

Resiltech s.r.l.

Current challenges in applying cyber-security in railway signaling systems according to current available cyber-security standards

The Speaker

Francecso Brancati

- Francesco.Brancati@resiltech.com
- Present Position in ResilTech s.r.l.
 - Responsible for R&D innovations and co-funded projects
 - Responsible for Cybersecurity Services Business Development

Education

- MSc Degree, PhD in Computer Science
 - Università degli studi di Firenze

Experience

- Technical lead of ResilTech role in several R&D projects at EU level
- Technical lead of safety critical SW development projects in Automotive area.
- Member of the ISO TC22 / SC32 / WG8 Road Vehicle Functional safety
- Member of the ISO TC22 / SC32 / WG11 Cybersecurity

ResilTech s.r.l.

HeadQuarter

Piazza Nilde Iotti, 25 56025 - **Pontedera** (PI), Italy

Branch Office 1

Via dei Tufi, Palazzina BePilot 73100 – **Monteroni di Lecce**, Italy

Mission

To provide engineering consulting and design services to companies and public bodies mainly for, but not limited to, the field of resilient systems and infrastructures

ISO TC22/ SC32/WG8 ISO26262 functional safety ISO TC22 / SC 32 / WG11 ISO 21434 cybersecurity

Industrial

Liechtenstein

Svizzera

Railway/Metro Specific Resiltech Offering

- Software Specific RAMS Analyses (En 50128)
 - Support to SW architecture design
 - SW-FMEA
 - FTA, RDB
 - Static and Dynamic Code Verification
 - Unit and Integration Testing
 - On-board Testing
- Component Specific RAMS Analyses (En 50129)
 - MTBHE analysis
 - (C)-FMEA analysis
 - Validation (In-Lab and On-Board testing)

System Level Activities (EN 50126):

- Planning of RAMS activities
- System model definition
- Risk Analysis and Evaluation
- Specification of Safety Requirements
- System level Verification and Validation
- Development of Safety Case documentation

- Cybersecurity (CLC/TS 50701, IEC 62443)
 - 50701 System level Cybersecurity Activities
 - 62443 Product Compliance

- 2000–2010: The Era of Implicit Security for RAILWAY
 - Railway systems including signaling, ETCS, SCADA, and interlocking were traditionally considered inherently secure.
 - Security relied on:
 - Isolated networks (air-gapped architectures)
 - Proprietary protocols
 - Strict Safety Integrity Levels (SIL) as part of RAMS processes
 - Cybersecurity was not addressed explicitly, but rather assumed as a byproduct of safety

- 2011 IEC 62443-2-1
 - First official publication: defines **security policies and practices for asset owners**.
 - Sets the foundation for lifecycle-based cybersecurity.
- 2013 IEC 62443-3-3
 - Provides system-level requirements for securing industrial architectures in terms of Security Levels (SL) and Foundational Requirements (FR).

- **Initiatives**
 - Documents like **UIC 624**, **ENISA good practices**, and Horizon 2020 projects (e.g. **X2Rail**, **Shift2Rail**) begin to shape railway cybersecurity practices.
 - Emphasis on risk-based approaches and security-by-design.

- **CLC/TS 50701**
 - ENISA highlights the lack of a harmonized standard for railway cybersecurity.
 - Work begins on CLC/TS 50701, led by CENELEC TC 9X, drawing heavily from IEC 62443.

- **CLC/TS 50701** is increasingly adopted as a **de facto requirement** in European railway projects, **including new ETCS/ERTMS installations**, and is recommended by ERA for the management of cybersecurity risks.
 - Railway operators have begun integrating **IEC 62443 with SIL/Safety frameworks**, despite known challenges in reconciling **safety** with **security**.

Roles and Responsibilities: IEC 62443 Framework

- The IEC 62443 framework defines clear roles and responsibilities in IACS cybersecurity, involving three key actors:
 - AO Asset Owners define operational needs and acceptable risk levels.
 - **SI System Integrators** perform risk assessment and determine the required SL-T for each zone and conduit.
 - PS Product Suppliers develop and deliver products with declared SL-C levels.
- The interaction between roles is essential:
 - The SL-T identified by the integrator becomes a market requirement for the supplier.
 - The supplier must provide components with SL-C ≥ SL-T to meet integration requirements.

The 62443 Security Levels

- IEC 62443 Security levels provide a qualitative approach to addressing security.
 - Meant to be used to
 - compare and manage the security of zones within an organization.
 - select IACS devices and countermeasures to be used within a zone
 - to identify and compare security of zones in different organizations across industry segments.
- The 62443 series define SLs in terms of five different levels.
 - Levels increases with complexity of threats to be mitigated
 - Technical countemeasures complexity increases with SLs
- Three types of SLs:
 - **SL-T**, determined through a detailed risk assessment, measure the level of protection needed for a particular zone, system or component.
 - SL-C, is the level of protection that a particular component or system is capable to provide if properly configured.
 - **SL-A,** is the level of security provided by the current configuration of the zone, system or component.

