Select 2 integers e and d such that  
 ed = 1 mod )(Nφ  

o Where )1)(1()( −−= qpNφ  is the 
Euler totient function of N 

 
In general, N is called the modulus, e the 
public exponent and d the private exponent. 
The public key is the pair (N, e) which is made 
public and the private key is the pair (N, d) 
which is kept secret. 
 
RSA encryption and decryption explained in 
context of the experiment scenario (Section 
4.1): 
 
Encryption: 
 

The symmetric key M: 
 Encrypted key = Me mod n 
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The message digest M: 
 Encrypted digest = Md mod n 
 

Decrypting: 
 
 The symmetric key C: 
 Decrypted key = Cd mod n 
 
 The message digest C: 
 Decrypted digest = Ce mod n 
 
Where M is the key or digest converted to an 
integer according to [RSALab2002], C the 
encrypted key or digest and n the particular 
modulus, chosen to be either 512, 1024, 2048, 
3072 or 4096. 
 
In particular, it should be noted that encrypting 
the key and encrypting the message digest is 
not the same function as one uses the public- 
and the other the private exponent. Therefore, 
encrypting the symmetric key and decrypting 
the message digest (in the verification process) 
is mathematically equivalent as they both use 
the public exponent. The same can be said for 
encrypting the message digest (in the signing 
process) and decrypting the symmetric key as 
they both use the private exponent. 

 
RSA operation time greatly depends on the 
length of e and d [Freeman1999], such that 
longer exponents incur much larger time 
overheads. It would therefore be desirable to 
use smaller values for e and/or d if possible. 
 
4.2.2 Smaller public exponent 
 
We consider how the length of the public 
exponent affects security as both security 
mechanisms (Section 4.3) exploit this to 
achieve faster symmetric key encryption and 
message verification. The smallest possible 
value for e is 3 [Boneh1999]. This can 
however weaken RSA confidentiality 
assertions. In particular, if e NM <  the 
plaintext can easily be recovered [Rivest2003].  
Hastad’s broadcast attack can be mounted if k 
cipher texts, encrypted with the same public 
exponent, can be collected such that k >= e. 
[Boneh1999]. The Chinese Remainder 
Theorem (CRT) can then be used to recover 
the plaintext message [Eastlake2001, 
Boneh1999]. A defence against such attacks 

would be to ‘pad’ the message using some 
random bits [Bellare1994]. Coppersmith 
imposed further restrictions on this in his 
“Short Pad Attack” which concludes that for e 
= 3 an attack can still be mounted, even 
though a random set of bits are used, if the pad 
length is less than 1/9th of the message length 
[Boneh1999]. PKCS#1 [Jonsson2003, 
RSALab2002] does however propose the use 
of Optimal Asymmetric Encryption Padding 
(OAEP) [Bellare1994] for new applications 
and PKCS1-v1_5 for backward compatibility 
with existing applications. 
 
Although e = 3 can provide adequate security, 
if necessary precautions are taken, the current 
recommendation is e = 216 + 1 [Boneh1999] 
which is still small, requiring only 17 
multiplications, but big enough to solve the 
above problems at the cost of a slight increase 
in encryption time. Short public exponents are 
not however a concern for signature schemes 
[Eastlake2001, Rivest2003]. 
 
4.2.3 Smaller private exponent 
 
A shorter private exponent would result in 
faster key decryption and message signing. 
Typically the private exponent is the same 
length as the modulus regardless of the public 
exponent length. Wiener [Wiener1990] has 
however shown that if d < ⅓N0.24 the private 
exponent can be obtained from the public key 
(N, e). Since N is typically 1024 bits long, d 
must be at least 256 bits long. More recently, 
Boneh and Durfree have shown this to be 
closer to d < N0.292 [Boneh2000, Sun2005] and 
predicted the likely final result to be closer to 
d < N0.5 [Boneh1999, Boneh2000]. 
 
Other techniques used to decrease algorithm 
operation time include the use of the Chinese 
Remainder Theorem [Boneh1999], know as 
RSA-CRT, which is said to be approximately 
4 times faster than using standard RSA 
algorithms [Sun2005]. Rebalanced RSA-CRT 
can also be used and tries to shift the cost 
towards the usage of the public exponent e 
[Boneh2002, Wiener1990]. 
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4.3 Security software analysis 
 
Java keytool, Java’s Key and Certificate 
Management Tool, is used to create the Java 
keystore, with appropriate key pairs, used by 
TSIK and JCE. The keytool generates key 
pairs where N is user specified (512, 1024 or 
2048), d is the same length as N and e defaults 
to 216 + 1 (i.e. 17 bits long). As stated in 
Section 4.2.2 and 4.2.3, these values are 
adequate and it is currently recommended that 
the user selects the modulus to be at least 1024 
bits. 
 
TSIK 1.10 provides additional functionality, 
above that of the Java Cryptography 
Extensions (JCE), to construct valid XML 
messages after encryption/decryption or 
signing/verifying. These messages conform to 
the W3C XML Signature and Encryption 
specifications [W3C2002]. TSIK supports 
Triple DES (in cipher block chaining mode) 
for symmetric encryption, as defined by W3C 
[W3C2002]. Using a key length of at least 112 
bits will currently provide sufficient security. 
Triple DES is however relatively slow 
compared to other more recent contenders 
such as AES [Aslam2004]. Conversely, it has 
stood the test of time and so is potentially a 
more reliable solution. 
 
Only SHA-1 is provided for message digest 
generation (digest length of 160 bits). SHA-1 
has very recently been shown to be less secure 
than predicted and it is recommended that 
SHA-256 or above should be used 
[Lenstra2005]. RSAES-PKCS1-v1_5 
algorithm, specified by W3C [W3C2002] and 
[Kaliski1998], is used as the RSA standard. As 
stated in Section 4.2.2 above; if backward 
compatibility is not an issue OAEP should be 
used in preference to PKCS1-v1_5. However, 
PKCS1-v1_5 provides adequate security 
assuming the programmer is aware of certain 
issues. Also, [Kaliski1998] indicates that RSA-
CRT is used. 
 
JCE does not support the creation of valid 
XML messages but supports various 
symmetric key algorithms including AES, 
Triple DES and RC5. It also supports SHA-1, 
SHA-256, SHA-512 and MD5, amongst 
others, for message digest generation. It also 

specifies that the padding is applied according 
to [RSALab2002]. RSA-CRT is also used. 

 
4.4 Performance analysis 
 
The following section details a comparative 
evaluation of the performance of VeriSign’s 
TSIK toolkit with respect to the standard Java 
Cryptography Extensions (JCE) in order to 
identify whether TSIK is a viable tool to 
secure time-constrained online transactions. 
 
4.4.1 Environment 
 
All experiments were run on a 3GHz Intel 
Pentium 4 with 1GB RAM, running Java(TM) 
2 Runtime Environment, Standard Edition 
(build 1.4.2-b28) on top of Linux Fedora Core 
2. We used The Legion of the Bouncy Castle 
[Legion2005] as the Java RSA provider for 
both JCE and TSIK, and used Apache Axis 
1.2 to generate the appropriate WSDL 
interface for the web service, which was 
hosted on Tomcat 5.  
 
Axis was used to both generate the appropriate 
SOAP messages, from the Java code and 
TSIK XML documents, to be sent to the web 
service, also known as the server, and to 
generate the SOAP messages which are sent 
back from the web service to the client. We 
took performance measurements on the client 
and server side where the TSIK and JCE 
implementations reside. Message transmission 
and conversion delays were not measured. 
 
4.4.2 Experiments 
 
We set up three experiments, as detailed 
below. 
 
Experiment 1: 
 
In experiment 1 we analyse the performance 
of Triple DES, as function of message size: 
• Client side: Message plaintext encrypted 

using Triple DES with a keysize of 168. 
Symmetric key encrypted using an RSA 
public key (Modulus 1024) 

• Server side: Encrypted symmetric key 
decrypted using RSA private key (bit 
length 1024) and cipher text then 
decrypted. 
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Experiment 2: 
 
In experiment 2 we analyse the combined 
performance of SHA-1 and RSA algorithms, 
as a function of the message size: 
• Client side: Message signed using SHA-1 

and RSA private key (bit length 1024) 
• Server side: Message verified using SHA-

1 and RSA public key 
 
Experiment 3: 
 
In experiment 3 we analyse how the modulus 
size affects the performance of RSA during 
signature creation and verification: 
• Client side: Message signed (as in 

experiment 2) using RSA key sizes 512, 
1024 and 2048. 

• Server side: Message verified. 
 
4.4.3 Results 
 
We executed the above experiments for TSIK 
as well as JCE. We repeated the first two 
experiments for messages with a range of 
plaintext sizes, namely 2, 4, 8, 16, … , 512 and 
1024 kB. Experiment 3 was done using a 2 kB 
plaintext size. The results are shown in the 
graphs below. It should be noted that all points 
in Figures 6 and 8 exhibit confidence intervals 
of 3 milliseconds and points in Figures 7 and 9 
exhibit confidence intervals of 0.1 
milliseconds. Both with probability 0.9 (where 
1.0 is certain). 
 
Experiment 1: 
 
Figure 6 shows that JCE performs noticeably 
better for large file sizes. It also shows that 
Triple DES encryption takes longer than 
decryption in both cases (TSIK and JCE). Note 
that the graph also indicates that for very large 
messages it is decryption that takes longer 
when using TSIK. We have no precise 
explanation for this, but suspect it has to do 
with the particulars of the implementation. 
 
For RSA we see the opposite effect. Figure 7 
indicates that RSA encryption takes less time 
than decryption. As we hinted at earlier in this 
paper, that is caused by the size of the keys 
used in encryption and decryption. For 
encryption, the public key is used, which has a 

small public exponent of 17 bits. When 
comparing TSIK with JCE, we see that the 
differences are minimal. Decryption varies by 
an average of about 1 millisecond between the 
implementations and encryption even less. 
 
Experiment 2: 
 
Figure 8 shows that signing takes more time in 
both cases. This is once again expected as the 
messages are signed using the large 1024 bit 
RSA private key. Encrypting the message 
digest should take constant time for each file 
size and so the graph pattern should be wholly 
due to SHA-1 hashing. Whereas signing and 
verification time increase steadily for JCE, 
TSIK performs markedly worse for large file 
sizes. 
 
Experiment 3: 
 
Figure 9 shows that doubling the RSA key 
size causes signing time to increase rapidly 
whilst having little effect on the verification 
time. This can partly be explained by the fact 
that doubling the key size effectively doubles 
the length of the private exponent (used in 
signing) whilst keeping the public exponent 
length constant. 
 
4.5 Summary 
 
TSIK is a toolkit to aid secure Web Service 
interactions. We have shown, through 
performance measurements, that TSIK has 
comparable performance to Java’s 
Cryptography Extensions (JCE). Its 
performance is similar to JCE, except that it 
slows down when processing messages with 
large plaintext sizes. It also provides adequate 
confidentiality, non-repudiation and sender 
authentication guarantees through the use of 
Triple DES and RSA, though should consider 
using SHA-256 for message verification in 
future releases as is suggested in recent 
literature [Lenstra2005]. With respect to 
technical ability, TSIK appears to be a viable 
and competitive option in securing web based 
business interactions.  
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Figure 6: Triple DES encryption time 
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Figure 7: RSA-1024 encryption time of 168 bit Triple DES key 
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Figure 8: Message signing/verifying (using SHA-1 and RSA-1024) 
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Figure 9: Message signing/verifying (2kB message size)
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5. Conclusion 
 
In comparing the performance of encryption 
algorithms we observed that IDEA was the 
fastest algorithm available in the distributions 
we tested. In fact most symmetric algorithms 
achieved better performance than Triple DES, 
which was used in our experiments with TSIK 
and JCE. Furthermore we found that the 
particular implementation of the algorithm also 
had a significant impact on the execution time. 
It therefore seems likely that further 
improvements can be made to TSIK to make it 
more suitable for real-time online transactions 
by selecting algorithms such as IDEA and 
SHA-256 and also providing fast 
implementations of those algorithms.  
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Abstract

The work described here concerns the use of so-called multi-legged arguments to
support dependability claims about software-based systems. The informal justifica-
tion for the use of multi-legged arguments is similar to that used to support the
use of multi-version software in pursuit of high reliability or safety. Just as a di-
verse, 1-out-of-2 system might be expected to be more reliable than each of its two
component versions, so a two-legged argument might be expected to give greater
confidence in the correctness of a dependability claim (e.g. a safety claim) than
would either of the argument legs alone.

Our intention here is to treat these argument structures formally, in particular
by presenting a formal probabilistic treatment of ‘confidence’, which will be used
as a measure of efficacy. This will enable claims for the efficacy of the multi-legged
approach to be made quantitatively, answering questions such as ‘How much extra
confidence about a system’s safety will I have if I add a verification argument leg
to an argument leg based upon statistical testing?’

For this initial study, we concentrate on a simplified and idealized example of a
safety system in which interest centres upon a claim about the probability of failure
on demand. Our approach is to build a BBN model of a two-legged argument, and
manipulate this analytically via parameters that define its node probability tables.
The aim here is to obtain greater insight than is afforded by the more usual BBN
treatment, which involves merely numerical manipulation.

We show that the addition of a diverse second argument leg can, indeed, increase
confidence in a dependability claim: in a reasonably plausible example the doubt
in the claim is reduced to one third of the doubt present in the original single leg.
However, we also show that there can be some unexpected and counter-intuitive
subtleties here; for example an entirely supportive second leg can sometimes under-
mine an original argument, resulting overall in less confidence than came from this
original argument. Our results are neutral on the issue of whether such difficulties
will arise in real life - i.e. when real experts judge real systems.
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1 Introduction

Assessment of dependability of software-based systems has long been acknowl-
edged to be difficult. There are several reasons for this. Software is often novel,
so that claims can rarely be based upon previous experience. Much of the evi-
dence available concerns the software process – how it was built – and not the
built product itself. There is a great reliance upon expert judgement – e.g. in
how claims about the quality of the build process can be turned into claims
about the delivered product’s dependability. There may be doubt about the
truth of some of the assumptions that underpin the reasoning used to support
a claim, e.g. that a test oracle is correct.

Such uncertainty about dependability claims is particularly important when
the systems involved are safety critical. One approach that has been proposed
to try to limit and control this uncertainty is the use of multiple diverse
arguments to support dependability claims: the idea is analogous to the use of
fault tolerance to make systems reliable. Thus each of the diverse arguments
could, in principle, support the claim but might be undermined by doubt
about underlying assumptions, weakness of evidence, etc.

In recent years, some standards and codes of practice have suggested the use of
diverse arguments. In UK Def Stan 00-55 [1], for example, it was suggested that
one leg be based upon logical proof of correctness, the other upon statistical
testing. Argument legs are sometimes quite asymmetric: for example, in [2]
the first leg is potentially complex, whereas the second leg is deliberately
simple. Occasionally, the only difference between the legs lies in the people
involved, e.g. in independent verification and validation. This last case can be
plausible when there is a paucity of hard empirical evidence upon which to
base the arguments, and thus necessarily a large element of expert judgement is
used – different teams might provide some protection against identical human
mistakes.

The differences shown in these examples reflect, we believe, the need for better
understanding about the use of diversity in arguments. At an informal level,
diversity seems plausibly to be ‘a good thing’, just as it is for achieving system
dependability, but there is no theoretical underpinning to such an assertion.
For example, we do not know what are the ‘best’ ways to use diversity (nor
even exactly what ‘best’ means here); we do not know how much we can claim
for the use of diversity in a particular case.

∗ Corresponding author.
1 This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version
may no longer be accessible.
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Our aim in this paper is to provide the beginnings of a formalism to answer
some of these questions, and provide support for the ‘diversity approach’. We
shall look at the combination of multiple argument legs in a part of a safety
case for a critical system. The difficult questions here concern how to combine
the disparate evidence and assumptions that form the different legs. There
are several such questions that might be of interest. For example, we might
want to know whether multi-legged arguments are efficient in the sense of
being cost-effective: e.g., for a given outlay, would it be better to divide this
between a proof and a testing leg, or to spend it all on a larger test?

At an informal level, one can take an argument leg to comprise: some assump-
tions , some evidence, and some reasoning that allow a dependability claim to
be made at a certain level of confidence. Typically, such an argument leg will
support an infinite number of different (claim, confidence) pairs – the more
stringent the claim, the lower the confidence that will come from a partic-
ular argument leg. We shall interpret ‘confidence’ to be a probability (that
the claim is true). This probability, in turn, will be interpreted as the usual
Bayesian subjective strength of belief in the claim, held by an individual whom
we shall refer to as ‘the expert’. This person might be a regulator, or some
other person who has to take a decision on the acceptability of the system.

It is thus confidence that allows us to discuss the ‘strength’ of arguments: for
example, an argument that allows someone to place 99% confidence in a claim
that a system’s probability of failure on demand is less than 10−3 is clearly
‘stronger’ than an argument that only allows them to place 90% confidence in
the same claim. For simplicity, in this paper we shall always consider the claim
to be fixed – perhaps arising from some wider safety case – and thus compare
arguments solely via the confidence they engender in this claim. Clearly this
is not the only way one could proceed, but it will suffice for our purposes here.

It is easy to see that confidence – and its complement, ‘doubt’ – will depend
upon: confidence/doubt in the truth of the assumptions underpinning the
argument; strength and/or extensiveness of the evidence; correctness of the
reasoning. Continuing in this informal vein, it seems plausible that for multi-
legged arguments the overall effectiveness will depend upon the same factors,
and in addition the dependence between the legs. Thus we might expect a
two-legged argument whose legs are ‘very diverse’ to be more effective – i.e.
give greater confidence – than one where the legs are very similar (all things
being equal).

Of course, as we have been at pains to state, all this is very informal. Our
intention in the work reported here is to put these ideas onto a formal basis.

We shall use as the basis of the paper a more formal treatment of an example
first examined in [3, Example 1, p27]. In this example a two-legged argument

3
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was proposed. Firstly, a leg based upon statistical evidence from operational
testing and the use of an oracle produces a claim for a particular probability of
failure upon demand (pfd). It is reasoned that this pfd represents a sufficiently
small risk during the expected operational life of the system. To this part of
the argument is added a second leg based instead on logical reasoning which is
assumed to produce a claim for complete perfection of operational behaviour
(at least with respect to a subclass of failures). Here, the second leg produces
a claim of complete freedom from (a class of) faults. If the overall argument is
intended to support a claim of (better than) 10−3 pfd, then only the statistical
testing leg addresses this directly. Nevertheless, it is easy to see how the logical
leg can provide additional support: if the statistical evidence alone gives 99%
confidence that the pfd is smaller than 10−3 then the additional verification
leg might allow this level of confidence in 10−3 to be increased.

Note that for these individual legs important sources of doubt in the claim are
doubt about the correctness of the oracle (for the testing leg), and doubt about
the correctness of the specification (for the verification leg). Furthermore, such
doubts are likely to be dependent: in particular, doubt in the correctness of the
specification is likely to affect doubt in the correctness of the oracle. We might
expect that the greater the doubt in the specification, the greater the doubt in
the oracle. Clearly, these doubts will propagate and affect the confidence asso-
ciated with the use of both arguments in a two-legged configuration: we might
expect this confidence to be less than would be the case if the specification
and oracle doubts were independent.

Note also that dependence between legs in this example can arise in other ways.
It could arise from the evidence, for example: the observation of a failure in
the testing leg would completely refute the perfection claim of the second leg.

Issues of (lack of) dependence here are very similar to those that arise in
system diversity, where it is has been established from theoretical [4,5] and
empirical [6] studies that independence is extremely elusive. If this is also true
of arguments we would need to be sceptical of simplistic claims, e.g. that 99%
confidence in a claim could be justified from a two-legged argument based on
two legs each of which alone only allow 90% confidence. Proper understanding
of argument dependence is therefore an important goal of this research. It
turns out, in fact, that issues of dependence between legs can be subtle and
counter-intuitive.

We realise that much of what we say here applies to dependability assessment
of systems in general, but the issues discussed are often particularly acute
for software based systems, where there may be great complexity and nov-
elty in the system design, and there is typically a large reliance in the safety
assessment on expert judgement.
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In this paper we mainly concentrate on the problems associated with the
assessment of confidence. We only address issues of decision-making – e.g.
whether to accept and deploy a system – briefly, and then only to treat the
case of ‘dangerous’ argument failure, i.e. the acceptance of an untrue claim.
The other kind of failure - rejecting a claim when it is true - will also be
important (e.g. it may have important economic consequences), but will not
be considered here.

The paper is organised as follows. We begin by describing a 6-variable Bayesian
belief network (BBN) representing the structure of the two-legged argument
example. A BBN topology for this system assessment is first presented, with
an enumeration of the independency model 2 which it represents.

There follow proposals for the content of those parts of the node probability
tables that would be required in order to deal with the observation case which
is of greatest practical importance for the application. This is the ‘complete
success’ case, which we shall term the ideal observation case for this two-
legged argument. For this, we suppose that the execution testing discovers no
failures at all (testing leg success); and furthermore, the system is formally
verified correct against its specification (verification leg success). This case is
of practical importance in some safety-critical industries, where it is the only
case which would allow acceptance of a system for operational use. In the UK
nuclear industry, for example, failures in test would be unacceptable regardless
of what could be inferred statistically from the test result.

Our allocation of node probability tables used to analyse this ideal observa-
tions case is parameterized, i.e. it specifies the conditional probabilities of each
node, given its parents’ values, numerically except for unspecified values of a
set of independent model parameters. There are 12 independent model pa-
rameters significant for the analysis of the ideal observation case. A particular
expert’s beliefs will thus be represented by an assignment of numerical values
to these parameters.

A substantial part of the remainder of the paper examines the consequences
of different expert beliefs, concentrating on questions of when the two-legged
approach is effective, and what are the factors that determine its effectiveness.
We show that there are some unexpected subtleties here, and give examples
of some surprising and non-intuitive results.

2 Other synonymous terms and some references are given on p7.
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2 Model Variable Definitions and BBN Topology

The construction of our model proceeds in the usual stages of: model vari-
able identification, definition and respective state-space construction; BBN
topology construction, to represent graphically assumed conditional indepen-
dencies (CIs) among the model variables; and finally local node conditional
probability table definition. In this ordered presentation of the process, the
discoveries and difficulties encountered during later stages may well feed back
into adjustments and refinements to earlier stages.

The first stage in building a BBN is the identification of model variables. Our
model variables are defined in the following list, which gives in square brackets
the state-space we have used, in this paper, for each variable. For the sake of
simplicity in this initial model formulation, the state-spaces are all Boolean,
apart from the first. In some cases, this is a deliberate simplification of the
real situation which we do not intend to retain in all our future work.

S - The system’s unknown, true probability of failure on demand (pfd) [0 ≤
S ≤ 1].

Z - system specification [Z ∈ {correct, incorrect}]. A system verification is
performed directly against this specification, to form one leg of the system
dependability argument.

V - conclusion from the verification of the system against its specification
[V ∈ {verified, not verified}]. For the purposes of the current investigation
we shall be interested only in the ideal observation outcome that the system
is verified correct.

O - oracle used in system testing (by execution of the system) [O ∈ {correct,
incorrect}]. In this current BBN, we have for simplicity made the unrealistic
assumption that the operational profile, used to simulate the test inputs, is
perfectly representative of the statistical pattern occurring during real use.

T - system test results [T ∈ {no failures, failures}]. We shall be interested
here only in the ideal observation case of no failures.

C - acceptance (or otherwise) of final claim as to whether or not the system
is fit for use [C ∈ {accepted, rejected}]. Of course, C’s two parents, T and
V , are both observable nodes. So in one usage scenario we have in mind
of this model, C itself will be a ‘deterministic’ node, in the sense that its
realised value will be a chosen deterministic function of its parents’ values.
For the purposes of illustration throughout this paper we will use the claim
that the operational system pfd S is better than 10−3.

The ultimate purpose of the following BBN model is to derive posterior dis-
tributions of random variables, S, C, of practical importance (goal variables),
following observation of other variables T, V whose values are directly measur-
able (or amenable to direct human assessment). The model, like most other
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BBN models, also includes essential model-structural ‘mediating variables’,
Z,O, in this case, which fall into neither of these two categories. Formally, the
BBN topology encodes a system of conditional independence assumptions,
collectively termed a Markov model , (in)dependency relation, (in)dependency
model , or Conditional Independence (CI) relation – see p91 of [7], §2.4 of [8],
and p5 of [9] – which enable the grand multivariate distribution of all model
variables to be composed of several node conditional probability distributions
of lower dimension. Consequently the required posterior distributions, of goal
variables given evidence, can likewise be expressed, in §3 below, in terms
of these node conditional distributions. The CI assumptions encoded in the
topology justify the derivations involved, and the pictorial representation of
this topology, properly understood, efficiently communicates these CI assump-
tions (some more evidently than others). Thus probabilistic CI assumptions
and the BBN topologies that encode them are devices for constructing, com-
municating, and reasoning with multi-variate probability models.

The theoretical study of how a probabilistic CI model may be precisely repre-
sented by a graph is based on an analogy of probabilistic CI relations with var-
ious notions of the separation of two sets of graph nodes by a third ‘separator’
set of nodes. The formal notions of ‘d-separation’, ‘graphoid’, ‘semi-graphoid’,
and ‘I-map’ are central to this theory. See [7–10] for further details.

Our BBN topology is shown in Figure 1.

C

VT

S

Z

O

Fig. 1. BBN model topology

Expressed algebraically, the ‘CI statement’ (or just ‘CI’, for short), “A is
conditionally independent of B, given S”, can be thought of as a factorization
property of the joint distribution function:

A⊥⊥B|S means P (A, B, S) = P (A|S)P (B|S)P (S), (1)
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where A, B, S, here represent sets of model random variables 3 . Thus, each CI
assumption asserts that joint (or “joint conditional”) probability distributions
will factorize – in precisely stated ways – into products of other conditional
joint distributions, each involving fewer variables 4 . Our Markov model was
constructed in the BBN form of Figure 1 by explicitly making the CI assump-
tions that each graph node is conditionally independent, given its parents, of
its other non-descendants. Other CI statements are logical consequences of
these. (See e.g. [7,11] for precise definitions and theory of how to use the net
topology to determine all its logical CI consequences.) The term conditional
dependence denotes simply the absence of a specified CI factorization.

The graph topology of our BBN can be thought of as an embodiment of a
Markov model, i.e. a complete and consistent 5 set of CI beliefs of an expert
concerning the model random variables. There are many ways of specifying the
dependency model which this graph topology represents. E.g. one economical,
logically independent set of CI assumptions which together completely specify
the model is:

O⊥⊥SV |Z
T⊥⊥ZV |OS

C⊥⊥OSZ |V T

Expressed in terms of its 26 elementary CI statements 6 as in [8], the same
dependency model can be written

O⊥⊥S |Z O⊥⊥S |ZV

O⊥⊥V |Z O⊥⊥V |ZS O⊥⊥V |SZT O⊥⊥V |SZTC

Z⊥⊥T |OS Z⊥⊥T |OSV Z⊥⊥T |OSV C

V⊥⊥T |OS V⊥⊥T |OSZ V⊥⊥T |SZ

Z⊥⊥C |V T Z⊥⊥C |V TO Z⊥⊥C |V TS Z⊥⊥C |V TOS Z⊥⊥C |OSV

O⊥⊥C |V T O⊥⊥C |V TS O⊥⊥C |V TZ O⊥⊥C |V TSZ O⊥⊥C |SZT

S⊥⊥C |V T S⊥⊥C |V TO S⊥⊥C |V TZ S⊥⊥C |V TOZ

3 Other forms, such as P (A,B|S) = P (A|S)P (B|S), are for most practical purposes
equivalent; although there may be occasional exceptions relating to conditioning on
zero-probability S-events. Some authors use the very inclusive definition, avoiding
potential zero divisions, P (A,B, S)P (S) = P (A, S)P (B, S).
4 Conditional independence means distinct factors may contain common variables.
5 No set of CI assertions can in itself exhibit logical inconsistency. The associated
Markov model includes all the logical CI consequences of the explicitly asserted CI
statements. We need all of these to be consistent with any conditional dependence
beliefs expressed by the same expert.
6 [8] shows that every probabilistic dependency model is completely characterised
by listing its elementary CI statements.
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When an expert declares himself satisfied with a BBN topology such as that in
Figure 1, he is really saying that he believes the CI assertions that are entailed
by the topology. Thus, part of the topology elicitation exercise would be an
exposure to, and acceptance of, these.

The idea captured by the ternary relation A⊥⊥B|S can be expressed less for-
mally by the statement: ‘Observation of S renders A irrelevant to B’, [7]. A
probabilistic uncertainty model implies an A↔B-symmetry of this statement.
Care is required with its interpretation: The term “observation” denotes com-
plete observation, in the sense that the values of all variables in S should be
made exactly known before a person interested (solely) in the values of B will
lose interest in information about variables A. See [7,11–16], and §1.2.1 of [9].
For example, our model assumes V⊥⊥T |SZ. A factorization such as

P
(
V T

∣∣∣ S>10−3, Z = correct
)

= P
(
V

∣∣∣ S>10−3, Z = correct
)
P

(
T

∣∣∣ S>10−3, Z = correct
)

does not follow; whereas

P
(
V T

∣∣∣ S=10−3, Z = correct
)

= P
(
V

∣∣∣ S=10−3, Z = correct
)
P

(
T

∣∣∣ S=10−3, Z = correct
)

is logically entailed within our model.

This particular CI assumption also illustrates another important point about
the above informal interpretation of CI assumptions. In practice we may still
incorporate in our model such a CI assumption, even though we may not
expect to observe variable(s) S, or where S may be in principle impossible to
observe. Then it is hypothetical exact knowledge of S that is the conceptual
device used to interpret the above CI assumption. In practical model building,
many CI assumptions may be of this form, in which the precise values of
conditioning variables of some CI assumptions are never expected to be known,
as with the assumption V⊥⊥T |SZ in our model.

To state one last clarification about the interpretation of CI assumption A⊥⊥B|S,
note that the conditioning knowledge-state, assumed to produce the irrele-
vance of A to B, consists of knowing only the exact value of S. The irrelevance
can later be destroyed by subsequently acquired knowledge, exact or approx-
imate, of other variables. So strictly, assumption A⊥⊥B|S says that when S

is exactly known, A is irrelevant to B for only just so long as the state of
all other model variables remains completely unknown, i.e. while we do not
discover anything else than the value of S.

Figures 2 and 3 show the BBNs representing an obvious pair of single-legged
arguments whose ‘combination’, in some sense, we have discussed up to now,
in the form of the BBN model shown in Figure 1:

9
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C

T

SO

Z

Fig. 2. Testing leg BBN topology

C

V

ZS

Fig. 3. Verification leg BBN topology

These topologies may be obtained from that of Figure 1 by removing one or
other of the two observable nodes V and T . It may be that an expert who
accepts the dependency model of Figure 1 as correct for the uncertainties in-
herent in the two-legged argument would feel the same about Figures 2 or 3
for an argument in which only one of these two source of evidence is available.
More rigorously, the relationship between these one-legged and two-legged
argument topologies is not trivial. We do not envisage that the appropriate
one-legged dependency model should necessarily be merely a ‘marginal’ of the
two legged model, obtained by summation over the observable V or T that
is to be removed. For example, in all the example uses of these topologies
which follow, we choose to assign the values of C, “claim acceptance”, deter-
ministically in terms of C’s (one or two) parents’ values. This means that our
single-legged models will attribute to variable C a different stochastic rela-
tionship with the remaining model variables. (Below, in our model based on
the topology of Figure 2, we make C a deterministic function of T alone: in
our two-legged model based on Figure 1 we do not.) In what follows when we
have assigned node conditional probabilities to our topologies, we will say a
little more about the relationship between the three multivariate probability
models that result.

Represented algebraically, the two single-leg dependency models are

Testing Leg Verification Leg

O⊥⊥S |Z C⊥⊥SZ |V
T⊥⊥Z |OS

C⊥⊥OSZ |T

the first OS-symmetric; and the second SZ-symmetric 7 . In the form of ex-

7 The latter symmetry is not inherited by Figure 3 itself, though there are derivable
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haustive lists of elementary CIs, we have:

Testing Leg Verification Leg

O⊥⊥S |Z
Z⊥⊥T |OS Z⊥⊥T |OSC

Z⊥⊥C |T Z⊥⊥C |TO Z⊥⊥C |TS Z⊥⊥C |V Z⊥⊥C |V S

Z⊥⊥C |OS Z⊥⊥C |TOS

O⊥⊥C |T O⊥⊥C |TS O⊥⊥C |TZ O⊥⊥C |TSZ

S⊥⊥C |T S⊥⊥C |TO S⊥⊥C |TZ S⊥⊥C |TOZ S⊥⊥C |V S⊥⊥C |V Z

Readers may have noticed that, although we have informally treated a two-
legged argument as a combination of single legs, our more formal treatment
above has moved in the reverse direction. Comparison of these last CI lists
with the one on p8 clearly does not indicate any formal operation allowing
composition of these two single-legged dependency models to create the two-
legged model. The two-legged model of Figure 1 is a construction embodying
various subjective beliefs about the dependencies arising in practice among
the variables of our particular application. In particular, our two-legged de-
pendency model can be characterised neither as weaker nor as stronger than
the simple conjunction 8 of the two separate single-legged dependency models.

Precisely, using the elementary CI statement dependency model characteriza-
tion, the two-legged model deletes all CIs from one single-legged model, most
CIs from the other, and of course introduces several other CIs whose contexts 9

canonical graph representations which always show the same symmetries as the
dependency model they represent, such as the “largest chain graph” [8,17] model
representation.
8 i.e. the pooled set of conditional independencies involving the 6 variables
9 the context of a CI statement is the set of all the model variables it involves:
context(A⊥⊥B |C) = A ∪B ∪ C.
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are not contained in the variable set for either single leg.

Deleted from Deleted from Appended
Testing Leg Verification Leg

O⊥⊥S |ZV

O⊥⊥V |Z O⊥⊥V |ZS

O⊥⊥V |SZT O⊥⊥V |SZTC

Z⊥⊥T |OSC Z⊥⊥T |OSV Z⊥⊥T |OSV C

V⊥⊥T |OS V⊥⊥T |OSZ

V⊥⊥T |SZ

Z⊥⊥C |T Z⊥⊥C |TO Z⊥⊥C |V Z⊥⊥C |OSV Z⊥⊥C |V T

Z⊥⊥C |TS Z⊥⊥C |TOS Z⊥⊥C |V S Z⊥⊥C |V TO Z⊥⊥C |V TS

Z⊥⊥C |OS Z⊥⊥C |V TOS

O⊥⊥C |T O⊥⊥C |TS O⊥⊥C |V T O⊥⊥C |V TS

O⊥⊥C |TZ O⊥⊥C |V TZ O⊥⊥C |V TSZ

S⊥⊥C |T S⊥⊥C |TO S⊥⊥C |V S⊥⊥C |V T S⊥⊥C |V TO

S⊥⊥C |TZ S⊥⊥C |TOZ S⊥⊥C |V Z S⊥⊥C |V TZ S⊥⊥C |V TOZ

Clearly many of these changes involve variable C and relate to its changed
role, mentioned above, in the dependence structure as we move between these
three dependency models.

3 Computations from these BBN Topologies

We are primarily interested in the updated joint probability distribution P (CS

| observations), particularly the value P
(
C=accepted, S>10−3

∣∣∣ observations
)

concerning an unsafe failure of the entire, two-legged assessment activity.
Starting from this BBN model, the observations available will typically consist
of values for the pair V, T of model variables. Under the conditional indepen-
dence assumptions comprising this dependency model, the joint distribution
of these four variables has a representation

P (CSV T ) = P (C|V T )

∑
Z

P (V |SZ)P (S|Z)
∑
O

P (T |OS)P (OZ)

 (2)

For any pair of observed values (V, T ), we obtain the desired, updated distri-
bution for (C, S) by normalising
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P (CS|V T ) =
P (C|V T )

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
∑
C

∫
S
P (C|V T )

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
dS

=
P (C|V T )

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
∫

S

{∑
Z P (V |SZ)P (S|Z)

∑
O P (T |OS)P (OZ)

}
dS

(3)

We have used integration over our single continuous model variable S here,
interpreting P (S|Z) as a density function. In fact, notice that, since we are
to accept that perfection (S=0) is possible, then we must allow mixed distri-
butions for S (these often involving other model variables too, being joint or
conditional distributions). In this notation, this means thinking of integrands
over S as potentially exhibiting ‘delta-function-like’ behaviour, at S=0. (One
could use Lebesgue-Stieltjes integrals [18] to notate this more rigorously.)

4 Node Probability Assumptions

4.1 Simplifying and Conservative Assumptions

We start with some assumptions that will simplify the mathematics. Some of
these assumptions are quite strong. Below in §4.2 we consider some specific
parametric refinements of some of these starting assumptions.

• Determinism of Claim Acceptance An assumption, for our ideal obser-
vations case of success on both argument legs, (V, T ) = (verified, no failures),
which simplifies the above considerably, is the conditional probability table
entry

P
(
C=accepted

∣∣∣ (V, T )=(verified, no failures)
)

= 1. (4)

That is to say, the value of the claim C is fully determined by these observed
values of (V, T ) alone, so that P

(
C=accepted, S

∣∣∣ (V, T )=(verified, no failures)
)

=

P
(
S

∣∣∣ (V, T )=(verified, no failures)
)
. For this observed (V, T ), (2) and (3)

then both become zero for C=rejected, while, for C=accepted, (2) loses the
term to the left of the braces, as does the numerator of (3). Thus, substituting
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into (3) leaves us with the expression

P
(

(C, S)=(accepted , s)
∣∣∣ ideal obs.

)
= P

(
S=s

∣∣∣ ideal obs.
)

=∑
Z P (V =verified |S=s, Z)P (S=s|Z)

∑
O P (T=no failures|O,S=s)P (OZ)∫

S

{∑
Z P (V =verified |SZ)P (S|Z)

∑
O P (T=no failures|OS)P (OZ)

}
dS

(5)

for the updated probability density of S, given the ideal observations (for
both argument legs). Here, the condition “| ideal obs.” is a shorthand for
“| (V, T )=(verified, no failures)”. Keep in mind that we can interpret the nu-
merator and denominator of the conditional probability (5) as, respectively,
an unconditional probability density, and an unconditional probability, in the
usual way. See e.g. (13) on p17 below.

It is the behaviour of this formula (5) for the distribution of the pfd S condi-
tionally given the ideal observations that forms the focus of the remainder of
the paper.

• Verification Fallibility Against Correct Specification Against a cor-
rect specification, an infallible verification procedure would pass the system
precisely if its true pfd is zero: Provided the specification is correct, any pos-
itive pfd, however small, will always have been caused by a fault, which will
certainly show up as a failure to verify the system. Conversely, one might
assume that all systems which fail the verification have non-zero true pfds.
Instead we introduce a pair of verification fallibility parameters α, ξ allowing
the breakdown of both of these ideal behaviours of the verification process:

P (V =verified |S=s, Z=correct) =

ξ if 0 < s ≤ 1, or

1− α if s = 0,
(6)

Thus, our model allows that, against a correct specification:

– a perfectly reliable system can fail 10 the verification, with probability α;
– a system having a positive pfd can pass the verification, with probability ξ.

For simplicity, we assume that the probability (that is, conditionally given
〈S=s, Z=correct〉) of the latter kind of verification failure is independent of
the actual (positive) value s of variable S. (Of course this constraint could be
relaxed in future models, perhaps by using a parametric function ξ(s).) Note

10 We have to be careful about terminology here: Surely there may be systems which
contain ‘faults’ while being perfectly reliable. (E.g. defective functionality may not
be exercised by a particular operational profile; or the system may contain internal
fault-tolerance which eliminates the possibility that a certain ‘fault’ could ever result
in a system failure.)
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that the special case (α, ξ) = (0, 0) restores the infallibility assumption for the
verification process (provided the specification is correct), as outline above.

• Conservative Assumption for Incorrect Specification: Against an
incorrect specification, we make the conservative (i.e. pessimistic, taking the
perspective of the overriding undesirability of accepting a bad system) assump-
tion that any system will always pass a verification against this specification.

P (V =verified |S=s, Z=incorrect) = 1 . (7)

• Geometric Time-to-Failure Distribution during testing. We assume
that n test inputs cause failures independently with the operational pfd S,
which are detected with certainty (and with no false alarms) if the oracle is
correct. So the probability table of variable T has

P (T=no failures |S=s, O=correct) = (1− s)n . (8)

• Conservative Assumption for Incorrect Oracle: To address the case
of an incorrect oracle, we again adopt a conservative assumption, similar to
that used above for the case of verification against an incorrect specification:

P (T=no failures |S=s, O=incorrect) = 1. (9)

• Stochastic Ordering Constraint We propose for the conditional distri-
bution of S given Z a requirement for the following kind of stochastic ordering
as a function of Z

P
(
S>s

∣∣∣ Z=correct
)

< P
(
S>s

∣∣∣ Z=incorrect
)

, for all 0 ≤ s < 1 .

(10)
where it is allowed that either or both of these distributions can have mass
concentrated at s=0, subject to this inequality.

4.2 Distributional Assumptions

We begin by introducing some shorter notation for those probabilities which
will not now be substituted by a parametric distribution:

We will use the symbol π for the unconditional joint distribution of variables
ZO, taken in that order, with a first index to represent the Z value, and a
second index to represent O. That is, we name four unconditional probabilities,

15

Part Eval - APPENDIX [Littlewood & Wright 2006] p 15



πcc+πci+πic+πii = 1, with c for correct, i incorrect. We also use a “wildcard
notation”, ∗, for the marginal distributions of Z and of O so, for example,
πc∗ = πcc+πci = P (Z=correct). Later, we will sometimes display these prior
probabilities of variables ZO using a 2×2 matrix layout

O

correct incorrect

correct πcc πci πc∗

Z

incorrect πic πii πi∗

π∗c π∗i 1

(11)

This matrix represents an important set of prior beliefs, since it is here that
is captured the dependence between our doubts about specification and ora-
cle correctness. There is likely to be positive “assumption dependence” here,
which will presumably cause dependence between the argument legs and un-
dermine, to some extent, the efficacy of the two-legged approach.

For the conditional distribution P (S|Z), we have the complication that it may
be a mixed distribution. In our parametric examples we assume this to be con-
tinuous on S ∈ [0, 1] except for a possible concentrated mass at S=0. Denote
the two concentrated masses p0|c and p0|i, where the c or i indicates the con-
ditioning value of Z. (We will require p0|c>p0|i in compliance with assumption
(10).) For the sake of statistical conjugacy [19, Ch. 9] with the discrete time
model (8), we will use a beta distribution for the continuous component. So
for 0<s≤1, use

pdf(s|Z) =


(1−p0|i)

β(a,b)
sa−1(1− s)b−1, if Z=incorrect, or

(1−p0|c)

β(a′,b′)
sa′−1(1− s)b′−1, if Z=correct,

(12)

for some a, b, a′, b′ > 0. Note that if ξ=0, the latter of these two distributions
is ‘masked out’, by the zero value in assumption (6), from the distributions
(3,5,13), so that parameters a′, b′ disappear with ξ from the ‘ideal observations’
model in that case. See columns 5 and 6 (of 8) in Table 1 on p43. In other
cases, in which ξ>0, note that our assumption (10) translates into a messy but
computable constraint on a, b, a′, b′, p0|i, p0|c. (One may simply use analytic dif-
ferentiation w.r.t. s, and then numerical zero-finding of monotonic functions,
to determine the local minima of RHS−LHS in inequality (10), which, with
the limiting values at the two end-points, s → 0, 1 can be used to formulate
the constraint that the inequality shall hold over the whole interval 0≤s<1.)
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4.3 Effect of Node Probability Table Assumptions on Equation (5)

The above assumptions about the node probability tables can now be sub-
stituted in the numerator of (5). This numerator is in fact simply the prior
probability density of “S and ideal observation on both argument legs”. We
will denote it P (S&ideal obs.), meaning, more precisely

P (s&ideal obs.) = P
(
(C, S, V, T )=(accepted,s,verified,no failures)

)
. (13)

Table 1 on p43 shows how the value of (13) is a sum of four terms corresponding
to the different configurations of ZO — dealing separately with the case S=0.
The four terms summed are each a product of three entries in the top part
of a vertical column of the table (in each single column, the three entries in
the three rows immediately under the double line that separates the headers)
weighted also by the prior probability of the value of the pair ZO which selects
the column. Without this P (ZO) weighting factor, the column-product

P (V TS |ZO) = P (T |OS)P (S |Z)P (V |SZ)

is the probability (density, for S>0) of seeing the ideal observations V T , and of
the pfd having a true (unknown) value S, conditioned (as if these were known)
on specified ZO values. Note that the case s>0 becomes much simplified under
the verification infallibility assumption (α, ξ) = (0, 0), with the two zero ξ
values in the third row of the body of the table causing some terms from
subsequent rows to disappear: if we assume it impossible to verify an imperfect
system against a correct specification, then a part of the total probability (13)
disappears. The second to last row of the table gives the value of (13), for S=0
on the left, and for 0<S≤1 on the right. In the latter case, this probability is
actually a density in its S-argument. We can think of the value “ideal obs.”
as the vector of observed values of CV T , or effectively of just V T , since we
have assumed C to be determined by V T in this ideal case (4).

For these ideal observations V T = (verified, no failures), the S=0–cases of the
three equations (7-9) produce the six 11 1’s that occur in the left half of Table 1.
These assumptions therefore mean that P (ideal obs.|S=0, Z=incorrect, O) =
1, and P (ideal obs.|S=0, Z=correct, O) = 1−α. I.e., under our conservative
assumptions, and irrespective of assumed correctness or otherwise of the ora-
cle, the conditional probability of seeing the ideal observations from a system
known to be perfect becomes certainty, if the specification is assumed incorrect,
and 1−α if the specification is assumed correct.

11 Note how just three equations produce six 1 s here essentially because the topology
says that T⊥⊥Z |OS and V⊥⊥O |ZS. So, reading across the first row, the conditional
probabilities of T alternate, in each half of the table; and reading across the third
row, the conditional probabilities of V occur in adjacent pairs.
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The last row of Table 1 gives the denominator of (5). This normaliser is just

P (ideal obs.) = P
(
(V, T )=(verified,no failures)

)
. Substituting the entries of

Table 1 into (5), gives the conditional probability P
(
S=0

∣∣∣ ideal obs.
)

and

also, for S>0, the conditional probability density pdf
(
S

∣∣∣ ideal obs.
)
, in each

case as the ratio of expressions in the last two rows of the table. Care is
necessary in use of notation for discontinuities and points of concentrated
mass: Note the comment under the table.

5 Expressions for Confidence and Doubt

Substituting these further assumptions and abbreviated notations into the
penultimate row of Table 1 on p43 (which originated from the numerator of
(5)) gives the concentrated mass

P (S=0 & ideal obs.) = (1−α)p0|cπc∗ + p0|iπi∗ (14)

and, for strictly positive values of S, the pdf

pdf(s & ideal obs.) =

ξ
(1− p0|c)

β(a′, b′)
sa′−1(1− s)b′−1

[
πcc(1− s)n + πci

]
+

(1− p0|i)

β(a, b)
sa−1(1− s)b−1

[
πic(1− s)n + πii

]
,

0 < s ≤ 1.

(15)

To obtain the conditional distribution of S given the ideal observations, we
require a normaliser from the above joint probability density (and point mass)
corresponding to the last row of Table 1

P (ideal obs.) = P (S=0 & ideal obs.) +
∫
0<s≤1

pdf(s & ideal obs.) ds (16)

where the left-hand term is the point mass contribution, which is understood
to be excluded from the domain of the right-hand, integral term. Substituting
from (14) and (15) yields

P (ideal obs.) = (1−α)p0|cπc∗+p0|iπi∗+ξ(1−p0|c)
[
πccµ

′ + πci

]
+(1−p0|i) [πicµ + πii]

(17)

using notation µ for the nth non-central moment of the beta distribution 12 ,

µ =
β(a, b + n)

β(a, b)
, µ′ =

β(a′, b′ + n)

β(a′, b′)

12 —to be precise, of the beta distribution with its usual parameters a and b inter-
changed, because {1−X is distributed Beta(b, a)} ⇔ {X is distributed Beta(a, b)}.
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in order to shorten some expressions in what follows. Note the dependence of
µ and µ′ on n, as well as on the beta distribution parameters. For any fixed
a, b, a′, b′ > 0, we always have µ, µ′ strictly decreasing in n, both being 1 at
n=0, and having µ, µ′ → 0 as n → ∞ (though the convergence can be slow
for small a, a′).

From (15) and (17), we can express the doubt , or probability of ‘unsafe failure’
of the entire two-legged assessment procedure represented by these modelling
assumptions, with the formula

P (S>s | ideal obs.) =

ξ(1−p0|c)
[
πccµ

′I1−s(b
′+n, a′) + πciI1−s(b

′, a′)
]
+ (1−p0|i)

[
πicµI1−s(b+n, a) + πiiI1−s(b, a)

]
(1−α)p0|cπc∗ + p0|iπi∗ + ξ(1−p0|c) [πccµ′ + πci] + (1−p0|i) [πicµ + πii]

(18)

where I1−s denotes the (regularised) incomplete beta function using the nota-
tion

Ix(a, b) =
1

β(a, b)

∫ x

0
ua−1(1− u)b−1 du, a, b > 0, 0≤x≤1, (19)

which is a strictly increasing function of x ∈ [0, 1] for all a, b > 0. [See [20, p944]
for its other properties, which include I0(a, b) = 0, I1(a, b) = 1, and I1−x(a, b)+
Ix(b, a) = 1.] Equation (18), with the strict inequality in the probability on
the left hand side, actually holds for all (non-negative) s, including s=0.

