Beyond Functional Correctness

An Empirical Evaluation of Large Language Models for Text-to-Code Generation

87th Meeting of the IFIP Working Group 10.4

João R. Campos jrcampos@dei.uc.pt CISUC, University of Coimbra

Myself

João R. Campos

- Assistant Professor at the University of Coimbra, CISUC, Software and Systems Engineering group (SSE)
- PhD in Informatics Engineering, ML-based OS-level Online Failure Prediction
 - ~10 years in industry before
- Researcher at Teaching: <u>Software Security</u>, <u>Software Automation</u>, <u>Advanced Machine Learning Laboratory</u>, <u>Databases</u>, <u>Introduction to Programming</u>, <u>Advanced Machine Learning</u>, <u>Project Management</u> (...)

Advancing dependable and secure systems by developing and tailoring state-of-the-art AI, grounded in a deep understanding of AI principles

- Devil is in the details, AI/ML will always output something and positive results look good ☺
- Recent studies observed that a high percentage of ML-based research does not hold in practice
- (but I also work with AI/ML in health, biology, and space domains non safety-critical tasks)

Context

- LLMs advances in the generation of code from natural language
- LLMs are significantly limited for complex problems
- Existing benchmarking works are limited
- Structured benchmarks/processes are needed
- Goal: define a systematic framework for assessing code generation capabilities of LLMs

Dataset and Metrics

• CodeNet (IBM), ~4k problems, 55 languages, > 13M reference solutions

(a) Dataset Details

Languages Number of problems Problem Difficulty Dist. Test Cases per Problem Python, C++ 1651

0: 796, **1:** 520, **2:** 261, **3:** 74

3-10

(b) Metrics

Execution-based Static Analysis

pass@k, outcome rate cyclomatic complexity, LLOC, SLOC

(c) LLMs

Model	Training	MoE	Params	Quant.
Qwen2.5	General	No	14b	4b
Qwen2.5-Coder	Gen.+Code	No	7b, 14b	4b, 16b (7b)
StarCoder2:Instruct	Code	No	15b	4b
Deepseek-coder-v2	Code	Yes	16b	4b

(d) Experimental settings

Model Hyper-parameters
Improvement Iterations

O-shot, 1-shot
Temperature = 0.6
Top-k = 50, Top-p = 1.0

SOFTWARE AND SYSTEMS FNGINFERING

Workflow

Fig. 3: Overview of the code generation procedure

pass@1 by difficulty

- deepseek. Decent performance on simple problems, drops significantly as difficulty increases
 - Code-tuned LLMs lower perf on simple tasks but better on complex
 - ICL showed no significant gains (the prompt was already detailed?)

Outcome rates

Static analysis - Python

Static analysis - C++

Fig. 8: Static metrics of correct generated vs. ref. sols. (C++)

Commercial - Gemini 2.0-flash & GPT 4.1-mini

Common errors – Python / C++

- Runtime errors are often caused by missing or insufficient input validations
 - unguarded memory access and arithmetic overflows
 - high memory allocation without checking input sizes
- Lack of robustness is particularly concerning, as with AI-assisted code generation the programmer will rely more and more on the system
- LLMs frequently omits essential checks, increasing the risk of bugs and vulnerabilities

João R. Campos jrcampos@dei.uc.pt

CISUC, University of Coimbra