the attackers

Means, resources, skills, motivation of

RESILTECH | Technologies for Resilience

SL-T based Technology Requirements for Embedded Devices

Different System/Components Requirements for each Foundational Requirements

	Protection from unintentional or accidental actors	Protection from intentional actors with limited capabilities	Protection from intentional actors with moderate technical capabilities	Protection from highly skilled and persistent actors
Foundational Requirements (FR)	SL 1	SL 2	SL 3	SL 4
FR1 – Identification and Authentication Control	Use of hard-coded credentials	Unique user/device ID and granting password complexity	TLS certificate-based authentication	Mutual TLS authentication with HSM acceleration
FR2 – Use Control	Basic user-groups check and file/directory permissions check	IStatic RBAC	Dynamic RBAC with enforcement of dynamic SoD policies	Centralized role enforcement
FR3 – System Integrity	Signature checking when loading firmware	Verification of the filesystem at boot time	Runtime integrity monitoring	Secure Boot (implemented through Chain-of-Trust)
FR4 – Data Confidentiality	No protection (encryption, restriceted access, policy	AES-128 encryption	TLS v1.2 or VPN	TLS v1.3 with PFS session encryption
FR5 – Restricted Data Flow	VLAN separation	Setting and managing firewall rules	DPI (Deep Packet Inspection) firewall	Implementing separation gateway and zoning enforcement
FR6 – Timely Response to Events	Local alerting	Logging system events. Monitoring system with watchdog	Remote alerting	Support incident detection and autonomous response / SOC
FR7 – Resource Availability	Simple metwork filtering	Detecting DoS attacks using heuristics measurements	Rate limiting	Protocol hardening and hardware redundancy

SL-T can be defined for each FRs -> Vector based approach:

FLAT: SL-T=X VS Vector Based: SL-T =[IAC,UC,SI,DC,RDF,TRE,RA]

CLC/TS 50701

- The CLC/TS 50701 contextualize the IEC 62443 approach to the **railway domain**, preserving its **core principles** but applying them to railway-specific architectures and use cases.
- The standard includes a **high-level architectural overview of railway systems**, covering both onboard and trackside components

• its appendix provides an example of how to define zones and conduits in a railway environment, highlighting key segments such as the onboard signalling control zone

 A common industrial practice is to keep same granularity and to assign a flat SL-T to each zone... E.g. on board equipment -> SL-T 3

SL-T: Theory vs Practice

- Lack of clear methodology
 - According to IEC 62443-3-2 and CLC/TS 50701, SL-T is derived from a risk assessment process (e.g. likelihood × impact).
 - However, the standards lacks a clear methodology for SL-T determination
 - The result is that many actors go for a Flat and generic SL-T assignment.
- How to deal with well established specification
 - In the railway sector, cybersecurity must coexist with well-established safety processes and standards.
 - EN 50126 / EN 50128 / EN 50129 (RAMS Standards)
 - UNISIG Subsets (e.g., SUBSET-026, SUBSET-036, SUBSET-091)
 - TSI CCS (Technical Specifications for Interoperability Control Command and Signaling)
- This leads to **real-world implementation gaps**:
 - Unrealistic SL-T values in case of technical limitations are ignored.
 - Overdesign of less-critical system components increasing complexity and cost.
 - Budget-driven Security when budget constraints override risk-based priorities.

A few examples from signalling onboard systems

SL-T 3 is usually assigned to the ATP-Signalling zone onboard components for signalling

Example#1: The DMI

- **DMI (Driver Machine Interface):** The DMI is the human-machine interface of the onboard ETCS/ERTMS system.
 - It displays critical driving information (e.g., target speed, operating mode) and receives input from the driver (e.g., confirmations, data entry, mode changes).
 - It is connected to the European Vital Computer (EVC) but does **not communicate externally** or make autonomous decisions.

Contextual Analysis

- It operates entirely within the onboard domain.
- It has a limited attack surface.
- limited exposure and local physical protections.

Examples Technical Requirements (IEC 62443-4-2) that shall be implemented according to SL-C 3

- Multi-factor authentication for interface access.
- Cryptographic integrity validation of displayed data.
- Protection against spoofing or manipulation of operator input.
- TLS based communication with EVC.
- Assigning SL-T 3 to the DMI solely because it is part of the onboard system may lead to overdesign.
 - A justified SL-T should be based on:
 - Its actual risk exposure.
 - Its supporting (not autonomous) role in decision-making.
 - Actual **Impact** of threats.

Example#2: the OTM Transmission Module

- OTM (Onboard Transmission Module): The OTM is responsible for receiving telegrams from Balises.
 - The communication between Balise and OTM is air-gapped, unidirectional, and based on passive electromagnetic field activation.
 - Balises do not initiate communication or perform any active protocol negotiation or cryptographic exchange.
- Contextual Analysis
 - The UNISIG SUBSET-036 specification strictly defines the physical and logical interface between Balise and onboard antenna.
 - Minimal protocol design: The communication is intentionally simple to ensure high reliability and compliance with safety-critical requirements.
 - **No support for authentication or encryption:** Due to strict interoperability and performance constraints, SUBSET-036 does not allow or define any cryptographic protections.
 - Data is transmitted in clear text, with trust placed in the physical security of the trackside system and the design of the safety mechanisms.
- Imposing SL-T 3 on the OTM based on generic threat assumptions may be incompatible with the technical constraints of the onboard-trackside interface.
- It may result in:
 - Infeasible or non-compliant requirements with existing UNISIG specifications.
 - Unjustified implementation costs, without meaningful security gain.
- Security for this interface must be designed with full awareness of architectural limitations.