We shall refer to the conditional probability (18) in what follows as the ‘doubt
function’. This function of 13 independent arguments (the threshold s value;
and the 12 independent parameters of our node conditional probabilities) is
an important consequence of our model as it stands, capturing the proba-
bility of the most important kind of ‘argument failure’ we first identified on
p5. There are several related measures that could be substituted here. To be
exact, this one is the conditional probability that such an unsafe argument
failure has occurred, given that a system is deemed accepted by the two-legged
argument. Of course this is distinct from the unconditional probability that a
randomly selected system will be truly unsafe (S>s) and will be (incorrectly)
accepted by the two-legged argument as sufficiently safe (the numerator of
(18)). It is also different from the probability that a randomly selected un-
safe system will be deemed sufficiently safe by the two-legged argument. The
conversions between these are straightforward, depending on quantities such
as the ‘base rate’ of truly unsafe systems among systems which are submit-
ted for evaluation by this procedure, and the rates at which rejections of
randomly submitted systems will occur. Note that in our model as presently
formulated, these marginal background rates are not outside the scope of the
model. They are implied by our chosen values for model parameters: in the
first case (the marginal probability P (S>10−3)) by π’s, and p0|i, a, b, p0|c, a

′, b′;
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and in the latter case (the marginal probability P (C=rejected)) by the entire
set of 12 independent model parameters.

We note again the significant degree of simplification occurring in the case ξ=0.
In that case, not only do parameters a′, b′ become irrelevant to the posterior
probability distribution (18) of S given the ideal observations, but also (18)
depends on only 2 of the 3 independent degrees of freedom of the prior ZO
distribution π. The conditional probability (18), in this special ξ=0–case of
the ideal observations scenario, depends on the marginal probability P (Z) and
on the conditional probability P (O|Z=incorrect). Its lack of dependence on
P (O|Z=correct) is explained by the fact that the infallibility assumption ξ=0
for the verification process in the case (S>0, Z=correct), given by the top

line of (6) creates two zeros in the 5th and 6th columns of Table 1 which, by
multiplication, effectively ‘mask out’ from the final rows of Table 1 (i.e., from
(2) and the numerator and denominator of equations (3) & (5)) the only case of
dependence of any term in these equations on the state of variable O when Z =
correct (the pair of unequal entries in Table 1 located two rows above this pair
of zeros). The fact that this masked-out (S>0, Z=correct) scenario is the only
means, under ideal observations, by which our posterior distribution of S could
otherwise (without this masking effect of assumption (6)) depend on the state
of O given Z=correct relies on the conservative assumption (9) which removes
any dependence on O in the LHS of Table 1 where S=0. As soon as we relax
either the verification infallibility, ξ=0, or the conservative assumption (9)
which interact in this simplifying way here, we obtain the greater complexity of
a conditional probability P (S>s | ideal obs.) which involves all 12 independent
parameters of our parametric node probabilities.

If s is small, it may be numerically more accurate (depending e.g. on the pre-
cision properties of the incomplete beta algorithm at its extreme arguments)
to compute instead the confidence using

P (S≤s | ideal obs.) =

P (S=0 | ideal obs.) + P (0<S≤s | ideal obs.) =

(1−α)p0|cπc∗ + p0|iπi∗

(1−α)p0|cπc∗ + p0|iπi∗ + ξ(1−p0|c) [πccµ′ + πci] + (1−p0|i) [πicµ + πii]
+

ξ(1−p0|c)
[
πccµ

′Is(a
′, b′+n) + πciIs(a

′, b′)
]
+ (1−p0|i)

[
πicµIs(a, b+n) + πiiIs(a, b)

]
(1−α)p0|cπc∗ + p0|iπi∗ + ξ(1−p0|c) [πccµ′ + πci] + (1−p0|i) [πicµ + πii]

(20)

To look briefly at some actual numbers, we will consider first an infallible
verification assumption of the form (α, ξ) = (0, 0), which reduces the num-
ber of active model parameters significantly, from 12 to 7 for the reasons just
explained. Under this simplifying assumption, all entries in the third row of
Table 1 on p43 are zeros and ones. These eight entries in fact – given the CI as-
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sumptions of the model topology – may be taken in pairs, reading across, and
actually represent only four CI tables entries (because of the lack of depen-
dence on variable O, the oracle correctness). The 3rd, 4th, 7th, and 8th, entries
in this row of the table are justified as a single conservative assumption to
cover the case of an incorrect system specification. Here we have assumed pes-
simistically, with equation (7), that the verification against such an incorrect
yardstick will always produce a positive conclusion about any built system,
irrespective of its actual failure probability S. We will retain this conservative
assumption below. In contrast, for the other case—that the specification Z
is correct—the remaining four entries of the same row are affected by two
kinds of ‘infallibility’ assumption, α=0 and ξ=0, for the verification activity.
We cannot justify these from an argument for conservatism. The assumption
ξ=0 affecting the 5th and 6th columns can even be viewed as over optimistic,
depending on how we define correctness of a specification, and how the veri-
fication is carried out in practice.

If, under this (α, ξ) = (0, 0) assumption, we set 13

(p0|i, a, b, p0|c, n, πc∗) = (0.2, 1, 999, 0.5, 4602, 0.8). (21)

in (18), we obtain doubt

P (S>s | ideal obs.) =
πiiI1−s(999, 1) + 0.178πicI1−s(999+4602, 1)

0.55 + πii + 0.178πic

where the incomplete beta term I1−s(999, 1) may be thought of as the cor-
responding probability P (X>s) for a random variable X which is beta dis-
tributed with parameters (a, b)=(1, 999),

P (X>s) =

∫ 1
s ua−1(1− u)b−1 du

β(a, b)
= 1− Is(a, b) = I1−s(b, a) .

The same applies to the other incomplete beta term, but instead with pa-
rameters (a, b)=(1, 5601). The latter is a smaller beta probability – consid-
erably smaller for many s-values: The respective means of these two beta
distributions being 0.001 and 0.00018. Under our assumption ξ=0, it makes
no difference to (18) how the probability of specification correctness, πc∗=0.8
is divided between the probabilities of (Z,O)=(correct,correct) and (Z,O)=
(correct,incorrect). However, the distribution of the other 20% of prior belief,

13 An interesting figure to use for the number of test-cases in (8) is n = 4, 602. This
is the number of tests required to give a Bayesian 99% upper confidence bound, on
the pfd S, that is less than 10−3 when no failures are observed, under the simpler
model assumptions used in [21] . In terms of our model here, those assumptions say
essentially that there is no verification leg, that the oracle is known to behave per-
fectly, and that the prior distribution of Z and the conditional distribution P (S|Z)
are such that S is initially uniformly distributed on the unit interval.
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πi∗ = 0.2, does make a difference, and in fact can be used to change the doubt
considerably as it is differently allocated between (Z,O) =(incorrect,correct)
and (Z,O) =(incorrect,incorrect). It is easy to see that the two extreme cases
(πic, πii) = (0.2, 0) and (πic, πii) = (0, 0.2) result in values for doubt

P (S>s | ideal obs.) =
0.178× 0.2I1−s(5601, 1)

0.55 + 0.178× 0.2
, and

0.2I1−s(999, 1)

0.55 + 0.2
,

respectively, while values of (πic, πii) between these two extremes lead to values
intermediate between these two, producing a curve which is hyperbolic in form
and monotonic increasing 14 as the 0.2 probability mass is steadily shifted
from πic to πii. For instance, if we put s=10−3, these two end points of this
increasing hyperbolic segment are P (S>s | ideal obs.) = 0.00022 at πic=0.2,
and P (S>s | ideal obs.) = 0.098 at πii=0.2

These numbers illustrate how the joint prior beliefs concerning the two un-
observable variables ZO – incorporating both the prior doubt about Z and
O individually, as well as beliefs about the association between their likely
values – can influence the doubt about the claim produced by the two-legged
argument. Although the model we are using is very simplified at this stage,
we expect that such prior beliefs represented at ‘the top part’ of our BBN
topology may well continue, under more sophisticated and realistic models, to
be a driver for the amount of extra confidence gained when safety arguments
are combined in this kind of formal way.

6 How Effective is this Multi-Legged Argument Approach in Gain-
ing Confidence in Dependability Claims?

We have mentioned earlier that the use of multiple argument legs arises infor-
mally from reasoning similar to that used to justify the use of diverse channel
redundancy to obtain system reliability. Questions that are of interest for sys-
tems have similar counterparts here. How much of a confidence gain do we
obtain, via the above two-legged argument model, over the verification-only
argument model, or the testing-only argument model? Equation (18) expresses
the monotonic ‘doubt function’ P (S>s | ideal obs.) of s as a function of the
twelve independent model variables: πic, πii, πcc, p0|c, p0|i, a, b, a′, b′, α, ξ, n: how
can we best gain an understanding of the ‘shape’ of this functional depen-
dence? What are the important drivers of the benefit coming from the use of
multiple legs? E.g. does correlation between doubts in the assumptions play
an important role, as intuition would suggest? How does the two-legged ar-
gument doubt (18) compare with its ‘naive independence’ version in which,

14 assuming s 6= 0, 1
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for a fixed claim, the doubts emanating from the two single argument legs are
simply multiplied to produce the supposed two-leg-argument doubt?

6.1 Benefit of the Two-legged Argument and its Dependence on Stochastic
Association Between Doubts in Assumptions for each Leg

We show next that it is possible to assign the parameters of our two-legged
model such that we leave only one value possible, either of V , or of T , re-
spectively, or of each of V and T . This single value is, in each case, the “ideal
observation” value V = verified or T= no failures . Thus, we can choose pa-
rameters which make, in (2) and the equations following, P (V =verified|SZ),
or P (T=no failures|OS), respectively, become a constant, 1, (so no longer
depending on the values of SZO). Note that this procedure of altering the
model’s local conditional probability tables until only one value of a variable
(of V , or of T , here) has positive probability is mathematically distinct from
summation over that variable (with tables such that two or more of its values
have positive probability). It is easy to verify in the case of our model that
the first procedure does in fact produce a factorization of the joint distribu-
tion which – at least in the cases of “ideal observations” – is identical to that
which would arise from one or other of our proposed single argument topolo-
gies Figures 2 and 3 on p10. More precisely stated: although it is possible to
derive, for each of the two single-legged arguments of Figs. 2 & 3, a para-
metric representation of the ‘doubt’ (18), just as we have done above for the
two-legged argument, it is actually simpler, and in fact equivalent (in the case
where we condition on ideal observations), to deduce directly the analogous
consequences of the single-leg arguments of Figures 2 & 3 as special cases
of the results for the combined argument obtained by the following special
parametric assignments.

Our removal of testing evidence from the argument is equivalent to substitut-
ing n=0 in (18) to produce a doubt

P (S>s |V =verified) =
ξ(1−p0|c)πc∗I1−s(b

′, a′) + (1−p0|i)πi∗I1−s(b, a)[
(1−α)p0|c + ξ(1− p0|c)

]
πc∗ + πi∗

(22)

for the verification-only argument. (Unsurprisingly, the initial beliefs about
the likely oracle-correctness are not present in this expression.)

Similarly, for the testing-only argument, we can substitute (α, ξ)=(0, 1) in (18)
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to produce

P (S>s |T=no failures) =

(1−p0|c)
[
πccµ

′I1−s(b
′+n, a′) + πciI1−s(b

′, a′)
]
+ (1−p0|i)

[
πicµI1−s(b+n, a) + πiiI1−s(b, a)

]
p0|cπc∗ + p0|iπi∗ + (1−p0|c)[πccµ′ + πci] + (1−p0|i)[πicµ + πii]

(23)

for our ideal observations case of the single, testing-argument leg. To see
this 15 , consider the third row (of 5 rows) in the body of Table 1 on p43.
The above substitutions make all entries in this row equal. That is to say,
the substitutions make P (V =verified|ZS) independent of the values of both
Z and S, in just the manner we described at the beginning of this subsection.
(Consider the effect on equations (3,5).) It is not difficult to confirm from our
algebraic conclusions that the effect of this is equivalent to the removal of node
V from the model, i.e. the conversion of Figure 1 to Figure 2, as required.

We now compare some plots of the three doubt function (18, 22, & 23), for
fixed s=10−3, as we vary certain other model parameters. The plots of Figure 4

lo
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>1
0-3

|id
ea

l o
bs

.)

cv
cv=

<-log10(s),a,b,a',b',n,πc*,π*c,cv,p0|c,p0|i,α,ξ>

Fig. 4. Doubt functions (18) vs. cv – with params. as in (24) and following text.

show the value of log10 of the doubt function (18) and were produced by setting
the threshold s value to 10−3 and the model parameters

(p0|i, a, b, p0|c, a
′, b′) = (0.2, 1, 999, 0.5, 1, 999). (24)

The nine plots shown may be thought of as three groups of three. These groups

15 This (α, ξ) = (0, 1) substitution procedure would not produce the single testing
leg model if we relaxed the conservative assumption of equation (7) .
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were produced by setting (n, α, ξ) in turn to the values (4602, 0.1, 0.1), then
(4602, 0, 1), then (0, 0.1, 0.1). The first of these three vectors represents a two-
legged argument , which may be compared against the second two which are the
special cases (23) and (22) of (18), corresponding respectively to testing-only ,
and verification-only, single-legged arguments , with the other parameters (24)
common to all three groups.

Within each group of three, the individual plots are distinguished, and the
variation of each along the horizontal axis is determined, by manipulating the
π-matrix as follows. π was reparameterised in terms of the triple (πc∗, π∗c, cv).
The first two of these three parameters are the prior marginal probabilities of
correctness for the specification Z and the oracle O. Variation of these is what
separates the three different plots within each group. The third parameter cv,
used as the horizontal axis, is an analog of the covariance between Z and O
(not strictly a covariance in the usual sense since the state-spaces of these two
variables are not numeric, but equal to the covariance if they were converted
to a pair of Bernoulli random variables).

π =


πcc πci

πic πii

 =


πc∗π∗c + cv πc∗π∗i − cv

πi∗π∗c − cv πi∗π∗i + cv

 .

Thus each individual plot considered alone represents the effect on the value
of the doubt function of an increasing positive, prior covariance cv between
the correctness of specification and of oracle, while keeping the prior, marginal
correctness probabilities of both Z and O fixed. Comparison between the 9
plots illustrates both the effect of changing marginal correctness probabilities
πc∗ and π∗c, as well as the comparison of the two single-legged arguments,
against each other, and against the two-legged argument. It perhaps helps to
disentangle the plots in Figure 4 to state the following descriptive observations
about the shapes of the 9 curves. We will refer to individual curves here by
numbering them . . ., counting vertically upwards at the right-hand end of
the graph, with the lowest plot numbered . (Because of some curves crossing,
this means that the plots at the left-hand end of the graph, are numbered in
the order , , , , , , , , , moving upwards):

• The three flat, horizontal plots (, , ) are the doubt functions for the
verification-only argument. They are flat because the verification-only ar-
gument does not depend on the correlation cv of prior correctness of speci-
fication Z and oracle O. It depends only on the prior marginal distribution
πc∗ of Z (22).

• The prior marginals (πc∗, π∗c) have the values (0.8, 0.8) in plots (, , ),
(0.6, 0.6) in plots (, , ), and (0.4, 0.4) in plots (, , ). For each fixed
value of the prior marginals, towards the left-hand end (small cv) of the
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graph 16 , there is a clear ordering in ‘performance’ (for these particular
chosen model parameter values) between the three arguments: two-legged
argument (, , ) is better than testing-only argument (, , ) which is
better than verification-only argument (, , ). However the ordering of
the two-legged, as compared to the testing-only is reversed towards the
right-hand end of the graph. (See further discussion below.)

• There are six plotted doubt functions which are not flat. Of these, three
(, , ) are from the two-legged argument, and three (, , ) are from
the testing-only argument. For each πc∗, and π∗c, the two-legged argument
doubt function has a steeper gradient – as a function of the correlation cv
– than the corresponding testing-only argument. ( is steeper than , etc.)
The latter does increase as a function of cv, but, in each case, rather more
gently than it would with the addition of verification evidence.

• For arguments of each of the three kinds, doubt always increases (confidence
diminishes) as the prior marginal probabilities of correctness of Z and O
decrease (from (πc∗, π∗c) = (0.8, 0.8) in curves (, , ), down to (0.6, 0.6)
in (, , ), down to (0.4, 0.4) in (, , )).

For a numerical example of the ordering observed in the second bullet point
above, if we fix cv = 0.06, we obtain prior joint ZO distributions

π =


0.7 0.1

0.1 0.1

 , or


0.42 0.18

0.18 0.22

 , or


0.22 0.18

0.18 0.42


for the correctness of the oracle and specification, accordingly as the marginal
correctness probabilities πc∗, π∗c are assigned values 0.8, or 0.6, or 0.4. These
three π-matrices result, respectively, in values of our doubt function, ordered
as (verification-leg,testing-leg,two-legged), of (0.12, 0.074, 0.062), or (0.18, 0.14,
0.12), or (0.23, 0.20, 0.19). Notice that the 2-legged argument gives the greatest
confidence in each case.

In comparing the two-legged argument with the testing-only, single-legged
argument, one notable observation is that, as the correlation cv between spec-
ification and oracle correctness becomes very (perhaps implausibly?) high to-
wards the right-hand sides of the plots, we seem to arrive at a situation in
which the fact of being informed that the system has been successfully veri-
fied against its specification slightly undermines the high confidence that had
been obtained from the failure-free testing alone. This is the first of several,
at first sight, counter-intuitive model behaviours that we shall meet. We see
below that our current model topology, with its uncertainties concerning a po-
tentially defective oracle or specification and use of conservative assumptions,

16 but continuing, as before, to refer to the plots by number, according to their order
at the right-hand end
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allows some complex kinds of model behaviour which may either be realistic
features of rational uncertainty, or only spurious model artifacts. In the latter
case their exclusion may require parameter constraints on the node probability
distributions with which, it will perhaps eventually be possible to argue, all
competent expert beliefs will necessarily conform.

The examples above all involve a symmetric π-matrix, so that Z and O have
equal marginal probabilities of being correct. Of course we have no reason
to suppose this is representative of real beliefs for this kind of system. We
experimented with various other parameter values and obtained a varied set of
conclusions as to the comparative efficacy of the two-legged and single-legged
arguments, based on this model. To examine one more numerical example,
which has a slightly higher prior “covariance” cv = 0.075 between Z and
O correctness, but coupled with some rather more optimistic values of other
parameters, and a greater prior confidence in specification correctness than in
oracle correctness, put

π =


0.25 0.40

0.25 0.10

 .

We shall express a rather high prior confidence in the reliability of the ver-
ification process against a correct specification α=0.01, ξ=0.04, and slightly
more optimistic prior beliefs than above about the likely values of S when Z
is incorrect,

(p0|i, a, b, p0|c, a
′, b′) = (0.4, 1, 999, 0.5, 1, 999) , (25)

and retain the same values as above for the amount of testing n=4, 602 and the
claim S≤s=10−3. Using these values produces approximately equal confidence
in the claim from each single leg, and almost a two thirds reduction in doubt
when we use our model to combine the evidence from these two separate legs.
The doubt function values P (S>10−3|ideal obs.), in the order (verification-
leg,testing-leg,two-legged), are (0.12, 0.12, 0.045). So, as might be expected, a
two-legged argument can bring considerable increase in confidence about a
claim, in comparison with each of its constituent legs. Whether this occurs
in practice will, of course, depend upon the details of the expert beliefs as
represented by the model parameters.

6.2 Doubt as a function of the number n of test cases

Under ‘ideal observations’ (no detected failure), one might expect, as with
earlier models [21], that S should stochastically decrease – in terms of its
posterior distribution (18), or (23) in the testing-only case – monotonically
as the quantity n of positive testing evidence accumulates. Increasing confi-
dence from continued failure-free testing ought surely to make this posterior
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probability decrease monotonically in n, for every fixed s.

We will not attempt to solve for the general parametric assumptions required
such that our two-legged argument, with testing evidence incorporated, should
provide higher confidence than the single, verification-only leg (the n=0 case
(22) of (18)). We only note that for ‘very large’ n this is so whenever (22)
exceeds (18) with 0 substituted for µ and µ′. This is because of the limiting
property of the beta moments noted on p18 (recalling that the incomplete
beta terms in (18) are bounded by 1 as n→∞). This is the case in all of the
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Fig. 5. Doubt functions (18) vs. n – with params. as in (26)

example plots of Figure 5. These show the value of log10 of the doubt function
(18) plotted against the number n of test cases, using a claim s=10−3, and
model parameters

(p0|i, a, b, p0|c, a
′, b′, α, ξ) = (0.2, 1, 999, 0.5, 1, 999, 0.1, 0.1) . (26)

The plots differ from each other only in the values of the π matrix, which
were produced by fixing the marginal probabilities of specification/oracle-
correctness at πc∗=π∗c=0.8. The correlation coefficient between Z- and O-
correctness varies as we read down the key on the RHS, with an unbelievable
exact equality in the top plot (specification is correct precisely and only when
oracle is correct; otherwise, both are incorrect), working down to an almost
equally unbelievable negative correlation at the bottom. The second to bottom
plot represents independence (cv=0) between the correctness of the oracle and
of the specification. Clearly the general pattern here is again that low (or even
negative) correlation of the prior beliefs in specification and oracle correctness
yields an advantage in terms of confidence levels derivable from the two-legged
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argument, confirming our observation of the same tendency in Figure 4 above.
Notice that there appears to be a very slight deterioration in confidence at
large n values, i.e. there is a turning point at some n-value (which varies from
one plot to another) occurring before the limiting n →∞ value is approached.
We give some explanation of this quirk in the next section, and of other model
characteristics which might appear counter-intuitive on first inspection.

7 Some Counterintuitive Results

7.1 Supportive and Non-Supportive Single Argument Legs

As we have seen in the previous section, the acquisition of evidence that is
‘obviously good news’ – what we have called ideal evidence – can sometimes
result in a reduction in confidence. In this section we shall examine in some
detail examples of such apparently non-intuitive results. Our approach is to
use some numerical search and optimization tools to investigate the question
of whether or not, under the present model, the arrival of ideal ‘supportive’
evidence results in increased confidence in the pfd.

We begin with a single argument. At first sight it might appear self-evident
what ‘supportive evidence’ should look like: For a verification leg, the evidence
is supportive precisely if the system is verified correct . For a testing leg (though
there may also be a grey area), it seems at first sight clear that no failures , or
very few failures, amongst a large number of test cases is supportive evidence.
In contrast, a system’s failure to be verified correct, or to succeed sufficiently
often during test, should reduce our confidence.

In fact we can show that this is not always the case. Consider, for example,
a testing argument leg in which no failures have been observed among the
test cases, and the parameter values of the model are: s=0.001, n=17, 921, a=
2.58276, b=4.77020, a′=16.68483, b′=41,133.7, p0|i=2.00200×10−3, p0|c=
4.21724×10−3, and

π =

 0.994192 1.63910×10−3

7.81537×10−5 4.09042×10−3

.

The beliefs about the unobservable variables ZO are changed by this evidence
from the above prior π to

P (ZO |T ) =

 0.53406 0.13329

1.2724×10−5 0.33263

 .

The prior confidence in the claim here is 0.99583, but the posterior confidence,
in spite of the extensive ‘good news’ from testing, is decreased to 0.66803. At
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first glance such a result is quite surprising and counter-intuitive. On closer
inspection, however, we believe there is an intuitive explanation in terms of
two ‘rival explanations’ for a long period of failure-free testing. Reasoning
informally, guided by the property of adjacency in the topology of Figure 2
on p10, we see that on the one hand extensive failure-free testing, applied as
evidence to node T , may be taken to indicate a low system pfd S. Realistic
node conditional probabilities for T will surely capture this effect. But, sym-
metrically on the left-hand side of Figure 2, a parallel negative inference of a
potentially low oracle quality O also suggests itself, as a rival explanation of
the apparently positive testing evidence: perhaps a defective oracle is miss-
ing failures. These two inferences from T may both follow when n becomes
very large without failure. One can imagine a tension arising at node S be-
tween these two competing tendencies of the testing evidence. This raises the
question of how the two inferences interact, and whether one ‘dominates’ in
its effect upon posterior beliefs about S. The answer will depend partly on
the conditional probability distribution P (T |OS). (Note that – while in no
sense essential to this explanation – the ‘conservative’ assumption (9) would
appear to increase the viability of the second potential explanation for appar-
ently successful testing.) But our model in Figure 2 also contains a prior belief
structure ‘higher up’, usually with stochastic association of some kind between
the variables ZOS. The combined effect of the two available inferences from
observing large n without failure will depend also on this ‘upper part’ of the
topology. In particular, does this structure of prior belief contain a positive
prior probabilistic association between correctness of the oracle O and quality
of the system (small value for S) – perhaps via a shared association with the
correctness of Z? If the answer to this question is “yes” then it seems plausible
that, for certain model parameter values, evidence of a defective oracle could
have the effect of reducing confidence in a low system pfd. E.g., in the last
numerical example the increased doubt in the correctness of the oracle (sum
of terms in last column of matrices above) is associated with an increased
doubt about the correctness of the specification (sum of terms of last row of
the matrices). Thus when we see very many failure-free test cases we may
increase our mistrust in the oracle, increase our mistrust in the specification
and thus increase our mistrust in the pfd – see constraint (10). We stress that
this informal conception of competing effects at S of successful testing is not
intrinsic to the topology of Figure 2, but relies heavily on node conditional
probability assumptions. The model topology is sufficiently flexible to allow
such possibilities, but whether or not they are found will depend also on the
2×2 prior matrix π for ZO, the parameter values used for our two point-
mass-augmented beta distributions (12) for P (S|Z), and on the conditional
probabilities (8) & (9) comprising P (T |OS).

Examples of non-supportive verification arguments may also be obtained.
These might be explained by a similar inference concerning the likely cor-
rectness of Z, whenever the model parameter values are such as to create
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the needed associations. For example, a successful system verification with
s=0.001, a=1.2742, b=0.2106, a′=3.2095, b′=27, 095, α=0.3950, ξ=1.2006×10−4,
p0|i=1.5547×10−4, p0|c=1.3812×10−3, πc∗=0.9997156, πi∗=2.844×10−4 gives a
decrease from a high prior confidence 0.99972 to the much lower 0.77064 after
the positive verification. We suggest that while this, perhaps counter-intuitive,
behaviour may well have been accentuated by our conservative assumption (7)
(for the verification outcome in the case that the specification Z=incorrect),
it would still be possible after a degree of relaxation of this conservative as-
sumption, given the ‘right’ conditional probabilities applied to our topology.
In more detail, our tentative explanation for this effect is as follows: While
ignorant of the true value of S, the observation of a successful verification
at V provides, under our conservative assumption, stronger support for the
incorrectness, than for the correctness, of the specification Z. Specifically, be-
liefs about the unobservable variable Z become changed (by the news of the
successful system verification) from the prior probability 0.9997156 of Z’s cor-
rectness to P (Z=correct |V ) = 0.77060. This opens a chain of subsequent
inference of the following kind. The prior stochastic association between cor-
rect Z and small S required by (10) gives this increased Z-doubt a tendency
to increase the probability of large S.

In the case of the numbers used above, we can perhaps best illustrate this by
dividing the range of S up into two bins [0, 10−3] and (10−3,∞). Using the
same 2×2 matrix layout that we have used above for joint beliefs about ZO,
we can compute the prior beliefs

P (ZS) =

 0.99971563 1.09403×10−9

5.18016×10−8 2.84319×10−4

 .

which quantify (an aspect of) the association between Z and S mentioned
above. Compare the posterior counterpart of these beliefs, having observed
the ideal verification evidence

P (ZS |V ) =

 0.77060 1.05960×10−10

4.17888×10−5 0.22936

 .

which illustrates how the doubt cast on Z by the successful verification has
caused belief to ‘shift along the main diagonal’ from (Z= correct , S≤10−3) to
(Z= incorrect , S>10−3).

We do not assert that the chains of inference shown in these examples will be
realistic in every model application. Much will depend on the parameter values
assigned to the node conditional probabilities, and how, for example, these
stochastically associate variables Z, O, and S. We might well later choose to
replace the assumptions we have called ‘conservative’ by alternatives that we

31

Part Eval - APPENDIX [Littlewood & Wright 2006] p 31



might elicit as real experts’ beliefs, about the likely effects of defective oracles
and specifications. However, our examples of quite subtle interactions between
evidence, assumptions, and assumption doubt do illustrate the richness of the
kinds of competing inferences modelled within even a highly simplified BBN
structure, and alert us to the fact that symbolic analysis may identify model
consequences that initially will seem surprising and counter-intuitive.

7.2 Adding a Supportive Leg May Not Improve Confidence

Having made these observations that the effects of ‘ideal’ evidence are not
always of the kind one might naively expect, we now focus on improvement
in confidence as our stricter definition of a ‘supportive argument’ (as op-
posed to mere ‘ideal evidence’: V = verified and/or T= no failures). Thus, we
will call an argument supportive if it improves upon the prior confidence. So
the testing leg with outcome T is called ‘supportive’ whenever P (S≤s |T ) >
P (S≤s). Similarly a verification leg with outcome V is called ‘supportive’
whenever P (S≤s |V ) > P (S≤s). The dual-legged argument is ‘supportive’
when P (S≤s |V T ) > P (S≤s).

For each set of model parameters, there are actually four different cases for
which one can ask whether a confidence improvement occurs on receipt of ideal
evidence from an argument leg. A system assessor may obtain either testing-
leg evidence T= no failures , or formal verification-leg evidence V = verified , in
each case with or without evidence of the other kind being already present.
We explained in §6.1 that, as our model stands, all these four questions may
be framed mathematically as the questions as to whether a single expression,
which can be either of (18) or (20), increases or decreases when ideal evi-
dence is received. In terms of this expression, ideal testing evidence is added
by changing from n=0 to a general non-zero n value (and making the associ-
ated change to µ and µ′, from 1 to the corresponding values). Similarly ideal
verification evidence is added by changing from (α, ξ)=(0, 1) to the general
pair.

Thinking of the values of our doubt expression (18) as laid out as a square
with each side corresponding to the receipt of “ideal evidence” V or T , we
can depict the conditions described in the questions above diagrammatically.
In our diagrams, a downward arrow corresponds to the receipt of ideal testing
leg evidence and a rightward arrow corresponds to the receipt of ideal veri-
fication leg evidence. So the top, left vertex corresponds to prior confidence
and the bottom right to the final confidence after evidence from both legs is
in. Following an arrow represents ‘progress’, in the sense that further ideal
evidence is received. The ‘>’ (beside a right-pointing arrow) and ‘∨’ (beside
a downward-pointing arrow) symbols are used to indicate a decrease in confi-
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dence as we move along the arrow. Thus the counter-intuitive situations which
we have called non-supportive single legs look like

00
>−→ 0V

y y
T0 −→ TV

(27)

for verification leg evidence, and like

00 −→ 0V

y∨ y
T0 −→ TV

(28)

for testing evidence. In these diagrams a zero represents the absence of evi-
dence for one or other leg.

We are now in a position to ask whether counter-intuitive results are possi-
ble within our model for two-legged arguments. It is worth recalling here the
systems metaphor that underpins the intuition behind the use of such argu-
ments. It is well-known that the reliability of a 1-out-of-2 system will always
be greater than or equal to the reliability of the best of the two components.
Is this true of our two-legged arguments: in particular, is it always the case
that confidence will increase if we add a second supportive argument leg to an
initial supportive leg? That is, can either of the following two cases occur:

00
<−→ 0V

y∧ y
T0

>−→ TV

(29)

or

00
<−→ 0V

y∧ y∨
T0 −→ TV

(30)

We have examined this question numerically and tentatively conclude that, for
our current model, the answers are: no, the scenario depicted in (30) is ruled
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out; but yes it is possible for the case of (29) to occur, in which a supportive
verification leg can depress confidence when it is added to pre-existing ideal
testing evidence, which itself is supportive when considered alone.

For a numerical example of this case (29), consider the two-legged argument
with evidence s=0.001, n=10, 006, a=0.0807, b=0.0192, a′=8.2408×10−3, b′=
0.044813, α=0.12419, ξ=4.9315×10−6, p0|i=6.91181×10−3, p0|c=9.69767×10−3,

πi=

 0.99965 5.50587×10−6

1.19185×10−5 3.28401×10−4

.

With these parameters, the prior confidence 0.8001 is considerably improved,
to 0.9659, by a positive system verification outcome. Without any such ver-
ification leg, but with instead ideal testing evidence from the 10,006 trials,
confidence improves to as much as 0.999627. However, when the positive ver-
ification evidence is added, as one of two legs, to this ideal testing outcome,
then much of this large confidence gain from the testing leg alone is lost , with
a confidence now of only 0.9671, which – while still an improvement over the
prior confidence – is not as great an improvement as was obtained from the
testing leg alone. I.e., the act of adding a supportive verification leg to a test-
ing leg has actually lowered our confidence in the claim. When comparing the
confidence resulting from a two-legged argument against the prior confidence
and against that from each single leg individually, we can lay out these four
confidence values in a 2×2 matrix format

P (S≤10−3 | obs.) =

 P (S≤10−3) P (S≤10−3 |V )

P (S≤10−3 |T ) P (S≤10−3 |V T )

 =

 0.8001 0.9659

0.999627 0.9671


(31)

matching the layout of our square diagrams above. We have used curved brack-
ets around the matrix to distinguish it visually from our other frequently used
2×2-matrix notation for joint distributions of variables ZO (for which we will
reserve square-bracketed matrix notation). Using the same layout as that in
(27) to (30) – with the prior beliefs as the top left hand square-bracketed
matrix, and the beliefs emanating from a two-legged argument at the bottom
right, etc – the four possible sets of beliefs about the ZO pair for this example,
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under the four possible conditions of evidence discussed, appear as

P (ZO | obs.) =

 P (ZO) P (ZO |V )

P (ZO |T ) P (ZO |V T )



=



 0.999654 5.5059×10−6

1.1919×10−5 3.2840×10−4


 0.96148 5.2956×10−6

1.3489×10−3 0.037168


 0.999572 7.0415×10−6

1.4354×10−6 4.2000×10−4


 0.96264 5.3027×10−6

1.2720×10−4 0.037218




(32)

Some further insight into the apparently counter-intuitive result – that adding
a supportive verification leg to the testing leg can reduce confidence in the
dependability claim – comes from examining these intermediate numerical
results. Consider first the prior belief represented by the top-left matrix in
(32): in particular note that the leading diagonal of this matrix suggests that
the a priori beliefs about Z and O are positively associated. That is, belief that
the specification is incorrect results in a stronger belief the oracle is incorrect,
and vice-versa.

Seeing 10,006 test cases executed without failure, in the first argument leg, re-
sults in increased doubt about the correctness of the oracle: from 5.5059×10−6

+3.2840×10−4 = 3.3391×10−4 a priori to 7.0415×10−6+4.2000×10−4 = 4.2704×10−4

after the test data is seen. Because of the association between beliefs about
Z and O, this supportive evidence from testing undermines confidence in the
specification correctness: doubt increases from 1.1919×10−5+3.2840×10−4 =
3.4032×10−4 a priori , to 1.4354×10−6+4.2000×10−4 = 4.2144×10−4 after see-
ing the testing evidence.

The verification leg is supportive when we have no testing evidence (i.e. it
increases confidence from its a priori value). But the above reasoning shows
that the presence of (successful) testing can undermine the contribution that
the verification leg makes to overall confidence in the dependability claim when
both argument legs are present. In fact this undermining can be so severe that
adding the verification leg makes things worse, compared with having only the
testing leg.

Examination of the parameter values used to construct this example might
cause one to conclude that some of them seem unlikely to be realistic beliefs of
experts about real systems. E.g. consider the virtual prior certainty, according
to these parameters, that the specification is correct; or the asymptotes (b, b′ <
1) of the two beta distributions at the 1 end of the unit interval [0, 1]. It remains
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to determine whether actual realistic beliefs could also exhibit property (29).

Numerically we have been unable to obtain a similar example with T and V
interchanged, i.e. satisfying (30). We conjecture that such an example may
prove to be analytically impossible for our current model, while we impose
our stochastic ordering constraint (10). Although we have not obtained exper-
imentally the reversal of ordering occurring on the right hand side of (30), one
finding that is almost as surprising is that we can find examples in which
– in our terminology explained earlier – a significantly supportive testing
leg, when added to a significantly supportive verification leg creates only a
negligibly small improvement in confidence of the two-legged argument over
the confidence obtained from the verification leg alone. A numerical example
of this is provided by the values s=0.001, n=19, 921, a=0.092728, b=2.4768,
a′=0.13423, b′=3.8705, α=9.8691×10−3, ξ=2.8029×10−7, p0|i=1.39760×10−3,
p0|c=0.18737

π=

 0.47491 0.09055

1.80783×10−4 0.43436

.

With these values, the ideal evidence produces three confidence levels, laid
out next to the prior confidence as in the last example

P (S≤10−3 | obs.) =

 0.59125 0.67018

0.70759 0.67025

 . (33)

Here, the supportive testing evidence produces an improvement of the two-
legged over the verification-only argument which is less than one in the fourth-
significant decimal digit.

8 Special Case of Claims for Perfection, S=0

If, instead of a claimed upper bound S≤s on pfd, we make a claim for per-
fection, i.e. S=0, then we obtain a special case of the above expressions for
confidence, doubt for which certain of the counter-intuitive results demon-
strated above become no longer possible. This substitution corresponds to the
special case where our confidence refers to a claim that the system is perfectly
reliable, rather than merely that its pfd does not exceed some positive threshold
value S≤s>0.

Firstly, we can show that for such a perfection claim, operation that is com-
pletely failure-free throughout testing always constitutes a supportive argu-
ment leg in the sense we identified in §7.1, for the simple reason that our
model assumptions clearly make S=0 and S=0 & T identical events. Thus, we
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must have a confidence, from the testing leg only given by

P (S=0 |T ) =
P (S=0 & T )

P (T )
=

P (S=0)

P (T )
≥ P (S=0) , (34)

that is no less than the prior confidence. Further, for this perfection claim
we can prove easily the special case of the result that, for the more general
claim, we have been so far able to verify only numerically without an ana-
lytic proof: ideal testing evidence added to a positive verification outcome to
produce a two-legged argument always 17 improves upon the confidence ema-
nating from the verification leg alone. Essentially the same short proof as that
given above works again here. Our model assumptions make S=0 & V and
S=0 & V T identical events. So we have a final confidence from the two-legged
argument

P (S=0 |V T ) =
P (S=0 & V T )

P (V T )
=

P (S=0 & V )

P (V T )
≥ P (S=0 & V )

P (V )
= P (S=0 |V ) ,

(35)
the confidence in this perfection claim emanating from the single verification
argument.

9 Summary and Conclusions

As we have said earlier in this paper, the BBN we have studied here has been an
over-simplified one. The first simplification is in only taking account of statis-
tical testing and proof evidence: we have ignored other kinds of evidence that
would clearly be relevant in practice – for example evidence concerning the
quality and competence of the personnel involved at all stages. Furthermore,
each of the argument legs considered here is itself unrealistically simplified:
e.g. the testing leg ignores important issues concerning the accuracy of the
operational profile. We have also artificially reduced some of the state spaces
to Boolean. Finally, to make the mathematics tractable, we have had to intro-
duce some simplifying assumptions that (rather tentatively) we claim to be
‘conservative’.

Our main reason for these simplifications lay in our desire to carry out the
analysis completely analytically. We wanted to obtain complete analytic ex-
pressions for posterior distributions in terms of parametric families of input
node probability distributions. This contrasts with the more common approach
to BBN analysis in which numerical expressions – e.g. involving elicited expert
beliefs – are manipulated using tools like Hugin [22]. Simply populating the

17 even without a restriction that the verification leg must be supportive
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node probability tables in this way results only in a single numerical posterior
distribution for the goal variable S.

Our intention here was to obtain greater insight into the factors that determine
the efficacy of arguments, and in particular of multi-legged arguments. We
started from the position that efficacy would be judged by the confidence
that the arguments engendered in dependability claims. We wanted a better
understanding of how confidence is determined by factors such as the doubt
in the truth of assumptions underpinning the arguments. In particular, we
sought to understand the importance of association – e.g. between the doubts
associated with assumptions for different argument legs – in determining the
effectiveness of the multi-legged argument approach.

In spite of the great simplification we have applied, the model turns out to
be quite complex and difficult to understand. We were somewhat surprised by
this, and we regard it as a strong warning against a naive trust in the results of
a conventional numerical analysis of a BBN like this. In particular, we believe
that the analytic approach has exposed some non-intuitive and surprising
results that would not be noticed in a conventional numerical analysis. It would
be possible for one to be lulled into a false sense of certainty and security, and
believe numerical consequences that one would not believe with the benefit of
greater insight (e.g. offered by the kind of analysis we have conducted).

These remarks confirm our long-held view that BBNs need to be treated with
great respect and humility [23,24]. The Bayesian approach is clearly the right
one for the representation of uncertainty, and the BBN formalism has immea-
surably aided understanding and construction of complex probability models.
But the very seductiveness of the approach – particularly in its automated
numerical form – can bring unwarranted confidence in the results.

When we set out on this work, we had in mind an analogy with the use of
diversity in systems – multiple diverse channels – to increase reliability and
safety. It seemed plausible that multi-legged arguments could be used similarly
to increase confidence in claims about dependability (e.g. safety). It turns out
that this analogy breaks down in surprising ways.

One way in which the systems metaphor breaks down concerns composability
of arguments. Our example illustrates that it can be straightforward to de-
compose a model for a two-legged argument, producing two derived, single-leg
models as special cases corresponding to a degenerate observation for one or
other argument leg. However there is no standard reverse operation of com-
position starting from a given pair of single-leg models. The representation of
dependence via variables which link the two argument legs is an additional and
difficult modelling task, whose solution is integral to any meaningful model of
a two-legged argument.
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Another surprising way in which the systems/arguments analogy breaks down
concerns efficacy: whereas it is easy to show that, for systems, a diverse 1-out-
of-2 system is always more reliable than each of its component channels, the
same is not true of arguments. We cannot be sure that the confidence in a
dependability claim arising from a diverse 2-legged (‘1-out-of-2’) argument is
greater than that arising from either of the single argument legs. Indeed, we
have examples where a single leg is to be preferred to the same leg aided by a
further supportive argument leg: i.e. additional ‘good news’ is not necessarily
beneficial and can even be detrimental.

Such results are, at first glance, counter-intuitive: indeed, if they had been
obtained from a purely numerical analysis they would be hard to explain.
The more detailed analysis here has the advantage of showing how this kind
of thing can happen, by revealing the subtle interplay between assumptions
and evidence, both within and between legs. It thus provides warnings against
drawing simplistic – albeit intuitively plausible – conclusions. It cannot be
too strongly emphasised that it is only through the completely analytical
treatment – difficult though it is – that we get these insights.

On the other hand, it is clear that in many cases – as might be expected –
multi-legged arguments do bring benefits in terms of increased confidence in
dependability claims compared with single arguments, as we have shown in
Section 6. From a practical point of view, we would like to know exactly when
such benefits can be expected, and how extensive they might be. Ideally, we
would like to be able to design multi-legged arguments – before the expensive
process of evidence-collection begins – so that confidence in a dependability
claim will be gained most cost-effectively .

We do not claim that our work here enables this to be done. But we do believe
that it is a useful beginning in understanding some of the key issues. Thus, for
example, in Section 6 we show how it is possible with our analytical treatment
of the BBN to perform ‘what if’ calculations on the effect of dependence, in
assumption doubts for the two legs, upon the confidence that the two-legged
argument provides in the claim. It is easy to see how this kind of study could be
used to compare different possible multi-legged arguments before committing
to the expense of deploying them in a particular dependability case.

Concerning the general efficacy of diverse arguments in real-life applications,
it is clear that more work is needed. It would be interesting to know, for ex-
ample, whether the kinds of parameters that are realistic (e.g. for experts’
beliefs) in our simplified model result in 2-legged arguments that are almost
always effective, in the sense of being better than the constituent legs. Are
the exceptions that we have identified in some sense ‘not believable’ when
real experts assess real systems? To what extent are some of these results the
consequence of our need to make ‘conservative’ assumptions for mathemati-
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cal tractability? The results presented here are largely neutral on such issues:
they concern what might happen, rather than what will happen when real
experts assess real systems. It is worth stating, however, that when we con-
structed the simplified example used in the paper, we did not anticipate those
consequences that we have called ‘counter-intuitive’: it seems possible, even
after considerable reflection, to be surprised by what is implied by a complex
model. This is likely to be true a fortiori for more realistic, and thus more
complex, models.

We end by acknowledging that this kind of work assumes the need for a higher
level of formality than is presently the case. A formal treatment of argument
efficacy in terms of (claim, confidence) pairs is rare even in dependability cases
that support decisions about safety-critical systems. It might be asked why
we cannot hide all the complexity of analyses like the ones here, and simply
rely on (say) the judgement of an experienced expert that a system is safe
to deploy. One of the most forceful lessons we have learned from this work
is that the devil lies in the details . The complexity involved here seems to
be inherent, and you ignore it at your peril. Thus if, as we claim, a purely
numerical BBN can get things wrong (by ignoring some of the complexity),
we must be concerned that an even more informal qualitative approach can
get things wrong, since it ignores even more of the complexity.
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[8] M. Volf, M. Studený, A graphical characterisation of the largest chain
graphs, International Journal of Approximate Reasoning 20 (3) (1999) 209–36,
ftp://ftp.utia.cas.cz/pub/staff/studeny/volstu.ps.

[9] D. R. Wright, Elicitation and validation of graphical dependability models,
Tech. rep., City University, ROPA Project Report:
www.csr.city.ac.uk/people/david.wright/ropa/ (2003).

[10] A. P. Dawid, Conditional independence in statistical theory, Journal Royal
Statistical Society, Series B 41 (1) (1979) 1–31, with discussion.

[11] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter, Probabilistic
Networks and Expert Systems, Statistics for Engineering and Information
Science, Springer-Verlag, New York, 1999.

[12] S. L. Lauritzen, Graphical Models, Oxford Statistical Science Series, Clarendon
Press, Oxford, 1996.

[13] G. Shafer, Probabilistic Expert Systems, CBMS-NSF Regional Conf. Ser. in
Applied Math., Society for Industrial & Applied Mathematics, Philadelphia,
1996.

[14] A. P. Dawid, Conditional independence for statistical operations, Annals of
Statistics 8 (3) (1980) 598–617.
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ABSTRACT

This paper presents a general modular modeling approach applicable to the wide class of cellular systems, including
GSM, GPRS and UMTS networks. It is based on the identification of the building-blocks, the basic parts of the system to be
modeled, and of their interfaces, the part of the building-block models that can interact with the others, and it enhances the
modularity, reusability, scalability and the maintenance of the overall model. In the second part of this work we apply the
modeling approach to a concrete case-study, an UMTS network with overlapping cells, also accounting for the soft-handover
mechanism. The goal is to analyze the QoS perceived by the users camped in the normal operational mode and during outage
events that decrease the availability of the network resources.

KEY WORDS
Modeling Framework - Cellular Network - UMTS - Stochastic Activity Network - Soft Handover - QoS Analysis.

1 Introduction

A cellular network is a radio network made up of a number of possibly overlapping radio cells (or just cells) each served by a
fixed transmitter (called cell site or base station). These cells are used to cover different areas in order to provide radio coverage
over an area wider than the area of one cell. The most common example of a cellular networks are mobile phone networks,
like GSM (Global System for Mobile Communications), GPRS (General Packet Radio System) and UMTS (Universal Mobile
Telecommunications System). These networks have very different physical and functional characteristics.

GSM [1] uses a frequency division multiple access (FDMA) technology. It handles voice traffic requirements of the
mobile communication by providing a circuit switched mode of operation (high-speed circuit switched data). Circuit switching
provides the customer with a dedicated channel all the way to the destination. The customer has exclusive use of the circuit for
the duration of the call, and is charged for the duration of the call.

GPRS [1] provides packet radio access (packet switching) for mobile GSM and time-division multiple access (TDMA)
users. With packet switching, the operator assigns one or more dedicated channels specifically for shared use. These channels
are up and running 24 hours a day, and when you need to transfer data, you access a channel and transmit your data. Packet
switching is more efficient than circuit switching.

UMTS [2, 3] is a third generation (3G) mobile communications system that provides a range of broadband services to the
world of wireless and mobile communications. It preserves the global roaming capability of second generation GSM/GPRS
networks and provides new enhanced capabilities. The UMTS takes a phased approach toward an all-IP network by extending
second generation (2G) GSM/GPRS networks and using Wide-band Code Division Multiple Access (CDMA) technology. Han-
dover capability between the UMTS and GSM is supported. The GPRS is the convergence point between the 2G technologies
and the packet-switched domain of the 3G UMTS.

As we can note, the mobile networks (as well as cellular networks) are typically characterized by different technologies,
different architectures, different interfaces, different protocols, different access modes. These distinctive characteristics con-
stitute a very hard problem when such type of systems have to be analyzed in order to evaluate some specific indicators, like
availability, reliability or, in general, QoS measures. Model-based analysis is typically employed to this purpose, however
the modeling and solution process is always profiled considering a specific mobile phone network technology and a specific
network topology, and then the effort produced to analyze a particular network can be hardly reused in other contexts, just
considering, for example, the same network technology with a different topology.

In this paper we give a contribution towards the definition of a general modeling framework that is not restricted to the
analysis of a particular class of mobile phone network. Inspired by [4], the main modeling components are identified with
respect to the functions they perform, without detailing how these models are actually built or the used modeling formalism.
Such models can interact each other through some “model interfaces” and a general compositional operator. The obtained
modeling structure enhances the modularity, reusability, scalability and the maintenance of the overall model.

The rest of this paper is organized as follows. Section 2 presents the modular modeling framework specifically tailored
for the cellular systems. In Section 3 the modeling approach is applied to a specific case-study concerning a UMTS network
with soft-handover mechanisms, also defining the measures of interest and the adopted modeling assumptions. The models
built using SAN formalism are presented in Section 4, and some numerical results are presented in Section 5. Conclusions are
drawn in Section 6.
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Figure 1. Building-blocks and their interactions

2 The modeling framework

The principle of the modular construction/composition approach is to build complex models in a modular way through a
composition of its submodels. This principle has been extensively applied to model very different systems, like multipurpose
multiprocessor systems ([5]) and railway interlocking systems ([6]).

This general principle is here instantiated in the context of cellular systems. We identify some basic models, the building-
blocks, each one representing a well-specified part of the system. Such basic models interact each other through the model
interfaces, that are the part of the building-blocks that can interact with the other. The interaction happens through the applica-
tion of a sort of general compositional operator that enables the “communications” among different models.

In order to identify the building-blocks, we follow a top-down approach. A cellular network can be seen as a set of
partially overlapping cells. Each cell can be described in terms of architecture and users. The architecture of a cell depends
on the technology we are considering and it could be further decomposed in several simpler elements, like Base Stations, Core
Network, UMTS Radio Access Network, and so on. The users are the network consumer: they require services that can demand
different traffic workload level, like video streaming, phone call, and so on. With respect to these considerations, we identity
the following high-level building-blocks for a cellular network:

² The “arch” model. This model describes the architecture of the cell with respect to the purpose of the analysis. For
example, recent works dealing with GPRS network [7, 8] focus on the Random Access Procedure, that is a method to
access to the network that may cause collisions among requests by different User Equipments (UE), thus worsening the
expected Quality of Service (QoS).

² The “users” model. This model represents the behavior of a class of users characterized by the same type of requested
service (e.g. video streaming), service time, inter-request time, and so on. Therefore, the users belonging to the same
class are undistinguishable.

² The “users/arch” model. It enables the communication between the users and the cell (or the cells) in which they are
connected to, that mainly consists in the definition of the network topology and in the allocation or deallocation of the
traffic channels (if available) to satisfy the service requests.

In Figure 1 we show the view of the cellular system as composition of interacting building-blocks. The shaped model
areas are the interfaces, that are the parts of the models that are directly connected to the others. Note that at this level of
abstraction a building-block belonging to a class can interact with all the others. For example, the user/arch model can interact
both with more than one cell (e.g. when a user is served by more cells - Soft Handover) and with more than one class of users
(e.g. when different types of users are served by the same cell).

At this level of abstraction we can not explicitly describe what is an interaction, since its definition strictly depends on
the particular modeling formalism used to build the models. In this context the line connecting two models can be seen as a
compositional operator that enables the interactions between the connected models through the respective interfaces.

The overall model of Figure 1 has very important characteristics:

² It is built in a modular way through the composition of simpler submodels. This modular approach helps to cope with
the possibly too high complexity which would be incurred in when building the model of a system as a whole.

² Each model captures the behavior of a specific system function, thus improving the “readability” of the overall model.
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Figure 2. UMTS network model with soft-handover

² The whole model is easily modifiable, since the parts of the model that are not interfaces can be modified without
impacting on the other models.

² The model is reusable, in the sense that parts of the models could be reused in the modeling of other different cellular
networks. This property is extremely useful when, for example, we modify the network topology of an already modeled
cellular system. In this case the overall model can be reused just modifying the interface of the “users/arch” model.

3 Case-study: QoS analysis of a UMTS network with soft-handover mechanism

In this section we apply the proposed modeling approach to represent the behavior of a UMTS network composed by two
partially overlapping cells and accounting for the soft-handover mechanism ([9]).

A UMTS network consists of a set of local areas, each one composed by a number of overlapping cells. Two cells are
overlapping if they share radio frequencies and users (mobile equipments). Each cell is characterized by the following building
blocks (see Figure 2):

² the “arch1” and “arch2” models, that implement the resource allocation;

² the “usersA” and “usersB” models, that represent the users that are connected to one cell only. They are characterized
by the same service request frequency, probability to obtain a dedicated traffic channel and the same service completion
time;

² the “usersA&B” model is the class of users that can be connected simultaneously to more than one cell using the soft-
handover mechanism, since they are in the overlapping area between the two cells. It describes the service request
frequency, the probability to obtain a dedicated traffic channel and the service completion time. Moreover, they are
characterized by the same service request frequency, the same probability to obtain a dedicated traffic channel and the
same service completion time;

² the “usersA/arch1”, “usersB/arch2” and “usersA&B/arch1&2” models describe the interactions among the users and the
corresponding architecture models.

3.1 Measures of interest

The focus is on the effects of outages on the QoS perceived by the users camped in the network. An outage results in an un-
availability of one cell; as a consequence, some connections are lost and some other connections experiment a QoS degradation
since the users in soft-handover now issue the service request to one cell only. In this context, we analyze several measures,
among them: i) the number of allocated traffic channels for each user class, and ii) the probability that a service request can not
be satisfied for each user class.

3.2 Assumptions

The assumptions we introduced in the modeling phase are here sketched:

² the network is composed of two overlapping cells, and the users are uniformly distributed inside each cell;
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² the cells can be active (all the resources are available), down (no available resources) or partially active (to represent
partial outages of some components);

² we consider an admission control algorithm based on the workload of the UMTS cell: a new call is accepted if the
workload level reached after adding the call does not exceed a pre-specified threshold, both in uplink and in downlink;

² the number of users camped in each cell is constant, and no user can move from a service class to another;

² all the users can be distinguished based on the type of service they require, and they all have the same priority;

² service classes differ for the throughput, the traffic workload they induce on the cell and the service time;

² if the cell accepts the service request, a Dedicated CHannel (DCH) is assigned to the user until the service is completed.

² the outage occurs following a deterministic distribution and, when it occurs, the affected cell goes down. Therefore, the
connections of the users camped in the downed cell are immediately lost, and the users in soft-handover increase their
transmission power to connect to the remaining active cell;

² the cell can not be repaired;

² when the outage occurs, both cells are working in steady-state condition;

4 Model implementation

All the models have been built using Stochastic Activity Networks (SANs) formalism ([10]), that is a generalization of SPNs
and have some similarities to the GSPN formalism.

Following the object oriented philosophy, we develop a sort of “template” models, one for each building block previously
identified. The overall UMTS model results from the composition of some “instances” of such classes. The submodels will be
composed together using the Join operator ([11]). It is a composition technique for SAN that combines models by sharing state,
thus decreasing the overall number of states of the entire model. The Join operator takes as input a) a set of submodels and
b) some shared places owning to different submodels of the set, and provides as output a new model that comprehends all the
joined submodels’ elements (places, arcs, activities) but with the shared places merged in a unique one. Therefore, the shared
places represent the “interfaces” among models.

Figure 3. Overall UMTS network model

In Figure 3 we depict the composed model that represents the behavior of a UMTS network with two partially overlapping
cells. There are two models representing the cell architectures (arch1 and arch2), three models representing the class of users
camped in the network (two for the users camped in one cell only - usersA and usersB - and one for the users camped in the
overlapping area between the two cells - usersA&B), and three models describing the corresponding users/arch interactions
(usersA/arch1, usersB/arch2, and usersA&B/arch1&2). The places shared among models are identified in the
following Subsections in which we sketch the structure of each model.

4.1 “arch” model

The model presented in Figure 4 represents the architecture of a UMTS cell (it is a template model, in the sense that it has to
be instantiated to represent the architectural behavior of the two different cells considered in our network segment).

The left part of the model represents the variations of the state of activity of the cell. During normal conditions, the cell
is properly working (place Work contains one token). When an outage occurs (transition T Work fires), the cell enters in one
of the possible states State1, State2, ..., Down. Place Down represents the complete unavailability of the cell, and it is
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Figure 4. The architectural model

Figure 5. The model for the class of generic users

the case of interest. Each degraded state can be repaired after a time defined in the deterministic transitions T repair 1,
T repair 2, ..., T Down.

The output gate Admission control executes the admission control algorithm. At each instant of time, it checks
the cell traffic workload (both in uplink and in downlink) and the number of allocated traffic channels. When a new service
request is issued from a user (mark(Request)>0), the admission control algorithm verifies that the new traffic workload level
remains below a certain threshold level and, in this case, it accepts the new service request. In this case, one token is added
to place Channel, representing the availability of a traffic channel, and one token is added to place Channel count, that
counts the number of allocated traffic channels. If the new service request can not be accepted (the admission control algorithm
fails), then one token is added to place Blocked. The output gate Admission control is also in charge of computing the
number of services to be blocked in order to move the workload level under a pre-specified threshold, for example in case of
total outage. In this case, an appropriate number of tokens (users) is removed from place Channel count and added to the
place Discarded.

For the sake of readability, in Figure 4 we depict with a shaped circle the places shared with the user model, and with a
non-shaped circle the places shared with the users/arch model.

4.2 “usersA” model

In Figure 5 we depict the “userA” model, that is the model representing the behavior of the class of users that are connected to
one cell only.

Place Users represents the idle users, that are the users that are not requiring any service to the network. The inter-request
time is defined by the exponential transition idle, that at firing time moves a token in check request that represents the
users that have sent a service request to the network. If the cell is up, the service request arrives in place ok and then the random
access channel (RACH) procedure is performed in order to obtain a slot for issuing the service request. Transition Tset up
defines the duration of the RACH procedure. If it succeeds (with a given probability), one token is added to place Request,
otherwise the token is added to place Fail. Tokens in place Fail represent the users whose service request has not been
accepted because of a failure of the admission control algorithm or of the RACH procedure. Such unsatisfied users issue a
new service request after an exponential time defined in the transition T fail. When a traffic channel has been allocated to a
user, a token arrives in place start service (the user is being served) and, after a service time defined by the exponential
transition service time, the service request is completed and then the token is moved to place end service. A token in
place Out enables the instantaneous transition t, the output function defined in the output gate remove users is executed
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Figure 6. The model for the interactions among users and architectures

Parameters Meanings Values

4dl Downlink workload increment per service 0.013 db

4ul Uplink workload increment per service 0.016 db

SH users Users in soft-handover 16

Gen users A Users camped in cellA only 40

Gen users B Users camped in cellB only 40

t int req Inter request time 400 sec.

t fail Inter request time after fail 30 sec.

t drop Inter request time after drop 30 sec.

thr Throughput 12.2 Kbit/sec.

OutageTime Time to outage 36250 sec.

Table 1. Main parameters’values

and then an appropriate number of users (tokens) is moved from place start service to place Dropped, representing the
users whose service has been dropped due to an outage. Place Dropped will contain the same number of tokens as place
Discarded. The “dropped” users will issue a new service request after a time defined by the exponential transition T drop.

For the sake of readability, in Figure 5 we depict with a shaped circle the places shared with the architectural model, and
with a rectangle the places shared with the users/arch model.

4.3 “usersA/arch1” model

In Figure 6 we depict the “usersA/arch1” model, that is the model representing the interactions between the class of generic
users and the architecture of the first cell.

When the cell is down, place Down contains one token. Tokens in place check request correspond to the service
requests issued by the users that try to obtain an access slot. If the cell is down, the tokens are moved to place Fail, otherwise to
place ok. The main components of the model are the input gates Channel allocation and Channel deallocation.
The input gate Channel allocation check if the admission control algorithm has been passed. If it has been passed
(Mark(Channel)>0) then a token is added to place start service, otherwise there are no available traffic channels
(Mark(Blocked)>0) and then a token is added to place Fail. The input gate Channel deallocation is in charge to
free a traffic channel when a user has been served (Mark(end service)>0). In this case, a token is added to place Users
and a token is removed from place Channel count.

5 Results

Although the focus of this paper is not on the evaluation analysis, in this Section we sketch some results that we obtain through
the solution of the models described in Section 4. A transient analysis has been performed, using the simulator provided by the
Möbius tool [12]. Table 1 summarizes the settings for the main system parameters.

In Figure 7 we show the mean number of failed service requests at varying of time. This is clearly a QoS indicator since it
corresponds to the mean number of unsatisfied users at varying of time. At steady-state (label T0), about 7 users in the network
are unsatisfied, and it is about 7% of the total number of users camped in the overall network (7 out of 96). After the occurrence
of the outage (label T1) this number rapidly increases until it reaches the new steady-state value of about 14 unsatisfied users,
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Figure 7. Mean number of failed service requests

thus the number of unsatisfied users is doubled.

6 Conclusions

In this paper we propose a general modular modeling approach for cellular systems. The approach is general in the sense that
it is not domain-specific and then it is reusable for the analysis of several systems, including the mobile cellular networks. The
feasibility of the proposed modeling approach is proved analyzing a case-study consisting of a UMTS network. The scenario is
composed by two partially overlapping cells and we analyzed the QoS perceived by the users in the network in terms of mean
number of failed service requests. Actually, thanks to the adopted modeling approach, we could easily modify the models in
order to account for different network topologies, different types of outages (e.g. partial outages) and additional events like, for
example, the repair of a failed component.

As future work, we are planning to use this modeling approach to analyze heterogeneous networks that combine, for
example, both GPRS and UMTS cells, thus resembling very interesting scenarios as those treated in the context of the European
Projects HIDENETS [13] and CRUTIAL [14].
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Abstract 

For efficiency and cost control reasons, system designers’ will is to use an integrated set of methods and 
tools to describe specifications and designs, and also to perform dependability analyses. AADL (Architecture 
Analysis and Design Language) has proved to be efficient for architecture modeling. This paper presents a 
modeling framework allowing the generation of dependability-oriented analytical models from AADL 
models, to facilitate the evaluation of dependability measures, such as reliability or availability. We propose 
a stepwise approach for system dependability modeling using AADL. The AADL dependability model is 
transformed into a GSPN (Generalized Stochastic Petri Net) by applying model transformation rules. The 
resulting GSPN can be processed by existing tools. The modeling approach is illustrated on a small example. 

1.  Introduction 

The increasing complexity of new-generation embedded systems raises major concerns in various critical 
application domains, in particular with respect to the validation and analysis of performance, timing and 
dependability-related requirements. Model-driven engineering approaches based on architecture description 
languages aimed at mastering this complexity at the design level have emerged and are more and more 
extensively used in industry. In particular, AADL (Architecture Analysis and Design Language) [1] has  
received an increasing interest during the last years. It has been recently developed and standardized under 
the auspices of the International Society of Automotive Engineers (SAE), to support the design and analysis 
of complex real-time safety-critical systems in avionics, automotive, space and other application domains. 
AADL provides a standardized textual and graphical notation, for describing software and hardware system 
architectures and functional interfaces, and for performing various types of analysis to determine the 
behavior and performance of the system being modeled. The language has been designed to be extensible to 
accommodate analyses that the core language does not support.  

Besides describing the systems’ behavior in the presence of faults, the developers are interested in obtaining 
quantitative measures of relevant dependability properties such as reliability, availability and safety. For 
pragmatic reasons, the system designers using an AADL-based engineering approach are interested in an 
integrated set of methods and tools to describe specifications and designs, and to perform dependability 
evaluations. The AADL Error Model Annex [2] has been recently defined. It complements the description 
capabilities of the core language by providing features with precise semantics to be used for describing 
dependability-related characteristics in AADL models (faults, failure modes and repair assumptions, error 
propagations, etc.). However, at the current stage, no methodology and guidelines are available to help the 
developers in the use of the proposed notations to describe complex dependability models reflecting real-life 
systems with multiple interactions and dependencies among components. One of the two objectives of this 
paper is to propose a structured method for AADL dependability model construction. 
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The AADL Error Model Annex mentions that stochastic automata such as fault trees and Markov chains can 
be generated from AADL specifications enriched with dependability-related information. Indeed, Markov 
chains are recognized to be powerful means for modeling system dependability taking into account 
dependencies between system components. Usually, Generalized Stochastic Petri Nets (GSPNs) are used to 
generate automatically Markov chains. In addition, GSPNs allow structural model verification and analysis, 
before the Markov chain generation. Such verification support facilities are very useful when dealing with 
large models. During the last decade, various approaches have been defined to support the systematic 
construction and validation of dependability models based on GSPNs and their extensions (see e.g. [3-5]). 
We propose to take advantage of such approaches in the context of an AADL-based engineering process, to 
i) build the dependability-oriented AADL model and to ii) generate dependability-oriented GSPN models 
from AADL models by model transformation. In this way, the complexity of GSPN model generation is 
hidden to users who are familiar with AADL and have a limited knowledge of GSPNs. The AADL and 
GSPN models are built iteratively, taking into account progressively the dependencies between the 
components, and validated at each iteration. 

To summarize, the objectives of this paper are twofold: i) provide guidelines for a structured and stepwise 
approach for building AADL dependability models and ii) show examples of model transformation rules to 
generate GSPNs from AADL dependability models. The set of model transformation rules is meant to be the 
basis for the implementation of a model transformation tool completely transparent for the user. Such a tool 
can be interfaced with one of the existing GSPN processing tools (e.g., Surf-2 [6], Möbius [7], Sharpe [8], 
GreatSPN [9], SPNP [10]) to evaluate dependability/performability measures. 

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 presents the 
AADL concepts that are necessary for understanding our modeling approach. Section 4 gives an overview of 
our framework for system dependability modeling and evaluation using AADL and GSPNs. Section 5 
presents examples of rules for transforming AADL into GSPN models. Section 6 applies our approach to a 
small example and Section 7 concludes the paper. 

2. Background and related work 

To the best of our knowledge there are no similar contributions in the current state of the art. Most of the 
published papers on analyses using AADL have focused on the extension of the language capabilities to 
support formal verifications. For example, the COTRE project [11] provides a design approach bridging the 
gap between formal verification techniques and requirements expressed in Architecture Description 
Languages. AADL system specifications can be imported in the newly defined COTRE language. A system 
specification in COTRE language can be transformed into timed automata, Time Petri nets or other 
analytical models. However, to the best of our knowledge, there are no similar contributions aiming at 
obtaining dependability–oriented quantitative evaluation models from COTRE specifications.   

Considering the problem of generating dependability evaluation models from model-driven engineering 
approaches in a more general context, a significant amount of research has been carried out based on UML 
(Unified Modeling Language) [12]. For example, the European project HIDE ([13], [14]) proposed a method 
to automatically analyze and evaluate dependability attributes from UML models. It defined several model 
transformations: i) from structural and behavioral UML diagrams into GSPNs, Deterministic and Stochastic 
Petri Nets and Stochastic Reward Nets to evaluate dependability measures, ii) from UML statechart 
diagrams into Kripke structures for formal verification and iii) from UML sequence diagrams into Stochastic 
Reward Nets for performance analysis. Also, [15] proposes an algorithm to synthesize dynamic fault trees 
(DFT) from UML system models (a conjunction of class, object and deployment diagrams extended with 
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stereotypes and tagged values). Other interesting approaches have been developed, aiming at obtaining 
performance measures by transforming UML diagrams (activity diagrams in [16], sequence and statechart 
diagrams in [17]) into GSPNs.  

AADL is different from UML, as in AADL the user deals with a single annotated architecture model. Thus, 
the modeling approaches mentioned above cannot be directly applied in our context of AADL. The modeling 
framework presented in this paper is complementary to the above initiatives and is aimed at ensuring a better 
integration of dependability evaluation techniques based on GSPNs into AADL-based engineering 
approaches. 

3. AADL concepts 

The AADL core language allows analyzing the impact of different architecture choices (such as scheduling 
policy or redundancy scheme) on a system’s properties [18]. An architecture specification in AADL 
describes how components are combined in subsystems and how they interact. Architectures are described 
hierarchically. Components are the building blocks of AADL architectures. They are grouped into three 
categories: 1) software (process, subprogram, data, thread, thread group), 2) hardware (processor, memory, 
device, bus) and 3) composite (system). AADL components can be composed of subcomponents and 
interconnected through features (ports, subprogram calls, parameters) that specify how components interface 
each other. Each AADL component has two levels of description: the component type and the component 
implementation. The component type describes how the environment sees that component (i.e., its properties 
and features). One or more component implementations can be associated with the same component type, 
corresponding to different implementation structures of the component in terms of subcomponents, 
connections, subprogram calls and operational modes.  

The AADL core language is designed to describe static architectures with operational modes for their 
components. However, it can be extended to associate additional information to the architecture. AADL error 
models are an extension intended to support (qualitative and quantitative) analyses of dependability 
attributes. The AADL Error Model Annex defines a sub-language to declare error models within an error 
annex library. The AADL architecture model serves as a skeleton for error model instances. 
 

Error Model Type [basic] 
 

error model basic 
features 
 Error_Free: initial error state; 
 Failed: error state; 
 Fail, Repair: error event; 
end basic; 
Error Model Implementation [basic.nominal] 

 

error model implementation basic.nominal 
transitions 
 Error_Free-[Fail] -> Failed; 
 Failed-[Repair] -> Error_Free; 
properties 
Occurrence => Poisson λ applies to Fail; 
Occurrence => Poisson µ applies to Repair; 
end basic.nominal; 

Figure 1: Basic error model 
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Component error models describe the behavior of the components to which they are associated, in the 
presence of internal faults and repair events, as well as in the presence of external propagations from the 
component’s environment. In the same way as for AADL components, error models have two levels of 
description: the error model type and the error model implementation. The error model type declares a set of 
error states, error events (internal to the component) and error propagations1 (events 
that propagate, from one component to other components, through the connections and bindings between 
components of the architecture model). In addition, the user can declare Guard properties to control 
propagations. 

Error model implementations declare transitions between states, triggered by events and propagations 
declared in the error model type and Occurrence properties that specify the arrival rate or the occurrence 
probability of events and propagations. Figure 1 shows a basic error model (without propagations). 

Propagations have associated directions. The identifier in identifies incoming propagations while the 
identifier out identifies outgoing propagations. An out propagation occurs in a source error model 
according to a user-specified Occurrence property. The source error model sends the propagation out 
through all ports and bindings of the AADL component with which this error model is associated. 
Consequently an out propagation arrives to one or more error models associated with receiver components. 
If the receiver error models declare in propagations with the same name as the arriving out propagation, 
the in propagations can influence their behavior (i.e., they may trigger transitions between states and/or 
operational mode changes). All error models that receive the same out propagation and that declare name 
matching in propagations are influenced by this propagation simultaneously, i.e., state transitions and 
operational mode changes triggered by the in propagation (that matches the out propagation received) are 
simultaneous. 

Guard properties (associated with ports, data components, and client and server subprograms) allow 
controlling propagations by means of Boolean expressions and predicates. For example, the Guard_In 
property defines Boolean expressions that specify how propagations arriving at a receiver component are 
translated or masked before impacting the stochastic automaton associated with it via the error model. 

 

 

Figure 2: Modeling framework 

                                                        
1 In the AADL Error Model Annex specification, the terms “state”, “event” and “propagation” are associated with 

the term “error” in order to highlight that these features are specified in the AADL Error Model Annex. 
However, error states can also model error free states, error events can also model repair events and error 
propagations can model all kinds of notifications. In the rest of the paper we shall use the terms “state”, “event” 
and “propagation”. The associated term “error” will be omitted. 
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The system error model is defined as a composition of a set of concurrent finite stochastic automata 
corresponding to components. In the same way as the entire architecture, the system error model is described 
hierarchically. If both a container component (i.e., a component that contains subcomponents) and some of 
its subcomponents have error models, then the relationship between the error models must be declared. One 
can specify the state of a container component as i) a function of its subcomponents’ states (i.e., the error 
model of the container component is derived from the error models of its subcomponents) or as ii) an 
abstraction of the behavior of its subcomponents in the presence of faults. 

4. Overview of the modeling framework 

For complex systems, the main difficulty for dependability model construction arises from dependencies 
between the system components. Dependencies can be of several types, identified in [4]: structural, 
functional or related to the fault-tolerance and to the maintenance strategies. As some components’ behavior 
may depend on several others, a structured approach is needed to model dependencies in a systematic way, 
to avoid errors in the resulting model of the system and to facilitate its validation. In our approach, the 
AADL dependability-oriented model is built in a progressive and iterative way. More concretely, in a first 
iteration, we propose to build the model of the system’s components, representing their behavior in the 
presence of their own faults and repair events only. The components are thus modeled as if they were 
isolated from their environment. In the following iterations, we introduce dependencies between the 
component models in an incremental manner.  

An overview of our proposed iterative modeling framework, which can be decomposed in four main steps, is 
presented in Figure 2.  

The first step is devoted to the modeling of the system architecture in AADL (in terms of components and 
operational modes of these components). The AADL architecture model (AADL_AM) may be available if it 
has been already built for other purposes. 

The second step concerns the specification of the system behavior in the presence of faults through AADL 
error models (AADL_EMs) associated with components of the AADL_AM. The AADL_EM of the system 
is a composition of the set of AADL_EMs.  

The AADL_AM and the AADL_EM of the system form a dependability-oriented AADL model, referred to 
as the AADL dependability model (AADL_DM) in the rest of the paper.  

The third step aims at building a GSPN dependability model, from the AADL dependability model, based on 
model transformation rules.  

The fourth step is devoted to the GSPN model processing that aims at evaluating quantitative measures 
characterizing dependability attributes. This step is entirely based on existing processing algorithms and 
tools. Therefore, it is not considered in this paper. 

To obtain the AADL_DM, the user must perform the first and second steps described above. The third step is 
intended to be automatic in order to hide the complexity of the GSPN to the user.  

The iterative approach can be applied to the second step only or to the second and third steps together. In the 
latter case, semantic validation based on the GSPN model, after each iteration, is helpful to identify 
specification errors in the AADL_DM.  
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In the rest of the section we first give guidelines for the AADL_DM construction and then we provide an 
overview of the AADL to GSPN transformation. 

4.1. The AADL dependability model construction 

The AADL_EM of the system is built in several iterations. In the first iteration, we build the basic 
AADL_EMs associated with components, modeling their behavior in the presence of their own faults and 
repair events only. In the following iterations, dependencies between basic AADL_EMs are introduced 
progressively. Purely structural and functional dependencies must be included before the fault tolerance and 
maintenance dependencies. Fault tolerance and maintenance dependencies may have an impact on the 
system’s structure. Lastly, the user can define derived AADL_EMs for container components. In this way, 
the final model represents the behavior of each component not only in the presence of its own faults and 
repair events, but also in its environment, i.e., faults and repair events in components with which it interacts. 

It is noteworthy that not all the details of the AADL_AM are necessary for the AADL_DM. Only 
components that have associated AADL_EMs and all connections and bindings between them are necessary. 

To illustrate the proposed approach, the rest of this subsection presents successively guidelines for modeling 
i) an architecture-based dependency (structural, functional or fault tolerance), ii) a maintenance dependency 
and iii) a hierarchical system depending on its subcomponents. 

Architecture-based dependency 

The dependency is modeled in the AADL_EMs associated with dependent components, by specifying 
respectively outgoing and incoming propagations and their impact on the corresponding AADL_EM. An 
example is shown in Figure 3: Component 1 sends data to Component 2, thus we assume that, at the 
AADL_EM level, the behavior of Component 2 depends on that of Component 1. Let us assume that the 
AADL_EM of Figure 1 can be associated both to Component 1 and to Component 2 to model the behavior of 
each of these two components as if they were isolated. To model a dependency between them, we need to 
add: 

• In the AADL_EM associated with Component 1: i) an out propagation declaration in the type and ii) 
its associated Occurrence property and an AADL transition triggered by it in the implementation. 

• In the AADL_EM associated with Component 2: i) the declaration of the corresponding in 
propagation in the type and ii) an AADL transition triggered by it in the implementation. 

 

 

Figure 3: Architecture-based dependency  
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Maintenance dependency 

Maintenance dependencies need to be described when repair facilities are shared between components or 
when the maintenance or repair activity of some components has to be carried out according to a given order 
or a specified strategy (i.e., software can be restarted only if the hardware is available). 

Components that are not dependent at architectural level may become dependent due to the maintenance 
strategy. Thus, the AADL_AM might need some adjustments to support the description of dependencies 
related to the maintenance strategy. As AADL_EMs interact only via propagations through architectural 
features (i.e., connections, bindings), the maintenance dependency between components’ AADL_EMs must 
also be supported by the AADL_AM. This means that besides the system architecture components, we may 
need to add an AADL_AM component allowing to describe the maintenance strategy. Figure 4-a shows an 
example of AADL_DM. In this architecture, Component 3 and Component 4 do not interact at the AADL 
architecture level, as there is no architecture-based dependency between them. However, if we assume that 
they share one repairman, the maintenance strategy has to be taken into account in the AADL_EM of the 
system. Thus, it is necessary to represent the repairman at the AADL_AM level, as shown in Figure 4-b in 
order to model explicitly the maintenance dependency between Component 3 and Component 4. 

 

a: 

 

b: 

 

Figure 4: Maintenance dependency 

Hierarchical systems 

Figure 5 shows an example of a hierarchical system where Component 1 is a container component and the 
AADL_EM associated with it is derived from the AADL_EMs of its subcomponents. In this case, the states 
of Component 1 are defined by a user-specified function of the states of its subcomponents. 

 

 

Figure 5: Hierarchical system 

The AADL Error Model Annex offers the possibility of declaring abstract AADL_EMs for container 
components. This option can be useful to abstract away modeling details in case an AADL_AM with too 
detailed AADL_EMs associated with basic components does exist for other purposes. Issues linked to the 
relationship between abstract and concrete stochastic automata models obtained from AADL_EMs have 
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been mentioned in [19]. If abstract AADL_EMs are declared, the corresponding container components are 
seen as black boxes (i.e., the detailed subcomponents’ AADL_EMs are not part of the AADL_DM). 

4.2. AADL to GSPN model transformation 

The GSPN obtained by model transformation is formed of several GSPN blocks connected through arcs. A 
block is a sub net describing either the component’s behavior in the presence of its own faults and repair 
events (component net), or a dependency (dependency net). In the AADL_DM, each dependency is modeled 
as part of each of the AADL_EMs involved in the dependency. GSPN dependency nets are obtained from 
information concerning a particular dependency existing in (at least) two dependent AADL_EMs. The global 
GSPN contains one block for the behavior of each component in the presence of its own faults and repair 
events, and one block for each dependency between components. A component having a derived AADL_EM 
is transformed as follows: 

-  Each of its subcomponents having an AADL_EM is transformed into a component net, 

- The derived state mapping expression is transformed into a derived dependency net, as the states of the 
component depend only on the states of its subcomponents. 

Figure 6 shows the modular GSPN obtained by model transformation from the AADL_DM shown in Figure 
3. The dependency between Component 1 and Component 2 is represented in this GSPN model by a separate 
block. The arrows that link the GSPN blocks represent the direction of the dependency. Here, the direction is 
the same as the direction of the connections in the AADL_AM. In a more general case, when architectural 
connections are bi-directional, the dependency at AADL_EM level may be uni or bi-directional depending 
on the explicit direction of propagations. 

 

Figure 6: GSPN block representation 

The modular structure of the GSPN allows the user to validate the model progressively, as the GSPN is 
enriched with a block each time the second step is iterated, i.e., a new dependency is added in the 
AADL_EM of the system. So, if validation problems arise at GSPN level during iteration i, only the part of 
the current AADL_EM corresponding to iteration i is questioned. 

5. Transformation rules 

In the next three subsections we present successively AADL to GSPN transformation rules for 
i) isolated components, ii) a set of dependent components and iii) hierarchical systems. All transformation 
rules are defined to ensure by construction the various properties for the resulting GSPN to be syntactically 
and semantically correct. They are aimed to be systematic in order to prepare the transformation automation. 
Also, the resulting GSPN is generic and tool-independent. It is worth noting that this section only presents a 
few examples of the transformation rules. A more complete set of rules is presented in [20]. 
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5.1. Isolated components  

In the case of an isolated component or in the case of a set of independent components, the AADL to GSPN 
transformation is rather straightforward, as an AADL_EM represents a stochastic automaton, as shown in the 
example from Figure 1. Table 1 shows the basic transformation rules. 

The corresponding component block is formed of places and transitions. The number of tokens in a 
component block is always one, as a component can only be in one state. 

 

Table 1: Basic AADL error model to GSPN transformation rules 

AADL error model element GSPN element 

State Place   

Initial state  Token in the corresponding place    

Event GSPN transition (timed or immediate)   

 Timed Occurrence property of an event Distribution or probability characterizing the 
occurrence of associated GSPN transition 

 Immediate 

AADL transition 
(Source_State-[Event] -> Destination_State) 

Arcs connecting places (corresponding to AADL 
Source_State and Destination_State) via GSPN 
transition (corresponding to AADL Event)  

5.2. Set of dependent components 

As described in Section 0, dependencies between components are expressed in AADL through i) name 
matching propagations and ii) Guard properties, which are propagation control mechanisms. There are four 
Guard properties: Guard_In, Guard_Out, Guard_Event and Guard_Transition. Guard_In and 
Guard_Out are used to filter respectively incoming and outgoing propagations while Guard_Event and 
Guard_Transition are used to link the AADL_EM specification to the architecture model operational 
modes (i.e., to specify mode changes triggered by the propagations). For didactical reasons, in this section, 
we only focus on the AADL to GSPN transformation rules for name matching propagations.  

We first present an example of a pair of AADL_EMs that declare name matching propagations in  
Figure 7. Then we illustrate two possible transformation rules on this example. Finally, we generalize and we 
discuss the advantages of each of the two rules. 

We assume that the two AADL_EMs of Figure 7 are associated with AADL components that are connected 
or bound one to the other.  

• The AADL_EM at the left corresponds to the propagation sender. It declares two states: Error_Free 
(initial state) and Failed. The occurrence of the event Fail triggers the AADL transition between the 
source state Error_Free and the destination state Failed. Also, this AADL_EM declares one out 
propagation, named Sender_Failed. This notification is propagated out from the state Failed (with a 
probability p) and does not affect the state of the sender component. 

• The AADL_EM at the right corresponds to the propagation receiver. It is identical to the sender 
AADL_EM, except for the direction of the propagation Sender_Failed, which is an in propagation in 
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the receiver AADL_EM. If the receiver AADL_EM receives the propagation Sender_Failed when 
being in the state Error_Free, it moves to the state Failed.  

 

Error Model Type [Sender_example] 

error model Sender_example 
features 
Error_Free: initial error state; 
Failed: error state; 
Fail: error event; 
Sender_Failed: out error propagation;  
end Sender_example; 

 Error Model Type [Receiver_example] 

error model Receiver_example 
features 
Error_Free: initial error state; 
Failed: error state; 
Fail: error event; 
Sender_Failed: in error propagation;  
end Receiver_example;   

Error Model Implementation 

[Sender_example.basic] 

error model implementation 
Sender_example.basic 
transitions  
Error_Free- [Fail] -> Failed; 
Failed- [out Sender_Failed] -> Failed; 
properties 
Occurrence=>poisson λ applies to Fail; 
Occurrence => fixed p applies to 
Sender_Failed; 
end Sender_example.basic; 

  Error Model Implementation 

[Receiver_example.basic] 

error model implementation 
Receiver_example.basic 
transitions  
Error_Free- [Fail] -> Failed; 
Error_Free- [in Sender_Failed] -> 
Failed; 
properties 
Occurrence=>poisson λ applies to Fail; 
end Receiver_example.basic; 

Figure 7: Sender and Receiver – name-matching propagations 

When the out propagation Sender_Failed occurs in the sender AADL_EM, it propagates out of the 
component to which this AADL_EM is associated and reaches the receiver AADL_EM. The AADL 
transitions triggered respectively by the out propagation in the sender AADL_EM and by the in 
propagation in the receiver AADL_EM are simultaneous. The propagation Sender_Failed does not induce a 
state change in the sender AADL_EM. It is only a consequence of the event Fail on the environment. 

Two possible AADL to GSPN transformation rules are presented hereafter. The selection of the more 
appropriate one will depend on the number of AADL transitions triggered by the (in and out) propagation. 

• Case A: the transformation rule consists in merging the out propagation from the sender AADL_EM 
to the in propagation from the receiver AADL_EM in one GSPN transition, as shown in Figure 8-a. 
The Occurrence property of the out propagation characterizes the occurrence of the GSPN 
transition. 

• Case B: the transformation rule consists in decoupling the in and out propagations in the GSPN 
through an intermediary place, as shown in Figure 8-b. A token arrives in the newly introduced place 
when a GSPN transition corresponding to the out propagation occurs. This token is evacuated 
through an immediate GSPN transition of probability 1 that has either i) an input arc from a place 
corresponding to a source state for an AADL transition triggered by the in propagation in the receiver 
AADL_EM or ii) input inhibitor arcs coming from all places corresponding to such source states. 
Thus, the token from the intermediary place is always evacuated and the consequences of the out 
propagation are not inhibited if the receiver is not in a source state for transitions triggered by the 
corresponding in propagation. 
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a) Case A: merging b) Case B: decoupling 

  

Figure 8:  Propagation from sender to receiver 

In the most general case, an out propagation declared in a propagation sender AADL_EM could trigger n 
AADL transitions in this same AADL_EM (i.e. a particular propagation could be propagated out from 
multiple states). Matching in propagations could be declared in r ≥2 propagation receiver AADL_EMs and 
trigger mj AADL transitions in each j (j = 1…r) receiver AADL_EM. 

The number of GSPN transitions Ntr needed to describe the AADL propagation is given by: 

Case A:       Case B:      

Case B is best suited for n=2 and mj >3 (r = 1) and for n>2 and at least one mj >2 (for r ≥2). 

5.3. Hierarchical systems 

The behavior of a system in the presence of faults can be described, using derived AADL_EMs, in terms of 
global states depending on the states of its subcomponents. Derived AADL_EMs use Boolean expressions 
similar to those used in the Guard properties. These expressions determine the state of the derived 
AADL_EM (i.e., the global states). 

Global states of the system correspond to places in the GSPN. The Boolean expression is transformed into a 
set of immediate GSPN transitions of probability 1. These transitions are connected through arcs to places 
that correspond to states of the subcomponents and to global states of the system. Only one place 
corresponding to a global state can be marked at a given time. Thus, the number of GSPN transitions 
corresponding to an atomic Boolean expression is equal to ng -1 (ng being the number of places 
corresponding to global states). Each GSPN transition has an input arc coming from a place corresponding to 
a global state (which is emptied when the transition is fired). Initially, a token is placed in the place that 
corresponds to the global initial state of the system. This global initial state is determined from the initial 
states of the system’s subcomponents. 

An example is given in Figure 9, which shows the implementation of an AADL system component A with 
two subcomponents named A1 and A2.  

The Derived_State_Mapping expression specifies that the system is Error_Free if both its 
subcomponents are Error_Free, and Failed otherwise. Figure 10 shows the GSPN obtained after 
transformation of this derived AADL_EM. The place Error_Free corresponding to component A is marked 
if the places corresponding to Error_Free states for A1 and A2 are marked. Otherwise (i.e., at least one of the 
two places that correspond to Error_Free states for A1 and A2 is not marked), the place Failed of the derived 
AADL_EM is marked. Note that, A cannot be simultaneously in states Error_Free and Failed. One GSPN 
transition corresponds to each atomic Boolean expression (the expression when others is formed of three 
atomic Boolean expressions). 
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system implementation A.nominal 
subcomponents 
 A1: system hardware.nominal; 
 A2: system software.nominal; 
annex Error_Model {** 
 Model => forA.basic; 
 Derived_State_Mapping => 
  Error_Free when  
    (A1[Error_Free] and A2[Error_Free]), 
  Failed when others; 
**}; 
end A.nominal; 

Figure 9: Example of derived error model 

 
Figure 10: GSPN modeling of the derived state mapping 

It is noteworthy that the GSPN obtained above is tool-independent. However, some evolved GSPN 
processing tools are able to process Boolean expressions associated with GSPN transitions. In this case, the 
transformation rule can be simplified, as Boolean expressions of the Derived_State_Mapping 
expression can be directly placed on GSPN transitions. 

6. Didactical example 

In this section we illustrate our modeling approach. We use the transformation rules described in  
section 0. Due to space limitations we only present a toy example with one dependency. A more realistic one 
is presented in [20].  

The system considered here represents a simple computer. The system is formed of two subcomponents: a 
hardware subcomponent (processor) and a software subcomponent (thread) bound to the hardware. 
Permanent faults in the hardware cause hardware failures and require hardware maintenance. Temporary 
faults in the hardware do not require hardware maintenance but they can cause error propagations to the 
software on top of it. This leads to a structural dependency between the hardware and the software, as a 
processor can propagate errors to threads bound to it. The overall system is considered to be working if both 
the hardware and the software are error free, and failed otherwise. The overview of the AADL and GSPN 
dependability models is given in Figure 11 using the AADL graphical notation for the thread, the processor 
and the binding of the thread to the processor. 

The following two subsections present respectively the AADL_EM construction and the AADL to GSPN 
model transformation. 
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Figure 11: Overview of the dependability models 

6.1. AADL_EM of the system 

Figure 12 shows at the left the AADL_EM associated with the hardware component and at the right the 
AADL_EM associated with the software component. 

The AADL_EM type forHW declares i) three states: HW_Err_Free (initial state), HW_Err and HW_Failed, 
ii) four events: Temp_Fault, Perm_Fault, Disappear, Repair and iii) one out propagation: HW_Temp. The 
AADL_EM implementation forHW.basic declares AADL transitions between states declared in the 
AADL_EM type forHW. If a temporary fault occurs (Temp_Fault), the hardware moves from the state 
HW_Err_Free to the state HW_Err. A hardware error disappears (Disappear) after a while and the hardware 
returns to state HW_Err_Free. If a permanent fault occurs (Perm_Fault), the hardware moves from state 
HW_Err_Free to state HW_Failed. A failure requires repairing (Repair) the hardware. Occurrence 
properties are associated with all events and out propagations. An error caused by a temporary fault 
propagates out (HW_Temp) with a probability p1.  

The AADL_EM type forSW declares i) three states: SW_Err_Free (initial state), SW_Err and SW_Failed, ii) 
four events: Fault, Recover, Non_Recover, Restart and iii) one in propagation: HW_Temp (name matching 
to the out propagation from the forHW AADL_EM type). The AADL_EM implementation forSW.basic 
declares AADL transitions between states declared in the AADL_EM type forSW. When a Fault occurs, the 
software moves from state SW_Err_Free to state SW_Err. In some cases the error can be recovered 
(Recover) and the software returns to state SW_Err_Free. Otherwise (Non_Recover) the software moves to 
state SW_Failed and it needs to be restarted (Restart). Occurrence properties are associated with all 
events. An incoming propagation caused by a temporary fault in the hardware (HW_Temp) causes an AADL 
transition from state SW_Err_Free to state SW_Err. The error is then dealt with as if it were caused by a 
software fault. 
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Error Model Type [forHW] 

error model forHW 
features 
-- iteration 1 
HW_Err_Free: initial error state; 
HW_Err, HW_Failed: error state; 
Temp_Fault, Perm_Fault,  
Disappear, Repair: error event; 
-- iteration 2 (HW-SW dependency) 
HW_Temp: out error propagation;  
end forHW; 

 Error Model Type [forSW] 

error model forSW 
features 
-- iteration 1 
SW_Err_Free: initial error state; 
SW_Err, SW_Failed: error state; 
Fault, Recover, Non_Recover, 
Restart: error event; 
-- iteration 2 (HW-SW dependency) 
HW_Temp: in error propagation;  
end forSW;   

Error Model Implementation [forHW.basic] 

error model implementation forHW.basic 
transitions 
-- iteration 1  
HW_Err_Free-[Temp_Fault] -> HW_Err; 
HW_Err_Free-[Perm_Fault] -> HW_Failed; 
HW_Err-[Disappear] -> HW_Err_Free; 
HW_Failed-[Repair] -> HW_Err_Free; 
-- iteration 2 (HW-SW dependency) 
HW_Err-[out HW_Temp] -> HW_Failed; 
properties 
-- iteration 1  
Occurrence => poisson λ1 applies to 
Temp_Fault; 
Occurrence => poisson λ2 applies to 
Perm_Fault; 
Occurrence => poisson µ1 applies to 
Disappear; 
Occurrence => poisson µ2 applies to 
Repair; 
-- iteration 2 (HW-SW dependency) 
Occurrence => fixed p1 applies to 
HW_Temp; 
end forHW.basic; 

 Error Model Implementation 

[forSW.basic] 

error model implementation 
forSW.basic 
transitions  
-- iteration 1 
SW_Err_Free-[Fault] -> SW_Err; 
SW_Err-[Recover] -> SW_Err_Free; 
SW_Err-[Non_Recover] -> SW_Failed; 
SW_Failed-[Restart] -> SW_Err_Free; 
-- iteration 2 (HW-SW dependency) 
SW_Err_Free- [in HW_Temp] -> SW_Err; 
properties 
-- iteration 1 
Occurrence => poisson λ3 applies to 
Fault; 
Occurrence => fixed p2 applies to 
Recover; 
Occurrence => fixed p3 applies to 
Non_Recover; 
Occurrence => poisson µ3 applies to 
Restart; 
end forSW.basic; 

Figure 12: Error models forHW and forSW 

The derived AADL_EM for the system component specifies that the system is error free when both the 
hardware and the software are error free, and failed otherwise. This derived state mapping has already been 
described in Figure 9. 

The AADL_EM construction is accomplished in three iterations: states and events (with associated 
Occurrence properties) are declared together with transitions triggered by these events in a first iteration. 
The HW_Temp propagation together with its stochastic property and triggered transitions is introduced in a 
second iteration to explicit the dependency between the hardware and the software, as highlighted in  
Figure 12. The derived AADL_EM for the system component is added in a third iteration. 

6.2. Model transformation 

As the previous step, the model transformation is accomplished in three iterations. The resulting GSPN is 
shown in Figure 13. States and AADL transitions triggered by events are transformed into places and GSPN 
transitions belonging to HW and SW component nets. AADL transitions triggered by propagations are 
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transformed into GSPN transitions that form the HW-SW dependency net. The derived AADL_EM for the 
system component is transformed into the Computer derived dependency net.  

For clarity reasons, we modeled here only the structural dependency between the software and the hardware. 
We did not show the maintenance dependency between these two components (i.e., the fact that the software 
cannot be restarted if the hardware is failed). 

 

 

Figure 13: GSPN model for the computer system 

7. Conclusion 

This paper presented a stepwise approach for system dependability modeling using AADL and GSPNs. The 
aim of this approach is to hide the complexity of traditional analytical models to end-users acquainted with 
AADL. In this way, we ease the task of evaluating dependability measures. Our approach assists the user in 
the structured construction of the AADL_DM (i.e., architecture model + dependability-related information) 
that is transformed into a GSPN to be processed by existing tools. To support and trace model evolution, this 
approach proposes that the user builds the AADL_DM iteratively. Components’ behaviors in the presence of 
faults are modeled in the first iteration as if they were isolated. Then, each iteration introduces a new 
dependency between system’s components in the AADL_DM. The AADL to GSPN model transformation is 
meant to be transparent to the user. Thus, it is based on rigorous and systematic rules aimed at supporting 
tool-based transformation automation. The model transformation can be performed iteratively, each time the 
AADL_DM is enriched. In this way, the GSPN model can be validated progressively (hence the 
corresponding AADL architecture and error models can be validated progressively and corrected 
accordingly, if required). Finally, we illustrated the proposed approach on a toy example with one 
dependency. However, we have applied this approach to a complex-enough system, to assess its feasibility in 
[20]. In this paper, we have shown the principles of the transformation and some of the rules. The work in 
progress concerns the completion of the set of rules. Future work will focus on implementing a model 
transformation tool that can be easily integrated into AADL and GSPN based tools. 
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Abstract

Fault tolerance via diverse redundancy, with multiple “versions” of a system in a redundant configuration, is a naturally
attractive defence against design faults. Its effectiveness is measured by how unlikely the common failures are that cause the
whole redundant system to fail. It is well known that diversity cannot guarantee statistical independence between failures of the
diverse redundant versions; questions of practical interest for development decisions concern the levels of system reliability to be
expected, depending on whether diversity is used and how diverse developments are managed. The effect of diverse development
of versions can be modelled, at a rather abstract level, and the models offer useful insight on how to seek effective diversification,
recognising fallacies that may arise when addressing these subtle issues by “expert judgement” alone. However, the models
published so far rely on a strong assumption of independent sampling of the possible versions, roughly representing a process
in which the development processes of the diverse versions are kept rigorously isolated from each other: an “ideal” process
according to many opinions. This “ideal” situation is unlikely in practice. We discuss under which circumstances the assumption
is acceptable and the effects of relaxing it. We describe a generalised model allowing for many sources of dependence between the
developments. Our discussion clarifies various aspects of how the management of development processes affects the effectiveness
of diversity. e.g. the effects of different verification and debugging regimes. These have been discussed in the literature, but we
provide here a way of stating the arguments in more rigorous terms, resolving some specific questions that may arise and giving
some clarity regarding others.