Example#3: EURORADIO communication Module

- The EURORADIO module handles wireless communication between the onboard unit and the Radio Block Center (RBC), operating over GSM-R.
 - The link carries **safety-relevant data**, such as Movement Authorities, position reports, and supervision parameters.
 - To meet **SL-T 3 expectations**, features like **authentication**, **integrity protection**, and ideally **encryption** are required.

Contextual Analysis

- Key provisioning is rarely handled at the product level.
- It is often **delegated to system integrators** or operators, outside the component's direct scope.
- Standards like **UNISIG SUBSET-037** define message integrity but **do not mandate automated key distribution**.

Consequences

- The communication stack may technically support cryptographic functions, but without valid and actively managed keys, no real protection is achieved.
- There's a **risk of false compliance**: the component satisfies SL-C formally, but **fails to provide meaningful security** in practice.
- The effectiveness of protection depends entirely on the **system-level key management infrastructure**, which may be undefined or inconsistent.

Example 4# JRU (Juridical Recording Unit):

- The JRU records safety-critical and legally relevant data from the onboard unit (e.g. speed, braking, driver inputs, ETCS messages).
 - It serves a role similar to a **black box**, enabling post-incident analysis, audits, and legal accountability.
 - It is write-only during operation, with no runtime external interfaces, and data retrieval typically occurs offline via physical access.

Contextual Analysis

- The attack surface is minimal: no runtime network connectivity, no interactive services.
- The **feasibility of attacks (AFR)** is extremely low most threats would require physical access or hardware tampering.
- High SLs imply **strong runtime security requirements** (e.g. access control, cryptographic protections) that may be disproportionate or redundant.

Consequences

- Applying SL-3 or above may demand:
 - Full implementation of 62443-4-2 runtime controls (authentication, session management, event logging).
 - Cryptographic protections that are not meaningful during operation (data are not transmitted or accessed online).
- Risk of overengineering a closed system with no realistic attack vectors.
- Security efforts may be directed at runtime protections only while neglecting physical and supply chain threats, which represent the actual risk for the JRU.

Lessons from the Case Studies

- Too high-level zoning leads to inconsistent SL-T assignments:
 - components with vastly different roles and exposure are treated identically, resulting in under- or overprotection.
- Flat and non-vectored requirements:
 - although IEC 62443 allows security properties to be treated independently (per Foundational Requirement), this flexibility is often **not applied in practice**.
- Existing constraints from railway standards (e.g. UNISIG) are frequently overlooked:
 - applying generic SL-T requirements without acknowledging technical limitations or interoperability rules leads to non-compliance or design conflicts.
- Need for change:
 - The current SL-T assignment practice often lacks granularity, context-awareness, and risk alignment.
 - This highlights the need for a more structured, transparent, and functionally traceable methodology.
- Ongoing activities @RESILTECH in the application of EN 50701 point toward:
 - A more precise and systematic approach to Security Level Target definition.
 - The introduction of asset- and function-specific analysis, in line with real-world exposure and impact.
 - Security requirements (SL-T), tailored to each asset's role and constraints.

Overview of a Context-Aware Methodology for SL-T Assignment

Objective

Provide an overview of the structured methodology used to assign a tailored SL-T value for each node in a zone, based on real exposure and functional impact.

STRIDE-LM	IEC 62443-4-2 FRs	
SPOOFING	FR1 [IAC] - Id. & access control	
TAMPERING	FR3 [SI] - System Integrity	
REPUDIATION	FR6 [TRE] - Timely resp. to event	
INFORMATION DISCLOSURE	FR4 [DC] - Data Confidentiality	
DENIAL OF SERVICE	FR7 [RA] - resource availability	
ELEVATION OF PRIVILEDGE	FR2 [UC] - Use Control	
LATERAL MOVEMENT	FR5 [RDF] - Restricted Data Flow	

Key Message

A node's SL-T must reflect the real risk posed by specific threats to its functions — not just its presence in a zone.

Challenges Recap & Possible Methodological Solutions

Initial Challenges

- SL-T levels often defined flat per zone, without reflecting functional context.
- Lack of guidance in standards on how to assign SL-T practically.
- Risk of overdesign (e.g. SL-C 3 on DMI, JRU) due to one-size-fits-all approach.
- Incompatibility with existing railway standards (e.g. UNISIG protocols).

Possible Methodological Solutions

- Introducing a function-by-function analysis using STRIDE-LM per node.
- Producing an SL-T vector per Foundational Requirement, based on real threats and impacts.
- Justifying SL-C values below the zone SL-T when appropriate.
- Narrowing the gaps on compatibility with legacy constraints and standards.
- Closing Message
 SL-T is not a label it's the result of a reasoned, documented, and repeatable process.