I. INTRODUCTION

A defence against design faults in all kinds of systems is redundancy with diversity. In its simplest form, this means that
a system is built out of a set of subsystems (known as versions, channels, lanes), which perform the same or equivalent
functions and are connected in a “parallel redundant” (1-out-of-N) or a voted scheme1. The rationale for such designs, instead
of similar fault-tolerant designs that use multiple copies of the same subsystem, is that these multiple copies would contain
the same design faults: any circumstances in which one of them were to fail would tend to cause the other copies to fail as
well, possibly with results that, despite being incorrect, are plausible and consistent and thus cannot be recognised as failures.
Diversity eliminates the certainty of design faults being reproduced identically in all channels of the redundant system; one can
hope that any faults (rare, given good quality development) will be unlikely to be similar between channels, causing them not to
fail identically in exactly the same situations. This low probability of common faults can be sought by seeking “independence”
between the developments of the multiple versions. For instance,
� for custom-developed components, development teams work separately, making their separate design choices (and possible

mistakes), within the constraints of the specifications and general project management directives. These directives may
also be specifically geared at “forcing” more diversity, e.g. mandating different architectures or different development
methods [1], [2], [3].

� when re-using pre-existing components for the diverse channels, one can seek assurance that the developments were indeed
separate and, for instance, did not rely on common component libraries or designs.

We will refer to a scenario of diversity between software versions, since most previous literature in computing refers to this
scenario; we will show later on how our method can be applied more generally.

The difficult question is how effective diversity is, as a function of how it is obtained, so that one can decide when to
use diverse designs and how to manage their development. As usual in software engineering, experimental results are hard to
generalise, especially to high-reliability systems, and these questions have generated lively debates, in which positions have

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may
no longer be accessible.

1A parallel redundant (1-out-of-N) system is one in which correct system functioning is assured provided at least one channel functions correctly; in a voted
system, correct system functioning is assured if a majority of channels function correctly. Many other architectures are possible, but here we are interested in
the simplest practical scenario where evaluation problems arise.
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been mostly supported by appealing to experience and individual judgement. We attempt a rigorous probabilistic description of
the issues involved, seeking the usual benefits of clarifying the assumptions used separating questions that require an empirical
answer from those that can be answered by deduction, and providing useful insight.

There is little one can say a priori about the probability of common failure for a specific pair of versions. Some pairs may
have no faults that lead to failures on the same demand; in some other pairs, every time one version fails the other one will
fail as well. But can we at least predict something about the average results of applying diversity in a certain system?

One of the early questions was thus: will the average pair of versions behave like a pair of two average versions failing
independently? 2 The famous experiment by Knight and Leveson [4] refuted this conjecture: this “independence on average”
property did not apply to the specific population of versions that their subject programmers developed, hence cannot be assumed
to hold in general. On average, a pair of versions failed together with far higher probability than the square of the average
pfd of individual versions (though far less frequently than the average individual version). This leads to the conjecture that
the general law in diverse systems may be, unfortunately, one of positive correlation - on average - between version failures.
Experimental evidence was not enough to support or refute such general claims. Probabilistic modelling offered a way of
understanding what may be going on in diverse development. The breakthrough was due to Eckhardt and Lee [5]. The bases
of their approach were:
� from the viewpoint of reliability, a program can be completely described by its behaviour - success or failure - on every

possible demand;
� since the process of developing a program is itself subject to variation, so that one cannot know in advance (or even,

in practice, after delivery) exactly which program will result from it, from the crucial viewpoint of which faults it
contains, this development process can be modelled as a process of random sampling, which selects one program from
the population of all possible programs. The visible properties of the development (system specifications, methods used,
choice of developers) do not determine exactly which program is created, but they determine the probabilities of it being
any specific one;

� some demands are more difficult for the developers to treat correctly than others. One can formally model this “difficulty”
of each particular demand via the probability of a program, “randomly” chosen by the development process, failing on
that specific demand.

In this modelling framework, the reputedly ideal conditions of complete isolation between the developments of the various
versions are represented by the assumption that each program version is selected (sampled) independently of the selection
of any other. Eckhardt and Lee [5] then showed that, if all versions are produced independently by identical development
processes, “positive correlation on average” is inevitable, unless (implausibly) all demands have identical difficulty. Later,
Littlewood and Miller [6] pointed out that each version may be developed by a different process: this is indeed the purpose of
“forcing” diversity. With this less restrictive assumption, the “correlation on average” between failures of the version could even
be negative. This could even lead to zero expected system failure probability, even if the two version development processes
were such that they each gave non-negligible probability of producing a program that fails on some demands 3. These two
models (called EL model and LM model in what follows) both bring important insights:
� even perfect isolation –and thus independence – between the developments of the versions does not guarantee independence

between their failures. Independent developments guarantee that, given a specific demand, two – independently “sampled”
– versions will fail independently on that demand, and yet this in turn implies non-independence for a randomly chosen
demand.

� furthermore, we get a clear formal description of conditions that increase failure dependence, and thus of which goals we
should pursue when we try to “force” diversity.

These implications have been explored in many other applications of the same modelling approach, e.g. to the choice of fault
removal methods [7], [8], to security [9], to human-machine systems [10].

Here, we focus on the consequences of dependence between development processes. In the EL and LM models, this issue
does not arise: perfectly isolated development teams develop the programs for a multiple-version system. For brevity, we will
call this the “independent sampling assumption”, or ISA. The ISA has two useful properties: it is mathematically simple enough
to allow elegant theorems like the EL model’s implication of “positive correlation on average”, and it models the extreme ideal
form of separation between developments of the versions. But there are many reasons for doubting that it will normally be
realised in practice. Doubters point out, for instance, that
� some communication will tend to occur between the version development teams, at least indirectly;
� developers often share common education background or use the same reference books, etc.;

2This is often seen as an ideal condition. It would allow us to gain assurance of very high reliability of the redundant system at relatively low cost. For
instance, we could trust that a 3-version parallel system has a probability of failure per demand (pfd) of no more than �� �� at the rather affordable cost of
demonstrating that each version has a pfd of no more than �� ��. An even better scenario would be one in which common failures never happen, of course.

3There will always be some difference between the development processes of different versions, so the LM assumptions always apply when the development
processes of the individual versions are independent. On the other hand, it is difficult (actually, there is no obvious method) to quantify how far the true
conditions of development are from the EL, worst-case assumptions. So, if an assessor wishes to err on the side of conservatism, the EL assumptions are the
only appropriate ones.
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� the management of a multiple-version development will exert common influences on the development teams, e.g. by
distributing clarifications and amendments to the specifications.

These scenarios prompt several questions: do they violate the ISA? If they do, do they invalidate the message from the
Eckhardt and Lee breakthrough, that failure independence is unlikely and it is prudent to assume positive correlation? And do
they invalidate any other practical guidance drawn from these models? In conclusion, what are the practical implications of
possible statistical dependencies between the development (sampling) of versions? Answering these questions is the topic of
this paper. To do so, we have to clarify how the relevant aspects of real-world processes are mapped into modelling assumptions.

We will conclude that we see no scenario that cannot be modelled via the ISA; yet, as we shall show, the same real-world
system development process may be correctly modelled as respecting or violating this assumption, depending on the level of
knowledge assumed about the history of a specific project.

In the process of this analysis, a further important question arises: is the ISA really an “extreme optimistic” assumption for
the EL special case, which is what gives the EL result its value as a warning: “even under the most optimistic assumptions –
perfect independence in development – still you should expect identical processes to produce positive correlation of failures”. So
far, authors who recommend separation of version developments have plausibly argued that this would prevent the propagation
of mistakes between the teams developers of different versions (“fault leaks” [1]). It is plausible that this propagation may
occur, via either the direct imitation of erroneous solutions or the sharing of similar viewpoints and strategies (e.g. high-level
architectural decisions) which frame the development problems similarly for the different teams, creating similar “blind spots”
or error-prone subtasks. But the probability of common failures of two versions is the result of two factors: the correlation of
the failures and the absolute probability of each one failing; results about independence or lack thereof say nothing about this
second factor. If we accept that some events may occur that produce statistical dependency between the versions’ (otherwise
independent) developments, why would these events not also change – perhaps improve – the average reliability produced by
each version’s development process? For instance, consider the act of distributing a specification correction to the developers of
multiple versions: the project managers are accepting reduced separation – more dependence – between developments because
they seek greater reliability for each version. Other authors, and practitioners responsible for safety-critical systems, indeed
maintain [11] that strict separation of developments, which they accept from previous literature such as [1] as necessary for
effective diversity, will impede communications within a system development team to the detriment of system dependability.
If the ISA turns out not to be a “best case” assumption, what changes when one releases it? Does the pessimistic warning
from the EL model become invalid? And is the common advice to keep developments as “independent” (separate) as possible
justifiable on mathematical grounds (using commonly accepted, empirically justifiable assumptions) or should it be judged on
empirical grounds only?

Section II introduces the reference scenario for the discussion and some terminology, mostly adopted from the previous
literature [6], [5], [12]. Section III recalls the previous theory (EL and LM models) so that in Section IV we can formally
introduce the ISA. Section V shows ways of modelling violations of the ISA, and clarifies how whether the ISA holds depends
on how we characterise the sample space for a given real-world scenario, not on the scenario itself. In Section VI we then
discuss general theorems indicating preferences between system development processes; The discussion in Section VII deals
with the practical implications of these mathematical considerations, either for decisions about managing a multiple-version
development process or for any necessary changes in the lessons drawn from the EL/LM models. Finally, we summarise our
general conclusions and indicate directions for future work.

II. REFERENCE SCENARIO AND TERMINOLOGY

Our reference scenario is a system that may be implemented either as a single version or as a diverse 2-channel, 1-out-of-2
system (Fig. 1). This is a very simple scenario, yet with practical applications (in safety systems) and presenting the essential
difficulties of evaluating a probability of common failure.

We use the term “versions” (or “program versions”) in the sense of diverse, equivalent implementations of the system
functions. Following common usage, when there is no risk of ambiguity, we will also call “version” a channel of the two-
version system. We will avoid the other common meaning of the term “versions” to designate the results of successive changes
to a program, or “releases”.

We refer to the following simple picture of multiple-version development: separate “version development teams”, each
producing one version (and possibly further divided into sub-teams for design, coding, inspection, testing, etc). One “project
management team” or “manager” defines the requirement specifications that the development teams must implement and the
constraints under which they have to work, handles specification updates and decides on final acceptance of the developed
versions. In our terminology the way each version is developed is a version development process, and we call system development
process the combination of the development processes for the two or more versions in a system, plus the way they are co-
ordinated.

We consider an “on demand” system. It receives a demand from the environment and the result of processing it is either a
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success (a correct response) or a failure (an incorrect response) by the system. 4

The dependability measure of interest is the system’s probability of failure on demand (pfd). For our purposes the nature of
the required response to a demand – e.g., whether it is turning on an alarm signal or controlling complex mechanical actuators
– is irrelevant. We only distinguish between two types of response to a demand – success, i.e. correct behaviour and failure.
Also, we only consider failures due to design faults, i.e., failures not covered by the usual analyses methods for “random”
failures.

When executing the software, there is uncertainty about which demand it will next receive from its environment. This
uncertainty can be described by a demand profile, i.e. an assignment of probabilities to every possible demand, �, in the
demand space, � . The demand profile summarises, and depends on, the circumstances in which the system is used (and will
generally be known with some degree of imprecision). This is a distribution, � �� � ��, with respect to a random variable,
�, defined over the space � . We will use the phrase “a randomly chosen demand”, meaning a demand that occurs according
to this random process. We follow the convention of using uppercase letters (�), for random variables or outcomes of random
processes, and lowercase letters (�) for the values (numbers or vectors or names) which they can take. In all the analyses that
follow, the demand profile is assumed as fixed and given, i.e., the system’s pfd is the probability of the system failing on a
demand �, randomly chosen according to this demand profile.

Each version may contain faults, determined by the uncertain and variable process of software development. Due to these
faults, it fails deterministically on certain demands, its failure set. The sum of the probabilities of all these demands is the pfd
of that version. So, the demand profile associates to the failure set of a version a specific value of pfd.

Referring to Fig. 2, a version fails when subjected to a demand that is part of its “failure set”, determined by mistakes in
development. Independence between failures of the two versions would mean that the pfd associated to the intersection of the
two versions’ failure sets is exactly equal to the product of the probabilities associated to each of the two failures sets. There
is no obvious reason why this should be so. Furthermore, the same pair of versions could be employed under different demand
profiles. It would seem extraordinary that all possible demand profiles maintained the invariant of failure independence. As an
extreme case, for a pair of versions, the two failure sets might be disjoint, giving zero common pfd. Or they might be identical,
or one contained in the other.

III. EARLY CONCEPTUAL MODELS OF DEVELOPMENT AND FAILURE OF DIVERSE SYSTEMS

In this section we briefly recall the EL and LM models [5], [6].

A. Description of failure behaviour given full knowledge of programs

Given a program that behaves deterministically, i.e. for each demand it either deterministically processes it correctly or
deterministically fails to process it correctly, we can define a Boolean score function ���� ��, which is defined, for each
demand � and given program or system �, as:

���� �� �

�
�� if � processes x correctly
1, if � fails on x

Although the complete score function of a program or system is usually unknown, it is a useful device for reliability
modelling. Successful correction of faults can be modelled by changes in the score function, for some demands, from 1 to 0.

If we choose a demand � at random (according to the given demand profile) and look at the score function of � on this
demand, ������, ������ is itself a random variable, and the system’s pfd is its expected value:

pfd � � �� fails on ��

� ����������

�
�
���

���� ��� �� � �� (1)

where the notation ���������� designates the expected value, or mean, of the random variable ������, with respect to
the distribution of the random variable �.

4We will deal exclusively with software that can be analysed in terms of discrete demands. A demand can be as simple as a single invocation of a re-entrant
procedure, or as complex as the complete sequence of inputs to a flight control systems from the moment it is turned on before take-off to when it is turned off
again after landing. The same approach and insights can be extended to modelling the probability of failure as a function of continuous time in continuously
operating software, but the added model complexity is not worth introducing for the purpose of this discussion [13], [12].
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Channel A

(Version A of the protection
system design)

Channel B

(Version B of the protection
system design)

Sensor readings (of
same or different

physical variables)

Boolean output to
“wired-OR”
actuators

Safety Protection
System

Fig. 1. Our reference system is an abstraction of a plant safety protection system (e.g. for a nuclear power plant) with two redundant, diverse channels: a
simple 1-out-of-2 system. The system has to recognise a demand (a potentially hazardous state of the plant); the successful response to a demand is for the
system to initiate a plant shut-down procedure. The output of each channel and of the whole system is thus logically a Boolean variable.

version 1’s failure regions

version 2’s failure regions

system failure regions

Fig. 2. Example of overlaps between the failure sets of two diverse software versions. The horizontal, rectangular surfaces each represent the complete set of
system demands. The projection on the highest surface depicts those demands on which version 1 fails. The projection on the second highest surface depicts
those demands on which version 2 fails. The overlaps of these projections, depicted in the lowest surface, shows those set of demands for which a 1-out-of-2
system, built from versions 1 and 2, will fail in operation.

B. Score function of a two-version system

If we consider a two-version, 1-out-of-2 system, its score function is given by the product of the score functions of the two
program versions the system is made up of. Indeed, the system’s score is 1 (failure) if and only if both versions’ scores are
also 1 (both fail). .

If we call the two specific program versions in a system �� and ��, the pfd of the system they form is:

� ��� and �� fail on X�

� �� ������ ������� ���

�
�
���

����� ������� ��� �� � ��

� ��	�pfd� � 
��������� ��� ����� ��� (2)

where the sign of the covariance term 
��������� ��� ����� ��� captures the nature (positive or negative) of the failure
correlation between the program versions �� and ��.

C. Difficulty function

We call “difficulty function” (the term introduced in [6] to name a concept initially formulated by Eckhardt and Lee [5])
the probability of a “randomly” developed software version failing on a particular demand. This program is randomly chosen
from the population of different programs that (at least hypothetically) can be written to the same specification.

Formally, we require a set, � = ���������,5 of all possible program versions. We can reasonably assume that this set is
finite. Any program must fit in some form of computer memory, whose size, at any stage of technology, is finite. Given a

5� is the set of natural numbers.
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maximum feasible memory size , we can assume as the set of all possible programs the set of all possible series of  zeros
and ones. Of course, many of these “programs” will have zero probability of being produced. For a given development process
and team we can define a random variable �, whose realisation is a single version, e.g. ��, � � � � �. We call version sampling
distribution the distribution of �, � �� � � ��, i.e., the function representing the probability of the event “the program version
actually produced is program ��”.

This distribution is determined by the circumstances surrounding the development of the software: the specification of the
program to be used, the members of the development team, the methods used in developing the software (including the
verification and validation policy), the schedule and budget constraints, etc.

This way of modelling matches what we know about the variability of the outcome of a software development processes.
Although the process is closely controlled, we know that its result – the software produced, including, importantly, the faults
it contains – is not strictly determined by it. For instance, an assessor who is given all the documentation about the software’s
development (usually showing, among other things, no evidence of residual faults in the delivered software) still does not know
on which demands, if any, the software may fail due to unknown faults, although he/she may have an approximate idea of the
quality to be expected from the software.

We can expect different “values” of the circumstances of development to induce different distributions of the random
variable, �. Given a particular development scenario (with its particular circumstances) and thus a distribution of �, � �� �� ��
then represents the score function of a specific program version, ��, on demand �.

So, developing a program under given circumstances can indeed be described as running this stochastic production process
once, or equivalently “extracting the program at random” from a population of many different programs, with their different
probabilities � �� � ���, � �� � ���, . . . . We will use phrases like “a randomly selected program [version]” in this sense: the
program may have been delivered, but it is still unknown in that its score function is unknown. Each possible version, � �, has
an associated score function, ����� ��. The difficulty function on a particular demand � is then:

� ��� � �� ����� ��� �
�
���

� ���� ��� �� � ���� (3)

D. Application to two-version system

We can now derive the first result of the EL and LM models: for two software versions, independently developed by two
teams, it is inappropriate to estimate their joint pfd by multiplying their individual pfd estimates. The reasoning is as follows.

For a specific system development project (with its particular constraints and circumstances), the two redundant channels, A
and B, have associated random variables, �� and �� . These represent the program version that will eventually be produced
for each channel. �� and �� have associated version sampling distributions, e.g. � ��� � �� represents the probability
of team A, in charge of developing the program version for channel A, delivering the specific program version �. These
version sampling distributions induce difficulty functions, � ���� and �����, for each demand �. The EL model assumes
that the same constraints (circumstances of development imposed on the development teams) cause the version development
teams to develop their versions roughly “in the same way”, to the extent of “selecting them randomly” according to the same
distribution, though rigorously independently. That is, � �� � � ��� � � ��� � ��� for all ��. Thus, for any given demand, the
version development teams are are equally likely to make mistakes on that demand: they have identical difficulty functions,
i.e., ����� � ����� � ���� for every demand �. It can then be shown (see Appendix II) that, submitting to this randomly
chosen pair of versions the same, randomly chosen, demand the probability of both failing is:

� ������ fail on randomly chosen X�

� � ��� fails on ��� ��� fails on �� � � ��� ������

� �� ��� fails on ���� � � ��� ������

� ��� �������� � � ��� ������ � (4)

,
where � ��� ������ designates the variance of the random variable ���� and we have made use of the fact that for

identically distributed version sampling processes we have � ��� fails on �� � � ��� fails on ��. Since the variance of
any random variable is non-negative (4) shows that the average system pfd can be no better than the value ��� ��������, the
value one would expect if the versions failed independently, on average. The LM model, however, recognises that constraints
on the teams and, as a result, on the development of the two versions are unlikely to be identical: in general, ����� �� ����� for
some �. In particular, the management team can impose different constraints on the two developments and sets of developers
(“forced diversity”). So, unlike in EL,
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� ������ fail on randomly chosen X�

� � ��� fails on ��� ��� fails on ��

� 
��� ������� ������

� ��� �������� ��� ��������

� 
��� ������� ������ � (5)

Possibly 
��� ������� ������ � � so that the average system pfd could be better than ��� ��������
��� ��������; the lower bound for the mean system pfd is no longer the product term. In particular, the average system pfd
could be 0 even if �� ��������� ������� � �.

IV. THE INDEPENDENT SAMPLING ASSUMPTION (ISA): IMPLICATIONS AND RELAXATION

The Independent Sampling Assumption of the EL and LM models is a plausible representation for the ideal of complete
separation between the developments of the two versions: with “perfect” separation, there is no way that the development of
one version may influence the development of another one.

The ISA implies conditional independence, given the specific demand �, between the failures of the two versions: for any
given demand, the probability of that demand being a failure point for one version does not depend on whether it is a failure
point for the other version. This in turn implies ������ � ����������: the probability of building a two-version system that
fails on � is the product of the probabilities of each version development team building a version that fails on �. Thus the
ISA allows one to derive equations (4) and (5) (see Appendices II-A and II-B).

There are, however, several reasons for studying scenarios in which the ISA is false:

� complete separation is impossible for various practical reasons. So, we ought to study the effects of the inevitable, though
possibly small, departures from it;

� communication between the teams may in some cases be desirable because:

– either it causes positive correlation between failures on each demand, but improves the reliabilities of the individual
versions so much that the net effect is improved system dependability,

– or perhaps it can be engineered to cause negative correlation in such a way as to improve system dependability;

� even without communication between teams, the management may wish to improve the expected pfd of the diverse system
by enforcing methods that plausibly violate conditional independence. Examples, as we shall see, are:

– for the choice of algorithms to be implemented, allowing the two teams to choose freely but with the constraint that
they use different algorithms for the same subset of the demand space. The hope is to produce negative correlation
between the team’s mistakes on the same demand;

– regarding quality assurance measures, mandating some common procedure which may cause positive correlation. For
instance, testing the two versions on the same test cases may be a cost-effective way of improving the reliability of
both versions created, improving the reliability of the fault-tolerant system.

� more subtly, we will show that the ISA is equivalent to assuming that the version sampling distributions incorporates
somewhat complete knowledge of the circumstances of development. But to answer some important questions, we may
need to model scenarios in which some of the circumstances are unknowns, i.e. random variables. This turns out to violate
the ISA. Examples of such uncertain circumstances in development could be e.g. unforeseen deviations of the time and
funds available for specific tasks from the pre-set project calendar and budget.

V. MODELLING DEPENDENCE BETWEEN VERSION DEVELOPMENTS

The development process is complex and, to some extent, random. Many factors affect the outcome of the development
process. In addition, multiple version development processes may have factors in common. As a consequence, similarity of
failures between the program versions may occur. Some examples of common factors include:

� similarities between the backgrounds of the development teams;
� specification errors or ambiguities or late changes, making specific sets of demands more “difficult” for both teams;
� communication between the teams, either direct (discussions of design problems, common project reviews) or indirect

(queries to the project management causing specification clarifications to be issued to both teams);
� use of common design solutions or of common test suites.

All such possible sources of dependence between the teams in a development project, like many other events/circumstances
in this process, can be modelled as random variables. We shall refer to these random events as [random] influences. That is, they
are events/circumstances which affect the developments of the two versions and whose value may not be known beforehand.
The simpler interpretation of this “randomness” is as “uncertainty in the world”: we are trying to predict the effects of a
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process that has yet to happen and is affected by random factors. However, it can just as naturally represent “uncertainty in
knowledge”: the development has taken place, but what we know about it is limited; we still do not know the values of all
these variables.

We model an influence in development as a random variable, say �, which can take values from a set, � , associated with a
probability distribution describing the probability � �� � �� of � taking the value � � � during development. In our notation
we will assume the set � to be finite or countable to help intuition, though assuming � to be a continuous variable would
require minimal changes.

At this abstract level, it does not matter whether an influence represents an event external to the software development process
(e.g., a change in the requirements on which both version developments depend) or generated internally (e.g., selection of
common tests for both versions) or even interactions between the teams (the specific information exchanged in both directions
can be represented as a random variable or set of random variables). We will mostly be interested in the effects of common
influences: those that affect the developments of both versions. We will show that such common influences may indeed increase
correlation between version failures, or they may reduce it.

In producing a version, each team is somehow affected by the value taken by each influence: that is, this value affects
each team’s version sampling distribution. For instance, an unforeseen reduction of the time available for V&V may increase
the probability of less reliable versions being delivered. To describe this effect, we can express a team’s version sampling
distribution in terms of conditional distributions, dependent on the values of the influences. For example, team A’s probability
of delivering a certain version ��, given a certain value � of V&V time is � ��� � ��	� � �� (written sometimes, for the
sake of brevity, as � ��� � ��	��). Every distinct combination of values of the influences, i.e., different set of constraints on
version development, determines a distinct version sampling distribution and thus difficulty function. As long as the values
of the influences are unknown, the probability of a specific version being produced, and thus the difficulty function on any
specific demand, are given by averaging these values over all possible combinations of values of the influences.

We can describe scenarios involving influences via Bayesian networks (or “Bayesian belief networks”, BBNs), as in Fig. 3
and Fig. 4 [14], [15], [16]. 6 These Bayesian networks depict hypothetical system development processes in which there may
be multiple influences, common to the two versions as well as separate. The meaning of the graphs is as follows: each node
is a random variable; the nodes without common parents are mutually independent random variables; the nodes with common
parents are mutually independent, conditionally on the values of the parent nodes. For each node, a conditional probability
distribution is defined: the distribution of the random variable associated with that node, conditional on all the values of the
random variables associated with the node’s parents. The composition of all these distributions defines the joint distributions
of all the random variables represented by all the nodes in the graph. To determine whether a system fails on a demand all
that matters is the choice of the versions actually delivered for operation and of a demand, represented by the three nodes
����� and � in the graph. This is shown in the graphs by the fact that these are the only parent nodes of the nodes “��

fails” and “�� fails” which in turn are the only parents for “System fails”.
We note that nodes that are ancestors of only the �� or only the �� nodes do not represent common influences. They can

be eliminated from a BBN model by averaging with respect to them the conditional probability distributions associated to their
child nodes. Fig. 4 gives a BBN with examples of only common influences that we could be concerned about in an actual
two-version development process.

The EL and LM models are represented by a BBN as in Fig. 5, which only contains the right-hand part of the BBNs in
either Fig. 3 or Fig. 4. For any scenario of dependence in system development – for any one of our BBNs – if all common
influences are given specific values rather than chosen randomly OR if the version development processes have no common
events (they are perfectly isolated from each other), then the two final versions are chosen independently, and the ISA (EL or
LM model) applies.

We can transform Fig. 3 or Fig. 4 into a form without events in the development process that do not represent common
influences, such as Fig. 6. This is accomplished by averaging (marginalising) over those nodes (random variables) in Fig. 3 that
do not appear in Fig. 6. This transformation preserves the meaning of the original BBN – Fig. 3 or Fig. 4 – in an important
sense: it implies no conditional independence assumptions that were not already implied by the original BBN; and all the joint
distributions between the nodes in Fig. 6 are unchanged from those between the homologous nodes in the original BBNs [14].
However, Fig. 6 omits the details of how the influences affect the development process (e.g. which phase of development they
affected). 7

So, scenarios with quite different common influences, even if these influences affect different phases of development (e.g.,
errors in specification vs choices of the same system test cases for both version development processes), can be reduced to
a common mathematical form from the viewpoint of dependence relations. We can thus formulate a set of theorems that

6It is mathematically possible to describe joint distributions of random variables that cannot be described by any Bayesian network, but we have found
none, and we conjecture that none exists, that has practical interest for our topic.

7In the BBN in Fig. 6 the common influences are mutually independent, a property that we will shortly exploit. If Fig. 3 had sets of non-mutually independent
common influences, to achieve this property in 6 we would first merge each such set into a single random variable (a “vector” random variable, whose set
of possible values is the Cartesian product of the sets of possible values of all the random variables thus “merged”). The most general case of 6 would have
a single common parent for the nodes ����� , representing “all common influences affecting the two developments”.
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Fig. 3. This graph is a Bayesian network (BBN) depicting a (two-version) system development process affected by multiple influences, some of them
common to the two versions. The nodes to the left of �� and �� might represent, for instance, specific design artefacts, test techniques and test cases
selected, and influences on these various aspects of development like communication between the teams and the project management. The influences may
interact in complex ways, e.g., mistakes in a specification document may affect choices of test cases and both affect which version is delivered. We have
added the rounded boxes to identify the three main subsets of the BBN corresponding to the processes of developing the two versions and of operating the
system.
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Fig. 4. Here we have represented some possible examples of common influences between the developments of two versions, which exert effects at various
stages of the development processes and invalidate the Independent Sampling Assumption. The nodes in the top and bottom row represent artefacts at successive
stages of production of the two versions. To avoid cluttering the diagram, the names of the artefacts are listed above it instead of giving a name to each
node. Under the diagrams we have named the activities that transform an artefact into the next one. Each one is subject to some degree of randomness in
its results, justifying the representation of each artefact as a random variable, whose distribution is determined by the exact values of its parent nodes: the
artefact upstream of it, and in most stages a common influence as well, represented by a node in the middle row. In this case, only the unit testing phase is
performed by each team in isolation and without common influences affecting both teams.

Demand
X

Development
Of

Channel A

Development
Of

Channel B
B fails

fails

System
fails

A

B

A

System
operation

Fig. 5. A Bayesian network (BBN) for the El and LM models. The two versions are chosen independently (ISA), which is represented by the absence of
common parent nodes for �� and �� , and they fail independently conditionally on the randomly chosen demand � , as shown by the presence of the single
common ancestor � for the two nodes “�� fails”, “�� fails”.
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Fig. 6. The Bayesian network in Fig. 3, and all those we have examined that represent interesting scenarios of development, can be transformed into a
shape like this one, in which the only influences are direct “parent” nodes of � � and �� , and are common to both version development processes. The
intermediate nodes through which the influences affect � � and �� have been removed by marginalising the distributions in the BBN of Fig. 3 with respect
to the non-common influences. Thus, all these scenarios can be described by the same form of equation that applies to this figure. We study this form of
equation in this paper.
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Fig. 7. Bayesian network for a system with one common influence between the development processes: e.g., the same test suite is used to test both versions.

depend only on the presence of common influences. All the scenarios of dependence in system development that we have
considered so far in our study, some resulting in more complex BBNs than Fig. 3, can be transformed in this way, resulting
in the applicability of the same theorems to seemingly different scenarios.

We next discuss the implications of these models. The mathematical details and theorem derivations used in this section are
in Appendices I and III.

A. Effect of a single common influence

For the sake of simplicity, we first assume two version development processes sharing a single common influence � as in Fig.
7. If we first consider a specific instantiation of the two processes (including the specific value - say � – taken by �), leading
to the production of a specific pair of versions, the value � of � determines for each one of the two versions a conditional
version sampling distribution, � ��� � ��	�� and � ��� � ��	��, and difficulty function, which we call ������� and �������.
������� and ������� are functions of the demand, �, alone because they are evaluated given the specific value � of the random
variable �. Since � is the only common influence, and its value is known to be �, nothing has really changed compared to the
LM model in Sec. III, except that we know the two version sampling distributions to be the particular distributions that hold
when � � �. In particular, for two arbitrary programs, �� and �� , � ��� � ����� � ��	�� � � ��� � ��	��� ��� � ��	��.

Let us compare this with a situation in which only the distribution of � is known, rather than its actual value: we do not
know how the factor � manifests itself during the specific development project considered, but only the a priori constraints
on the development process. We can show that this violates the ISA:

� ��� � ����� � ���

� � ��� � ���� ��� � ���

�
����� ��� � ��	��� � ��� � ��	���

In this case we are interested in the difficulty functions as functions of the demand alone, taking into account the fact that
� may take any value. We then need to average with respect to the influence �:

����� � � ��� fails on a demand �,

given uncertainty about which value E takes�

� ���	� ������ ���

�
�

���	���

����� ��� ��� � ��	��� �� � ��

The probability of a randomly chosen pair of versions failing together on a demand �, if � may take a random value, is:

������ � � ��� and �� fail on demand �,

given uncertainty about which value E takes�

� ���������� � 
�������� ���� �������� (6)

As a result, the expected system pfd(joint failure probability) has the form:

�� �������� � � ��� fails on ��� ��� fails on ��

� 
��� ������� ������

� �� �
�������� ���� ���� ����� (7)

which, compared to the expression for the LM model, Eq. (5), has an additional covariance term. The covariance term in
equation (6) indicates that in this view the failures of the two versions, even conditional on a given demand, are not independent.
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That is, ������ �� ������� ���; equality (a zero covariance term) would hold if the version development processes A and B
were independent. Equality would also hold if for one of the versions, e.g. �, the difficulty were a constant with respect to �,
i.e., ������� �� � �����; or, in other words, under this condition the factor � can be considered as not being an “influence”
on version �, since it does not affect its version sampling distribution.

We can now see that there are different possible viewpoints on the same process, depending on which events or factors
(“influences”), among the potentially variable circumstances in the development, we assume as fixed (as fully known or as
fully determined by events that have “already happened”). The appropriate viewpoint depends on which questions we wish to
answer. Each viewpoint implies its specific version sampling distributions, and thus difficulty functions, for the two teams.

The EL and LM models simply assume fixed values for any common influences that might be present in the system
development process (more precisely, for those with respect to which the two difficulty functions, for the same demand, have
non-zero covariance; the others can be ignored). 8 In particular, the EL model assumes that all influences have been instantiated
to some definite values: by the end of development, it is certainly so and the main result “with identical version development
processes, your expectation of the probabilty of joint failures should be greater than the product of your expected pfds for
the two versions” is thus a sound warning. We will soon show examples of using “non-ISA” descriptions to derive other
general conclusions. So, the fact that some viewpoints imply the Independent Sampling Assumption and some do not is just a
mathematical curiosity, with an aspect of mathematical convenience when the ISA does apply. If we refer back to the “fault
leak links” between version developments, discussed in [1], we can now see that some of them could usefully be represented
in the difficulty function without violating the ISA, and others could not, but this always depends to some extent on the
observation point that we choose. On considering the effects of a common influence with uncertain value we will usually need
to assume the ISA is violated. If, on the other hand, we are considering the effects of a particular value of the influence then
the ISA is not violated.

For instance, consider the concern that two development teams are likely to have had similar technical education, and thus
share some preferred solutions for typical problems, leading to similar “typical” errors, which may tend to cause failures on
the same demands. If we are considering two specific, existing teams, their educational backgrounds are determined, their
typical errors are described in their respective difficulty functions, and thus education is not a “common” influence in our
sense, because it is not a random factor. The similarity of backgrounds does not violate the ISA. The likelihood that it causes
common failures is fully described by the two difficulty functions, through a contribution to their covariance over the space
of demands, in equation 5.

Suppose now that the teams have yet to be selected; for each version, each possible team will determine a different difficulty
function. If the selections for the two teams are affected by a common random factor, then the ISA is violated, creating the
covariance term in equation 6. If this term is non-zero when averaged over the demands (last term in equation 7), the violation
of the ISA invalidates the conclusions of the EL/LM models. A positive last term in equation 7 would mean, roughly, that
when we choose a development team with high propensity to fail on certain demands, we become more inclined to choose a
second team with similar weak spots on those demands. If instead no common factor affects the two team selections in this
way, the uncertainty on which team will be chosen for each version can be factored into the difficulty function for that version
(by averaging, on each demand, among all the difficulty functions, corresponding to every possible team).

B. The general case: multiple influences

Consider multiple, mutually independent influences, as in Fig.8: some common influences ��� ����
, and others, �� and �� ,
each affecting just one of the two developments. It can be shown (see Appendix IV) that the previous equations generalise as
follows. If we focus on one influence, e.g. ��, we see that

� ��� � ����� � ��� ��
��	��	��	�����

�
� ��� � ��	��� ��� ���

����
 �� ��� � ��	��� ��� ����
�

�
����

�
� ��� � ��	��� ����
 � ���� � ��� � ��	��� ���

����
 � ���

��
�

�
�� � ��� �� � ��

�
�

�
�� � ��� ���

����
 � �


�
(8)

8Going to an extreme viewpoint, we could assume as known every detail of the two developments, down to the two specific program versions created,
say �� and �� : the difficulty functions ����� and ����� collapse to the “score functions” ����� �� and ����� ��, and independence conditional on each
demand is guaranteed by the fact that the score functions can only take the values 0 or 1.
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Fig. 8. This is a specific example of a BBN like the one in Fig. 3, but with some non-common influences.

where

� ��� � ��	��� ������
 �

� ���

�
� ��� � ��	��� ����
� ���

�

and

� ��� � �� 	��� ��� ����
�

� ���

�
� ��� � �� 	��� ����
 � ���

�

.
So, each common influence induces correlation, captured by a covariance term, between the two version development

processes. This implies that the joint difficulty function, ������, no longer exhibits independence as we shall see below. The
joint difficulty function can be rewritten (as detailed in Appendix IV) to emphasize the effect of a specific influence, e.g. � �,
as:

������ ��
��	���	��

�
�����	����� ��������	����� ����


����

�
�����	����� ����� ����� 	����� ����

��
� ��� � ������

���� ��
 � �
 � (9)

where, say, �����	����� ��� � ���	�������� 	��	����� 	������, i.e., it is the mean probability of failure on � given fixed values
of ��� ���� �
 and averaged over all possible values of ��. ����� 	����� ��� is similarly defined.

It is possible to expand the right hand side of the last equation (Please see Appendix IV). Thus, we obtain the joint difficulty
function as

������ �

� ��� fails on ��� ��� fails on �� �


����	�����

�
�����	����� ���� �����	����� ���

�
�

���	�����

�

����

�
�����	����� ���� �����	����� ���

��
(10)

Similar to equation (6) the joint difficulty function in equation (10) does not exhibit independence. From equation (10) we
may obtain the expected probability of common failure (i.e. expected pfd of the 1-out-of-2 system) by averaging � ����� over
all possible system demands. The right hand side of (10) thus becomes

� a product of the expected pfds of the versions, plus
� a series of terms that are averages of covariances.

That is, the expected pfd of the 1-out-of-2 system is
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��

�
������

�
�

� ��� fails on ��� ��� fails on ��

� 
���

�
������ �����

�

� ��

�

����

�
����� ���� ����� ���

��

� ��

�
���

�

������

�
����� 	���� ���� ����� 	���� ���

���
� ������

�
���

�
������

�

����

�
����� 	�����

����� ���� ����� 	������� ���

����
(11)

Without any common influences all covariance terms with respect to influences become zero. Consequently, this equation
simplifies to equation (5), the equation for the expected pfd of a 1-out-of-2 system, predicted by the LM model.

There are many equivalent forms of the expected pfd, ��

�
��� ���

�
, that may be obtained simply by reordering the averages

in equation (11). We have chosen this form of the equation for the purposes of illustratiuon. The final term in equation (11)
above implies that given specific values for all the other common influences, influence �� creates a form of correlation between
the two development teams’ choices, and thus between the failures of the versions they deliver. Suppose that a system assessor
observes version �� failing on a certain demand; this makes it more likely that �� has been developed under a value of ��

that made that failure more, rather than less, likely. Since �� also affects the development of �� , the failure of �� on that
demand also gives information affecting the probability of failure of �� on the same demand. So, as an assessor, ��’s failure
would “tell me something” about the development of �� and thus about the influence ��; but �� also affects the development
of �� and therefore the failure of �� tells me something about �� ; if the covariation with respect to �� between the teams’
difficulties is positive, then �� is more likely than average to fail as well. If the covariation were negative, �� would be less
likely than average to fail. 9

VI. IMPLICATIONS AND INTERESTING SPECIAL CASES

In this section we will focus on specific scenarios in which the equations introduced above imply a clear preference between
alternative policies for the development of a diverse system. That is, we single out sets of sufficient conditions under which a
policy should be preferred to an alternative one. Our focus is on selecting cases in which the equations would actually help
in decision making: conditions that one may recognise as approximately satisfied in the real world scenario in which one is
called to make a decision.

Everywhere in this section we assume a description of the system development process in which the common influences are
mutually independent. That is, any sets of non-mutually independent influences is represented as a single random variable.

A. Mirrored version development processes

An interesting special case is that of the two version development processes being (stochastically) mirrored, by which we will
mean that if we consider the subnetwork that describes the development of channel A (�� and its ancestor nodes), and then
the one that describes the development of channel B, these two overlapping sets of nodes are isomporphic, and the conditional
distribution of each random variable in one subnetwork is identical to that of its corresponding variable in the other. In other
words, the two processes are substantially identical, as in the EL model but with the difference that they may have common
influences.

If a system development process is formed from two mirrored version development processes, and we reduce its BBN to
the form of Fig. 6, the resulting BBN still describes two mirrored version development processes: for any version � � and any
combination of values of the common influences ��� ���� �
, � ��� � ��	��� ���� �
� � � ��� � ��	��� ���� �
�.10 The two
difficulty functions are thus equal and consequently equation (10) becomes

9Here lies an important mathematical difference with the EL/LM models. The above statements about positive or negative correlations would still be true
even if, for any arbitrary value �� of ��, any or all of the marginal difficulties that can be obtained from ����� �������� ��� and ������������� ���, including
����� and �����, did not vary between demands. Yet, we know from the solutions of the LM model that if � ���� or ����� is constant with respect to �,
the two versions fail independently. That is, if we consider the influences as random factors, the two versions would fail dependently even in this scenario in
which failure independence holds given any specific combination of values of the influences.

10� ��� � ������ 			� �� � � ���

�
� ��� � ���
�� ��� 			� �� �

�
and � ��� � ������ 			� �� � � ���

�
� ��� � ���
�� ��� 			� �� �

�
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������ ��
��	���	��

�
�����	����� ���

� �

�
� ����

�
�����	������� ���

���
� ��� � ������

���� ��
 � �
 � (12)

where � ����

�
�����	������� ���

�

 � always, since it is a variance. This is a natural consequence of the processes being

identical. A practical example of this is discussed in [17] where both teams are required to test their versions using the same
test suite, ��, randomly chosen from the space of all test suites, � , according to a specified test suite generation method,
� ��� � ���. This influence adds a variance term, as shown in equation (12), to the expression for average system pfd. If we
replace this single random test suite with two independent, identically distributed random test suites � �� and ���, one for
each version development process, then this variance term dissappears: the average system pfd is no worse than it would be
with the single influence ��.

Observing that in equation (12) each common influence contributes a variance term, we can state a general rule as follows.

Preference criterion 1: Decoupling of mirrored version development processes. Irrespective of how many common
influences exist between two mirrored version development processes, substituting a common influence with two
influences (one for each of the two versions) with the same distribution as the one removed, but mutually independent,
yields better system pfd (equal pfd as a limiting case).

Note that:

� after applying this “decoupling” with respect to a common influence, the resulting processes are still mirrored, and thus
this criterion still applies: “decoupling” with respect to any number of common influences is an improvement;

� simply removing a common influence does not guarantee improvement. For instance, one way of removing the common
influence in this example is to eliminate testing, which would change the two version sampling distributions, presumably
for the worse, and may well therefore make the two-version system also worse. Instead, “decoupling” as defined above
is beneficial because it does not change the two version sampling distributions but only (and for the better) their joint
distribution.

B. Non-mirrored version development processes

If the version development processes are not mirrored, each common influence produces a covariance term in the expression
of the joint difficulty function (equation 6) or more generally (10). In principle, this term can be positive or negative.

In particular, let us consider the case of a positive covariance term. We may state a general result as follows. Observe that
in the equations above: (i) there is no preference about the order in which we choose the influences to “eliminate” from the
outer summation; (ii) for each covariance term introduced, the successive transformations in the equation contain averages of
that term over an increasing number of random variables (influences). Now, suppose there is a common influence � such that
the covariance term introduced by � is known to be positive, i.e. it is known that – roughly – the values of the influence
in question that imply worse probability of failure for one version imply worse probability of failure for the other version as
well; suppose that this property holds for any possible combination of values of the other influences. Then, even after being
averaged over all other influences, that covariance term is sure to remain a positive contribution to the system pfd. Likewise, if
the covariance term introduced by common influence � is always negative, this term will remain negative even after averaging.
In particular,

Preference criterion 2: Decoupling of diverse version development processes. Given two version development
processes such that with respect to some common influence � the covariance of their difficulty functions is positive
for any possible combination of values of all the other influences, substituting the common influence � with two
influences (one for each of the two versions) with the same distribution as �, but mutually independent, yields better
system pfd.

A special case of positive covariance is the one in which � is a numerical random variable and the two difficulty functions
are monotonic functions (both non-increasing or both non-decreasing) of � (see Appendix V).

As an example, consider this scenario: Our two-version system is to control a new model of some kind of equipment, and
part of its planned V&V process will be system testing in the equipment prototype. A certain time budget has been allocated
for this system testing phase, but the actual time available may vary depending on when the prototype is actually ready. Both
teams are thus exposed to the same random deviations: “time available for testing on the prototype” is a common influence.
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Fig. 9. Here, the system development process is as in Fig. 7, except for the fact that the two teams choose their test suites independently. The version
sampling distributions and difficulty functions for the two channels are the same as in Fig. 7, but the process in this figure produces better system pfd (equal
pfd as a limiting case). The random selection of demands is the only source of uncertainty in common between the channels.

We may reasonably expect an increase in the time available, allowing more testing, to improve the “difficulty” for every
demand, irrespective of other conditions, and a decrease to make it worse. The teams’ difficulty functions can be viewed,
therefore, as monotonically decreasing functions of the common influence. This is sufficient for the covariance term in equation
(6) to be positive. This means that the uncertainty on the actual available time in fact adds to the probability of common failure
of the average pair of versions developed, as compared to what would be calculated by just assuming the average effect of
this variable influence. Although one will never in practice be able to calculate these expected pfds from the equations, this is
not a purely theoretical result. It tells us that if we had a choice between purchasing versions that had been originally affected
by such a common influence (but without knowing its value: how much system testing time was actually available) and others
that were developed independently – the development processes being otherwise statistically equal in the two scenarios – we
should expect better system pfd from the latter. 11

Of course a dual theorem applies for negative covariance: substituting two non-common, identically distributed influences
with a common one, with the same distribution, and such that the covariance with respect to it is negative, will improve the
resulting system. Creating forms of negative covariance this way – that is, introducing random influences that whenever they
happen to hamper one version development team on some demands, help the other team on the same demands – is useful
in software development. By doing this we achieve increased levels of reliability at the cost of producing a single random
influence. This generalises a ”more reliability at no extra economic cost” result that was first discussed in [17]. There it was
noted that in the case of testing it is hard to imagine strategies giving such negative covariance.

C. Homogeneous versus diverse development processes

Finally, let us consider again two mirrored version development processes, with a common influence �. A plausible way
of “increasing diversity” is to require one of the two development teams to change its process in some aspect (change the
probability distributions associated to some node in the BBN), so as to obtain a process that is intuitively different but promises
to be no worse than the previous process. The difference might be e.g. in the technology used, or the testing methods, or in
the algorithms implemented. Let us indicate the two processes as � and �. Suppose that � and � are equivalent in that they
satisfy the “indifference” condition introduced in [6]: a system made of two versions, ��� and ���, produced by � has the
same expected pfd as one of two versions, �� and �� , produced by �:

��	���	���	� ������� �������� ��� �

��	���	���	� ������ ������ � ���

, where ��	���	���	� ������� �������� ��� and ��	��� 	���	� ����� � ������ � ��� are the average pfds for the �

and � based systems, respectively. Using the Cauchy-Schwarz inequality12 and indifference as follows

��	���	���	� ������� ������ � ���

�
�
��	���	���	� ����� � ������ � ���

11We wondered whether one could identify some management regime that would neutralise this unwanted effect from such common variations in resources:
e.g., would it be sufficient to require that if the two teams have to cut down on testing time, they must limit the cuts to the testing they perform separately,
and to two disjoint subsets of the demand space? We have found that this assumption alone could not be proved to give an improvement; further assumptions
would be needed, abstruse enough – in our opinion – that one would know whether to believe them in a specific project. Or could one just, ideally, isolate one
of the two teams from a common influence? For instance, consider the common influence due to the possibility that effort may need to be diverted from the
project, and in some comopanies these unplanned cuts would be likely to affect both development teams. Suppose that the management decides that any such
cut will only affect team A, keeping team B’s plans intact. Then, with respect to this influence team A’s difficulty function would be constant, eliminating the
corresponding positive covariance term in the r.h.s. of equation (6). But this is not guaranteed to be a net gain: team B may is now subject to the possibility
of greater effort cuts than if team A had not been so privileged, so its average difficulty has increased and with it other terms on the r.h.s. of equation (6).
Hence, this way of shielding one of the teams from the common influence, may or may not improve the expected system pfd.

12Let ���� and ���� by any two real, integrable functions then the Cauchy-Schwarz inequality states that ������������ ������� ������������	�
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�
�
��	���	���	� ������� �������� ���

� ��	���	���	� ����� � ������ � ��� (13)

we conclude that

��	���	���	� ������� ������ � ���

� ��	���	���	� ����� � ������ � ��� � (14)

Again, the result extends to version development processes with any number of common influences. So,
Preference criterion 3: Diversification between version developments. If two-version systems produced using a
process � for both versions or using another process � for both versions yield the same expected system pfd, using
process � for one version and process � for the other yields expected system pfd which is at least as good or better.
in particular,

This generalises the similar result in [6], obtained under the ISA (independent version development processes). In [17] similar
generalised results were obtained for a more restrictive problem description (the choice of a test suite for fault removal). Note
that without the indifference assumption, this clear-cut preference does not hold.

A peculiarity of this “criterion for improvement” is a form of irreversibility. Once we alter two mirrored version development
processes by “diversifying” some part of them, and thus turning variance terms in our equations into covariance terms, even
adding a common influence will not undo the diversification, in the sense that it will not reintroduce variance terms into the
expression for the average system pfd. I.e., adding this additional “coupling” may make the system less reliable, on average,
as we have seen, but will not produce in the equations the feature that is a sufficient condition for this decreased reliability.
Mathematically, once two version development processes are stochastically “diverse” (i.e., non-mirrored), adding common
influences cannot make them “non-diverse” again.

VII. DISCUSSION

The questions we have studied concern the effects of project management policies on the system pfd of 1-out-of-N systems
For instance: between two multiple-version development processes that appear intuitively sound, which one should be picked?
Or, given a process that we trust and a proposed change to this process, can we forecast whether the change will be an
improvement?

Such decisions are characterised by great uncertainty because the system development process does not fully determine the
resulting pfd: we need to reason in terms of probabilities and probability distributions. Besides, we normally lack much statistical
evidence to suggest such probabilities. But rigorous probabilistic reasoning can at least clarify whether the assumptions that
one believes to be true do support a specific decision. So, we look for characteristics of alternative development processes that,
when modelled mathematically, allow us to choose one of the alternatives as the one to be preferred. We thus also implicitly
outline the set of questions that cannot be answered via mathematics alone plus known empirical laws, and for which decisions
must wait for new experimental evidence or depend on subjective opinion.

A. Mathematical results

One of our successes has been to relax some of the stringent assumptions of the previous theory based on the seminal work
by Eckhardt and Lee and Littlewood and Miller (EL and LM models). Until now, most interesting theorems depended on very
limiting assumptions about the real-world scenario modelled: typically, independent development of the versions, delivering
versions with identical mean pfd. We have developed a natural, very general and powerful extension of these models.

An aspect of this generality is that practically any development process that we can imagine and any factor affecting system
failure can be represented in our style of models, via the abstraction of “common influences”, and all can be reduced to a
common representation as in Fig. 4 and Section V-B. This includes all the factors that are usually considered in the literature
as possible causes of similarity or correlation between the version development processes: from communication between the
teams to common backgrounds among the developers. All such “influences” influencing the version development processes
are modelled simply as random variables. The version development processes change as functions of the values taken by these
variables.

Note that the “common influences” need not be limited to the development phase. For instance, if we are interested in
physical failures as well as in software-caused failures, our BBNs can include extra nodes that are parents of the nodes “��

fails” and “�� fails”, to represent any common stress factors like ambient temperature or common shocks.
Our models, which are quite abstract in that in most cases the functions that they refer to cannot be estimated in practice,

clarify the relationship between the intuitive ideas of “separation”, “ independence” and “diversity of process”, formal concepts
of independence and correlation, and the measures of interest like reliability of probability of failure on demand. But these
models also offer some direct practical help for decision making: we were able to derive three “preference criteria” among
processes for developing two-version systems, based on sufficient conditions which, we think, people will recognise to match
their assumptions in certain practical decision problems.
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An example of the power of these models is that from our preference criteria one can derive, as special cases, the results
about the selection of test suites for two versions, [17], and generalise them to any number of stages of testing: for any number
of stages of testing, given equal development processes for the pre-test versions, separate, independent generation of the test
suites for the two versions is always better (i.e., may improve mean system pfd but cannot make it worse) than choosing the
same suite for the two versions.

Fig. 11 demonstrates how our results enlarge the set of scenarios in which mathematically founded preferences can be stated
between alternate ways of running multiple-version development. Our “preference criteria” describe changes that improve the
system development process by shifting it from one domain to another as depicted in Fig. 11.

EL model

Mirrored version
development processes

LM model: No
common

influences

Some
common

influences

Version development processes
with equal expected system pfds

Non-mirrored version development
processes

Version development
processes with different

expected system pfds

Fig. 10. The space of possible system development process states under consideration

EL model

Mirrored version
development processes

LM model: No
common

influences

Some
common

influences

Version development processes
with equal expected system pfds

Preference
criterion 2:
Decoupling
between
processes with
positively
correlated
difficulty
functions.

Preference Criterion 3:
Use diverse version
development
processes

Preference
criterion 1:
Decoupling

Non-mirrored version development
processes

Version development
processes with different

expected system pfds

Fig. 11. The space of possible assumptions about a system development process, and the subsets on which the various results recalled or derived here apply.
The arrows indicate our “preference criteria”: following an arrow from a subset of scenarios into another one improves the expected pfd. Note that the arrow
on the right indicates an improvement in the positive covariance case of our preference criterion 2; in the negative covariance case, the arrow would be in the
opposite direction.

In particular, an improvement over previous theory is in addressing questions such as, “When does combining multiple ways
of ‘forcing’ diversity [3], [18] bring more benefit than simply ‘forcing’ diversity in one way?” The preference criteria outlined
above give sufficient conditions for this question to be answered, for instance. An earlier theorem (section IV in [6]) showed
that combining multiple such decisions is desirable, but under rather restrictive conditions of independent sampling of versions,
complete “indifference” between alternatives, and of each decisions being a choice between mutually exclusive sets of possible
programs.

Applying, as we did, the notation of Bayesian networks seems an improvement in itself, in that it visualizes relationships
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of conditional dependence, and their implications (“given that this factor can affect the outcome of this stage of development,
will these two random variables be independent?”) can be recognised by applying simple rules based on the graph’s topology
(concerning e.g. the existence of common ancestor nodes).

Our results also clarify the meaning of “independence” between version developments, and somewhat reduce its importance.
Whether two version developments are independent (in the probability theory sense of the word) depends largely on how
much we assume to be uncertain about them. Independence holds, for all scenarios of real-world development, once all the
random factors affecting both versions have taken specific values: after the last interaction between the development teams, for
instance, their development processes have been altered by the specific communications exchanged (the specific instantiation
of the random event “communication between the teams”) but from that moment onwards the past intercommunication between
the two processes no longer affects their independence. From this viewpoint, the EL and LM results are generally valid. If, on
the other hand, we wish to assess the expected results of the version development processes when the values of the random
common influences are still unknown, then the two developments will not generally be independent. This latter viewpoint is the
appropriate one for answering some interesting questions. For example, to understand the effect of adding a common influence
at a certain stage of the version development processes, it helps to assume as determined and thus independent the processes
before that stage, and see the added influence as what might violate this independence, with positive or negative effects.

B. Updates to accepted principles and opinions

A major question for us was whether the insight derived from the earlier “EL” and “LM” models [12] that assumed the
version development processes to be strictly “independent” (in an intuitive sense that also has a stringent mathematical definition)
remains valid, despite the fact that this condition is never fully guaranteed in practice, and at times it is even advisable to
violate it intentionally. For instance, does the main message obtained from the EL result still hold, i.e., that a prudent assessor,
given identical version development processes, should assume positive correlation between version failures? Indeed it does,
because with mirrored version development processes the ISA was indeed the most optimistic assumption (cf. equation (12)),
so that the conclusion applies a fortiori if it is violated.

Broadly speaking, looking at the generally accepted, intuitive idea that effective diversity depends on strong “separation”
and “diversification” between the version development processes, our results by and large support them, at least for the simpler
scenarios. Separation should be sought between “mirrored” version development processes, or system development processes
where common influences would induce positive failure correlation between the system versions. However, our results also
underscore how many subtle variations are possible with respect to these intuitive cases.

We could for instance – a possibly surprising result – have situations where the presence of a common influence reduces
failure correlation: diverse version development processes might be made “even more diverse” via negative covariation between
difficulty functions (equations (6) and (10)). In practical terms, this would support policies that dynamically alter the process
applied to one version to make it “as different as possible”, from some viewpoint, from that applied to the other.

Another limitation to the support we can offer for the intuitive principles above is that our preference criteria depend on
simple sufficient conditions (e.g. they support decisions about removing a common influence if it induces positive covariance
between difficulty functions, irrespective of the values of other “influences”) and when these are not satisfied the criteria
no longer help: to decide between alternative system development processes (i.e., BBN topologies) one must then look for
empirical evidence.

Our general models make it easy to include in the descriptions of “cause of dependence” the cases of diversity-reducing
influences that yet improve system pfd (e.g., testing with a common, randomly chosen test suite); as well as the possibility, at
least in theory, of common influences that improve system pfd by increasing diversity. Dependence in the system development
process is not in itself good or bad. What matters are questions like: does the common influence that “creates” the dependence
affect the teams’ difficulty functions in “the same way”? Do both teams become more or less likely to make mistakes on given
demands due to a change in an influence?

There is room for further results from this modelling approach. There may be other “preference criteria” with sufficient
conditions that are clear enough to be recognised in practical situations. It would be especially interesting to find more
examples of system development policies that should create useful, negative covariance between the difficulty functions of the
two processes.

Another area for future work is extending our modelling beyond 1-out-of-2 systems. While these are an important category
of systems, and illustrate the basic problems in managing “diversity”, results applicable to other fault-tolerant architectures
would be desirable. Littlewood and Miller [6] showed that many results do not extend in intuitive ways from the 1-out-of-2
case, and further subtle, counter-intuitive effects are possible.

In conclusion, the advances described here greatly broaden the set of situations for which preferences between ways of
developing diverse software can be stated on a purely mathematical basis. They give rigorous support to common-sense beliefs
about the importance of separation and diversity between development processes in order to achieve failure diversity, but
also rigorously delimit the premises under which these beliefs are justified. Also, they highlight some less intuitive results;
for instance, in defining scenarios of “negative dependence” between version development processes or in showing how the
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very existence of development factors, influencing both versions’ reliabilities in a consistent way, may increase their average
common pfd.
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APPENDIX I
THE RELATIONSHIP BETWEEN THE DIFFICULTY FUNCTION, THE pfd AND THE EXPECTED pfd OF A SYSTEM

We deal with the following probabilities of failure:
� failure of a specific program � on a specific demand �: this is the score function ���� �� of that program;
� failure of a specific program � on a randomly chosen demand: the pfd of program �, ����;
� failure of a randomly chosen program version on a specific demand �: the difficulty function � ���;
� failure of a randomly chosen program version on a randomly chosen demand.
These four are linked as follows. The difficulty function � ��� is the expected value (for a randomly chosen program version)

of the score for a specific demand, as in equation (3). The pfd of the particular version, �, can be expressed as the expected
value of its score on a randomly selected input, �, according to (1):

� ��� � �� �� ������ �
�
���

� ��� ��� �� � �� (15)

Finally, if we select at random both a program version and a demand, the probability of that program version failing on that
demand is obtained by averaging over both all possible versions and all possible demands:

�� ��� �
�
���

� ���� �� � �� � �� �	� �
�
�����

� ����� �� � ��� (16)
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where � � ���� is a random variable representing the ”difficulty” of a randomly selected input and 	 � ���� is a random
variable representing the pfd of a randomly chosen program version. �� ���, equal to �� �	� is the expected value of the
“difficulty” function or the pfd respectively. It may not represent the probability of failure or the pfd of any particular version;
it is a characteristic of the development process as described by the version sampling distribution.

We should note that the mean pfd is not a complete description of the population of possible programs and systems. For
discussion of the limits and possible extensions see [19], [20].

APPENDIX II
DERIVATION OF THE EXPECTED SYSTEM pfd UNDER THE EL AND LM MODELS

A. Expected system pfd in the EL model

In what follows we show the derivation of the expected system pfd under the assumptions of the EL model. This derivation
was hinted at in section III-D of the main text. Under the EL model, since � ��� � ��� � � ��� � ��� for all ��, it follows
that ���� � ����� � ����� for all x. Consequently,

� ������ fail on a demand ’x’�

� ������

�
�

�����	�����

����������� ��� � ����� � ���

�
�

�����	�����

����������� ��� � ���� ��� � ���

�
�

�����

������ ��� � ���
�

�����

������ ��� � ���

� ����������

� �����

It then follows that

� ������ fail on randomly chosen X�

� ����������

� ���������

� ������

� ��� ����� � � ��� ���

where � � ���� is the random variable representing the “difficulty” functions, for each team, on a randomly chosen demand,
�.

B. Expected system pfd in the LM model

Similarly, we shall derive the expected system pfd under the assumptions of the LM model. So

� ������ fail on a demand ’x’�

� ������

�
�

�����	�����

����������� ��� � ����� � ���

�
�

�����	�����

����������� ��� � ���� ��� � ���

�
�

�����

������ ��� � ���
�

�����

������ ��� � ���

� ����������

and thus

� ������ fail on randomly chosen X�

� ����������

� ���������� ����

� �� ������

� ��� ����� ��� ��� ��

� 
��� �������
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so that

� ������ fail on randomly chosen X� �

��� ����� ��� ��� �� �
��� �������

where �� � �� ��� and �� � �� ��� are the random variables representing the “difficulty” functions of the two methods,
A and B, on a randomly chosen demand.

APPENDIX III
EFFECTS OF A SINGLE COMMON INFLUENCE

Let us assume two version development processes sharing a single, common influence � as in Fig. 7. If we first consider
a specific instantiation of the two processes, including the specific value - say � – taken by �, leading to the production
of a specific pair of versions, the value � of � determines for each one of the two versions a conditional version sampling
distribution, � ��� � ��	�� and � ��� � ��	��, and difficulty function, which we call ������� and �������. ������� and
������� are functions of the demand, �, alone because they are evaluated given the specific value � of the random variable �.
These difficulty functions are computed in the “usual” way, e.g.:

�������

� � ��� fails on demand �	� takes value �)

� ����������� ���

�
�

��� ����� ��� ��� � ��	��

Since � is the only common influence, and its value is known to be �, nothing has really changed compared to the LM
model in Sec. III, except that we know the two version sampling distributions to be the particular distributions that hold when
� � �. In particular, for two arbitrary programs, �� and ��, � ��� � ����� � ��	�� � � ��� � ��	��� ��� � �� 	��. Using
this independence we may claim:

��������

� � ��� and �� fail on demand �	� takes value �)

� ���	���������� ������ � ���

�
�

���	��� ����� ������� ��� ��� � ����� � ��	��

�
�

���	��� ����� ������� ��� ��� � ��	��� ��� � ��	��

� ���������������

That is, the failures of the two versions on a given demand are independent, conditionally on the demand �. Let us compare
this with a situation in which we do not know the specific value taken by �, but only its distribution: we do not know how
the factor � manifests itself during a specific development, but only the a priori constraints on the development process. We
can show that this violates the ISA:

� ��� � ����� � ���

�
�
���

� �� � ��� ��� � ����� � ��	��

� 
����� ��� � ��	��� � ��� � ��	�� ��
���

� �� � ��� ��� � ��	�� �

�
���

� �� � ��� ��� � ��	��

� � ��� � ���� ��� � ���

�
����� ��� � ��	��� � ��� � ��	���

In this case we are interested in the difficulty functions as functions of the demand alone, taking into account the fact that
� may take any value. We then need to average with respect to the influence �:
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�����

� � ��� fails on a demand �,

given uncertainty about which value E takes

� ���	� ������ ���

�
�

���	��� ����� ��� ��� � ��	��� �� � ��

The probability of a randomly chosen pair of versions failing together on a demand �, for a random value of �, is:

������ � � ��� and �� fail on demand �,

given uncertainty about which value E takes�

� ��

�
����� ���

�

� ��

�
����������� ���

�

�
�
���

��������������� �� � ��
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�
���

� �
���	���
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�
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����� ������� ��

�
� ��� � ���� ��� � ���
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����� ��� � ��	��� � ��� � ��	���
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���
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���� � ��� ��� � ���

�
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���	���

�
����� ������� ���


����� ��� � ��	��� � ��� � ��	���

�

� ���������� � 
�������� ���� ��������

So, the average system pfd is

�� �������� � �� ��������� �������

� 
��� ������� ������

� �� �
�������� ���� ���� �����

By evaluating, in a different order, the expectations used in obtaining the last equation we may recast the average system
pfd in its alternate form;

���	�� ���������� � ��� ���������� �������

�
��� ������� �� ����

�
�
��	��

�

����� ��� � ��	��� � ��� � ��	���

�
��� ������ ��� ���� � ���

�
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,
where ��������������������
��� ������ ��� ����� ��.

APPENDIX IV
EFFECTS OF MULTIPLE COMMON INFLUENCES

Following the discussion in section V-B we assume multiple influences, as in Fig.8 or Fig.3: some common, mutually
independent influences ��� ����
 , and mutually independent influences affecting just one of the two developments. So the
probability of building a system with versions � � and �� is

� ��� � ����� � ��� �
�

��	����� 	��	��

� ��� � ����� � ��	��� ����
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 � �
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�
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��	����� 	��	��
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 � �
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�
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��	����� 	��	��

� ��� � ����� � ��	��� ����
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 � �
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 � �
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 � ���

�
� ��� � ���� ��� � ������� ��
 � �
 �� ��� � ��� �� � ���

where we have exploited the independence between �� and �� conditional on the influences, and the independence among
all influences.

The general form of the right-hand side of this equation evolves as follows: in evaluating the product term within the
summation,

In particular, this equation reduces to equation (8) upon focusing on one influence, � � say, from which we can see that
every common influence induces correlation, captured by covariance terms, between the version development processes. This
implies that the joint difficulty function, similar to equation (6), no longer exhibits independence. Its form is

������ � ����������

�
�
��	��

�
����� ������� �����	��

�

����	�������

�
� ��� � ��	��� ���

����
� ���� � ��� � �� 	��� ����
 � ���

���

� ���������� �

�

����	�������

�
��������� 	����� 	������� ��������� 	���

����� 	������

��
(17)

To isolate the effect of a certain influence, �� say, we can reorder the calculation of ������ as:
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where �����	����� ��� � ���	�������� 	��	����� 	������, i.e., it is the mean probability of failure on � given set values of
��� ���� �
 but averaged with respect to �� and ��.

APPENDIX V
PROOF OF NON-NEGATIVE CORRELATION BETWEEN DIFFICULTY FUNCTIONS THAT ARE MONOTONICALLY DECREASING

FUNCTIONS OF A COMMON INLUENCE

In the expressions for expected system pfd discussed in the main text there are terms that are expectations of covariances.
For instance, terms like �� �
��� ����� ���� ���� ����� appear in section V. We shall show that the covariance of two
monotonically decreasing difficulty functions is non-negative. Consequently, an expectation of this sort of covariance results
in a non-negative value.

Part Eval - APPENDIX [Salako & Strigini 2006] p 24



SALAKO, STRIGINI: DIVERSITY FOR FAULT TOLERANCE 25

Theorem 0.1:
Let � and � be functions of the Random Variable, �� Let there exist a point � � 
�, such that�
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��
���� � �� ���� �� � � � 
�

so that
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�����  �� ���� ��� 	�� ��� 
 � (
�

is the usual Lebesgue-Stieltjes integral with respect to �� ���, the cumulative
distribution function of Y) and let � be a monotonically decreasing, real-valued function of �. That is, � is a real-valued
function such that ����� � ����� whenever �� 
 ��. Then
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Proof: Consider that
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Using this result, the requirements
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and �, a monotonically decreasing function of �, we
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Recall: We may always write 
��� ���� �� ��� �� �
�
�
�����  �� ���� ��� ����	�� ���. Using this above gives the required

result;
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 �

.

corollary 0.2: �� �
��� ����� ���� ���� ����� 
 � whenever the difficulty functions, ��� ���� ��� ���, are monotonically
decreasing functions of the influence �.

Proof:
Suppose ��� ���� ��� ��� and the random variable � have the properties of �� � and � respectively, from
the last theorem. Then


��� ����� ���� ���� ���� 
 �� �� �
��� ����� ���� ���� ����� 
 �

.
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Non-Determinism in Multi-Party Computation (Abstract)

Michael Backes∗ Birgit Pfitzmann† Michael Waidner‡

Abstract

Outside security, non-determinism is an important tool forspecifying systems without fixing unnec-
essary details. In security, however, normal refinement of non-deterministic specifications is usually not
applicable, in particular because it may invalidate secrecy properties. Especially simulatability-based
security notions seem to require detailed deterministic orprobabilistic specifications. We show how one
can nevertheless use the reactive simulatability (RSIM) framework to address non-determinism. In par-
ticular we survey itsgeneric distributed scheduling for treating the non-determinism of asynchronous
execution, discuss the experiences we made with this, and how it encompasses other recent scheduling
approaches. We also show how property-based specificationscan play the role of highest-level non-
determinism in the RSIM context, and how functional non-determinism of machines can be captured by
the system-from-structure derivations as well as by call-outs to the adversary or more general resolvers.

1 Introduction

In normal design processes, non-determinism is an important tool for initially specifying systems with-
out fixing unnecessary details. Outside security, there aremany well-accepted notions of refinement of
non-deterministic specifications, e.g., for program verification and distributed systems. In security, how-
ever, normal refinement is usually not applicable, in particular because it may invalidate secrecy properties.
In cryptography, this is particularly visible in simulatability-based approaches at system specification and
refinement, and it may even seem inherent that such specifications cannot be non-deterministic: In cryp-
tographic simulatability definitions, ultimately the views of certain parties are compared in the sense of
compuatational indistinguishability [9]. For this, the views must be families of probability distributions.
Hence at this point in the definition, all non-determinism inthe specification or implementation of the pro-
tocol must have been resolved deterministically or probabilistically. As an example, we sketch the general
RSIM definition from [7] in Figure 1.

However, we will show that this is no fundamental problem forusing non-determinism in design-
ing cryptographic multi-party protocols, because there are ample opportunities to resolve initial non-
determinism within the overall formula in which the view comparison occurs.

2 Scheduling – Non-Determinism by Asynchronous Execution

A particular question that has recently found renewed interest is how the inherent non-determinism in the
execution order of asynchronous systems can be resolved in cryptographic multi-party computation.

∗Saarland University, Saarbrücken, Germany, backes@cs.uni-sb.de
†IBM Zurich Research Lab, Switzerland, bpf@zurich.ibm.com
‡IBM Software Group, Somers, USA, wmi@us.ibm.com
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Figure 1: Overview of general reactive simulatability (RSIM). An implementation (often called real system)
is on the left, the corresponding specification (ideal system) on the right. Here the views ofH must be
indistinguishable.

2.1 Typical Scheduling Patterns

In the distributed systems community, this resolution is usually done by a separate, arbitrary full-information
scheduler, i.e., a component that at each step knows the entire system state and can base its next scheduling
decision on that. For typical computational cryptographicsystems, this gives the scheduler too much power.
For instance, the scheduler can see internal secrets of honest parties and encode them in scheduling decisions
that the adversary can learn [5]. In cryptography, the most typical scheduling pattern is therefore that the
adversary schedules everything. However, in some cases even this scheduling is too strong.

• Whenliveness, availability, or fairness properties of a protocol are considered, some fairness of the
underlying scheduling must usually be assumed, because certain messages have to reach their re-
cipients. Cryptographic versions of such properties and corresponding schedulers were introduced
in [3].

• Covert channel prevention is needed when the absence of information flow between certain parties is
considered. Here an adversary should not be able to encode the information whose flow is otherwise
prevented into scheduling information. Cryptographic versions of such definitions were introduced
in [1].

• Subprogram-like machine combination. Proofs of distributed systems often use splitting and recom-
bination of machines with properties such as associativity. Process algebras likeπ-calculus (first
used cryptographically in [5]) have many such properties predefined, and also for the probabilistic
IO automata (PIOA) model in the RSIM framework such properties were shown. If every machine
recombination would make different channels external and thus open them to adversarial schedul-
ing, it would significantly hinder such modular proofs. Hence it is useful to allow immediate local
scheduling of certain channels [5, 8].

• Adversary-scheduled secure channels. Secure channels are sometimes needed in initial protocol
phases such as the exchange of symmetric master keys. It seems realistic that even if an adversary can-
not read and modify messages on such channels, it may be able to influence the channel speed. This
is adversarial scheduling, but for channels where the adversary is neither the sender nor the recipient.

2.2 Generic Distributed Scheduling

The generic distributed scheduling from the RSIM framework[8] allows all the cases described above, alone
or in combination, as well as many other scheduling mechanisms that one might come up with. All this is
done with very little overhead compared with standard machine and scheduling definitions. The following
two principles are used:

2
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• Schedulers are normal machines.

• For each channel, one can designate which machine schedulesit.

Thus the only addition to a concrete specification or a systemdefinition, compared with a system model
with fixed scheduling, is that for each channel, not only a sender and a recipient are designated, but also
the scheduler. Clearly, all the cases from Section 2.1 can easily be defined as patterns in this model. For
specifications or systems that use one of these patterns the scheduling can largely be given by reference
to the pattern. (Clearly if, e.g., some channels are scheduled locally and others by the adversary, then
one still has to designate which channels are which.) The fact that schedulers are normal machines also
makes it easy to define one or many schedulers (e.g., a scheduler hierarchy or local schedulers), to provide
each scheduler with arbitrary information, and to define arbitrarily how much an adversary learns from a
scheduler (typically nothing beyond what it learns from other sources).

2.3 Discussion and Comparison of Scheduling Models

As shown above, special schedulers are usually needed in cryptography if adversarial scheduling is too
strong. I.e., given the “normal” machines, a limited set of possible schedulers is defined, e.g., all fair ones
that schedule certain channels. The overall set of behaviours of such a system is a subset of the behaviors
that can occur with adversarial scheduling, because everything a separate scheduler and an adversary can
do could easily be done by a combined adversary too. Thus every securityproperty that can be proved for
adversarial scheduling also holds for the restricted scheduling, but not vice versa.

Concerningsimulatability definitions, specific scheduling patterns fall under the existing RSIM defini-
tions and theorems (in particular composition) as long as all involved schedulers can be classified in the
quantifier orders as either normal machines, adversaries, or honest users.1 For all patterns above this is true.
Hence generic distributed scheduling has been very useful for treating all these cases with only one set of
definitions and theorems. If other quantifier orders are desired (quantifier orders are separate from the basic
models in the RSIM framework and many variations have already been compared, starting with [6]), similar
theorems need to be reproved. These proofs can follow the same graphical meta-structure as used for the
RSIM proofs. For instance, we believe that a composition theorem for the quantifier order∀A ∃A′

∀H ∀S ∃S′,
whereS andS′ are the schedulers in the implementation and specification,(suggested by Robert Segala) can
be proved without any serious change to the proof for generalRSIM in [8].2

It is even possible with generic distributed scheduling to define full-information schedulers or super-
polynomial schedulers for certain system parts (the formersimply by letting the machines in this system
part send their entire new state to their scheduler in each step), while keeping the adversary polynomial-
time and with realistic information. Then more behaviors than with adversarial scheduling are possible.
However, we do not believe that there are many cryptographically interesting uses of this: If the machines
that are scheduled with full information contain secrets, in most cases the scheduling can leak these secrets
to the adversary. If they do not contain secrets, the full-information scheduler cannot do much more than a
normal adversary.

All other scheduling models proposed in the literature can,at least on this informal level, be easily
mapped into generic distributed scheduling. Let us show this for a particular model [4] that was recently

1The RSIM framework, in contrast to some related frameworks,allows quantification also over normal machines by considering
systems consisting of many possible actual structures; Derivations of such a system from one “intended” structure are an additional
definition layer that is currently mostly used for trust models, but can also used for adding schedulers.

2Recall that for securityproperties the structure with separateS andA is weaker than the standard structure. However, if weaker
structures on both sides are compared, there is no trivial relation to standard definitions.
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built without any look at related literature (as the introduction to an earlier public version shows and several
authors admitted); it can thus count as independent confirmation of the generality of the generic distributed
scheduling from RSIM. Like the RSIM framework, it uses PIOAs. However, it schedules message output
instead of message arrival. Hence the models are not easy to map formally, but neither the task PIOA authors
we spoke to nor we currently think that this makes a significant difference. The “tasks” in that model
correspond to the channels in the RSIM framework and in the cryptographicπ-calculus from [5]: Like
channels, these tasks group messages that the scheduler canschedule without knowing the exact message
content. There is one specific scheduler (called “task schedule”), separate from the adversary. It does not get
information from the running system and is deterministic. In the RSIM framework such a scheduler would
be represented as a deterministic machine without normal in- and output channels. Note that this is a very
weak scheduling model for securityproperties. Another variant with full-information schedulers for certain
system parts, corresponding to the case we described above,is sketched.

3 Functional Non-Determinism in Simulatability Definitions

In design processes, functional non-determinism is rathermore important than asynchrony. Typically, non-
deterministic machines are used to leave certain choices open, which can be fixed by later refinement. If
the design process for a system that contains cryptography is performed entirely with refinement steps that
are proven correct with a simulatability definition, such a use of non-determinism may at first glance seem
impossible because currently the basic machines in all suchframeworks are probabilistic (which includes
deterministic, but not non-deterministic).

Nevertheless, functional non-determinism can be handled in two ways. First, in the RSIM framework,
one could easily allow non-determinism in the intended structures from which systems (sets of actual struc-
tures) are derived. Standard refinement notions could be used for this deriviation. As the view comparison
as in Figure 1 is only performed on the actual structures, it is not be affected.

Secondly, one can call out potential non-deterministic choices and leave them to the adversary. In [7]
(and the corresponding longer reports) this falls under themethod for identifying “tolerable imperfections”.
It was, e.g., used to leave open in a specification how many rounds a synchronous protocol takes, or to allow
that the length of a message leaks partially or entirely. Thesame technique was explicitly or implicitly
used by many subsequent protocol specifications used with simulatability definitions. One could generalize
these techniques similar to the scheduling, i.e., generally introduce a class of components, say “resolvers”,
that take choices left open by others. In the basic RSIM machine and execution model this simply makes
no difference, but one could again come up with different quantifier orders between adversaries and other
resolvers.

4 Non-Determinism by Property-based Specifications

The first specifications in a real-life design process are typically non-deterministic in a more fundamental
way than non-deterministic machines: They consist of individual requirements. Ideally those are solicited
from human stakeholders and then formalized in some logic, e.g., temporal logic for typical functional re-
quirements on distributed systems. In security, additional requirements are secrecy requirements for certain
data or message types. Such properties can also be formalized at an abstract level (one might call this “ideal
properties”) and given a cryptographic semantics. It can beshown that the refinement of such properties by
abstract system specifications (“ideal systems”) and latersimulatability-based refinement to cryptographic
systems are compatible. This was first formalized for integrity properties in [7]; secrecy properties exist in
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more variants, e.g., [2].

5 Conclusion

Non-determinism is an important aspect of general system design processes. We have shown how, in spite of
the probabilistic nature of typical cryptographic definitions, non-determinism can play its role also for sys-
tems containing cryptographic protocols. In particular the following four mechanisms can be used (roughly
orderd from high-level to low-level specifications): cryptographic semantics for property specifications, sys-
tem definitions via derivations from non-deterministic structures, call-outs of non-deterministic choices to
the adversary, and generic distributed scheduling for the general low-level resolution of non-deterministic
choices.

Acknowledgments. We thank Ling Cheung, Joshua Guttman, Nancy Lynch, John Mitchell, Roberto
Segala, and Matthias Schunter for interesting discussions. This work is partially supported by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932-NOE ECRYPT. In this
abstract we could not give a complete literature overview; we refer to the cited papers for more prior and
related work.
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Abstract. Automated tools such as model checkers and theorem
provers for the analysis of security protocols typically abstract from
cryptography by Dolev-Yao models, i.e., they replace real cryptographic
operations by term algebras. The soundness of Dolev-Yao models with
respect to real cryptographic security definitions has received significant
attention in the last years. Until recently, all published results were pos-
itive, i.e., they show that various classes of Dolev-Yao models are indeed
sound with respect to various soundness definitions.
Here we discuss impossibility results. In particular, we present such re-
sults for Dolev-Yao models with hash functions, and for the strong secu-
rity notion of blackbox reactive simulatability (BRSIM)/UC. We show
that the impossibility even holds if no secrecy (only collision resistance)
is required of the Dolev-Yao model of the hash function, or if probabilistic
hashing is used, or certain plausible protocol restrictions are made. We
also survey related results for XOR. In addition, we start to make some
impossibility results explicit that tacitly underly prior soundness results
in the sense of motivating unusual choices in the Dolev-Yao models or
the realizations. We also start to discuss which of the problems known
for BRSIM/UC soundness extend to weaker soundness notions.

1 Dolev-Yao Models

Tools for proving security protocols typically abstract from cryptography by de-
terministic operations on abstract terms and simple cancellation rules. An exam-
ple term is Epkew

(hash(signsksu

(m, N1), N2)), where m denotes a payload message
and N1, N2 two nonces, i.e., representations of fresh random numbers. We wrote
the keys as indices only for readability; formally they are normal operands in the
term. A typical cancellation rule is Dske(Epke(m)) = m for corresponding keys.
The proof tools handle these terms symbolically, i.e., they never evaluate them
to bitstrings. In other words, the tools perform abstract algebraic manipulations
on trees consisting of operators and base messages, using only the cancellation
rules, the message-construction rules of a particular protocol, and abstract mod-
els of networks and adversaries. Such abstractions, although different in details,
are collectively called Dolev-Yao models after their first authors [15].

While Dolev-Yao models are no longer the only way of treating cryptography
in automated tools, they are likely to remain important where they are applicable
because of the strong simplification they offer to the tools, which enables the tools
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to treat larger overall systems automatically than with more detailed models of
cryptography.

2 Soundness Results

It is not obvious that a proof in a Dolev-Yao model implies security with respect
to real cryptographic definitions. However, in the last years significant progress
was made in showing that this is true in many cases. Early results considered
passive attacks only [2, 1, 17]. The first result that allows active attacks [7] and
thus the typical Dolev-Yao adversary model immediately used a very strong
notion of soundness, blackbox reactive simulatability/UC [21, 22, 12]. This notion
essentially means that a “real system”, here the realization, can be plugged in for
an “ideal system”, here the Dolev-Yao model, safely in arbitrary environments.
The result in [7] is also strong in allowing multiple cryptographic primitives.
However, it makes some relatively unusual choices and one first-time addition
in its Dolev-Yao model and needs additional type tagging and randomization
in the realization. The result was extended to more cryptographic primitives
in [8, 4] with increasing extensions to the Dolev-Yao models. General results on
property preservation through the BRSIM notion imply certain other soundness
notions for the same Dolev-Yao model and realization [21, 3], and additional
specific soundness properties were proved in [6]. Stronger links to conventional
Dolev-Yao-style type systems were provided in [19], and an integration into the
Isabelle/HOL theorem prover in [23].

Later papers such as [20, 18, 13] define weaker soundness notions, such as
integrity only or offline mappings between runs of the real and ideal systems,
and/or allow less general protocol classes, e.g., only a specific class of key ex-
change protocols. For these cases, they can use simpler Dolev-Yao models and/or
realizations than [7].

All the results about linking Dolev-Yao models and cryptography mentioned
so far are essentially positive, i.e., soundness in some sense is shown. Further-
more, they concentrate on core cryptographic systems such as encryption and
signatures; they do not contain hash or one-way functions, nor operations with
algebraic properties such as XOR, although such operations exist in the Dolev-
Yao models of many automated tools. Our work on impossibility was motivated
by trying to add XOR and hashing to the BRSIM/UC soundness results, and
being unsuccessful even if we were willing to make very significant changes or
restrictions to the Dolev-Yao model, the protocol class using it, or the imple-
mentation.1

1 We do obtain BRSIM/UC-style soundness, e.g., for hashing in the random oracle
model and for XOR in the passive case. However, we do not find these positive results
fully satisfying. Results that make similar strong restrictions while not even aiming
at BRSIM/UC soundness were also obtained in [10, 16].
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3 Impossibility Results

Given the state of the art of Dolev-Yao soundness results, it is interesting to
consider impossibility results. For instance, one may ask the following questions:

– Is it really not possible to show soundness for hashes and XOR (and prob-
ably further related primitives) in the same strong BRSIM/UC sense as for
encryption and signatures?

– In cases where positive results exist both for BRSIM/UC soundness and
weaker soundness, with simpler systems in the latter case, is this an un-
avoidable tradeoff?

– Where positive results exist only for restricted protocol classes, or simpler
results than in the general case, are all the restrictions really needed to
achieve these results?

While we do not claim to have the final answer to all these questions, we can
present a number of results.

3.1 Hashes

In particular, we present answers to the first question for hash functions. We
first show that it is indeed impossible to realize the standard Dolev-Yao model of
hashing with standard cryptographic hash functions in the sense of BRSIM/UC.
However, we can go significantly further. In particular, we show impossibility
even if we give up the secrecy of hashed messages in the Dolev-Yao model (leav-
ing only collision resistance – this is a reasonable possibility in Dolev-Yao mod-
els). We also show impossibility if probabilistic hashing [11, 14] is used as the
realization; this cryptographic primitive offers better secrecy than deterministic
hashing and can sometimes be used instead of random oracles where determinis-
tic hashing cannot. Moreover, we discuss that many plausible restrictions of the
protocol classes do not help, although for some very strong restrictions we do
achieve BRSIM/UC again.2 (These results will be published as [9]; the report
version does not yet contain the results on probabilistic hashing.)

3.2 XOR

We also give a survey on similar results for XOR from [5]. Furthermore, we give a
short introduction into how one can set up impossibility proofs that hold across
the multitude of significantly different rigorous definitions of Dolev-Yao models
in the literature.
2 This is also a little surprising as one of these restrictions allows standard ideal

Dolev-Yao style secrecy and uses standard deterministic hash functions, i.e., the
“canonical” setting. However, here only individual nonces (i.e., cryptographic objects
with no other purpose, in contrast to payloads, keys, ciphertexts, etc.) can be hashed.
Thus essentially only one-time signatures can be produced. Then even BRSIM/UC
soundness for the Dolev-Yao model does not require secrecy of the individual bits of
the real nonces.
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3.3 Encryption and Authentication

Furthermore, for the first time we start surveying existing informal answers to
the second and third question above and to make them more rigorous. Some
issues concerned are the following: the leakage of the message length through
encryptions, the need to make probabilistic encryption and signatures explicit
in the Dolev-Yao model through a freshness construct on the respective term
type, the need to additionally randomize certain realizations because of poten-
tial problems with adversary-chosen keys, and the possibility that symmetric
authentications or ciphertexts are valid with respect to several adversary keys.

We also identify gaps where no such answers exist yet, and hope to stimulate
discussions and future work on those.
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Abstract 
Testing is an essential, but time and resource consuming activity in the software development 

process. In the case of model-based development, among other subtasks test construction and 
test execution can be partially automated. Our paper describes the implementation of a test 
generator framework that uses an external model checker to construct test sequences. The 
possible configurations of the model checker are examined by measuring the efficiency of test 
construction in the case of different statechart models of event-driven embedded systems. The 
generated test cases are transformed and executed on common testing frameworks (JUnit, 
Rational Robot) and the effectiveness of tests are measured using code coverage metrics. 

1. Introduction 

Testing is a time and resource consuming activity in the software development process. 
Typically more than 30% of efforts should be reserved for testing activities. Generating a 
short, but effective test suite usually needs a lot of manual work and expert knowledge. A 
testing engineer’s traditional tasks are writing test cases (input-output pairs) for the important 
functions, grouping them in test sequences and test suites, then executing the tests and finally 
analyzing the results. Test suites should satisfy various test coverage criteria often prescribed 
by standards (e.g. all states of the program have to be visited, all paths have to be executed). A 
criterion defines a set of test requirements (e. g. visiting given states, executing specific state 
transitions). The coverage of a test suite is the ratio of satisfied requirements and all 
requirements. Various specification and code-based criteria are presented in [1]. 

In a model-based development process test construction and test execution can be partially 
automated. In a (semi-)formal model all interfaces and possible input events are gathered 
which forms a suitable basis to start the test construction. This way model-based testing can be 
a solution to several problems of test generation. The following tasks can be automated: 
- Test oracle. The model is used to derive the required output for a given test input. A quite 

high coverage can be achieved in a short time by randomly generating test inputs and 
deriving the outputs using a test oracle. 

- Estimating the coverage. The coverage of a test suite can be estimated with the help of a 
system model [2]. 

- Conformance testing. Running the implementation and the model simultaneously helps to 
determine whether the implementation conforms to the requirements. 

- Test generation. Complete test suites can be constructed by using the model and the test 
criteria defined on the specification. Typically, the state space of the model is searched for 
sequences of inputs (and outputs) that satisfy the test requirements. This task can be 
performed in several ways, e. g. implementing a specific search algorithm (like in [3]), using 
a Constraint Logic Programming solver, or using a model checker [4]. 
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In our paper we present a testing framework that uses external model checker tools to 
construct the test sequences. The process used for testing is given in Figure 1. This framework 
is designed for embedded event-driven systems, where the functionality can be described as a 
sequence of reactions to incoming events from the environment. UML Statechart is a very 
popular formalism to capture the behavior of such systems. In our framework, we define test 
requirements on the basis of the statechart model then configure the model checker tool to find 
a test sequence (test inputs and required test outputs) for each requirement. The generated tests 
are then transformed to executable, concrete tests, and with the help of a test execution 
environment these tests are executed on the implementation of the model. 

 
Figure 1. Testing process in our framework 

There are very few publications in the literature that report on the efficiency of using model 
checkers for test construction. The configuration of the model checker in this case, namely the 
settings required for constructing short (and possibly minimal) test sequences, differs from the 
usual needs of the classical model checking problem (i.e. exhaustive verification of the full 
state space). In our paper we examine the possible settings of the model checker Spin by 
measuring the efficiency of test construction in the case of different real-life statechart models, 
and introduce an optimized setting for test generation. At the end of the testing process the 
code coverage of the automatically generated tests is measured, hence they can be compared to 
manually created tests. 

2. Model checkers and test generation 

In safety-critical systems it is necessary not only to test but also to prove that the system 
works correctly. This activity is supported by model checker tools. They examine the state 
space of the input model to check the truth of temporal logic expressions that apply temporal 
operators to express state reachability properties and required temporal ordering of states. The 
greatest challenge of these tools is the state space explosion as practical models of concurrent 
systems may have a huge number of states. The limit of state-of-the-art model checkers grows 
above 1020 states. 

In our experiments we applied the following model checkers: 
- Spin [5] accepts models of concurrent processes given in Promela, its specific input 

language that supports global variables and communication channels. The requirements can 
be formalized by reference automata or by LTL (Linear Temporal Logic) formulae. Partial 
order reduction and bit state hashing are applied to handle the state space. 

- SMV is a symbolic model checker that accepts the description of finite state machines. (Its 
input language has constructs to express state transitions.) Requirements can be formalized 
by CTL (Computational Tree Logic, a branching time logic) formulae. Internally it uses 
Binary Decision Diagrams to store and manipulate the state space. 

- Uppaal [12] is a model checker for real-time systems. Its input model can be given by a set 
of timed automata including global variables and conditions that refer to clock variables. 
Requirements are expressed in a CTL-like language. 
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Model checkers were proposed to be used as test generation tools in various publications. 
[4] used SMV to generate tests for Statemate statecharts, but as far as we know no tool was 
developed to automate the process. The AGEDIS project aims at the automation of testing. The 
developed tool generates tests from specially annotated UML diagrams, and the abstract test 
suites can then be mapped to concrete ones executed on the implementation [6]. In [7] 
mutation analysis was used to create tests that can detect different programming errors. The 
method presented in [8] is similar to [4], but here Spin is used and the input model is an 
abstract state machine. A prototype of a test generator tool (ATGT) is also reported. There are 
several other academic and commercial tools available as summarized in [9]. 

In our experiments we apply the following test generation method: 
1. The system model in the form of annotated UML statechart is transformed into the input 

language of the model checker tool. 
2. Each test requirement of a given coverage criterion (e.g. reachability of a given state by a 

test sequence) is formulated as a temporal logic expression. 
3. For each expression the negation of the formula is verified by the model checker. If there 

is an execution path in the model that does not satisfy the negated formula (e.g. it turns out 
that a given state can be reached by an execution path) then it is presented by the model 
checker as a counter-example. This path becomes a test sequence that satisfies the original 
test requirement. 

4. The inputs and outputs that form the executable test sequence are extracted from the 
counter-example or derived by a corresponding guided simulation of the model. 

The necessary model transformation and the configuration of the model checker are detailed 
in the next sections. The temporal logic based formulation of the set of test requirements is 
illustrated in the case of the following coverage criteria: 
- All states coverage: For each state of the statechart a test sequence is generated, that leads 

the system to that state. The LTL formula-set for this criterion is 
{ !(F in(s)) | ∀s∈S } (1) 

where F is the eventually operator in LTL, S is the set of states and in(s) is a Boolean 
expression on the state variables of the model that is true when the state s is active. 

- All transitions coverage: For each transition in the statechart a test sequence is generated 
that fires the transition. The LTL formula-set for this criterion is 

{ !(F firing(t)) | ∀t∈T } (2) 

where T is the set of transitions in the model and firing(t) is a Boolean expression on 
transition variables that is true when transition t is fired. 

Other control-oriented test requirements (e.g. coverage of all configurations, transition-pair 
coverage) can be formulated similarly. Data-oriented criteria (e. g. all definition-use paths) are 
not covered by our experiments. The temporal logic representation of the corresponding test 
requirements can be found in [10] and in [4]. 

3. The test generation framework 

Our framework consists of the tools and data files presented in Fig. 2. The box marked with 
TR is a model transformation from UML statecharts to Promela [11] that uses Extended 
Hierarchical Automata (EHA) as its intermediate format. The transformation consists of two 
programs: sc2eha (in Prolog), and eha2promela (in Java). The box marked with TG is the test 
generator implemented in Java. Its input parameters are the statechart model and the test 
coverage criteria. It controls the test generation process as follows: 
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1. The settings of the tools are read from an XML based configuration file. 
2. Both sc2eha and eha2promela programs are executed. Here sc2eha builds an EHA 

representation of the model which is accessed by the test generator to obtain information 
on the events, states and transitions in the statechart. 

3. For each test requirement a file containing an LTL formula is created. 
4. The executable pan of the model checker Spin is executed that produces a report of the 

results and a trail file (i.e. a counter-example used later as the test sequence), if exists. 
5. A filtering procedure generates an XML file that contains only the input and output 

operations from the sequence of atomic actions described in the trail. 
6. The temporary files are preserved, in this way if no test is found or Spin runs out of 

memory then the test generation can be repeated with modified settings. 

 

Figure 2. Test generator framework 

4. Configuration of the model checker 

Classical model checking aims at the fast exhaustive search of the full state space of the 
model. In contrary, test generation by model checking aims at the fast and efficient 
construction of a counter-example by visiting and storing as few states as possible. Not all 
counter-examples are needed, however the one that is generated should be minimal in length. 
Due to this difference, the direct (default) use of model checkers typically results in poor 
efficiency when used for test generation. Fortunately, the well established tools offer several 
built-in state handling techniques and parameters for tuning that make the optimization of the 
test construction possible. We performed several experiments to determine the effects of the 
available options. 

The experiments were performed on a 2 GHz PC with 512 MB RAM. The benchmark 
model was a statechart describing the operation of a mobile phone having 10 states, an event 
queue and 21 transitions (about 500000 state configurations are visited by Spin). 

Table 1. Execution time of test construction phases 

 Generate LTL 
formula 

Generate 
pan 

Compile 
pan Run pan Extract 

tests 

Default case 0,25s 0,70s 44,92s 75,00s 0,71s 

Short tests 0,23s 0,69s 44,37s 553,51s 0,66s 

Table 1 shows the execution time of two typical test generation runs. The first case is the 
default configuration with no test-specific settings, while in the second case Spin was 
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instructed to find iteratively the shortest counter-example. This is why the execution of the 
model checker executable pan lasted longer (while the time required for formula generation 
and compilation remained roughly the same). It is important to note that in shorter runs the 
compilation time and the running time are in the same order of magnitude. 

Both the compilation and the execution of pan are controlled by several options [5]. The 
settings interesting from the point of view of test generation are as follows: 
- Breadth first search: The compilation option -dBFS means that instead of the default depth 

first search (DFS) algorithm breadth first search (BFS) is implemented. It is optimal for test 
generation since a breadth first search finds the shortest trail. However, the depth of BFS is 
limited by the available memory. Using the default settings only a three transition long 
sequence could be generated. BFS is capable of generating all test sequences if the lengths 
of the event queues are reduced in the model and atomic instruction sequences are used. 

- Limited DFS: The run-time option -m sets a limit for the DFS. It is one of the most useful 
options, since it restricts the depth of the search (i.e. the length of the counter-example). 
However, if it is set too low then test sequences cannot be found. In this case it is helpful to 
increment the value until the memory limit is reached. 

- Iterative search for short traces: -I and -i options search for shorter counter-examples with 
iterative runs. They could greatly enlarge the execution time as -i finds the shortest trail. -I is 
approximate and faster, it performed well in our experiments.  

- Model dependent options: The usage of -dNOFAIR (weak fairness), -dSAFETY (cycle 
detection disabled) parameters did not result in significant improvements. 

We found that the following settings are optimal for this model (see in Table 2): 
- DFS search: All compiling options are used except -dBFS and -dREACH. 
- No iterative search: Options -I and -i are not used since they increase the time required for 

test construction. Instead of them, DFS is limited by parameter –m. 
- Limited DFS: Option -m is set to the minimal value where tests are generated (it can be set 

in a few probe runs). Changing the value from 500 to 200 resulted in 80% decrease of the 
execution time in the benchmark model. 

- Hash table size: Option -w controls the size of the hash table used to store the visited states. 
The value of this switch should be increased in the case of detecting a high number of hash 
conflicts. In this example the value 24 resulted in a total memory usage of 67 MB. 

Table 2. Execution time and test properties in case of different options. 

Options Time required for 
test generation 

Length of the test 
sequences 

Longest test 
sequence 

-i 22m 32.46s 17 3 
-dBFS 11m 48.83s 17 3 

-i –m1000 4m 47.23s 17 3 
-I 2m 48.78s 25 6 

Default 2m 04.86s 385 94 
-I –m1000 1m 46.64s 22 4 
-m1000 1m 25.48s 97 16 

-m200 -w24 46.7s 17 3 

Using these parameters the generation of test sequences covering all states required 46.7 
seconds, while covering all transitions required 4 minutes and 19 seconds. All test sequences 
were the shortest possible (this was cross-checked manually). 

The lessons learnt during these experiments can be summarized as follows: 
- The original (default) settings resulted in relatively short execution time but overlong test 

sequences (the length is 385 instead of 17). 
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- Iterative search algorithms resulted in short test sequences but long execution time (22 
minutes vs. 2 minutes). The same applied to BFS (11 minutes vs. 2 minutes). 

- The best results were obtained in the case of limiting the depth of the DFS together with 
setting a limit to the hash table size. 

It turned out that the suitable setting of options could reduce the time required to find the 
necessary test suite to 37% (comparing to the default case) and to 3.5% (comparing to the pure 
iterative search). The obvious settings (iterative search) did not perform well. 

Additional experiments were performed to compare the efficiency of Spin to SMV. The 
total execution time of generating test sequences covering all states was 10.98 seconds. SMV 
outperformed Spin due to the following reasons: In SMV there is no need to compile the 
verifier and SMV reuses the data structures between different verification runs. However, the 
Spin model, thanks to the automatic generation, is more generally applicable. 

5. A case study 

The applicability of the framework was demonstrated in the case of a real-life industrial 
model. We choose a protocol that synchronizes status and control bits between two computers 
in a distributed control system in presence of anticipated faults. The model consists of 5 
objects with event queues, 31 states and 174 transitions. In the generated Promela code the 
state vector (which identifies a state) was 216 bytes long, and during the exhaustive 
verification more than 2⋅108 states were explored. The complete verification would need 
approximately 40 GB of memory, therefore the application of state compression techniques 
was necessary. 

We examined the effects of the bit-state hashing state compression technique offered by 
Spin. This technique does not store the entire state vector, only one or two bits per state in the 
memory. This results in states that are not stored separately but merged with others. 
Additionally to the state compression technique, the lengths of the event queues of the objects 
were decreased to the minimum. This kind of reduction modifies the behavior of the model by 
reducing the length of the sequences that can be produced. 

The reduction and compression techniques are applied in a conservative manner. On the one 
hand, if a test sequence is found in a reduced model (note that typically there are several tests 
for a given requirement) then it is a valid test sequence executable on the full model. On the 
other hand, if no test sequence is found for the given requirement then it may happen that a test 
sequence can be generated on the basis of the full model. 

Applying these reductions the test generation was successful, but it required two and a half 
hours to terminate. Two more adjustments were needed: 
- Several test requirements are satisfied by multiple test sequences. Accordingly, the number 

of the verification runs can be reduced if each test sequence is checked for covering other 
test requirements. 

- Parameter -w (size of the hash table) is more important in bit-state mode. If it is too low, the 
verification misses too many states, and thus test sequences are lost. 

Table 3.  Test generation for the synchronization protocol considering coverage of all states.  

Parameters Execution time Redundant 
runs skipped 

No test found 
(states) 

-m1000 –w31 65m4.32s 65 % 0  
-m1000 –w26  46m2.30s 62 % 2  

-w26 56m47.66s 55 % 4  
-w24 28m3.35s 48 % 8  
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Table 3 shows that our tool (with proper parameters) can be used to construct test sequences 
for complex protocols with huge state space. In this case the test suite consists of 31 test 
sequences if a separate test is generated for each state. The length of a test sequence is 
typically 11 steps. If the redundant tests are eliminated then 3 long and several short sequences 
(typically 3-4 steps) are required. 

6. Applying tests to implementation 

The tests generated by our framework are abstract, i.e. they correspond to the events and 
actions defined in the model. If we want to use them to test concrete implementations, then the 
test cases should be mapped to concrete test cases which are executable on the real System 
Under Test (SUT). The process of this transformation was demonstrated on the mobile 
example, constructing a Java GUI based implementation and a console-based implementation 
(this latter was generated automatically). A concrete test case contains the following parts: 
- Setup code to establish the necessary state required to start the test. 
- Code for sending the events, and checking that expected actions can be observed. 
- Teardown code to clean up any resources created by the test. 

Our transformation used templates to automate concrete test case generation. One template 
contained the general structure of the test case file, another included the parameterized code 
used to send events and check actions. Test cases were generated for the JUnit Java unit testing 
framework and for the Rational Robot automatic GUI testing tool. Only 10 lines of 
implementation-specific code had to be inserted into the templates to generate approximately 
500 lines of test code. 

One of the most important metric to evaluate the efficiency of a test suite is the code 
coverage it produces. We measured the statement, method and condition coverage the test suite 
produced for both programs. Figure 3 shows the results. 

Coverage - generated code

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Statement Method Condition

All State

All Transition

 

Coverage - manual code

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Statement Method Condition

All State

All Transitions

 
Figure 3. Code coverage results 

The abstract test suite (that was characterized by the “all transitions coverage” criterion in 
the model) covered in the code more than 90% of the statements and methods. The remaining 
10% was exception handling code (e.g. handling invalid events), which was not called because 
test cases contained only valid events. These experiments show that our approach is a cheap 
and efficient way to generate a base test suite quickly that exercises the majority of the 
implementation’s code. 

7. Testing Real-Time Systems 

In the case of real-time systems test sequences shall carry timing information, i.e. the time 
delay between successive test inputs (and timing parameters of the required outputs). The 
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execution of such a test sequence shall keep these time delays in order to execute the given 
path determined by the coverage criteria. 

In our framework test sequences can be generated on the basis of UML statechart models 
extended with timing information (clock variables). In this case the model checker Uppaal [12] 
is applied that is capable of verifying real-time systems. 

Uppaal offers the following functions which are useful for test generation: 
- BFS can be used (besides DFS). It provided the shortest tests for relatively small systems. 
- It has multi-level state compression and supports bit-state hashing as well. 
- Uppaal can reuse existing data structures when multiple properties are checked. 
- It can generate the shortest trail without iterative runs (disables reuse). 

As a first benchmark, the behavioral model of the mobile phone example was extended with 
timing information. The transformation from timed UML statecharts to the timed automata of 
Uppaal faced the following challenges: 
- There is no state hierarchy in Uppaal. The transformation should ensure that a sub-

automaton is active only when its parent automaton is active. 
- There are only binary synchronization channels in Uppaal, which cannot pass values. Event 

queues were implemented using global arrays and dedicated dispatcher processes. 

The results of the first experiments with the mobile phone example were encouraging. The 
test generation took 24.94 seconds and Uppaal generated the shortest possible test sequences. 
Uppaal recorded in the trail (counter-example) whenever a delay occurred between the firings 
of transitions in the model, so the timing information (i.e. the delay between successive test 
inputs) required executing the test sequence could be extracted from the trail file. 

8. Conclusion 

We outlined a framework that uses external model checkers to construct test sequences 
corresponding to state and transition coverage criteria in event-driven and real-time systems. 
Different configurations of the Spin model checker were examined experimentally to find 
those settings that are optimal for test generation. We demonstrated that (i) using proper 
options the time required for test generation can be significantly reduced, (ii) the state 
compression techniques do not hinder the construction of test sequences in practical models of 
concurrent systems, and (iii) the generated abstract test produces high coverage on the 
implementation. 
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To increase the interoperability of availability management software (also known as high 
availability middleware) the Service Availability Forum has released a set of open 
specifications. With the development of a common interface the comparison of multiple 
products can be achieved. For high availability (HA) solutions, assessing the robustness 
of the HA middleware is as important as measuring its performance. This paper 
investigates the sources of inputs that can activate robustness faults of a HA middleware 
and recommends the corresponding testing techniques to check the existence of such 
faults. We investigated the automated construction of the robustness test suites and 
compared the efficiency of different techniques using a case study with an open-source 
HA middleware. 

1.   Introduction 

In the past few years dependability became a key attribute even in common 
computing platforms. High availability (HA) can be achieved by introducing 
redundancy in the system, like warm standby spares, redundant communication 
channels etc. The configuration of the redundant components, thus the 
management of the availability of the whole system, is often application 
independent. The necessary services (e.g. membership, recovery) can be 
implemented as a generic middleware. 

To increase the interoperability of availability management software (known 
as HA middleware) major users and vendors formed a consortium, the Service 
Availability Forum with the goal to develop open specifications for availability 
management of software and the underlying hardware. SA Forum’s Application 
Interface Specification (AIS) [1] defines the interface between the HA 
middleware and the custom application. It is a C language interface partitioned 
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into a number of services.  For example, the Cluster Membership Service (CLM) 
provides a consistent view of the computing nodes, while the Availability 
Management Framework (AMF) manages the availability of redundant 
components. Three major versions have been released for AIS so far, the latest 
being B.02.01. There are several implementations available for AIS; we used in 
our experiments an open-source middleware, OpenAIS [2] (alpha release, 
version 0.69). 

Having a common specification for the HA middleware products, the 
demand to compare the various implementations naturally arises. Most of the 
comparisons and benchmarks of similar middleware products address 
performance, but in case of a HA middleware, the robustness of the 
implementation is also a crucial attribute. Robustness failures in the middleware 
can be activated by poor quality application components, and one such 
component may render the whole application inaccessible. Thus, our long-term 
goal is to define a method to evaluate and compare the robustness of different 
AIS based HA middleware implementations.  

Robustness is a secondary attribute of dependability and it is used in this 
paper as defined in [3], i.e., the degree to which a system operates correctly in 
the presence of exceptional inputs or stressful environmental conditions. 
Accordingly, robustness faults are those faults that can be activated by these 
inputs and conditions, resulting in an incorrect operation (e.g. crash, deadlock) 
of the system.  

Although there is an open-source implementation of AIS, most of the 
implementations are (and will be) commercial products with limited information 
about their internal structure. Without a detailed behavioral model or source 
code, the evaluation can only be based on the common interface specification. 
Accordingly, the services (functions) defined by the AIS can be tested for 
robustness faults externally by executing specific test sequences called 
robustness tests. The approach of robustness testing is similar to functional 
“black box” testing, but it concentrates on the activation of potential robustness 
faults by providing exceptional inputs and generating stressful conditions. Thus 
the basis of the comparison of AIS implementations is the common interface 
specification, as the number of robustness faults per functions is measured. 

Robustness testing is a time and resource consuming activity. Generating an 
effective test suite, executing it and evaluating the results usually needs a lot of 
manual work. In a model-based development process test construction and test 
execution can be partially automated. AIS provides a semi-formal description of 
the interfaces, which can be used to gather the possible inputs and output 
acceptance conditions, and thus it allows automated test construction and test 
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execution. Moreover, this interface specification can be utilized to construct 
more sophisticated test sequences than the commonly used ones (based on input 
variable domains only). Accordingly, in this paper we focus on the following 
aspects of robustness testing: 
• Automated construction of robustness test suites for AIS based HA 

middleware. The exceptional input values are generated by automated tools 
on the basis of the functional specification. 

• Elaboration of extended robustness testing techniques. Scenario-based 
robustness testing techniques are proposed to cover non-trivial robustness 
faults in state-based functions of the AIS. In the case of these functions a 
specific call sequence is required to reach the state in which the service can 
be used, otherwise a trivial error code is returned without executing the 
service and thus activating the potential robustness faults. 

• Evaluation of the test results using intelligent data processing techniques. 
On-line analytical processing and basic data mining methods are proposed 
to identify the key factors (e.g. product version, OS version, workload) that 
influence robustness. 

In the paper Section 2 summarizes the previous robustness testing projects. In 
Section 3 the concepts of our robustness testing framework for AIS-based HA 
middleware are presented. The different robustness testing techniques are 
described in Section 4 and 5. The efficiency of the techniques is compared in 
Section 6. Finally, Section 7 concludes our results and lists future plans. 

2.   Related work 

Robustness testing was the goal of several research projects in the past. Different 
methods were applied to measure the dependability of complex systems at 
various abstraction levels. 

Fuzz [4] was one of the first tools designed especially for robustness testing. 
It utilized randomly generated character strings to test common UNIX console 
utilities. This simple method found for 20% of the tested 80 applications an input 
sequence that crashed the program. 

The Riddle tool [5] was used to test the operating system API in Windows 
NT. Two techniques were applied for input generation. The generic technique 
used a fixed input domain for all parameters of the API while the so called 
intelligent one used a specific generator for each type. The tests found abort 
failures in 10% to 80% of the functions in three system DLLs. The four-year 
Ballista project [6] assessed the robustness of POSIX API implementations and 
conducted a great number of experiments on 14 UNIX versions. The robustness 
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test suite, which also applied type-specific input generators, was used mainly for 
comparing the different UNIX products. Later the method was extended for 
CORBA, Windows and for a simulation backplane testing. 

The goal of the recent dependability benchmarking projects was slightly 
different; they defined benchmarks to characterize the system behavior under 
typical load and common fault conditions. A general framework for creating 
dependability benchmarks was developed in the EU project DBench [7]. The 
method was implemented e.g. for operating systems [8]. Software and hardware 
vendors are also providing availability benchmarks for their products, e.g. IBM 
for autonomic computing [9] and Sun for the R-cubed framework [10]. 

In our work we tried to integrate the complementary solutions for robustness 
testing and extend them with advanced methods specific to HA middleware. 

3.   The AIS robustness testing framework 

The first step of defining the testing strategy in the case of a “black box” AIS 
middleware is to identify the possible sources of inputs that can activate 
robustness faults. These inputs are depicted in Figure 1(a). In the following the 
potential robustness faults are grouped on the basis of the source of activation, 
defining in this way the type of the fault. For each fault type a testing technique 
was selected as shown on Figure 1(b): 

 

Figure 1. Inputs that can activate robustness faults in a HA middleware (a) and the proposed 
robustness testing techniques (b) 

• The calls from the custom application (which propagate the effects of 
human operators and external components as well) are provided by an 

Part Verif - APPENDIX [Micskei et al. 2006] p 4



  

exceptional input generator and a background workload. The workload 
represents the typical operation of the system. Note that in case of a HA 
middleware it should include failovers, administrative restarts and other 
fault-masking activities, because they are part of the normal operation. 

• Configuration inputs (given by system operators) are represented by 
providing faulty configurations. 

• Exceptional results of operating system (OS) calls are given by an OS call 
wrapper that catches the return values of OS calls, injects the exceptional 
return values defined by the faultload and provides observability. The 
faultload defines the type and timing of the injected faults. Note that 
simulating failures of operating system calls has two purposes. It checks the 
reaction of the HA middleware not only in case of a fault in the OS itself 
(which has quite low probability), but also in the case of many other failures 
in the environment (e.g. wrong file access settings, insufficient resources) 
that are manifested in exceptional results from OS calls. 

• Hardware level faultload is provided by software implemented fault 
injection (SWIFI). 

These techniques can be executed in two distinct phases of testing: (1) testing the 
API with a robustness test suite containing exceptional inputs, (2) workload 
based benchmarking with injected faults representing stressful environmental 
conditions. 

In our paper we focus on the first phase of testing. The selected techniques 
are supported by the following set of tools that allow an automated construction 
of test suites containing exceptional inputs: 
• Template-based type-specific test generator tool. Templates specify type 

and function information on the basis of the AIS API and the tool generates 
the test programs automatically (see in Section 4). 

• Scenario-based sequential test generator tool. To construct test sequences 
needed to test state-based API functions, besides the AIS specification the 
functional test sequences provided by the vendors of the HA middleware 
were also utilized. The tool will process these sequences, and executes (1) 
parts of them to reach specific states in which type-specific test inputs can 
be used and also (2) applies mutation operators (e.g. changing the sequence 
of tests, modifying parameters or function names) to construct exceptional 
sequences (see in Section 5). 

In the second phase of testing the stressful environmental conditions can be 
provided by implementing a workload with a faultload (as in other previous 
dependability benchmarks). The following tools are proposed: 
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• Faulty configuration generator tool. The administrative interface of AMF 
was introduced recently (January 2006), but the configuration was not 
standardized, in this way this tool could not be realized. As soon as products 
will support this specification, the (mutation-based) administrative actions 
and faulty configurations can be generated and executed. 

• OS call wrapper. OS level errors are injected by a wrapper between the OS 
and the middleware, like in [11]. A lightweight wrapper can be implemented 
on Linux with the LD_PRELOAD environmental variable, which can be 
used to reroute the system calls to modified libraries. 

• SWIFI tool. Besides explicit component failures, like abrupt node shutdown 
or network interface failure, lower level hardware faults can be injected by 
external tools like FAUmachine (formerly UMLinux [12]). 

One of the most labor-intensive part of robustness testing is the evaluation of the 
test outcome. Functional test cases usually contain the expected result and 
compare the actual result to this reference value. In case of robustness testing 
there is a widely accepted simplified approach. Obvious robustness failures, i.e. 
crash and abort-like answers are recognized. However, no differentiation is made 
between the other possible results, i.e., successful answer, valid error code 
according to the specification, misleading error code and silent errors. (This 
simplification was necessary in most systems to reduce testing costs and avoid 
the problems originating in missing or incomplete specification, especially in 
case of erroneous behavior.) We refined this method by assigning the possible 
error codes (as potential results) to test inputs values. The test outputs are then 
filtered and only those test runs are inspected, in which the output was not 
among the expected error codes. 

Even in our early tests thousands of robustness test cases were generated, 
thus an automated method was needed to analyze the results. Two previously 
recommended techniques were used to accomplish this. Online Analytical 
Processing (OLAP) was applied to filter and compare the results of different 
systems [13] and data mining to identify the possible fault sources [14]. 

In the following sections we describe the implemented tools and techniques 
of API testing. 

4.   Generic and type-specific testing 

Exceptional inputs can be grouped into the following categories: 
• Syntactically not correct values: e.g. invalid string for an IPv4 address. 
• Semantically not correct values: e.g. non-existing version number. 
• Values used in invalid context: e.g. not initialized handle. 
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The majority of types used in API functions is defined by complex structures. 
Constructing exceptional values from all possible combinations of the basic 
types in these structures, like int, char, etc., would result in far too many values, 
because many structures are built from more than four basic types and the AIS 
functions have on average two or three parameters. Thus, finding good 
exceptional values is not as obvious as for example in case of the basic types like 
integers. The following subsections describe the two techniques that were used 
for generation of exceptional inputs for individual API calls. 

4.1.   Generic input testing 

In the case of generic input testing the same set of values are used for all 
parameters of basic types. In C language, most of the basic types can be 
represented and cast to a four-byte number, as Listing (1) illustrates. 

int paramValues[] = {0, -1, (int) &validAddress}; 
... 
SaAmfHandleT * param1 = (SaAmfHandleT *) paramValues[i]; 
SaNameT * param2 = (SaNameT *) paramValues[j]; 

(1) 

A few values can result in a huge number of test cases in complex structures, 
however, if the values are not chosen carefully, the resulting failures would not 
be related to robustness. The efficiency of the following values was examined. 
• 0: It is a common test value since it represents a NULL when cast to a 

pointer. Using zero as an input caused many segmentation faults in 
OpenAIS 0.69 because in the A.01.01 version of the specification many 
parameters are pointers and in several functions the checking of the NULL 
value was not implemented yet. 

• -1, 1: These values are helpful when there are parameters of integer (or 
float) type. However, in the case of pointers they will be cast to memory 
address usually reserved for the system. When de-referenced, they cause a 
segmentation fault, which is surely a robustness failure, but, as far as we 
know, this kind of invalid pointers cannot be checked in the API functions 
without specific compiler extensions. 

• Random value: Random values are popular in robustness testing, however, 
the repeatability of the tests is not guaranteed. 

• Address of a valid variable: We added this value for the sake of combining 
exceptional values with valid values (in case of pointers of variables). In this 
way the sensitivity to exceptional values of function parameters can be 
checked one by one. 
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Finally, we used two input sets. The first set {0, -1, 1, fixed random} resulted in 
several robustness failures but in this case the failures could not be traced back 
to the individual parameter values (i.e., which one activated the failure) since all 
values used in the function calls were (potentially) exceptional ones. The second 
set {0, valid address} was used specifically to determine which functions failed 
to implement null value checks. 

4.2.   Type-specific testing 

In the case of type-specific testing, unique test values were constructed for each 
type used in the API. The following techniques were used to enhance the 
efficiency of this method. 

Establishing type hierarchy: The types inherit the test values of their 
ancestors. This technique was very effective in Ballista. In AIS there are only a 
few types having ancestors in the type hierarchy, so this technique was used 
mainly for defining a basic type with common exceptional values. 

Chaining of methods: This technique was introduced in JCrasher [15]. A 
call graph of methods is built, where an arc between two methods represents that 
an output of a method can be used as an input for the other. We applied this 
method on the AIS AMF in case of two functions (SaAmfInitialize and 
SaAmfCompNameGet) that produced output for others. 

Identifying valid test outputs: We observed that for some test values valid 
test outputs can be a priori identified. E.g. using the exceptional value ‘D.5.4’ for 
SaVersionT could result in SA_ERR_VERSION. Similarly, the results of 
obvious exceptional values like e.g. not initialized handle, not valid version, non 
existent component name, can be identified and this information can be used to 
classify the test results reducing in this way the number of undecided tests. 

 

Figure 2. Architecture of the testing framework 
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Template-based test generation: The generic and type specific tests are 
implemented as separate C programs for each API function. Each program calls 
the API function with all combinations of the values returned by the input value 
generators and forks a new child process for each test case. The architecture of 
the testing framework is detailed in Figure 2. The type-specific input generators 
and the test sources are constructed automatically, based on templates as follows. 

CreateTSGenerator constructs the C code for the type-specific input value 
generators. It uses the following sources and parameters: 
• The metadata of the types for which exceptional values should be generated 

(types.xml, an example is found in Listing 2). Here ValidValueMethod 
designates the index of a valid test case. PointerMethod can initiate the 
construction of a method to access test values via pointers. If ParentName is 
present, all test cases of the given ancestor type are re-used. 

• The exceptional test values stored in stand-alone files as C code snippets. 
• The C skeleton of the generator and the templates for the methods. 

<Type> 
   <Name>SaDispatchFlagsT</Name> 
   <ValidValueMethod generate="true" validValueIndex="1"/> 
   <PointerMethod generate="false" /> 
   <ParentName value="BaseType"/> 
</Type> 

(2) 

The test case sources are constructed by CreateTestCases which is an XSL 
transformation that uses the following input files: 
• Test case templates to be populated with test values. 
• Information about the API functions and their parameters 

(FunctionsToTest.xml, an example is given in Listing 3). ParameterOrder is 
included explicitly, and IsPointer identifies whether the parameter is a 
pointer or not. In this way the later transformation will be easier. 

<Function name="saAmfFinalize"> 
  <ReturnType>SaAisErrorT</ReturnType> 
  <Parameters> 
    <Parameter> 
      <ParameterOrder>1</ParameterOrder> 
      <ParameterName>amfHandle</ParameterName> 
      <ParameterType>SaAmfHandleT</ParameterType> 
      <IsPointer>true</IsPointer> 
      <Type>in</Type> 
    </Parameter> 
  </Parameters> 
</Function> 

(3) 

Finally, the input generators and the test case sources are compiled and linked 
with a utility library, which contains functions for logging the results. 
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5.   Scenario-based testing 

The previous techniques tested individual API calls without considering that 
the service of several AIS functions depends heavily on the current state of the 
middleware and they can only be used when a sequence of previous calls have 
set a specific state. These call scenarios could be obtained from two sources. 
• The AIS specification contains several sequence diagrams that capture the 

basic operation of the system. Using a model-based approach, these 
diagrams are re-drawn as UML sequence diagrams and the skeleton of the 
call sequence is generated automatically. 

• The other source is the functional test suites of the AIS implementations. 
There is a public test suite, SAF Test [16], which is an open-source project 
for testing the conformance to SA Forum’s specifications. It includes the 
call sequences as C test programs that can be re-used for our purposes. 

When a set of scenarios is constructed from the above sources, it could be used 
for two purposes. First, it can be used to reach specific states needed by the API 
functions. The scenario containing the function to be tested is selected and the 
execution sequence preceding the call of this function is applied before initiating 
the generic or type-specific tests. Second, additional test cases can be generated 
with the help of mutation operators that may activate robustness failures: 
substituting a pointer parameter with NULL, removing a call from the scenario 
and changing the order of function calls. 

6.   Efficiency of the testing techniques 

The goal of our first experiments was to compare the effectiveness of the 
techniques and to highlight the advantages of implementing the testing tools. 

The tests were executed on the AMF (17 functions) and CLM module (7 
functions) of OpenAIS 0.69. Table 1 illustrates the complexity (and cost) of the 
generic and type-specific testing techniques. The initial version of the generic 
testing was created in approx. three days, while the implementation of the 
framework of type-specific testing required about two weeks. The main 
advantage of the automated testing approach is that the type-specific testing of a 
new function requires only the completion of the metadata, and supplying the 
test values and logging code for the new types used in the function.  

Table 1. Number of lines in the source code of the robustness testing framework 

Technique Test template Transformations Metadata Test values Sum 
Generic 120 80 417 1 618 

Type-specific 323 690 726 254 1993 
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Table 2 lists the ratio of API calls that resulted in robustness failures and the 
number of test calls executed. (In case of functions with more than five complex 
parameters the number of test cases was limited to 4000.) CLM was more 
resilient to generic testing since it used less pointers than AMF. 

Table 2. Comparison of the different exceptional input generation and testing techniques 

Technique OpenAIS AMF OpenAIS CLM 
Generic testing with invalid addresses 2406 / 2456 60 / 424 
Generic testing with null and valid address 87 / 136 0 / 44 
Type specific testing 8001 / 13640 65 / 2280 

 

In case of several functions type-specific testing identified additional robustness 
faults in comparison with generic testing, while in case of three functions only 
type-specific testing was effective (Table 3). Scenario-based testing was 
necessary e.g. in case of initializing callback functions. 

In our experiments the decision tree method of a data mining tool (IBM 
Intelligent Miner) was used to trace back robustness failures to faults, hence a 
metric to compare OpenAIS with different implementations in the future was 
obtained. In this way, the influencing factors could also be separated. 

Table 3. Faults found in OpenAIS by functions. X + Y means that generic testing found X faults 
while type-specific identified Y more. The star denotes a critical error, which caused segmentation 
fault in the middleware executive. 

Function name Faults 
saAmfCompNameGet 1 

saAmfComponent 
CapabilityModelGet 

1 

saAmfComponentRegister 2 
saAmfComponentUnregisterRegister 2 

saAmfDispatch 1 
saAmfErrorCancelAll 1 

saAmfErrorReport 3 
saAmfFinalize 1 

saAmfHAStateGet 2 
saAmfInitialize 0 + 2 

saAmfPendingOperationGet 1 
saAmfProtectionGroupTrackStart 2  

Function name Faults 
saAmfProtectionGroupTrackStop 2 

saAmfReadinessStateGet 1 + 1 
saAmfResponse 1* 

saAmfSelectionObjectGet 1 + 1 
saAmfStoppingComplete 1* 

saClmClusterNodeGet 0 + 1 
saClmClusterTrack 0 + 1 

saClmClusterTrackStop 0 
saClmDispatch 0 

ClmFinalize 0 
saClmInitialize 0 

saClmSelectionObjectGet 0 
   

7.   Conclusion and future work 

Our paper discussed the problem of robustness testing of high availability 
middleware. We proposed a testing framework that integrates previous testing 
techniques and extends them by introducing tool-supported methods including 
scenario-based testing and test result classification. The case study conducted on 
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OpenAIS showed that while even simple techniques can identify robustness 
problems, it is necessary to implement the more complex methods, since they are 
able to find faults not detected by the simple techniques. In the future we plan to 
apply stressful environmental conditions and we will run the test suite on other 
AIS implementations to compare the robustness of the different products. 
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Abstract

The Time-Triggered Protocol TTP/C constitutes the core of the communication
level of the Time-Triggered Architecture for dependable real-time systems. TTP/C
ensures consistent data distribution, even in the presence of faults occurring to nodes
or the communication channel. However, the protocol mechanisms of TTP/C rely
on a rather optimistic fault hypothesis. Therefore, an independent component, the
central guardian, employs static knowledge about the system to transform arbitrary
node failures into failure modes that are covered by the fault hypothesis.

This paper presents a modular formal analysis of the communication properties
of TTP/C based on the guardian approach. Through a hierarchy of formal models,
we give a precise description of the arguments that support the desired correctness
properties of TTP/C. First, requirements for correct communication are expressed
on an abstract level. By stepwise refinement we show both that these abstract
requirements are met under the optimistic fault hypothesis, and how the guardian
model allows a broader class of node failures to be tolerated.
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1 Introduction

The Time-Triggered Architecture (TTA) [1–3] is a distributed computer ar-

chitecture for the implementation of highly dependable real-time systems. In

particular, it targets embedded control applications, such as by-wire systems

in the automotive or aerospace industry [4,5]. For these safety-critical systems

fault tolerance is of utmost importance. The Time-Triggered Protocol TTP/C

constitutes the core of the communication level of the Time-Triggered Archi-

tecture. It furnishes a number of important services, such as atomic broadcast,

consistent membership and protection against faulty nodes, that facilitate the

development of these kinds of fault-tolerant real-time applications. However,

these protocol mechanisms rely on a rather optimistic fault hypothesis and as-

sume that a fault is either a reception fault or a consistent send fault of some

node [6]. In order to extend the class of faults that can be tolerated a special

hardware component, the so-called guardian, is introduced [7]. A guardian is

an autonomous unit that protects the shared communication network against

faulty behaviour of nodes by supervising their output. The original bus topol-

ogy of the communication network employed local bus guardians, which were

placed between the nodes and the bus. In the more recent star topology, cen-

tral guardians are used in the hub of each star. The guardian makes use of

static knowledge available in a TTA-based system to transform arbitrary node

failures into those that are covered by the optimistic fault hypothesis. For ex-

ample, the time interval during which a given node is allowed to access the

shared communication network is statically determined in a TTA system and

known a priori. The guardian can hence control the correct timing of message

transmissions by granting write access to the network only during a node’s

pre-defined time slot.

The goal of this work is to formally model TTP/C guardians and analyse

their fault tolerance properties. In particular, we aim at describing the ben-

efits of the guardians by giving a precise specification of the assumptions on

which the derivation of the properties is based. Formal analysis can provide

an additional source of confidence in correct behaviour of a system, which is

particularly important in the context of safety-critical systems. Several aspects

of TTP/C and related protocols have therefore been formally modelled and

analysed, including clock synchronisation [8], group membership [9–11], and

the startup procedure [12, 13]. A detailed overview of formal analysis work

for the Time-Triggered Architecture is given by Rushby [14]. While so far the

protocol algorithms of the time-triggered protocol have been the focus of the

formal analyses cited above, we concentrate in this paper on the communi-

cation properties of TTP/C, thereby complementing and extending previous

work.

To describe the behaviour and properties of the communication network and
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the guardians we develop various formal models, which are organised in a hi-

erarchical fashion. We start by specifying the desired correctness properties of

the communication in an abstract form. Subsequently, in a process of stepwise

refinement, more detail is added to this initial abstract model. On the next

level of the hierarchy, we consider a TTP/C system without guardians. We

show that in this case the strong, optimistic fault hypothesis is necessary to

guarantee correct communication. Another model then introduces guardians

and specifies their behaviour. At this level we demonstrate that the optimistic

assumptions can be relaxed, which leads to a fault hypothesis that covers a

broader class of faults.

The development of the models is in the spirit of, and builds on the work

on modelling TTP-related aspects that has been carried out previously [8,10,

15]. Specifically, it continues the use of the PVS specification and verification

system [16] to both specify the model and the properties to be verified, and

develop formal proofs that the model satisfies the stated properties. Previous

work has demonstrated the suitability of PVS for this type of tasks. The formal

models that are presented in this paper have been developed, and the proofs

of their properties have been mechanically checked, with the PVS system.

The paper is organised as follows. In Section 2 we give a brief overview of

the main aspects of the Time-Triggered Architecture. Section 3 describes the

structure of the models and motivates their organisation. Details of the com-

ponents of the formal models are elaborated in Section 4. Finally, we conclude

in Section 5.

2 Brief Overview of the Time-Triggered Architecture

In this section we only briefly describe the main aspects of the Time-Triggered

Architecture to the extent that is required for this paper. For more detailed

presentations we refer to [3, 17,18].

In a Time-Triggered Architecture system a set of nodes are interconnected

by a real-time communication system. A node consists of the host computer,

which runs the application software, and the communication controller, which

accomplishes the time-triggered communication between different nodes. The

nodes communicate via replicated shared media, the communication channels.
There are two common physical interconnection topologies for TTA. Origi-

nally, the channels were replicated, passive buses, while in the more recent

star topology the nodes are connected to replicated central star couplers, one

for each of the two communication channels.

The distinguishing characteristic of time-triggered systems is that all system
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activities are initiated by the passage of time [19]. The autonomous TTA

communication system periodically executes a time-division multiple access

(TDMA) schedule. Thus, access to the communication medium is divided into

a series of intervals, called slots. Every node exclusively owns certain slots in

which it is allowed to send messages via the communication network. The

times of the periodic message sending actions are determined a priori, that

is, at design time of the system. The send and receive instants are contained

in a message schedule, the so-called message descriptor list (MEDL). This

scheduling table is static and stored at each communication controller. It thus

provides common knowledge about message timing to all nodes. A complete

cycle during which every node has access to the network exactly once is called

a TDMA round.

Messages are used as a life-sign of the respective sender, and whenever a

node receives a correct frame on at least one of the channels it considers the

sender correct. Correctness of a frame is determined by each receiving node

according to a set of criteria. A node considers a frame correct if it is well-

timed, i. e. arrives within the boundaries of the TDMA slot, the physical signal

obeys the line encoding rules, the frame passes a CRC check, and the sender

and receiver agree on the distributed protocol state, the so-called C-state. One

of the desired correctness properties of TTP/C is that all correct nodes always

agree on whether or not a message is considered correct.

The Time-Triggered Protocol is designed to provide fault tolerance. In par-

ticular, the protocol has to ensure that non-faulty nodes receive consistent

data despite the presence of possibly faulty nodes or a faulty communication

channel. The provision of fault tolerance is based on a number of assumptions

about the types, number, and frequency of faults. Altogether, these assump-

tions constitute the so-called fault hypothesis. The main assumption for the

algorithms implemented in TTP/C is that a fault manifests itself as either a

reception fault or a consistent send fault of some node [6]. In particular, the

TTP/C services rely on transmission faults being consistent. That is, messages

must be received correctly by either all non-faulty nodes or none. Moreover,

nodes are assumed not to send messages outside their assigned slots. With re-

spect to faults of the communication network, it is assumed that the channels

cannot spontaneously create correct messages, and that messages are deliv-

ered either with some known bounded delay or never. With regard to the

frequency and number of faults, TTP/C assumes that only one node becomes

faulty during a TDMA round, and that there is at most one faulty node or

one faulty channel at a time.

However, the Time-Triggered Architecture can tolerate a broader class of faults

by intensively using the static knowledge that is present in the TDMA sched-

ule. This allows to transform arbitrary failure modes of nodes into either send

or receive faults that can be tolerated by the protocol. The guardians, which
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are dedicated components of the communication system, monitor the temporal

behaviour of the nodes. As the right to access the communication channels is

statically determined, the guardians can bar a faulty node from sending a mes-

sage outside its designated slots. Thus, timing failures of nodes are effectively

transformed into send faults.

Moreover, guardians can protect against a particular class of Byzantine faults,

the so-called slightly-off-specification (SOS) faults. A component is called SOS-

faulty if it exhibits only marginally faulty behaviour that appears correct to

some components, but faulty to others. A slightly-off-specification timing fault

could occur if the transmission of a node terminates very close to the end of its

scheduled transmission interval; thus, some receivers might accept the message

while others might consider it mistimed. Because the duration of a particular

transmission is known beforehand, the guardian can prevent such a cut-off sce-

nario. A node must begin its transmission during a pre-defined period of time

after the start of its slot, otherwise the guardian would terminate the right

to access the communication network. Thus, the guardian can effectively pre-

vent cut-off SOS faults, provided that the transmission interval is chosen long

enough to ensure that a transmission fits the interval whenever it is started in

time. Specifically, TTP/C guardians protect against SOS faults in the line en-

coding of frames at the physical layer, SOS timing faults, transmission of data

outside the designated sending slots, masquerading of nodes, and transmission

of non-agreed critical state information [7].

3 Bird’s Eye View of the Formal Models

The overall goal of modelling the communication network is to provide a

concise description of the arguments that support the following three main

correctness properties of the TTP/C communication:

• Validity:
If a correct node transmits a correct frame, then all correct receivers accept

the frame.

• Agreement:
If any correct node accepts a frame, then all correct receivers do.

• Authenticity:
A correct node accepts a frame only if it has been sent by the scheduled

sending node of the given slot.

Once these properties are established, they can be exploited in subsequent

analyses of protocol algorithms. This is preferable, since it is generally more

feasible to base an analysis on properties of a supporting model or theory,

rather than on the mere definitions of the model itself.
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In order to facilitate the deduction, the formal proofs of these properties are

decomposed into a series of smaller steps, and a hierarchy of corresponding

models has been developed. Each of the single models focuses on a particular

aspect of the communication. Altogether, we have identified the following four

suitable model layers:

• General specification of the reception of frames.

• Channels without guardians, requiring a strong fault hypothesis.

• Channels with guardians, requiring only a weaker fault hypothesis.

• Different network topologies: local bus guardians and central guardians.

Each of the models contributes a small step towards proving the desired

correctness properties. The steps themselves are each based on a set of as-

sumptions or preconditions. Put in an abstract, and maybe also slightly over-

simplified way, in each model layer i one establishes a theorem of the form

assumptions i ⇒ properties i

The idea is to design the different models in such a way that the properties

on one level establish the assumptions on the next. Ultimately, the models are

integrated and the reasoning is combined, yielding a chain of implications of

roughly the following kind:

assumptions0 ⇒ properties0

= or ⇒

assumptions1 ⇒ properties1

= or ⇒

assumptions2 ⇒ . . . ⇒ propertiesf

The final properties, propertiesf , correspond to the desired main correctness

properties of the TTP/C communication as specified above, while the initial

assumptions, assumptions0, describe what constitutes the basic fault hypoth-

esis.

We are going to briefly summarise the main aspects of the four model layers. At

the bottom, the model describes the reception of frames by the nodes. Here, the

various actions that nodes take in order to judge the correctness of the received

frame are formalised. This amounts to considering the transmission time and

the signal encoding of the frame, and the outcomes of the CRC check and the

C-state agreement check, respectively [18]. The main correctness properties of

the communication network are then expressed in terms of these notions. The

assumptions of this model layer concern requirements about the functionality

of the communication channels. In particular, they describe properties of the
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frames that a channel transmits, such as signal encoding or delivery times, and

reflect the hypothesis about possible faults of the communication network. In

essence, this model establishes a proposition that informally reads as follows:

general channel properties ⇒ Validity ∧ Agreement ∧ Authenticity (1)

On the next level, we model the transmission of frames through channels that

are not equipped with guardians. The goal is then to derive the assumptions

of the basic model, as covered by the expression general channel properties.
However, in order to do so, a strong hypothesis on the types of possible faults

of nodes is necessary. This strong fault hypothesis requires, for instance, that

even a faulty node does not send data outside its sending slot, and nodes never

send correct frames when they are not scheduled to do so. Using our informal

notation, we can sketch the reasoning at this level as follows:

strong fault hypothesis ⇒ general channel properties (2)

Guardians are employed to transform arbitrary node faults into faults that are

covered by the strong fault model. Thus, the strong fault hypothesis can be re-

placed with weaker assumptions about the correct behaviour of the guardians.

The functionality and the properties of the guardians are formally specified in

the third model of the hierarchy, where the following fact is established:

weaker fault hyp. ∧ generic guardian ⇒ general channel properties (3)

Ideally, we would have liked to demonstrate directly that – together with the

guardian properties – the weak form of the fault hypothesis implies the strong

one. However, it turned out to be rather challenging to accomplish a formal

proof for this fact and hence we had to revert to reasoning according to (3).

The model of the guardians is generic, as it does not, for instance, stipulate the

type of guardian to be used in the communication network. The final level of

our hierarchy models each of the two typical topologies of a TTP/C network:

the bus topology and the star topology. In the former, each node of the network

is equipped with its own local bus guardian, one for each channel, while in

the latter the guardians are placed into the central star-coupling device of the

channels. In this model layer we show that the properties of the guardians

are independent from the choice of a particular topology, given that both the

local bus guardians and the central guardians implement the same algorithms.

Hence, we establish the following facts:

local bus guardian ⇒ generic guardian (4)

central star guardian ⇒ generic guardian (5)
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The hierarchic arrangement of the models for the communication network al-

lows for a concise description of the dependencies of the three main correctness

properties. At the basic level the fundamental prerequisites are described that

are necessary for the desired correctness properties to hold, while the subse-

quent levels express what must be assumed from the nodes and guardians,

respectively, to satisfy these prerequisites. In particular, the treatment pre-

cisely explains the benefits of introducing guardians into the communication

network.

4 Modular Formal Analysis of TTP/C Communication

In this section we present the main details of the formal models for the com-

munication network according to the hierarchy that has been set out in the

previous section. Although the formal models have been developed as a set of

PVS modules (i.e., theories), the presentation is in the style of a mathemati-

cal transcription of these PVS modules. Similarly, we will explain the essential

steps of the major proofs in an informal way; nevertheless, all proofs presented

in this section have been developed and mechanically checked using the PVS

theorem prover.

4.1 Modelling the Reception of Frames

We start the presentation of our hierarchy of models at the bottom level.

This model provides a formalisation of how the communication of TTP/C

essentially works. In particular, the actions taken by the nodes when sending or

receiving frames are described. In addition, the desired correctness properties

of TTP/C communication are stated at this level. The reference points of this

formalisation are the TTP/C specification document [18] and the protocol

developer’s discussion of the fault assumptions in TTP/C [7]. In the sequel,

we will refer to this model layer as the ground model.

In our model we consider a network with an undetermined but fixed number of

communication channels. This is a generalisation of the TTA, which typically

involves only two channels. In the formal model, we divide communication

between nodes into three phases: the sending of frames by a sending node,

the transmission of the frame on a channel, and the reception of the frame at

the receiving nodes. To model the reception of frames we introduce a function

rcvd(n, c, r) to denote the frame a receiving node r receives in slot n on

channel c. Similarly, sent(n, c, p) denotes the frame that a node p has sent in

slot n on channel c, while transmit(n, c) models the frame that is transmitted

on channel c in slot n. The ultimate goal of the ground model of our hierarchy
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is to precisely state the relationship between these entities and to prove the

correctness properties Validity, Agreement, and Authenticity explained in the

previous section.

To this end, we first need to introduce notions expressing the checks a receiver

carries out to determine the correctness of the frame received, and stating

the conditions under which these checks are assumed, or required, to succeed.

First of all, we formalise the notion of frame status. In TTP/C, frames can

be null frames, valid frames, or correct frames. Frames that are neither null

frames not valid, are called invalid frames, while valid frames that are not

correct are called incorrect. TTP/C furthermore distinguishes tentative frames

and frames that have other errors; the former relates to situations in the

implicit acknowledgement process of nodes, while the latter refers to illegal

mode change requests. These types of frames are, however, not considered in

our model. The status of the frame received by node r on channel c in slot n
will be denoted by frame status(n, c, r).

Frames are considered (syntactically) valid if the frame is transmitted during

the receive window of the receiving node, no code violations are observed

during the reception, and no other transmission was active within the receive

window before the start of the frame. For a frame to be considered correct, it

has to pass both the CRC check and the C-state agreement check [6].

Now we can formally state the desired correctness properties introduced in the

previous section. The node scheduled to send in slot n is denoted sender(n),

while we use the (overloaded) notation NF n
to denote both the set of non-

faulty nodes and the non-faulty channels in slot n; consequently, r ∈ NF
n

and

c ∈ NF
n

indicate that node r and channel c are non-faulty in slot n.

Property 1 (Validity) For all slots n, there exists a channel c such that if
the sender of slot n sends a correct frame on c then all non-faulty nodes will
receive this frame and assign the status correct to it:

∃c : sender(n) ∈ NF
n
∧ sends correct(n, c, sender(n))⇒

∀r ∈ NF
n

: rcvd(n, c, r) = sent(n, c, sender(n))∧

frame status(n, c, r) = correct

Here, the predicate sends correct(n, c, sender(n)) subsumes what is consid-

ered a correct sending action of a node: the sending node sends a non-null

frame, does so at the specified time, the frame carries the correct C-state

information and the physical signal obeys the line encoding rules.

Property 2 (Agreement) All non-faulty nodes consistently assign the sta-
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tus correct to a frame received on a non-faulty channel c:

p ∈ NF
n
∧ q ∈ NF

n
∧ c ∈ NF

n
⇒

frame status(n, c, p) = correct ⇔ frame status(n, c, q) = correct

Property 3 (Authenticity) A non-faulty node r assigns the frame status
correct to a frame received on a non-faulty channel c only if it was sent by the
scheduled sender of the slot:

r ∈ NF
n
∧ c ∈ NF

n
∧ frame status(n, c, r) = correct ⇒

rcvd(n, c, r) = sent(n, c, sender(n))

In order to prove that these desired correctness properties hold for our model,

several preconditions must be satisfied. These conditions concern the relation-

ship between the frames sent by a sending node, transmitted through the chan-

nel, and received by the receivers, as expressed by the functions sent(n, c, p),

transmit(n, c), and rcvd(n, c, r), respectively. Therefore, we have to axioma-

tise the intended meaning of these functions. First of all, we formalise what is

expected from a correct receiver. If a node r is non-faulty, we assume that it

receives the frame that is transmitted on a given channel c:

r ∈ NF
n
⇒ rcvd(n, c, r) = transmit(n, c) (6)

However, even faulty nodes cannot receive other messages than those trans-

mitted. Hence, nodes either receive whatever is transmitted on a channel, or

nothing in the case of a reception fault:

rcvd(n, c, r) = transmit(n, c) ∨ rcvd(n, c, p) = null (7)

As for the sending nodes, we would like to model that non-faulty nodes send

frames in their own sending slots, and remain silent otherwise. In some sit-

uations however, e. g. during the start-up of a TTP/C system or during the

re-integration process of a node, the scheduled sender might not be fully inte-

grated in the system and therefore, although being non-faulty, will not send

at all in its sending slot. To also cope with these situations, we assume that in

their sending slots non-faulty nodes either send a correct frame on all channels,

or do not send any frame on any channel:

p = sender(n)∧ p ∈ NF
n
⇒

(∀c : sends correct(n, c, p))∨ (∀c : sent(n, c, p) = null)
(8)
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Next we need to constrain the behaviour of the channels. As we intend to

examine both channels with and without guardians, we now state certain re-

quirements that must be satisfied by either configuration in order to maintain

the correctness properties.

First, we like to express that non-faulty channels deliver the frame sent by

some node. However, a faulty node might try to send a frame on a channel

outside its assigned sending slot, which could then interfere with the frame

sent by the scheduled sending node. For our ground model, we do not want

to constrain the behaviour of the channel in this case, but allow the channel

to either transmit one of the frames sent by the interfering nodes, or block all

transmissions, or transmit a corrupted frame.

Requirement 1 A non-faulty channel either transmits the frame sent by
some node p, or nothing, or a corrupted frame.

c ∈ NF
n
⇒ (∃p : transmit(n, c) = sent(n, c, p))

∨ transmit(n, c) = null ∨ corrupted(transmit(n, c))

However, this requirement is not sufficient, as it allows trivial, and rather

useless, solutions such as channels that never transmit anything. In order

to exclude these unwanted cases, we require that a non-faulty channel must

transmit the frame of the scheduled sending node in situations where no other

node interferes. We use the predicate single access(n, c) to express that there is

at most one node sending on channel c in slot n. Technically, this expression is

an abstract parameter of our model; its interpretation depends on the concrete

implementation of the channels, and it will be defined later in the subsequent

refining model layers.

Requirement 2 If the scheduled sender exclusively accesses the channel and
sends a correct frame, then this frame is transmitted by the channel.

c ∈ NF
n
∧ single access(n, c)∧ sends correct(n, c, sender(n))⇒

transmit(n, c) = sent(n, c, sender(n))

The last of the basic requirements for non-faulty channels accounts for the fact

that channels are passive entities and thus cannot generate frames by them-

selves. Here, the expression sends(n, c, p) is an abbreviation for sent(n, c, p) 6=

null.

Requirement 3 Channels can only transmit what has been sent by some
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node.

transmit(n, c) 6= null ⇒ ∃p : sends(n, c, p)

We are now going to derive the proofs of the three main correctness properties

for the TTP/C communication. However, as we will see, the assumptions and

requirements listed so far are not sufficient to allow such a derivation. Conse-

quently, we need to further constrain the behaviour of both the channels and

the sending nodes in order to achieve correct communication. We will intro-

duce the additional requirements as they become necessary in the derivation

of the proofs.

4.1.1 Proof of Validity

The proposition Validity states two aspects of the reception of a correct frame

sent by the scheduled sender in a given slot: first, all non-faulty receivers must

receive the frame sent by the sender, and, second, all of them must accept this

frame. With respect to the first part, we can derive from (6) that all non-faulty

receivers receive the frame that is transmitted by the channel c. Furthermore,

Req. 2 states that a non-faulty channel transmits the frame sent by the sender,

provided that there is no other node accessing the channel. This latter clause

gives rise to another requirement on the communication network:

Requirement 4 In every slot, there is at least one non-faulty channel that
is accessed by at most one node.

∃c ∈ NF
n

: single access(n, c)

Note that this is a rather strong requirement, and one that is impossible to

satisfy for a channel without further measures, because it requires a certain

behaviour of faulty nodes, which is outside the control of a channel. As we

will see in the subsequent sections, the treatment of this requirement is one

that distinguishes the communication model with guardians from one without.

With this requirement we can prove the first part of Validity, i.e., that all

correct nodes receive the frame sent by the sender.

As for the second part, we need to demonstrate that all correct receivers assign

the status correct to the frame, that is, that they see a non-null, valid frame

that passes both the CRC check the C-state agreement check. Non-emptiness

of the frame can be proved from the fact that a correct sender sends a correct,

and thus non-null, frame. A correct frame will always be transmitted by a non-

faulty channel due to Req. 2, and Req. 4 ensures that such a non-faulty channel

does indeed exist. Concerning the validity of the frame we have to consider

the transmission timing of the frame and its signal encoding on the physical
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layer. The latter is given by the same line of arguments as we demonstrated

that the frame is not a null -frame: a correct sender sends a correct frame,

which includes a correct signal encoding, and a correct channel will transmit

this frame.

Next, we focus on the transmission timing of the frame. In order for the frame

to be received by a non-faulty receiver within its receive window, the sending

node and the receiver must be synchronised. Moreover, the values defining the

nominal sending time of a frame and the start and end of the receive window,

respectively, must be chosen such that the possible slight differences among

the readings of the nodes’ local clocks allow for the receivers to open their

receive windows at “the right time”. If we presuppose that non-faultiness of

nodes encompasses that they are synchronised and that the window timing

parameters are set correctly, it suffices to show that the sender sends its frame

in time, and that the channel has a transmission delay that is bounded by some

given bound ̂d. The first is given by the fact that the sender sends a correct

frame, and therefore the transmission time is correct. The second, however,

must be stated as another requirement on the correct behaviour of a channel:

Requirement 5 The transmission time of a correct frame on a non-faulty
channel does not deviate from the sending time by more than some bounded
delay d.

c ∈ NF
n
∧ sends correct(n, c, p)∧ single access(n, c)⇒

∃d : d ≤
̂d ∧ transmission time(f ′) = send time(f) + d

where p = sender(n), f = sent(n, c, p), f ′ = transmit(n, c)

The last characteristic of a valid frame is unique transmission, which is ensured

by Req. 4.

So far we have shown that the received frame is considered valid by non-

faulty receivers. We are thus left to examine the CRC check and the C-state

agreement check. As for the first, an incorrect CRC checksum is used to signal

transmission faults. As the channel c under consideration is a non-faulty one,

it is reasonable to assume that this includes the fact that no transmission fault

occurs on c. Therefore we can conclude that a frame received by a non-faulty

receiver on a non-faulty channel will pass the CRC check.

Finally, we consider the C-state agreement check. For the frame to pass the

check, the C-state encoded in the frame has to correspond to the receiver’s

C-state. For this to be the case, two things must be ensured: first, the sender

and the receiver must have equal C-states, and, second, the sender provides

a correct encoding of its C-state in the frame. The first part corresponds

to the functionality of the clique avoidance mechanism of the TTP/C group
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membership algorithm, which is responsible for maintaining a single clique

of nodes during system operation, that is, a single group of nodes that has

equal C-states. We abstract from this protocol property by assuming that our

notion of non-faultiness of nodes includes that two non-faulty nodes belong to

the same (single) clique and thus have common C-states.

The second part, however, gives rise to another requirement on the behaviour

of a correct channel.

Requirement 6 A non-faulty channel transmits a frame with a correct signal
encoding only if the frame sent provides a correct encoding of the sender’s C-
state.

c ∈ NF
n
∧ transmit(n, c) = sent(n, c, p)∧ sends(n, c, p)∧

signal encoding OK (transmit(n, c))⇒

cstate encoding OK (n, sent(n, c, p), p)

We can summarise that with the requirements introduced above the Validity
property can be derived.

4.1.2 Proof of Agreement

To prove Agreement, we have to demonstrate that if some non-faulty receiver

considers a received frame correct, then all non-faulty receivers do so. To

establish this property we have to prove the same six characteristics of the

received frame as for Validity, that is, reception of a non-null frame, the three

properties of valid frames, and the two correctness checks. Each of these six

cases can be proved using the same requirements as the proof of Validity. The

structure of the proof of the agreement property is very similar to that of the

Validity property; we therefore omit a detailed description.

4.1.3 Proof of Authenticity

For Authenticity we are required to show that if a frame is considered correct

by a correct receiver then this node has in fact received the frame sent by the

scheduled sender of the slot. In order to derive this fact we note that since

the receiver considers the frame correct, we know that the six characteristics

that define correct frames hold. This implies, for instance, that the receiver

has detected a non-null frame. As channels only broadcast frames that have

actually been sent by some node, cf. Req. 3, we know that there is an originator

of the frame and that the receivers have received the frame sent by this sending

node, say p. Hence, we only need to prove that this node p is in fact the

14

Part Verif - APPENDIX [Pfeifer and von Henke 2006] p 14



scheduled sender of the current slot. However, the facts established so far are

not sufficient to do so, and hence we need to introduce one final requirement

on the behaviour of channels.

Requirement 7 A non-faulty channel transmits a correctly sent frame only
if it originates from the scheduled sender of the given slot.

c ∈ NF
n
∧ sends correct(n, c, p)∧ transmit(n, c) = sent(n, c, p)⇒

p = sender(n)

This requirement, together with the precondition that the received frame is

considered correct by the receiving node, enables us to prove that the origi-

nator of the frame is indeed the scheduled sender of the given slot.

This concludes the derivation of the three desired correctness properties for

the communication of TTP/C and the requirements they are based on. In

the following two sections we will describe under which fault hypotheses these

requirements can be met, both for a scenario with and without bus guardians.

4.2 Strong TTP/C Fault Hypothesis

In the previous section we have described a formalisation of the reception of

frames by a node and have stated seven requirements that must be satisfied

by the sending nodes and the channels in order to establish the desired cor-

rectness properties. In this section we are now going to give a formal model for

sending nodes and channels and examine how the requirements stated above

can be met. First, we consider the scenario where the channels are simple

passive entities that broadcast the frames sent by a sender without further

mechanisms, before, in the next section, we analyse a refinement of this model

that incorporates bus guardians.

The ground model presented in the previous section expresses certain required

properties of the entities sent(n, c, p) and transmit(n, c), which model the be-

haviour of the sending nodes and the channel, respectively. In a technical sense,

these entities are parameters of the model. We now give an interpretation to

these parameters for a network without guardians and show that the general

requirements are satisfied for these interpretations.

First, we give a definition of the predicate single access(n, c). This predicate

is intended to model the case where only the scheduled sender sends a frame,

and no other node interferes. Hence, we define it as true if there are no two
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different nodes that send a non-null frame on the channel in the same slot:

single access(n, c) := ∀p, q : sends(n, c, p)∧ sends(n, c, q)⇒ p = q (9)

The interpretation of sent(n, c, p) and transmit(n, c) is given in an axiomatic

style, and the set of axioms essentially constitutes the fault hypothesis of the

guardian-free setting. In this setting, we cannot say anything about the frame

transmitted by a channel other than that it depends on what is sent by the

sending nodes. This is in contrast to the scenario with guardians, where we

can, for instance, express that a guardian will not broadcast a frame if it does

not originate from the scheduled sender.

Hypothesis 1 A non-faulty channel without a guardian will transmit a frame
sent by a node p if no other node accesses the channel in the given slot n.

c ∈ NF
n
∧ sends(n, c, p) ∧ (¬∃q : q 6= p∧ sends(n, c, q)) ⇒

transmit(n, c) = sent(n, c, p)

This hypothesis is sufficient to prove Req. 2 of the ground model; to see this,

note that with the definition of single access , the premise of Req. 2 implies

that of Hyp. 1.

In order to prove Req. 1, we must assume that a channel can only transmit a

non-null frame if it has been sent by some node:

Hypothesis 2 If a channel broadcasts a non-null frame, then there is a cor-
responding node that has sent this frame.

transmit(n, c) 6= null ⇒ ∃p : sends(n, c, p)

With this assumption we can now prove Req. 1 of the ground model: either

the frame transmitted on a channel is a null frame, or if it is not, then by

Hyp. 2 there is a sending node p, and the channel transmits the frame sent by

p according to Hyp. 1.

Note that Hyp. 2 is actually identical to Req. 3 of the ground model. At

this level, we cannot further constrain the behaviour of the channels more

than what is expressed by Hyp. 1; consequently, some of the requirements of

the ground model have to be restated as hypotheses on the channels for the

guardian-free case. This is also true for Req. 5, which constrains the possible

delay in the delivery of a frame on a non-faulty channel:

Hypothesis 3 The delivery time of a frame on a non-faulty channel does not
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deviate from the transmission time by more than some bounded delay d.

c ∈ NF
n
∧ sends(n, c, p)∧ f ′

6= null∧ ¬ corrupted(f ′) ⇒

∃d : d ≤
̂d∧ transmission time(f ′) = sending time(f) + d

where f = sent(n, c, p), f ′ = transmit(n, c)

Thus, Req. 3 and Req. 5 are trivially satisfied by our model. Note, however,

that the corresponding assumptions are by no means just inadmissible simpli-

fications of the matter. On the contrary, these hypotheses are direct formali-

sations of the strong fault hypothesis of the “raw” TTP/C protocol [7].

We proceed by extending our model in order to also derive the remaining three

requirements of the ground model.

Considering Req. 6, we need to ensure that a non-faulty channel only transmits

frames that contain a correct encoding of the sender’s C-state. Since in the

guardian-free setting, the channels will transmit whatever is sent by the send-

ing node, the responsibility for providing a correct C-state encoding is with

the sender. Note that this must be true not only for the scheduled sender, but

extends to all nodes, even faulty ones, and hence is a rather strong assumption.

Hypothesis 4 Frames sent must contain a correct encoding of the sender’s
C-state.

sends(n, c, p)⇒ cstate encoding OK (n, sent(n, c, p), p)

Requirement 7 states that correct frames must only be sent by the scheduled

sender of a given slot. However, for the guardian-free case a channel cannot

prevent other nodes from sending. Hence, in order to prove this property for

this model, we need to introduce a corresponding hypothesis and assume that

the behaviour of the sending nodes is in compliance with the sending schedule.

Hypothesis 5 Correct frames must only be sent by the scheduled sender of a
given slot.

sends correct(n, c, p) ⇒ p = sender(n)

We are left to prove Req. 4, which states that in every slot there exists at least

one non-faulty channel that is not accessed by more than one sending node.

To prove this fact we have to make a series of assumptions about the number

and behaviour of faulty nodes and channels. First of all, we need to assume

that a non-faulty channel exists at all times.
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Hypothesis 6 In every slot, there is at least one non-faulty channel.

∃c ∈ NF
n

TTP/C is based on a single fault assumption, i. e. at any given time there is

at most one faulty component in the network. Consequently, there cannot be

more than one faulty node present in any given slot.

Hypothesis 7 There is at most one faulty node in every slot.

p /∈ NF
n
∧ q /∈ NF

n
⇒ p = q

In deriving Req. 4, we first consider the case where there is no faulty node. By

Hyp. 6 we know that there exists a non-faulty channel c. To establish Req. 4

we must therefore show that at most one node sends a frame on c. Since the

scheduled sender of the given slot is allowed to send a frame, we must ensure

that no other node can send. We can establish this fact if we assume that a

non-faulty node does not send anything outside its designated sending slots,

which is a reasonable assumption to make.

p 6= sender(n)∧ p ∈ NF
n
⇒ ¬ sends(n, c, p) (10)

Now suppose that there is a faulty node, p say. If p is the scheduled sender

of the given slot we are done, because then all other nodes are non-faulty,

by Hyp. 7, and do not send a frame, see Hyp. 10. Therefore consider the case

where the faulty node p is not the current sender. In order to prevent a collision

on the channel we must require that p, even if it is faulty, does not send.

Hypothesis 8 Nodes other than the sender of a slot, including faulty ones,
will not send data on every non-faulty channel outside their assigned sending
slots.

p 6= sender(n) ⇒ ¬∀c ∈ NF
n

: sends(n, c, p)

Note that the hypothesis as stated only requires that p does not send on at

least one of the non-faulty channels. Again, this is a strong hypothesis, as it

constrains the behaviour even of faulty nodes.

This completes our derivation of the seven requirements of the ground model

for a communication network without guardians. In order to establish the

requirements we have stated a series of hypotheses. Besides describing the in-

tended behaviour of correct nodes and channels, these assumptions directly

reflect the strong fault hypothesis of the “raw” TTP/C protocol [7]. We have

shown that this fault model is sufficient to prove the requirements of the
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ground model, and thus established the desired correctness properties for

the communication in a TTP/C network. What makes this set of hypothe-

ses strong or optimistic is the fact that assumptions are not restricted to

non-faulty nodes, but also encompass faulty ones, cf. Hyp. 4, 5, and 8. In the

following section, these hypotheses will be replaced with weaker ones about

the behaviour of non-faulty guardians.

4.3 Guardians

In the scenario described in the previous section, where a channel transmits a

frame whenever there is no concurrent access to it, strong assumptions about

the behaviour of the sending nodes have to be made in order to satisfy the re-

quirements stated in the ground model. In particular, some of the assumptions

even concern the behaviour of faulty nodes, such as that sending nodes always

provide a correct C-state in the frame, or that correct frames are sent only by

the scheduled sender of a slot. Whenever one relies on a certain benignity of

faults one has to examine how well the fault assumptions are covered by the

system. If such an analysis is difficult, or leads to the result that the probabil-

ity of a fault being outside of the scope of the assumed fault hypothesis is not

negligible, it is advisable to aim to eliminate, or at least weaken, assumptions

about the behaviour of faulty components. To this end, guardians are used in

the Time-Triggered Architecture to avoid certain fault scenarios, such as, for

instance, faulty nodes accessing the bus outside their assigned slots.

In this section we describe the formalisation of abstract guardian components.

The formalisation is abstract in the sense that it does not restrict the kind of

the guardian and the topology of the communication network; we will show in

the subsequent section how this abstract model can be refined either to a bus

topology, where each node has its own local guardians, or to a star topology

with central bus guardians.

We state a number of hypotheses on the expected behaviour of a non-faulty

guardian and show that they are sufficient to prove the requirements of the

ground model. Thus, the desired correctness properties for the communication

of TTP/C are satisfied for a communication network with guardians.

In our model, we use g(c) to denote the guardian of channel c. We think of a

guardian as having incoming links from each of the nodes of the network, and

corresponding outgoing links. The task of a guardian is to receive the frames

sent by the nodes, analyse them and relay them to the other nodes according

to certain rules. Obviously, these rules would prescribe, among other things,

that only the frame of the scheduled sender of a slot is relayed. To describe

the functionality of a guardian we use a function relay(n, g(c), p) that denotes
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the frame the guardian g(c) relays from node p in slot n.

By the following hypotheses we describe what is expected from a non-faulty

guardian. To distinguish the guardian hypotheses from the ones presented in

the previous section, they are labelled with capital letters instead of numbers.

First, if the scheduled sender of a slot sends a correct frame, then the guardian

should relay this frame:

Hypothesis A If the scheduled sender of a slot sends a correct frame, then
a correct guardian relays this frame.

p = sender(n) ∧ g(c) ∈ NF
n
∧ sends correct(n, c, p)⇒

relay(n, g(c), p) = sent(n, c, p)

Conversely, frames of nodes other than the scheduled sender must not be

relayed:

Hypothesis B A non-faulty guardian must not relay frames of nodes other
than the scheduled sender.

p 6= sender(n)∧ g(c) ∈ NF
n
⇒ relay(n, g(c), p) = null

In addition to this basic functionality of supervising the correct message sched-

ule, the guardian performs several other analyses in order to prevent fault

propagation and possible SOS faults. First, if a sending node does not start

to send its frame within the nominal sending window, the guardian closes the

window with the effect that a null frame is relayed.

Hypothesis C A non-faulty guardian will relay a frame only if it is being
sent in time.

p = sender(n)∧ g(c) ∈ NF
n
∧ ¬ sending time OK (n, sent(n, c, p), p)⇒

relay(n, g(c), p) = null

Furthermore, if the signal encoding of the frame sent by a node violates the

coding rules such that the guardian cannot decode the signal, it will end the

broadcast of the frame prematurely, thus corrupting the frame.

Hypothesis D A non-faulty guardian will corrupt a frame if the signal en-
coding of the frame violates the coding rules.

p = sender(n)∧ g(c) ∈ NF
n
∧ ¬ signal encoding OK (sent(n, c, p))⇒

corrupted(relay(n, g(c), p))
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Finally, if the C-state encoded in a frame does not correspond to the guardian’s

own C-state, then the guardian aborts the transmission of the frame, and the

relayed frame will be corrupted. This serves, for example, to protect a node

that is about to integrate into the cluster against so-called masquerading nodes

that provide an incorrect MEDL position within the C-state.

Hypothesis E A non-faulty guardian will corrupt a frame if the C-state en-
coded in the frame does not correspond to the guardian’s own C-state.

g(c) ∈ NF
n
∧ ¬ cstate encoding OK (n, sent(n, c, p), p)

⇒ corrupted(relay(n, g(c), p))

where p = sender(n)

These hypotheses describe the supervising functionality of a guardian. In

addition, a non-faulty guardian is expected to behave in a reasonable way.

First, guardians are assumed to be passive entities in the sense that they can

only relay frames that have actually been sent by some node. In other words,

guardians cannot generate valid frames by themselves.

Hypothesis F Guardians are passive and can only relay frames that have
actually been sent by some node.

relay(n, g(c), p) 6= null ⇒ sends(n, c, p)

The next assumption on the functionality of a guardian concerns the timing

behaviour. In order to fulfil Req. 5 of the ground model we must assume that

a guardian delivers a relayed frame with a bounded delay.

Hypothesis G A non-faulty guardian relays a frame with a bounded delay.

g(c) ∈ NF
n
∧ sends(n, c, p)∧ f ′

6= null⇒

∃d : d ≤
̂d ∧ transmission time(f ′) = sending time(f) + d

where f = sent(n, c, p), f ′ = relay(n, g(c), p)

The final two assumptions concern the number and kinds of possible faults of

the guardians. First, we assume that for all slots the guardian of at least one

of the channels is non-faulty.

Hypothesis H For every slot n, there is at least one channel with a non-
faulty guardian.

∃c : g(c) ∈ NF
n
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A faulty guardian may fail only in such a way that it delays the delivery of a

frame for an arbitrary amount of time and thus effectively does not relay any

non-null frame in the given slot n.

Hypothesis I A faulty guardian fails silently and does not relay any frame.

g(c) /∈ NF
n
⇒ relay(n, g(c), p) = null

Some of the requirements of the ground model involve the abstract predicate

single access(n, c) and we must hence give an interpretation to this predicate

for a communication network with guardians. Since the guardians are intended

to just prevent the simultaneous access of a channel by two different nodes,

we define this predicate to be always true:

single access(n, c) := true (11)

Finally, we say that a channel is non-faulty if its corresponding guardian is.

c ∈ NF
n

:= g(c) ∈ NF
n

(12)

To complete the formalisation of the guardian model, we need to define what

is meant by the frame a channel broadcasts, i. e. we require a definition of

the function transmit(n, c). Obviously, this function definition must reflect the

frame that a guardian relays for some node p. On the other hand, there cannot

be frames from more than one node be transmitted per slot. Consequently,

we say that a frame is transmitted on a channel c if there is a node p such

that the guardian g(c) of channel c relays that frame for p, and does not relay

any frame for all nodes other than p. The technical definition of transmit(n, c)

proceeds in two steps. First, we define a predicate uniquen
c (f ) to be true, if in

slot n the guardian of channel c relays frame f for some node, but relays no

frames for any other node:

uniquen
c (f) := ∃p : relay(n, g(c), p) = f ∧

∀q : q 6= p ⇒ relay(n, g(c), q) = null
(13)

For the definition of transmit(n, c) we use Hilbert’s choice operator ǫ, where

ǫ(S) denotes some arbitrarily chosen element from a given set S. Here, the

set S consists of those frames f for which the predicate uniquen
c (f ) is true.

Obviously, this set can contain at most one frame; consequently, if the set is

non-empty, simply this unique frame is chosen. In the other case where the set

is empty, i. e. no frame satisfies the unique-predicate, the ǫ-operator returns
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an arbitrary frame, for which no special properties can be deduced.

transmit(n, c) := ǫ(uniquen
c ) (14)

In the remainder of this section we present the arguments that show that

this definition of transmit(n, c) and the hypotheses stated for a guardian are

sufficient to satisfy the requirements of the ground model. To this end, we

state two properties of transmit(n, c). First note that a non-faulty guardian

either transmits the frame sent by the scheduled sender of a given slot, or a

corrupted frame, or a null-frame.

Proposition 1 A non-faulty guardian either transmits the frame of the sched-
uled sender, or a corrupted frame, or a null-frame.

c ∈ NF
n
⇒ transmit(n, c) = sent(n, c, sender(n)) ∨

corrupted(transmit(n, c)) ∨ transmit(n, c) = null

If in addition we know that the scheduled sender of a slot sends a correct

frame, then the guardian indeed broadcasts this frame.

Proposition 2 A non-faulty guardian transmits a correct frame if it is sent
by the scheduled sender of slot n.

c ∈ NF
n
∧ sends correct(n, c, sender(n)) ⇒

transmit(n, c) = sent(n, c, sender(n))

We briefly sketch the proofs of these properties. First note that, according to

Hyp. B, a non-faulty guardian does not relay a frame for nodes other than the

scheduled sender of the given slot. Moreover, since guardians will not produce

frames by themselves, see Hyp. F, the only frame that is relayed by a non-

faulty guardian is the one sent by the scheduled sender of the slot. Hence, this

frame satisfies the unique-predicate, and therefore transmit(n, c) equals the

frame that is relayed by the guardian for the scheduled sender of the current

slot. Proposition 1 holds because, depending on whether or not the scheduled

sender sends a correct frame, the guardian either relays this frame according

to Hyp. A, or blocks or corrupts the frame following Hyp. C, D, or E.

The second proposition is a specialisation of the first, where we know that the

scheduled sender sends a correct frame. In this case, the guardian relays this

frame and by the same reasoning as above this frame is tranmitted on the

channel.
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These two propositions provide the connection between the requirements of the

ground model, which are stated in terms of the expression transmit, and the

hypotheses of the guardian model, which are very similar, but involve the relay
forms. To derive the general requirements, we see that Req. 1 of the ground

model directly follows from the first of the propositions above, while the sec-

ond proposition implies Req. 2. Requirement 3 can be proved from the similar

assumption that guardians do not send frames by themselves, see Hyp. F. Re-

quirement 4 follows from the assumption that there always exists a non-faulty

guardian, see Hyp. H, and observing that the predicate single access(n, c)

is always true. Requirement 5 on the bounded delay of transmissions follows

from Hyp. G, while the assumption concerning the encoded C-state of a frame,

Hyp. E, is used to prove Req. 6. Finally, Req. 7 follows from the combination

of the two propositions above.

Having shown that all of the requirements of the ground model are satisfied

in the guardian model, we can deduce that the three correctness properties

Validity, Agreement and Authenticity hold for the guardian model. In com-

parison to the model without guardians, weaker hypotheses are sufficient to

prove the requirements. In particular, we do no longer need to make any as-

sumptions about the behaviour of faulty nodes, thus a broader class of node

faults can be tolerated by a TTP/C network using guardians.

4.4 Local vs. Central Guardians

In this section we briefly discuss how the guardian model described above

can be applied to both an interconnection network with a star topology and

one with a bus topology. In the former, central guardians are used, which

are usually located at the centre of each communication channel, i.e. at the

star coupler. Thus, the above guardian model can be directly matched to this

setup, since the denotation g(c) appropriately models the central guardian

device at the star coupler of channel c.

In a connection network that uses the bus topology every node is equipped

with its own local guardian, typically one for each channel. Therefore, one

would rather use a function lbg to denote particular guardian devices, such

that lbg(p, c) is the local bus guardian of node p for channel c. Nevertheless,

the functionality of the bus guardians can be described in the same way as in

the star-topology model by formalising assumptions about the frames relayed

by the local bus guardians, as expressed by the function relay(n, lbg(p, c), p).

In order to use the abstract guardian model of the previous section we only

need to combine the local bus guardians of all nodes that supervise a partic-

ular channel c to one logical entity. Thus, the expression g(c) would denote

a function that yields for a given node its local bus guardian that controls
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channel c. Formally:

g(c) := λp : lbg(p, c) (15)

Consequently, the system of local bus guardians at channel c is considered

non-faulty, if for all nodes p the local bus guardian g(c)(p) is non-faulty:

g(c) ∈ NF
n

:⇔ ∀p : lbg(p, c) ∈ NF
n

(16)

To summarise, the abstract guardian model can be arranged in a way that the

formalisations of guardians for both a star-based topology and a bus topology

can be derived as an instance of this model. The details are, however, mainly of

a technical nature and do not provide any further conceptual insight; therefore,

they are omitted here. At the bottom line we can state that, as long as the same

algorithms and supervising functions are implemented in either guardian type,

both the local bus guardians and the central guardians of a star coupler provide

the functionality to satisfy the requirements stated in the ground model and

thus ensure that the main correctness properties for the communication of

TTP/C hold.

5 Conclusions

The goal of formally analysing aspects of the Time-Triggered Architecture is

to provide mathematically substantiated arguments that architecture and al-

gorithms provide certain services and satisfy certain critical properties. This is

to support the claims that the architecture meets the high reliability require-

ments of safety-critical applications in the automotive or aerospace domain.

In this regard we have presented a formal analysis of the guardian-based com-

munication of TTP/C. We have developed a series of formal models of the

interconnection network that are hierarchically structured and formalise dif-

ferent aspects of the communication of TTP/C nodes at various levels. The

ground level provides a precise specification of the desired correctness proper-

ties of the TTP/C communication. It states several requirements that must be

satisfied for the channels in order to guarantee that the correctness properties

hold. These requirements serve as an interface of the model. In a process of

stepwise refinement we have proved the validity of these properties for TTP/C

by showing that the interface requirements hold for the refined model layers.

The organisation of the model hierarchy not only facilitates the formal proof

by dividing it into manageable steps. It also reflects the structure of what

constitutes the Time-Triggered Protocol, viz. the communication controllers

of the nodes, and the guardians. The former provide the fault-tolerant protocol
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services on the basis of strong fault assumptions, which, in turn, are guaran-

teed by the guardians. Thus, one of the benefits of our formal analysis is that

the formal models yield a concise formal description of the respective purposes

and dependencies of these components, and precisely state the assumptions

about the behaviour of a guardian, which previously had been stated only

informally [7].

One of the characteristics of the formal models is their abstract nature. Ab-

straction is a fundamental prerequisite for the feasibility of formal analysis,

as it allows for both structuring the models by providing abstract interfaces

and hiding details unnecessary or irrelevant for the formal analysis and the

demonstration of critical properties. An adequate structure of formal models

allows one to concentrate on particular aspects of a TTA system, such as the

behaviour of the guardians in the communication network. Different items

can then be analysed separately from each other, assuming certain properties

of other models where necessary. Moreover, abstract interfaces of the models

also provide a certain degree of genericity, which enables one to express the

commonalities of a range of designs in a coherent way. For instance, one of

the model layers provides a generic treatment of the guardians. The model

can then be refined to either a central guardian-based view, or to a model for

local bus guardians, thereby covering the two typical network topologies of a

TTA system.

The formal models presented in this paper have been developed with the spec-

ification and verification system PVS, and all proofs have been mechanically

checked using PVS’s theorem prover. Although the individual proofs of most

of the properties and facts are relatively simple and straightforward, the use

of a mechanical proof assistant has been found very valuable. One of the dif-

ficulties in developing formal models and proofs is to keep track of all details

and the dependencies of the various properties. PVS is particularly useful for

such tasks, as it does not only check the proofs provided for the claimed prop-

erties, but also provides bookkeeping functions to ensure that there are no

gaps in the chain of arguments for a given fact. Moreover, if changes are made

to a formal model, PVS requires all proofs of properties that depend on the

changed model to be re-run. Thus, if changes cause proofs to be no longer

valid, these will not go undetected.

A mechanism that has been found particularly useful is PVS’s support of

theory assumptions. In a PVS theory one declares the relevant entities of a

formal model, and states – and then proves – the properties these entities

have. Theories can be parameterised, and one can state certain assumptions

about concrete interpretations of these parameters. The properties within such

a parameterised theory are then based on these assumptions. If such a the-

ory is instantiated, that is, the parameters are given concrete interpretations,

PVS automatically creates proof obligations that require to show that the
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stated assumptions indeed hold for the given interpretations. We have em-

ployed this mechanism for specifying our ground model of the general recep-

tion of frames. This model is parameterised with the entities describing the

sending of frames by nodes, sent(n, c, p), or the transmission of frames by

a channel, transmit(n, c), among others. The general requirements described

in detail in Section 4.1 are expressed as PVS assumptions on these param-

eters. The desired correctness properties, such as Validity or Agreement, are

proved relative to these assumptions. The formal models on the higher hi-

erarchy levels that describe the strong fault model and the guardian model,

cf. Sections 4.2 and 4.3, respectively, instantiate the ground model. Thus,

PVS generates proof obligations that correspond to showing that the general

requirements of the ground model are valid for the provided interpretations of

sent(n, c, p) or transmit(n, c). This way, PVS provides support to ensure that

eventually all claimed facts are indeed proved.

The analysis of the properties of the communication network of TTA has sup-

ported the claim that the functionality of the guardians ensures that arbitrary

node failures are converted into fault modes the TTP/C protocol algorithms

can tolerate. Thus, the strong fault hypothesis of TTP/C can be replaced by

a weaker, minimal fault hypothesis on the correct behaviour of the guardians,

which has two direct advantages. First, applications of TTA can rely on the

architecture to tolerate a broad class of faults, and, second, protocol algo-

rithms of TTP/C can be designed for and analysed under the strong fault

model, which allows for simpler algorithms and significantly facilitates formal

analysis.
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1. Introduction

Amongst varied V&V approaches, formal verification is
seeing increased usage and acceptance. One popular tech-
niques ismodel checkingthat allows forautomatedveri-
fication (without user guidance) by performing exhaustive
simulation on the model of the system. However, model
checking faces the problem ofstate space explosion. Our
ongoing research aims at proposing a method to facilitate
the model checking of a class of distributed protocols by
reducing the size of the associated state space.

Abstractionis a general method to reduce the level of
detail in order to reduce the complexity of analysis. We
present an abstraction scheme which is aimed at verifying
core fault tolerant protocols of frame-based, synchronous
systems(e.g consensus, atomic broadcast, diagnosis, mem-
bership). The idea is that, instead of modeling every sin-
gle node explicitly, we represent only one correct node (we
term this theone-correct-node abstraction) that captures
overall symmetry as feasible. The rationale for our abstrac-
tion is that the protocols under analysis often entail sym-
metry in their assumptions (A1)synchronousandsymmet-
ric communicationamong correct nodes, that (A2) every
correct node executes the same program, (A3) aquorum
of correct nodes, stated by the fault assumption, is always
present in the system. Furthermore, we are interested in ver-
ifying (A4) non-uniform properties, i.e., no restrictions are
required on the internal state of faulty processors.

Note that even when (A1)-(A3) hold, the internal state of
correct processors may differ, e.g. due to asymmetric broad-
cast of a faulty node. To capture thisasymmetrywe assign
non-deterministicvalues to the possibly affected variables.
In spite of that, the amount of correct information symmet-
rically exchanged by the quorum of correct nodes must be
sufficient to guarantee a coordinated behavior of the quo-
rum itself.

∗This research is supported in part by Microsoft Research, FP6 IP DE-
COS and NoE ReSIST

Section 2 presents a case study to demonstrate the idea
of our abstraction. For any abstraction it is necessary to
prove that the abstraction function issoundandcomplete,
i.e., it is property preserving. In general the abstraction is
said to be property preserving if for any valid formulafA

the following holds:MA |= fA ⇔ M |= f , whereM
(f ) andMA (fA) stand for the concrete and abstract model
(formula) respectively. Section 3 elaborates how to prove
the soundness of our abstraction scheme, while Section 4
describes our future work.

2. Interactive Consistency - A Case Study

The problem of distributing data consistently in the
presence of faults is variously called interactive consis-
tency, consensus, atomic broadcast, or Byzantine agree-
ment. When a node transmits a value to several receivers,
we mandate that the properties ofagreement(all non-faulty
receivers adopt the same value, even if the transmitting node
is faulty) andvalidity (if the transmitter is non-faulty, then
non-faulty receivers adopt the value actually sent) hold. In
this example we consider an interactive consistency proto-
col consisting of many parallel instances of the classical bi-
nary consensus [3] where the maximum number of byzan-
tine faults ism = 1. The protocol proceeds through of the
following steps:Step 1every processori acts as a sender
and broadcasts its valuevi, Step 2every processorj receives
and re-broadcastsvij to every other node,Step 3all nodes
receive and adopt a value using a deterministic function.

Table 1 depicts the internal state of a correct node after
executing the first two steps of this protocol. In this exam-
ple the system containsn = 4 > 3m nodes and node 3 is
byzantine. In the table,vij refers to the value sent by pro-
cessorj in Step 1as received byi and re-broadcasted in
Step 2. The fact that nodes do not re-broadcast their own
value inStep 2is expressed byvii = ”− ”. Without loss of
generality we consider the case where correct nodes send 0
as their own value. Since node 3 is faulty it may send dif-
ferent values to the other nodes inStep 1. Furthermore, in

1
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Senders
Re-broadcaster 1 2 3 4

1 - 0 1/0 0
2 0 - 1/0 0
3 1/0 1/0 - 1/0
4 0 0 1/0 -

Table 1. Interactive Consistency: internal
state of a correct node (node 3 is faulty)

Step 2the values received from the other nodes can be re-
broadcasted arbitrary. This asymmetry is expressed by the
values in{1, 0} in column 3 and row 3 respectively. The
majority voting ofStep 3is executed across each columni
to obtain the values to adopt forvi.

Our abstraction scheme models all correct nodes us-
ing only one correct node. Faulty nodes are not mod-
eled as agreement and validity are non-uniform properties.
To model the presence of asymmetric faults we add non-
determinism to the internal state of the one-correct-node:
both column 3 and row 3 are assigned non-deterministic
values, though with a different semantic. While the3rd col-
umn is consistent for every correct node due to (A1), row 3
may differ from node to node (even if they are correct), as
the faulty node can re-broadcast different values to different
nodes inStep 2.

In general we need to show that the abstract properties
hold. Intuitively, foragreementA, we need show that for
any arbitrary, non-deterministic value the majority voting
gives the same outcome, whilevalidityA requires that if
nodei is correct (in our case nodes 1, 2 and 4) the value
adopted by the one-correct-node is indeed that value sent
by nodei (0 in the example). Table 1 directly shows both
properties to hold. For agreement, column 3 is consistent
for every correct node, and majority voting over it will re-
sult in a consistent outcome. For validity, the fault assump-
tion of [3] (n > 3m) guarantees a sufficient quorum of cor-
rect values to outvote the non-deterministic values, which
become irrelevant. To prove that the abstraction is sound
we have to show thatagreementA ⇒ agreement and
validityA ⇒ validity hold.

3. Symmetry Reduction

In general it might be cumbersome to prove the sound-
ness of the abstraction forany valid formula. We aim
at establishing a general abstraction scheme, which poses
no restriction to the formula of interest, by proving that
our approach is a case ofsymmetry reduction[2]. This
would ensure that our one-correct-node abstraction is sound
and complete. In fact, symmetry reduction, states that if

the state transition graph exhibits defined morphisms, then
property preserving abstractions can be defined.

To assess the applicability of the abstraction two aspects
have to be considered. First, we are interested in thegain
of the approach, i.e. to which extent the abstraction reduces
the state space. Initial measurements performed using the
SRI-SAL model checker [4] on a diagnostic protocol [1]
have shown a considerable reduction. Safety and liveness
properties were checked on an Intel Xeon 3200 Ghz (5 GB
RAM) machine. The experimental result exhibited a gain of
nine order of magnitude in terms of BDD size (forn = 4 the
number of visited states was∼ 107 and1016, respectively).
Furthermore, the abstracted properties was checked within
< 1 sec, while the non-abstracted ones needed up to 16 min.

The other aspect is to define theclass of protocolsfor
which the abstraction is applicable. So far we considered
synchronous communicationamong nodes and we success-
fully applied the approach to membership and diagnosis
algorithms, all of them as specific cases of theconsensus
problem. We would like to extend our approach also to
approximate agreementprotocols, used for clock synchro-
nization, and consensus inasynchronoussystems and hy-
brids. Note that, in general, while symmetry is ensured by
the synchrony of the frame-based communication scheme,
our abstraction, as it is currently defined, can not be directly
applied to asynchronous protocols, where correct nodes can
also receive different subsets of the values sent by the other
correct nodes.

4. Conclusion & Future Work

For distributed protocols, we propose a symmetry based
abstraction to decrease complexity of model checking by
reducing the size of the state space. Our ongoing research
addresses three aspects: (a) soundness of the abstraction by
proving that it reduces to a special case of symmetry re-
duction [2]; (b) explore boundaries of applicability of the
approach; (c) quantify effectiveness of the abstraction us-
ing different model checking techniques (e.g. symbolic and
bounded model checking).
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Abstract – This paper investigates a measurement approach to support the implementation of Simulated

Annealing (SA) applied to test generation. SA, like other metaheuristics, is a generic technique that must be

tuned to the testing problem under consideration. Finding an adequate setting of SA parameters, that will offer

good performance for the target problem, is known to be difficult. Our measurement approach is intended to

guide the implementation choices to be made. It builds upon advanced research on how to characterize search

problems and the dynamics of metaheuristic techniques applied to them. Central to this research is the concept of

landscape. Existing measures of landscape have mainly been applied to combinatorial problems considered in

complexity theory. We show that some of these measures can be useful for testing problems as well. The

diameter and autocorrelation are retained to study the adequacy of alternative settings of SA parameters. A new

measure, the Generation Rate of Better Solutions (GRBS), is introduced to monitor convergence of the search

process and implement stopping criteria. The measurement approach is experimented on various case studies,

and allows us to successfully revisit a problem issued from our previous work on testing control systems.

Keywords – software testing, metaheuristic search, simulated annealing, measurement.

1 Introduction

Metaheuristic search techniques (Rayward-Smith et al., 1996) have proven useful to solve complex

optimization problems. Their generality makes them capable of very wide application. For instance,

they have gained attention in the field of software engineering (Clarke et al., 2003) and more

specifically of software testing (McMinn, 2004).

Genetic algorithms (Holland, 1975) and simulated annealing (Kirkpatrick et al., 1983) are two

examples of metaheuristic techniques used to automate the generation of test data. The underlying

testing problems are as diverse as: structural testing (Jones et al., 1996) (Tracey et al. 1998a) (Pargas

et al. 1999) (Michael et al., 2001) (Wegener et al., 2002), mutation testing (Adamopoulos et al., 2004),

pre- and post-condition testing (Tracey et al., 1998b), exception testing (Tracey et al., 2000a),
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determination of worst case execution time (Wegener et al. 1997) (Gross et al., 2000), testing high-

level requirements of control systems (Schultz et al., 1995) (Abdellatif-Kaddour et al., 2003b)

(Wegener and Buehler, 2004). Whatever the testing problem, it is first reformulated as an optimization

problem with respect to some objective function called fitness function (usually for maximization

problems) or cost function (for minimization problems). Then, a search run involves a series of test

executions. Each execution allows a candidate solution (i.e. a generated test case, or test sequence) to

be evaluated with respect to the objective function. Evaluation results are used to guide the generation

of new candidate solutions in the run.

Metaheuristic search techniques are not ready-to-use algorithms. Rather, they define generic strategies

that must be instantiated for the specific problem under consideration. A number of implementation

choices have to be done, and these choices affect performance. It is generally recommended to

experiment with alternative implementations of a strategy, or even with a variety of strategies. It is not

unfair to say that the tuning of the search requires a great deal of effort, can indeed be quite expensive,

and is not guaranteed to yield adequate choices. Section 2 of the paper provides a concrete example of

this bad situation, which we faced while applying simulated annealing (SA) search to a testing

problem. It reflects the difficulty of understanding the dynamics of metaheuristics.

Of course, the difficulty is not specific to the field of software testing. In the general literature of

metaheuristics, there is active research to investigate relations between search problem characteristics

and the performance of search techniques. The long-term aim is to gain both fundamental and practical

insights into the matter. Central to this research is the concept of landscape. If we consider the fitness

(or cost) as defining the “height” of a solution, the landscape metaphor gives rise to the visual image

of peaks, valleys, and plateaus. Intuitively, the “relief” of the landscape should have a strong impact

on the dynamics of exploration strategies. A number of measures have been proposed to characterize

landscapes, and predict – or explain – the behavior of search techniques applied to them. They will be

presented in Section 3. To date, the most advanced results have concerned combinatorial problems

considered in complexity theory, like the Traveling Salesman Problem (TSP) or the Boolean

satisfiability problem (SAT).

For testing problems, research is far less mature. Still, we are aware of recent work referring to

landscape as an explanatory concept. The survey of (McMinn, 2004) revisits previous testing work by

discussing the associated landscapes (e.g., it is shown that some fitness functions induce flat plateaus

along which the search is provided no guidance). In the same spirit, (Wegener and Buehler, 2004)

compare the relief of two candidate landscapes to choose the most adequate fitness function. Further

developments in landscape analysis are expected to emerge in the near future, as advanced topics in
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metaheuristic search get transferred to the field of software testing (or more generally to the field of

software engineering: the manifesto by Harman and Jones, 2001, opens perspectives in that direction).

This paper is in the lineage of emerging work we have just mentioned. We investigate a measurement

approach to the characterization of testing landscapes for Simulated Annealing. The aim is to support

the implementation choices that have to be made to tune the search process. A failure story reported in

Section 2 illustrates the significance of this issue. Section 3 presents a number of measures defined in

the framework of combinatorial problems, and discusses their applicability to the testing problem

under consideration. Two measures of landscape, the diameter and autocorrelation, are retained. They

are experimented in Section 4, using both small examples and the case study of Section 2. The latter

provides a challenging case for SA parameterization, since it defeated our previous attempts to find an

adequate tuning. Besides landscape analysis, Section 5 considers the characterization of process runs,

that is, of the trajectories followed when exploring the landscape. Ideally, we would like to detect runs

that are unlikely to succeed before test resources are exhausted, e.g. detect runs trapped in flat regions.

In this way, useless runs are stopped and the remaining resources are spent on exploring other

trajectories. A new measure, the Generation Rate of Better Solutions (GRBS), is introduced to monitor

runs and implement stopping criteria. Section 6 concludes with future directions.

2 Problem Statement

This section explains the motivation of our work. It first introduces the testing problem that yielded us

to investigate the use of metaheuristic search. Then, we provide feedback from an experimentation of

Simulated Annealing (SA) on a case study. Our experience exemplifies the difficulty of finding an

adequate implementation of SA search.

2.1 The Testing Problem: Exploring Dangerous Scenarios at System Level

We have defined a strategy for testing high-level requirements of cyclic real-time control systems

(Abdellatif-Kaddour et al., 2003a). The aim is to validate a system with respect to a safety-critical

property, that is, to test the system and observe whether the property is violated or not. For the high-

level properties we are interested in, violation typically results from improper interactions between a

control program and its controlled environment, when physical faults affect the devices. Where formal

verification is intractable, testing may be a pragmatic alternative. The test platform has to include a

simulator of the environment that mimics the physical devices, the physical laws governing the

controlled process, as well as the possible occurrence of faults in the devices. The test selection

process should then try to favor those scenarios that will be the most “stressing” with respect to the

target property. To address this problem, the proposed test strategy consists of a stepwise construction
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of test scenarios. Each step explores continuations of the “dangerous” scenarios found at the previous

step, using heuristic search techniques.

In order to illustrate the notion of stepwise construction, let us take the example of the boiler case

study experimented in (Abdellatif-Kaddour et al., 2003a). The steam boiler problem (Abrial et al.

1996) is a well-known case study for which high-level requirements, control program code, and a

software simulator of physical devices were made publicly available. The most critical requirement is

the avoidance of boiler explosion, which occurs whenever the water level falls outside a safety range

(i.e. it is either too low, or too high). The water level is controlled and monitored by means of four

pumps, four pump controllers sensing the state of the pumps (open, closed), a water level sensor, and a

steam sensor measuring the quantity of steam which comes out of the boiler. Any of these ten devices

may fail, and will remain faulty until repaired by a human operator. The control program has to detect

failures, and must either continue to operate in a degraded mode or shut the system down. An

overview of this case study, and of our test platform, is provided in Appendix A.

We used our test strategy to search for explosive scenarios due to improper account of device failures.

The tested system consisted of the control program connected to the simulator. A test sequence is then

a sequence of timed commands sent to the simulator, to tell it to mimic the failure of a given device.

As an example, command Steam_fault(3) triggers a steam sensor failure at cycle 3 of operation. Prior to

any test experiment, we determined what would constitute a dangerous scenario for this case study: a

dangerous scenario would put the system in a state such that the control program has an erroneous

perception of its environment. This includes situations such as:

• The control program does not detect the failure of a device.

• The control program wrongly detects the failure of a device that is not faulty.

• The actual water level in the boiler is outside the estimation range calculated by the control

program.

Triggering a dangerous situation is adopted as an intermediate test objective at step 1. For example,

the test experiments revealed that the control program is unable to detect a steam sensor failure

occurring at cycle 3 (cycle 3 corresponds to the control program leaving its initialization mode). We

retained dangerous scenario Steam_fault(3) as a prefix for further exploration at step 2. We ended up

with explosive scenario: Steam_fault(3), Pump2_fault(4), WaterLevel_fault(8).

In (Abdellatif-Kaddour et al., 2003a), exploration at each step was performed using the simplest

heuristic technique, namely random sampling. The technique was surprisingly effective, since we
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found four different classes of explosive scenarios1. However, blind random sampling is not expected

to be sufficient in most cases. This motivated our interest in more sophisticated search techniques, and

in particular simulated annealing.

The reasons why we chose SA rather than, say, genetic algorithms (GAs) were the following:

• GAs work with a population of solutions (i.e., a population of test sequences in our case), and

have to let the population evolve during several generations. In contrast, SA works with one

solution at a time. It was perceived that SA would be less demanding in terms of total number

of test experiments. This was an important criterion, as applying test sequences to the

complete system (including both the control program and the simulator), is quite costly in

execution time.

• GAs involve two evolution mechanisms, namely mutation and crossover. The effectiveness of

crossover depends on the ability to produce highly fit offspring from highly fit (and possibly

dissimilar) parents. How to define meaningful crossover operators was far from intuitive for

our testing problem. It was deemed easier to focus on mutation-like operators, exploring a set

of “neighbors” of a candidate solution. SA is a typical example of metaheuristic based on this

principle.

Several experiments with SA were performed, some of which are reported in (Abdellatif-Kaddour et

al., 2003b). The experiments investigated different implementation choices for the boiler problem. We

present these choices below, as well as the results we got.

2.2 Implementation of Simulated Annealing

Figure 1 presents the generic SA algorithm for a minimization problem with solution space S. It

searches for a solution s ∈  S that minimizes a cost function f: S →  R. The algorithm works by

randomly selecting a new solution s’ in the neighborhood of current solution s, using neighborhood

operator N: S → 2S. Solutions with lower cost (δ ≤ 0) are always accepted. Moves to inferior solutions

(δ > 0) may be accepted: the probability of acceptance depends on the magnitude of δ and on a control

parameter t called temperature. Starting from t0, the temperature is gradually reduced during the search

(according to cooling schedule C) so as to progressively decrease the acceptance rate of inferior

                                                       

1 These explosive scenarios are not due to bugs in the control program. They originate from the very definition of the
degraded modes in the requirements (specification flaw). To the best of our knowledge, only one of the scenario classes was
already identified in the literature.
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solutions. The search is stopped when a pre-defined stopping condition becomes true (e.g., the

maximal number of iterations is reached).

Select an initial solution s
Select an initial temperature t = t0 > 0
Initialize the number of iterations i = 1
LOOP while (stopping condition = false)

Randomly select s’ ∈ N(s)
δ = f(s’) – f(s)
IF (δ ≤ 0) THEN

s = s’
ELSE

Generate random x uniformly in range [0,1]
IF (x < exp(-δ / t)) THEN s = s’ ENDIF

ENDIF
i = i+1
t = C(t, i)

END LOOP

Figure 1 – Simulated Annealing Algorithm

A number of implementation choices must be made to tune the generic algorithm to a particular search

problem. For the boiler case study, the solution space S is a set of test sequences, where each sequence

is encoded as a list of timed fault commands. The precise definition of S  (time window of the

sequences under consideration, required prefix…) depends on the step of the test strategy, and several

spaces are possibly explored at each step. In any case, the aim is to find explosive or dangerous

scenarios in the target S. The implementation of SA search then involves the following settings.

• Cost function f – For some testing problems, the cost function definition may be obvious. For

example, WCET problems are associated with measures of the execution time. In our case,

determining an adequate cost function is far from trivial. The cost function has to assign the

lowest cost to test sequences reaching the test objective, yielding the general form: IF (boiler

explosion OR dangerous situation observed) THEN return (0) ELSE … Now, the difficulty lies in the

determination of the ELSE part. How should the cost of two candidate sequences yielding

neither an explosion nor a dangerous situation be compared? We experimented with several

cost functions. Appendix B gives two examples: Cost1 was used in unpublished experiments

while Cost2 is the one used in (Abdellatif-Kaddour et al., 2003b). Both functions involve

some constant parameters Ki, whose value was determined empirically.
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• Neighborhood N – Given a test sequence, it seems reasonable to consider neighbors that differ

in only one fault command. The neighborhood operator either removes one fault, or adds one,

or changes the date of occurrence (see Appendix B).

• Cooling Schedule C – Two commonly used schedules are (1) the geometric variation of

temperature: ti+1 = α  ti where α is chosen close to 1.0, and (2) the schedule proposed by

(Lundy and Mees, 1986): ti+1 = ti / (1+β ti) where β is chosen close to zero. We experimented

with both. Note that calibration of parameters α  (resp. β ) and t0 required preliminary

executions of SA on the boiler system.

• Stopping Condition – The search is stopped when either the test objective is fulfilled (f(s) = 0)

or the maximal number of iterations is reached (i = MAX_ITER). Since any execution of the

boiler system is costly in time, and since the test strategy involves exploration of several

search spaces, we cannot afford large values of MAX_ITER . We experimented with

MAX_ITER = 100 and 200. These are small values compared to common usage of SA, which

gives more time for the algorithm to converge toward an optimum.

Our experience is that the implementation of SA search requires substantial effort. The tuning

procedure is largely ad hoc. Many trials are necessary to investigate implementation choices and to

study alternative combinations of parameter settings.

2.3 Experimental results

In spite of the invested effort, SA performance turned out to be quite disappointing for the Boiler

example. It never outperformed random sampling. For some of the explored spaces, the high density

of zero cost solutions could explain this result: any sophisticated technique was bound to be less cost-

effective than random sampling. But poor results were also obtained in less trivial cases.

Let us take the example of one of the search spaces explored at step 2 of the strategy. Table 1 gives

comparative results of random sampling and SA. The experiments involved 35 runs of each technique.

A run is successful as soon as a zero cost sequence is found. It is stopped at the corresponding

iteration. Unsuccessful runs are stopped at MAX_ITER = 200. Table 1 provides both the number of

successful runs, and the total number of iterations for the 35 runs. Note that the two implementations

of SA only differ in the cost function: all the other parameters are set the same.
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Random sampling SA Cost1 SA Cost2

Successful search 26 25 16

Iterations (35 runs) 4187 3778 4453

Table 1 – Experimental results for one search space of the Boiler example

The best SA implementation (the one with Cost1) does not have a greater number of successful runs

than random sampling. By comparing the total number of iterations, it might be concluded that SA

speed is slightly higher (it takes 3778 iterations to find 25 zero cost sequences, versus 4187 iterations

and 26 sequences). But the “improvement” is too insignificant to be worth the effort.

In (Abdellatif-Kaddour et al., 2003b), such results led us to propose a variant of the SA algorithm (i.e.,

the core algorithm in Figure 1 was modified), which performed well on the Boiler example. But we

are aware that this specific variant might be inadequate for other examples. Each time a new control

system is studied, the tuning effort needs to be made again and again.

This motivates our interest in investigating improvements of the tuning procedure. Indeed, for the

testing problems we address, SA search cannot be a realistic option unless systematic approaches are

proposed to support implementation choices. For example, the experiments of Table 1 a posteriori

show that Cost2 is a worse choice than Cost1. Intuition is a poor guide to predict this result. There is a

need for more reliable means to assess the quality of alternative settings, and this is all the more

crucial as the testing time has to be kept reasonable.

It turns out that fundamental work on search techniques has settled a framework to address this issue.

A number of measures have been proposed to characterize search problems and the behavior of

heuristics applied to them. In this paper, we investigate the predictive power of such measures for

tuning SA search in the case of testing problems.

3 Measures for Characterizing Search Problems and Metaheuristics

Fundamental research on metaheuristics aims to establish relations between measures of problems and

the dynamics of metaheuristic search. The studied problems are most often NP complete problems

considered in complexity theory, like graph problems or constraint satisfaction problems.

Existing measures can be classified into three broad categories, corresponding to the structure they

characterize (Belaidouni and Hao, 2000). The underlying structures are:

• the search space, defined by a couple (S, f) where S is a solution space and f a cost function

assigning a real number to each point in the space;
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• the search landscape, defined by a triplet (S, f, N) where N  is a neighborhood operator

connecting each point in S to a non-empty set of neighbors;

• the process landscape, defined by a quadruplet (S, f, N, ϕ) where ϕ is a search process based

on the notion of neighborhood.

Examples of measures for each structure are provided in Sections 3.1 to 3.3. A more complete

description of measures and of related work can be found in (Belaidouni, 2001). Section 3.4 discusses

applicability to our testing problem.

3.1 Characterizing the Search Space

For the search space structure, typical examples of measures are the variation range [fmin, fmax] of cost

values, or the number of optimal solutions in S. A finer measure concerns the density of states (dos),

giving the frequency of each cost value in the search space (Rosé et al., 1996). For some problems, dos

may be determined analytically. But most often it has to be approximated by using a sampling

procedure, which can be expensive to properly account for the least frequent values.

3.2 Characterizing the Search Landscape

The search landscape has been the most studied structure. The introduction of a neighborhood operator

N makes it possible to define the distance between points s and s’ in S. It corresponds to the minimal

number of times N must be applied to move from s to s’. The notion of distance is underlying all

measures for characterizing the search landscape.

3.2.1 Diameter

The diameter D of a search landscape is the maximal distance between two points in S. Intuitively,

small diameters should be more favorable than large ones, because any point can potentially be

reached quicker (in terms of successive applications of N). Suppose D is large. Then, it may take a

large number of iterations to get to an optimal solution, even in the ideal case where the search process

would select the shortest trajectory between the starting point and the target solution.

The diameter can usually be determined analytically (for landscapes of typical NP-complete problems,

see examples of analytical expressions in Angel and Zissimopoulos, 2000).

3.2.2 Autocorrelation

The autocorrelation measure has been introduced by (Weinberger, 1990) to characterize the

ruggedness of a landscape. Intuitively, a smooth landscape is one in which neighbors have nearly the
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same cost, while a rugged one is one in which the cost values are dissimilar. The latter situation

indicates that f and N are not mutually adequate to guide the search.

The autocorrelation ρd measures the variation of cost for points that are at distance d. Most often,

measurement is focused on ρ1, which is deemed the most important value to know. Exact evaluation of

the autocorrelation is not possible unless the distribution of cost values is known. In practice, ρ1 is

estimated by means of a random walk whose steps consist in moving to a new point chosen randomly

among the neighbors of the current point (see Figure 2). The underlying assumption is that the

statistics of the cost sequences generated by a random walk are the same, regardless of the starting

point chosen: the landscape has to be statistically isotropic (Weinberger, 1990). An estimate of ρ1 is

then (Hordijk, 1996):

€ 

ˆ ρ 1=  

€ 

f (si) − f( ) f (si+1) − f( )
i= 0

T−2

∑

f (si) − f( )
2

i= 0

T−1

∑

where T is the size of the sample and 

€ 

f  the arithmetic mean of the cost values in the sample. If ρ1 is

close to one, the landscape is smooth. If ρ1 is close to zero, neighboring cost values are unrelated and

neighborhood search techniques are not expected to be effective.

Autocorrelation (or derived measures) has been used to explain search performance on landscapes

associated with NP-complete problems (Stadler and Schnabl, 1992) (Angel and Zissimopoulos, 1998)

(Angel and Zissimopoulos, 2000) as well as on artificial landscapes whose ruggedness can be tuned by

control parameters (Hordijk, 1996).

Select a starting point s0

Sample[0] =  f(s0)
FOR i=1 to T-1 DO

Randomly select si ∈ N(si-1)
Sample[i] =  f(si)

END FOR

Figure 2 – Random Walk Algorithm

3.2.3 Other Measures

While autocorrelation characterizes the variation of costs at a fixed distance, other measures are

focused on the variation of distances at a fixed cost. For example, such measures are used by

(Belaidouni and Hao, 2000) to study landscapes of the MAX-CSP problem. A practical difficulty is
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that their experimental evaluation requires the production of a sample of solutions for each cost level.

In (Belaidouni and Hao, 2000), the authors have to apply metaheuristic search to produce the samples.

There are also measures characterizing the joint variation of distances and costs, like the Fitness

Distance Correlation (FDC) (Jones and Forrest, 1995), used in the framework of genetic algorithms

and genetic programming (Vanneschi et al., 2003). The FDC definition involves the notion of distance

to the nearest global optimum, which restricts its applicability to problems with known optima.

Finally, it is worth mentioning work studying the topology of landscapes in terms of local optima and

plateaus, which are regions the search can be trapped in (Frank et al., 1997). For small instances of

problems, the number and size of such regions can be exhaustively determined, as in (Yokoo, 1997).

Also, for some simple landscapes, the number of local optima can be approximated analytically (see

e.g. the TSP landscape analysis by Stadler and Schnabl, 1992). However, in the general case,

approximation has to be achieved via expensive experiments (Eremeev and Reeves, 2003).

3.3 Characterizing the Process Landscape

The process landscape should be the most informative structure, since it accounts for all parameters of

the search implementation. It is also the most difficult (and the most expensive) to characterize,

because analytical analysis is not possible and empirical analysis involves running the search process.

Most of the measures defined for the search space and search landscape can be transferred to the

process landscape. For example, the process cost density (pcd) (Belaidouni and Hao, 2002) is

analogous to the density of states (dos) defined for search spaces (cf. Section 3.1), using process ϕ as

the sampling procedure. It is worth noting that dos and pcd are not the same, because ϕ introduces a

bias in the exploration of solutions. Similarly, the number and size of basins of attractions for ϕ should

be related to the local optima of the search landscape, but the relation is not trivial.

When characterizing the process landscape, an acute problem is the variability of behavior from one

run of ϕ to the next: obtaining statistically meaningful measures can be practically impossible. The

problem already existed for the characterization of search landscapes using a random walk. However,

it is much more acute when the samples are produced by sophisticated metaheuristics. Indeed, for the

boiler example, we empirically observed variability of SA behavior, depending on the starting point of

the search.

3.4 Discussion

While a number of measures have been proposed in the literature, there is currently no consensus on

which ones to use in which case. Generally speaking, a single measure can only have a limited
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explanatory power. For example, autocorrelation is one of the most acknowledged measures but can

be insufficient to distinguish between two search landscapes of different difficulty.

In spite of these limitations, we will show that a measurement approach can still be useful to

implement SA search for our testing problem. The choice of measures has to be guided by our specific

needs. First, we cannot afford a large number of experiments to get an estimation of measures, because

execution of the complete system is computationally costly. Second, our aim is to tune SA search to

get zero-cost solutions, not just low cost solutions. This is so because non-zero solutions do not fulfill

the test objective: in the boiler example, they correspond to safe scenarios triggering neither a boiler

explosion nor a dangerous situation. Let us discuss the implication of these needs.

The constraint in the number of system executions leads us to exclude the most costly measures for

characterizing the search landscape (e.g., the measures mentioned in Section 3.2.3), as well as all

measures for characterizing the process landscape (see Section 3.3). As regards the latter measures, let

us recall that their estimation is anyway problematic due to the variability of SA behavior.

The fact that we are not interested in sub-optimal solutions limits the insight that can be gained from

some measures. Let us take the example of dos and pcd. A search space will be considered all the

easier as the cost distribution exhibits a low mean and high variance (i.e., it is not difficult to find low

cost solutions, and very low values departing from the mean are not too scarce). Similarly, a process

landscape will be considered better than another if pcd analysis shows that it tends to generate lower

cost solutions. Such results are relevant to problems for which low cost, but possibly sub-optimal,

solutions are quite acceptable. They are not relevant in our case because sub-optimal solutions are

useless with respect to the test objective, as previously explained.

We finally retain two measures for characterizing the search landscape: the diameter D  and

autocorrelation ρ1. They will be used in Section 4 to guide the choice of “good” combinations of a cost

function f and neighborhood operator N, for SA search.

How to characterize the process landscape remains an open issue. In Section 5, we will adopt a less

ambitious approach. We will not attempt to refine tuning of the process landscape. Rather, we will

attempt to make the best possible use of a given process landscape. Since behavior depends on the

starting point of the search, we will try to detect runs that are unlikely to succeed in the allowed

number of iterations, so as to stop them and restart search from another point. This will lead us to

propose a new measure to monitor the behavior of a run and implement stopping criteria.
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4 Characterizing the Search Landscape

The diameter and autocorrelation measures are used to identify search landscapes that are potentially

well-suited to SA search. The tuning process shall retain settings of f and N such that:

• Diameter D is significantly lower than MAX_ITER, the allowed number of iterations per run.

• Autocorrelation ρ1 is high.

The diameter criterion is intended to ensure that an optimal solution has a chance to be reached before

the end of the run, whatever the starting point of the search. The autocorrelation criterion identifies

landscapes for which the principle of neighborhood search is not irrelevant. Equipped with these

criteria, our challenge is to revisit the boiler example and to determine an adequate parameterization of

SA search for it.

Before addressing the boiler example, we study the relevance of the criteria for simpler problems. The

first one, QAP (Section 4.1), has been extensively studied in the literature of metaheuristic search. It is

considered here for comparison purposes. It provides a typical example of the combinatorial problems

to which diameter and autocorrelation measures are usually applied. It is also one of the problems for

which SA search is known to be efficient. The next two problems, Cal1 and Cal 2 (Section 4.2), are

loosely inspired from a calendar testing problem. They are used to perform a large number of

controlled experiments on “good” and “bad” landscapes. We let f and N vary, and try to establish a

relation between the corresponding D and ρ1 measures on the one hand, and SA efficiency on the other

hand. This makes it possible to study the discriminative power of the criteria. The boiler example is

then revisited in Section 4.3.

4.1 The QAP Landscape

The Quadratic Assignment Problem (QAP) is a typical representative of combinatorial problems

studied in the literature of metaheuristic search. It is a NP-hard problem generalizing the Traveling

Salesman Problem. A number of search techniques have been experimented on QAP instances

(Connolly, 1990) (Taillard, 1991) (Maniezzo et al., 1995) (Merz and Freisleben, 2000). SA search is

known to be very efficient for QAP, using some standard settings of f and N. Actually, cost function f

is already determined by the problem definition, and it is only N that needs to be adequately chosen.

The standard N  for QAP is the so-called 2-exchange neighborhood (see e.g., Angel and

Zissimopoulos, 2000, for a definition of this neighborhood operator). Thus, the QAP example provides

us with the opportunity to investigate characterization of a landscape known to be “good”.
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The experiments involve the NUG15 instance of QAP proposed by (Nugent et al., 1968)2. It has four

solutions supplying an optimal cost, in a search space of 15! elements. In order to check our ability to

reproduce known results, we retain the same SA implementations as the ones described in (Connolly,

1990). The maximal number of iterations is taken as MAX_ITER = 5000 to keep the same order of

magnitude as in Connolly’s experiments (which involved 5250 iterations for this problem instance).

Before experimenting with SA search, we first characterize the underlying search landscape.

Diameter criterion – With the 2-exchange neighborhood, D = 14 which is obviously much lower than

the allowed number of iterations.

Autocorrelation criterion – The experimental evaluation of ρ1 involved 100 random walk runs (see

Figure 2 for the random walk algorithm), with 1000 iterations per run. Note that this effort is

unusually high as a single run should be necessary to perform estimation: we wanted to confirm the

expected stability of estimates for this landscape. We obtained ρ1 = 0.74 (standard deviation 0.01).

This gives an idea of what should be considered a sufficiently high autocorrelation measure.

For this “good” landscape, we confirm the expected efficiency of SA search. In Table 2, L&M1 and

L&M2 correspond to the two SA implementations described in (Connolly, 1990): L&M1 is standard

SA with the Lundy and Mees cooling schedule, and L&M2 is a variant that yielded better results for a

range of QAP instances. Whatever the SA implementation, any of the four optimal solutions is found

by at least 21% of successful runs. Whereas random sampling fails to produce any optimal solution,

SA search is efficiently guided by the structure of the underlying landscape.

Random sampling L&M1 L&M2

Percentage of successful runs

(1000 runs, MAX_ITER = 5000)
0% 8% 11.1%

Table 2 – SA efficiency for QAP (NUG15 instance)

4.2 Landscapes for two Calendar Problems

After having characterized a known landscape, we now focus on landscapes for two artificial

problems, loosely inspired from a calendar problem experimented by (Tracey, 2000b) in the field of

software testing. For these two artificial problems, noted Cal 1 and Cal 2, the solution space is the set

of dates from January 1, 1900 up to December 31, 3000. Each date is encoded by a triplet (day, month,

                                                       

2 This problem instance, as well as many other ones, is archived on Eric Taillard’s page:
http://ina.eivd.ch/Collaborateurs/etd/problemes.dir/qap.dir/qap.html
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year). We make the simplifying assumption that there are exactly 365 days per year (there is no

account for leap years), hence the space contains 401,865 solutions. The search problem is then to find

a zero cost date in the space. Cal 1 has exactly one optimum to be found (arbitrarily taken as

December 31, 2000), while Cal 2 has two (December 31, 2000 and February 2, 2500). In each case,

we experimented with 24 different search landscapes, by making f and N vary. Cal 1 is used to

illustrate the results below. A complete report of all experiments can be found in (Abdellatif-Kaddour,

2003c).

The four cost functions and six neighborhood operators used for Cal 1 are described in Appendix C.

Basically, Cost1 is a random cost function that is expected to yield poor results whatever the

neighborhood definition. Cost2, as well as neighborhood operators N1 and N2, are inspired from

Tracey’s work, and should fit well together. Cost3 and Cost4 have been designed in the same spirit as

N3-N6, so that any combination of them is expected to supply a high correlation of neighboring costs.

The Cal 2 cost functions are similar to the Cal 1 ones, but are slightly adapted to account for the

additional optimum. The neighborhood operators are kept exactly the same.

Let us now characterize the landscapes resulting from all f x N combinations. The maximal number of

iterations per run is set to 2000.

Diameter criterion – Table 3 shows the diameter values for all neighborhood operators. Bold values

indicate that the criterion is passed, while italic values denote diameters that are judged too large

compared to the allowed number of iterations. As can be seen, N3 and N4 are rejected as bad choices

for MAX_ITER = 2000.

Autocorrelation criterion – Table 4 shows ρ1 estimates for the 24 landscapes of Cal 1. In each case,

experimental evaluation involved 100 random walk runs, with 1000 iterations per run. A cell of the

table indicates the mean value of ρ1, followed by the standard deviation put in brackets. Ten

landscapes (with ρ1 in italic numbers) do not pass the autocorrelation criterion. Not surprisingly, all

landscapes involving Cost1 are rejected. Moreover, we learn that N3-N6 are not well-suited to Cost2,

while N1-N2 fit well with Cost3-Cost4 although they have not been designed for that purpose. Cal 2

landscape analysis yields similar conclusions.

Putting together the diameter and autocorrelation criteria, 10 landscapes are retained for each of the

Cal 1, Cal 2 problems, and 14 landscapes are rejected. We then assess the relevance of these decisions

by measuring SA search efficiency for all landscapes. Table 5 gives the percentage of successful runs

for the Cal 1 problem, observed from a sample of 1000 SA runs per landscape. It can be seen that the

14 rejected landscapes (whose results are displayed in italic characters) exactly correspond to the 14
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worst scores. This result is encouraging, in spite of the fact that the diameter and autocorrelation

measures have a limited discriminating power: the 10 retained landscapes do supply the best scores

but these scores exhibit a large variation (ranging from 6.3% to 65.1%). Note, however, that the lowest

score (6.3%) is still significantly higher than that of random sampling, which was 0.4% in the Cal 1

case study. Similar results are obtained for Cal 2.

Hence, despite limitations, the proposed approach should be relevant to reject bad landscapes, and

retain only those that are reasonably well suited to SA search (while possibly not “best” suited). We

are now equipped to revisit the Boiler example.

N1 N2 N3 N4 N5 N6

Diameter 550 1100 6700 13400 250 500

Table 3 – Diameter of the calendar landscapes

N1 N2 N3 N4 N5 N6

Cost1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Cost2 0.82 (0.08) 0.95 (0.04) 0.22 (0.09) 0.22 (0.09 0.36 (0.19) 0.33 (0.17)

Cost3 0.99 (<10-2) 0.99 (<10-2) 0.89 (<10-2) 0.89 (<10-2) 0.98 (0.02) 0.98 (0.01)

Cost4 0.99 (<10-2) 0.99 (<10-2) 0.99 (<10-2) 0.99 (<10-2) 0.99 (<10-2) 0.99 (<10-2)

Table 4 – Autocorrelation of the Cal 1 landscapes: mean (stand. dev.)

N1 N2 N3 N4 N5 N6

Cost1 0% 0% 0% 0% 0.2% 0.2%

Cost2 6.3% 16.1% 0% 0% 1.4% 1.4%

Cost3 47.6% 65.1% 2.1% 2.1% 16.9% 16.8%

Cost4 60.8% 9.5% 3.7% 3.7% 40.3% 40.2%

Table 5 – Percentage of successful SA runs on the Cal 1 landscapes
(1000 runs, MAX_ITER=2000)
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4.3 The Boiler Search Landscape

Compared to the previous case studies, the Boiler example is one for which random sampling is fairly

efficient. The most difficult search space is the one mentioned in Section 2.3, where random sampling

found 26 zero-cost solutions using a total number of 4187 iterations (see Table 1). We will focus on

the corresponding search problem. As regards SA efficiency, we observed that the choice of the cost

function had a strong impact, but the best function proposed so far did not significantly outperform

random sampling. We will try to improve the situation by tuning the cost function. The size of the

target search space is 10,077,695. The allowed number of iterations is MAX_ITER = 200.

Let us now characterize the two landscapes studied in Section 2.3.

Diameter criterion – The chosen neighborhood operator yields D = 9, hence the diameter criterion is

passed.

Autocorrelation criterion – For both landscapes, the experimental evaluation of ρ1 involved 10

random walk runs, with 100 iterations per run. Table 6 shows the results. The autocorrelation measure

does not discriminate between Cost1 and Cost2. In both cases, neighboring costs are not unrelated but

ρ1 values are smaller than the ones accepted for the QAP, Cal 1 and Cal 2 problems (the retained

landscapes always had ρ1 ≥ 0.74). Hence, the results do not reveal strong inadequacy of the

landscapes, but suggest that it may be preferable to design a cost function with higher autocorrelation.

Mean Stand. Dev.

Cost1 0.52 0.17

Cost2 0.53 0.13

Table 6 – Autocorrelation of the Boiler landscapes

Rather than inventing an entirely new cost function, we go back to the generic definitions of Cost1 and

Cost2 in Appendix B, expressed in terms of symbolic parameters Ki. Let us recall that the K i

calibration was based on trials and empirical judgment. We now try a more systematic approach, by

making the Ki values vary, and retain the valuation supplying the best autocorrelation.

As regards Cost1, we observed the best autocorrelation for K1 = 100, K2 = 0, K3 = 10000. Improvement

is not drastic, since ρ1 = 0.62 (stand. dev. 0.14). Still, we retain the corresponding cost function, noted

Cost1bis.
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As regards Cost2, we failed to obtain any significant improvement. This may suggest that the generic

definition is not well suited to the search problem and/or the chosen neighborhood operator.

We now study whether the new Cost 1bis function manages to improve SA efficiency. Table 7 provides

the results obtained by 35 runs (MAX_ITER = 200). The previous results of random sampling and

Simulated Annealing are recalled for comparison purposes. It is clear that the Cost1bis landscape is the

best for SA search. Moreover, observed performance is now significantly better than that of random

sampling. Considering our initial failure to properly tune SA search, these results confirm that the

proposed measurement criteria should be much sounder than ad hoc judgment.

Random sampling SA Cost1 SA Cost2 SA Cost1bis

Successful search 26 25 16 33

Iterations (35 runs) 4187 3778 4453 2573

Table 7 – SA search improvement for the Boiler example

5 Stopping Criteria for Process Runs

Contrary to what has just been done on the search landscape, we do not try to improve the process

landscape. For the reasons explained in Section 3.4, our objective is more modest: we attempt to make

the best possible use of a given process landscape. This is done by monitoring the process runs. Each

run corresponds to a trajectory in the landscape, which may or may not reach an optimal solution

depending on the starting point of the search and the allowed number of iterations. The monitoring

approach aims to decide whether the current run is likely to succeed before the allowed number of

iterations. If the decision is negative, the run is stopped and search is restarted from another point.

Stopping criteria have also been studied by others in the framework of search-based testing. In

(Lammermann and Wegener, 2005), the allowed search effort is tuned to structural coverage goals: the

stopping criteria are a priori determined from software measures. In (0’Sullivan et al., 1998), on-line

monitoring of search convergence is used to determine whether the current run should be stopped or

continued. As an a priori estimation is impossible for us, our approach is more in the spirit of the latter

work. However, its implementation is quite different since (0’Sullivan et al., 1998) use genetic

algorithms and analyze convergence for populations of solutions. Section 5.1 presents the principle of

our monitoring approach and the related stopping criteria. Section 5.2 uses the QAP and calendar

problems to calibrate the criteria. A trade-off must be found between too sensitive criteria (stopping

runs that would have been successful) and too restrictive ones (not stopping unsuccessful runs). The

calibrated criteria are then applied to the Boiler example in Section 5.3.
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5.1 Principle of the Approach

A new measure is introduced to characterize a process run, called the Generation Rate of Better

Solutions (GRBS):

GRBS = 

€ 

number of generated solutions decreasing the cost
total number of generated solutions

The GRBS value is not very interesting per se because it is unstable, evolves during a run, and varies

from one run to the next. Actually, it is precisely the evolution during a run that is the focus of our

monitoring approach.

Whatever the case study (QAP, calendar problems, Boiler), we observed that GRBS evolution for

successful runs can be schematized as in Figure 3. Three phases may be identified. Phase 1 typically

characterizes the beginning of the search at a point where cost is high and easy to improve: lower cost

solutions are produced at a high rate. At the end of Phase 1, low cost solutions are reached and

improvement becomes difficult: the steep decrease of GRBS (Phase 2) indicates that search is

approaching the optimal solution that will be found by this successful run. Phase 3 characterizes the

last iterations of the run, exploring a small subspace in the neighborhood of the optimal solution. Of

course, Figure 3 is only a schematic view. The actual duration of each phase depends on the run, and it

may be the case that a phase is not present. Concrete examples of runs with no Phase 1 or no Phase 3

are shown in Figure 4.a.

An interesting observation is that the duration of phases can – to a certain extent – be used to

distinguish successful and unsuccessful runs. We observed empirically that unsuccessful runs always

correspond to long durations of either Phase 1 or Phase 3, where “long” refers to the maximal number

of iterations allowed for the runs. Concrete examples are shown in Figure 4.b.

nombre 
d’itérations

TGMS

Plage 1 Plage 2 Plage 3

GRBS

Phase 1 Phase 2 Phase 3

Number of
iterations

Figure 3 – Generic GRBS evolution for successful runs
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(a) Examples of successful runs (b) Examples of unsuccessful runs

Figure 4 – Instances of GRBS evolution (Cal 1, Cost 4 x N6 landscape)

A long Phase 1 yields high GRBS values to be collected during the whole run. The starting point of

the search has a high, easy to improve cost. Still, it turns out that the process moves fail to reach a low

cost configuration: better solutions are continuously produced at a high rate, but each solution only

provides a slight improvement compared to the previous one. Hence, when the maximum number of

iterations is reached, the achieved cost value is still far away from the optimum.

For unsuccessful runs with a long Phase 3, it is observed that after transient phases 1 and 2, better

solutions are scarcely produced during a large number of iterations (until MAX_ITER is eventually

reached). The stagnation may indicate that the search process is stuck at a local optimum or trapped in

a flat region.

It would be desirable to stop such runs as soon as possible, to avoid useless iterations. Two

complementary stopping criteria are proposed, based on the on-line monitoring of the GRBS. The first

(resp. second) criterion determines whether Phase 1 (resp. Phase 3) is too long for the run to possibly

succeed within the allowed number of iterations. Both checks are performed in parallel, and the run is

stopped whenever one criterion becomes true.

• Phase 1 too long – GRBS ≥ Threshold_High during max (α MAX_ITER, D) iterations.

In the proposed formulation, Phase 1 of the search is identified by a GRBS value exceeding a

threshold high value. The judgment that Phase 1 is “too long” must then be relative to the

maximal number of iterations: this is tuned by means of parameter α with 0 < α  < 1. In

addition to this, it seems reasonable not to stop the run before the process has spent some

minimal amount of time to explore the landscape. In the proposed formulation, the exploration

time cannot be shorter than diameter D of the landscape.
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• Phase 3 too long – GRBS ≤ Threshold_Low during max (β  MAX_ITER, |N|) iterations.

As above, the phase duration is tuned to the maximal number of iterations: this is done by

means of parameter β with 0 < β < 1. In addition to this, we impose that a Phase 3 search

cannot be stopped before it has spent some time to explore the neighborhood of the solution

reached at the end of Phase 2. This is why the triggering number of iterations cannot be

smaller than the size |N| of the neighborhood operator, where |N| is defined as the maximal

number of neighbors connected to any point.

In order to implement the checks, parameters α , β,  Threshold_High and Threshold_Low must be

instantiated. We experimented with a number of values using the QAP, Cal 1 and Cal 2 case studies.

We also tried several monitoring schemes: on-line monitoring is started at the first iteration of the run,

or after an initial number of iterations has been performed.

5.2 Calibration using QAP, Cal 1 and Cal 2

The best monitoring schemes, that consistently supplied satisfactory results for all case studies, were

the following:

Scheme 1: Monitoring is started after MAX_ITER/10 iterations.

Phase 1 too long: Threshold_High = 50%, α = 0.1

Phase 3 too long: Threshold_Low = 10%, β = 0.1

Scheme 2: Monitoring is started at the first iteration.

Phase 1 too long: Threshold_High = 50%, α = 0.25

Phase 3 too long: Threshold_Low = 10%, β = 0.25

It is worth noting that according to Scheme 1 (resp. 2), the search can never be stopped before

MAX_ITER/5 (resp. MAX_ITER/4) iterations.

The experiments involved the two process landscapes of QAP, and the 20 landscapes of Cal 1 and

Cal 2 that passed the diameter and autocorrelation criteria (Abdellatif-Kaddour, 2003c). Exemplary

results for the two retained schemes are shown in Table 8. They have been obtained for the QAP

landscapes, by re-playing the runs from Section 4.1 with the monitoring schemes. The replay allows

determination of the percentage of unsuccessful – but also successful – runs that are stopped by each

scheme. Global search performance is then measured by the ratio (number of successes) / (total

number of iterations). It accounts for the combined effect of false positives (successful runs are

stopped) and false negatives (unsuccessful runs are not stopped).

Part Verif - APPENDIX [Waeselynck et al. 2006] p 21



– 22 –

L&M1 L&M2
Without

monitoring
Monitoring

scheme 1
Monitoring

scheme 2
Without

monitoring
Monitoring

scheme 1
Monitoring

scheme 2
% unsucc. runs

stopped — 100% 100% — 100% 100%

% succ. runs
stopped — 76.25% 50% — 60.36% 18.92%

Success/iteration 1.7 10-5 1.9 10-5 2.4 10-5 2.4 10-5 4.3 10-5 5.5 10-5

Table 8 – Monitoring schemes applied to the QAP landscapes

From Table 8, it can be seen that all unsuccessful runs are detected and stopped. Unfortunately, the

monitoring schemes may also stop a high percentage of successful runs. But we experimentally

observed that those runs are most often the ones that succeed lately, i.e. towards the end of the 5000

allowed iterations. This explains why global search performance is not degraded.

For the two QAP landscapes, Scheme 2 turns out to be the best one. The supplied improvement is the

same order of magnitude as the one supplied by using Connolly’s L&M2 – rather than L&M1 – search

process. However, considering the whole set of 22 landscapes, no scheme exhibits superiority over the

other. The conclusions drawn from the 22 landscapes are the following:

• Both schemes manage to stop a satisfactory percentage of unsuccessful runs (> 50% for 12

landscapes).

• Successful runs are also stopped (< 20% for 13 landscapes), but these are generally runs that

would have consumed almost MAX_ITER iterations before an optimal solution is found.

• Global search performance is either improved or unchanged, never degraded.

Hence, it seems that the monitoring schemes can significantly improve performance in some cases (as

for the QAP example), and have a neutral effect in the worst case. It remains to be studied whether

similar results can be obtained for the Boiler problem.

5.3 Experimentation with the Boiler Example

The retained schemes have been experimented on three Boiler landscapes, namely the ones with

Cost1, Cost2 and Cost1bis. The results shown in Table 9 correspond to the same runs as the ones in

Section 4.3, replayed with monitoring.
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Cost1 Cost2
Without

monitoring
Monitoring

scheme 1
Monitoring

scheme 2
Without

monitoring
Monitoring

scheme 1
Monitoring

scheme 2
# unsucc. runs

stopped
— 10

(out of 10)
10

(out of 10)
— 5

(out of 19)
5

(out of 19)
# succ. runs

stopped
— 11

(out of 25)
12

(out of 25)
— 0

(out of 16)
0

(out of 16)
Success/iteration 6.6 10-3 7.2 10-3 8.2 10-3 3.6 10-3 4.0 10-3 4.0 10-3

(b) Cost1 and Cost2 landscapes

Cost1bis
Without monitoring Monitoring scheme 1 Monitoring scheme 2

# unsucc. runs stopped — 1
(out of 2)

1
(out of 2)

# succ. runs stopped — 2
(out of 33)

2
(out of 33)

Success/iterations 12.8 10-3 13.0 10-3 13.3 10-3

(a) Cost1bis landscape

Table 9 – Monitoring schemes applied to the Boiler landscapes

For these landscapes, search performance is similar whether or not the monitoring schemes are used.

Note that, for the Cost1bis landscape, no drastic improvement could be expected because SA search is

already quite efficient (indeed, there are only 2 unsuccessful runs). At least, our results confirm that

performance is not degraded, which is also the case for Cost1 and Cost2 landscapes. This outcome was

not granted, because the allowed number of iterations (200) is much lower than the one experimented

for QAP (5000) or the calendar problems (2000). For such comparatively short runs, we could not be

sure that the monitoring schemes would still be relevant. The fact that behavior remains consistent

with previous observations is a positive point in favor of the reusability of the retained schemes. As

previously, the stopped successful runs are the ones that succeed lately.

Our conclusions are then the following. Since the monitoring schemes do not degrade search

performance, and might improve it in some cases, their use can be recommended. Scheme 1 or

Scheme 2 can indifferently be chosen, as the supplied results seem quite similar. Note, however, that

the monitoring approach cannot act as a replacement for finding adequate settings of SA parameters

(like the cost function). At best, it may help not to waste test effort where search convergence is too

slow. But the intrinsic difficulty of the landscape for SA search remains unchanged.
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6 Conclusion

As argued by (Harman and Jones, 2001), the development of empirical studies is a crucial step to

establish a body of knowledge in search-based software engineering. This paper is intended to

contribute to this step. We adopted a measurement perspective, building upon fundamental work on

metaheuristic search and combinatorial problems. To the best of our knowledge, the related literature

has been little explored by the testing community. We are not aware of other studies investigating

measures to tune search-based test data generation.

Our empirical study involved a testing problem (issued from previous work on testing control

systems), as well as three simple problems chosen to experiment with a variety of landscapes. This

allowed us to consolidate our approach and investigate whether consistent results could be obtained

for several examples. Work was focused on simulated annealing search, and was driven by the two

constraints of our original testing problem: 1) we cannot afford a large number of system executions

and 2) sub-optimal solutions are useless with respect to the test objective. We believe these constraints

are shared by many other testing problems. One characteristic of search-based test data generation is

that the cost of a candidate solution has to be evaluated by supplying it to the system under test.

Except for unit testing of simple functions, this evaluation may become very computationally costly.

Moreover, as soon as the search process is intended to serve a test coverage objective (e.g., activate a

program branch, or trigger an exception), sub-optimal solutions are not of interest. Hence, it is hoped

that the retained approach could be relevant to a number of other testing problems.

We use the diameter and autocorrelation measures to study the adequacy of alternative settings of the

cost function and neighborhood operator. These measures can only have a limited explanatory power,

but are still useful to reject inadequate landscapes and retain those that are reasonably well suited to

SA search. In our study, the approach allowed the Boiler problem to be successfully revisited, yielding

a better cost function than the ones obtained by ad hoc trials. Our future work will consider additional

empirical studies to refine the criteria for accepting a landscape. In particular, the determination of

typical threshold values for the current measures requires more investigation.

The diameter and autocorrelation measures characterize the search landscape, which does not include

the search process. It would be more interesting to work on the process landscape, since ultimately we

are only interested in the search process efficiency. However, characterization of the process

landscape is much more difficult, and still remains an open issue for testing problems. Up to now, our

work on the process landscape has addressed less ambitious issues, using two alternative approaches.
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The first one, followed in (Abdellatif-Kaddour et al., 2003b), consisted in modifying the core SA

algorithm to tailor it for the problem under consideration. At the expense of ad hoc trials, we obtained

a specific SA variant that worked well on the Boiler example. However, this variant is not expected to

be reusable. Indeed, additional experiments in (Abdellatif-Kaddour, 2003c) showed that it poorly

performs on the QAP and calendar problems.

The second approach, explored in this paper, was intended to be less specific. It consists in monitoring

search convergence, so as to stop runs that are unlikely to succeed within the allowed number of

iterations, and restart the search from another point. The proposed monitoring schemes supplied

consistent results for the four case studies we experimented with. The schemes are not costly to

implement, and may improve search performance while having a neutral effect in the worst case. We

will conduct further experiments to confirm these results. In particular, the relevance of our schemes

relies on the assumption that the GRBS measure evolves as shown in Figure 3, with possibly different

phase durations. We will study whether GRBS evolution could exhibit different patterns for other

instances of testing problems (e.g., exhibit peaks, …).

Finally, we hope that the first results presented in the paper will encourage more experimental studies

based on the measurement of testing landscapes. As a first step, the proposed approach could provide a

useful framework to revisit existing case studies.
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Appendix A – The Boiler Case Study

The steam boiler problem was proposed as a challenge for formal methods for safety-critical control

systems (Abrial et al. 1996). The target system consists of a plant, a control program and a message

transmission system connecting them. The plant has the following physical units: the steam-boiler, 4

pumps to provide water, 4 pump controllers indicating whether or not water is flooding from the

pump, a sensor to measure the level of water in the boiler, a sensor to measure the quantity of steam

which comes out, an operator desk. The program serves to control the level of water. Its functional

requirement is to maintain the level between two nominal values N1, N2. Its safety requirement is to

maintain the level between two safety limits M1, M2, where M1 < N1 and M2 > N2, otherwise the boiler

explodes. The program has a cyclic behavior, and executes the following actions every five seconds:

• Reception of messages from the plant. There are 33 possible messages, including sensor data

(e.g., LEVEL(v), where v measures the water level in the boiler) or messages from the

operator desk (e.g., STOP, when an emergency shutdown is requested by the operator).

• Analysis of the information received from the plant. The control program has to update its

view of the physical environment. As any device may become faulty at any time, the program

cannot trust the received data. Plausibility and consistency checks are performed. The checks

are based on the view elaborated at the previous cycle, as well as on expectations on the

system dynamics. Depending on the check results, the program decides which devices are

working correctly, and computes a new estimation range for the water level.

• Synthesis of messages and transmission to the plant. The program determines its operating

mode, and sends it to the plant. The emergency stop mode is sent if the program considers that

safety is endangered. The other modes are initialization, normal, degraded or rescue

depending on the (perceived) states of the devices. Failure detection messages may also be

sent to inform the operator of the faulty devices. Commands to open or close the pumps are

sent to control the level. Overall, 27 messages are possible.

A more detailed description of the case study can be found in (Abrial et al. 1996). Many contributions

were made, some of them proposing an implementation of the control program. A plant simulator was

provided by the FZI to allow contributors to run and test their implementation.

Our test experiments involved the implementation proposed by J-R. Abrial and Steria. It is a C

program of approximately 4800 lines of code (including comments) that can be interfaced with the

FZI simulator. The test environment is shown in Figure A.1.
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The tested system is composed of the control program and the plant simulator. Once started, the

system autonomously operates. The closed-loop control is then perturbed by simulating the occurrence

of faults in the devices, at chosen cycles of operation: our test inputs are timed fault commands for the

simulator. For a time window of n cycles, and a maximum of 10 faults (affecting the 4 pumps, the 4

pump controllers, the water sensor and the steam sensor), the number of possible input sequences is:

€ 

f =1

10

∑ 10
f

 

 
 

 

 
 n f .

When an input sequence is supplied to the system, an execution trace is recorded. It contains the data

needed to identify a boiler explosion or a dangerous situation. An explosion is easily identified

because the simulator notifies it. Dangerous situations require more analysis. Whether the control

program correctly diagnosed the faulty devices is determined from the failure detection messages sent

to the plant. Whether the program correctly estimated the water level is determined by comparing its

estimation range with the “actual” value in the simulator.

Tested system
Fault commands

Explosion or
Dangerous situation

Control program

Messages
from plant

Messages
to plant

Recorded data at each cycle:
• Messages
• Water level in the simulator
• Water level range calculated by

the control program
• Explosion event (if any)

Test oracle

Figure A.1 – Test environment used in our experiments
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Appendix B – Landscapes for the Boiler Problem

There are 2 landscapes, by combining 2 cost functions x 1 neighborhood operator.

B.1 Cost1

Test sequences fulfilling the test objective (i.e. yielding a boiling explosion or a dangerous situation)

are assigned a zero cost. Other test sequences are assigned a positive cost, equals to the minimum of

penalties associated with the three dangerous situations mentioned in Section 2.1. Intuitively, cost fi is

intended to penalize test sequences that are not “stressful” with respect to dangerous situation i.

• Cost f1 is related to the control program not detecting the failure of a device. When none of the

devices is faulty, this situation cannot occur: hence f1 is assigned a maximum penalty K1.

Then, we let f1 decrease as the number of faulty devices increases.

• Cost f2 is related to the control program wrongly detecting the failure of a device that is non-

faulty. The Boiler environment includes 10 devices (4 pumps, 4 pump controllers, 1 water

level sensor, 1 steam sensor). When the test sequence makes all these devices faulty, wrong

detection cannot occur: f2 is assigned a maximum penalty K2. Then, we let f2 decrease as the

number of non-faulty devices (10 – nbFaultyDevices) increases.

• Cost f3 is related to bad estimation of the water level. At each cycle, the control program

computes a lower bound qc1 and upper bound qc2 of the water level (qc1 < qc2 ). A dangerous

situation is reached when the actual water level (observed from the boiler simulator) is outside

the range [qc1, qc2]. Sequences not fulfilling this objective are considered all the more stressful

as the uncertainty about the actual level is high, i.e. f3 is decreasing with (qc2 – qc1). In this

way, the maximum penalty is when the estimation range is both correct (no dangerous

situation) and accurate at the highest possible precision.

IF (boiler explosion OR dangerous situation observed) THEN
Return (0)

ELSE
Return (Min (f1, f2, f3))
Where:

f1 = 

€ 

K1

nbFaultyDevices+1

f2 = 

€ 

K 2

10 − nbFaultyDevices+1

f3 = 

€ 

K 3

qc2 − qc1
ENDIF
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The experiments reported in Section 2.3 involved the following values for constant parameters Ki:

K1 = K2 = 250, K3 = 4000. Calibration was performed empirically, with the aim of providing similar

variation ranges for all fi. This yielded [22, 250] for f1 and f2, [7, 160] for f3.

B.2 Cost2

The positive costs returned by Cost2 are primarily based on the consideration of water level

estimation. The first term corresponds to function f3 defined for Cost1. It rewards test sequences that

increase the control program’s uncertainty about the water level. The second term is intended to

discriminate between test sequences yielding the same uncertainty. It favors scenarios that make the

actual level q get close to the safety limits M1 and M2 (the boiler explodes when the water level gets

lower than M1 or greater than M2).

IF (boiler explosion OR dangerous situation observed) THEN
Return (0)

ELSE

Return 

€ 

K 4

qc 2 − qc1
+ K 5.Min q −M1, q −M 2( )

 

 
 

 

 
 

ENDIF

The experiments reported in Section 2.3 involved the following values for constant parameters Ki:

K4 = 10,000 and K5 = 0.2. These values were intended to give higher weight to the first term than to

the second one. The variation ranges are respectively [20, 400] and [0, 70].

B.3 Neighborhood Operator

The neighbors of a test sequence T are obtained from T by either: (i) changing the date of one fault of

T; or (ii) adding one fault to T at an allowed date; or (iii) removing one fault from T. The allowed

dates depend on the space explored by the test strategy. The experiments reported in Section 2.3

correspond to the space of sequences with prefix Steam_fault(3) and additional faults occurring at

cycles [4, 8]. The neighborhood operator is applied only to these additional faults. For example,

starting from Steam_fault(3), Pump2_fault(5), WaterLevel_fault(8) it may generate:

• Steam_fault(3), Pump2_fault(4), WaterLevel_fault(8) by changing the date of Pump2-Fault.

• Steam_fault(3), Pump1_fault(5), Pump2_fault(5), WaterLevel_fault(8) by adding a Pump1-Fault.

• Steam_fault(3), Pump2_fault(5) by removing the water level fault.

Overall, there are 8 + 35 + 2 = 45 neighbors of the original sequence.
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Appendix C – Landscapes for the Cal 1 problem

There are 24 landscapes, corresponding to the combinations of 4 cost functions x 6 neighborhood

operators.

C.1 Cost Functions

Definition

Cost1 If (day, month, year) = (31, 12, 2000) then Cost1 = 0
Else Cost1 is randomly chosen in [1, 1000]

Cost2 Cost2 = |31-day| + |12-month| + |2000-year| + Kday + Kmonth + Kyear

Cost3 Cost3 = |31-day| + 31*|12-month| + 365*|2000-year|

Cost4 Exact number of days between date (day, month, year) and date (31, 12, 2000)

Cost1 assigns a random cost value to any solution, except triplet (31, 12, 2000) which is assigned a

zero cost.

Cost2 is inspired from the cost function used by (Tracey, 200b). It considers each triplet parameter,

and measures its deviation from the target value in the optimal triplet. For example, |31-day| measures

deviation of the day parameter value, while |2000-year| measures deviation of the year parameter

value. Furthermore, as soon as deviation of parameter i is not zero, a constant penalty Ki is added,

where year deviation is more penalized than day or month one:

• If day = 31 then Kday = 0 else Kday = 10

• If month = 12 then Kmonth = 0 else Kmonth = 10

• If year = 2000 then Kyear = 0 else Kyear = 100

The total cost is then the sum of individual costs for day, month and year. The variation range of Cost2

is [0, 1167].

Cost3 and Cost4 make the cost value depend on the number of days between the current date and the

optimal one. Cost3 corresponds to a crude approximation of this number of days, while Cost4 is exact.

The variation ranges are respectively [0, 365371] and [0, 364999].

Note that the cost functions designed for Cal 2 are similar to the ones for Cal 1. They have just been

adapted to account for the fact that Cal 2 has two optimal solutions. For example, Cost4 computes the

minimal number of days between the current date and any one of the two optimal dates.
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C.2 Neighborhood Operators

Definition
|N| = maximal number of
neighbors a date may be

connected to

N1 Any date obtained by letting one, two or three triplet parameters (day,
month, year) vary ± 1, modulo the maximal parameter value.

26

N2 Same as N1, without modulo (e.g. a December date is no more
connected to a January one).

26

N3 Any date no more than 15 days apart from the current date, modulo the
solution space boundaries, that is, (1, 1, 1900) and (31, 12, 3000) are
connected.

30

N4 Same as N3, without modulo. 30

N5 Any date no more than 400 days apart from the current date, modulo
the solution space boundaries.

800

N6 Same as N5, without modulo. 800

Intuitively, N1 and N2 should be well-suited to cost function Cost2, while N3-N6 are more in the spirit

of Cost3 and Cost4.

Note that the neighborhood operators designed for Cal 2 are exactly the same as the ones for Cal 1.
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