Beyond Functional Correctness

An Empirical Evaluation of Large Language Models
for Text-to-Code Generation

87th Meeting of the IFIP Working Group 10.4

Joao R. Campos
jrcampos@dei.uc.pt
CISUC, University of Coimbra

SOFTWARE AND SYSTEMS

EEEEEEEEEEE

Myself Joao R. Campos

* Assistant Professor at the University of Coimbra, CISUC, Software and Systems Engineering group (SSE)
* PhD in Informatics Engineering, ML-based OS-level Online Failure Prediction

e ~10yearsinindustry before

* Researcher at Teaching: Software Security, Software Automation, Advanced Machine Learning Laboratory,
Databases, Introduction to Programming, Advanced Machine Learning , Project Management (...)

Advancing dependable and secure systems by developing and tailoring state-of-the-art Al, grounded in a deep
understanding of Al principles

» Devilisin the details, Al/ML will always output something and positive results look good ©
* Recent studies observed that a high percentage of ML-based research does not hold in practice

e (butlalso work with Al/ML in health, biology, and space domains - non safety-critical tasks)

CISUC

SOFTWARE AND SYSTEMS
ENGINEERING

Context

* LLMs advances in the generation of code from natural language
* LLMs are significantly limited for complex problems

* Existing benchmarking works are limited

e Structured benchmarks/processes are needed

* Goal: define a systematic framework for assessing code generation
capabilities of LLMs

"=a CISUC

SSSSSSSSSSSSSSSSSS
EEEEEEEEEEE

Dataset and Metrics

e CodeNet (IBM), ~4k problems, 55 languages, > 13M reference solutions

(a) Dataset Details (b) Metrics
Languages | Python, C++ Execution-based | pass@k, outcome rate
Number of problems | 1651 Static Analysis | cyclomatic complexity, LLOC, SLOC

Problem Difficulty Dist. | 0: 796, 1: 520, 2: 261, 3: 74
Test Cases per Problem | 3-10

(c) LLMs
e Model Training MoE Params Quant.
Qwen2.5 General No 14b 4b
? Qwen2.5-Coder Gen.+Code No 7b, 14b 4b, 16b (7b)
¢ Cluster StarCoder2:Instruct Code No 15b 4b
6 ® 0 Deepseek-coder-v2 Code Yes 16b 4b
® 3
SLOC A g
ol i (d) Experimental settings
: i ICL | O-shot, 1-shot
& 10 & Temperature = 0.6
! . & Model Hyper-parameters Top-k = 50, Top-p = 1.0
Y lomay C' ey 5 Improvement Iterations | 2
1T OMplexiy, 3

SOFTWARE AND SYSTEMS
ENGINEERING

Workflow

Script Starts

v

Send Code + input-output pair to API container

—

APl attempts to compile and execute the code

—

Proceed to next ES
problem
A e

"=a CISUC

SOFTWARE AND SYSTEMS
ENGINEERING

lter. limit
reached?

YES

Fig. 3: Overview of the code generation procedure

Send prompt to Ollama container LLM generates an ans@>

Container

@feedback to Ol
A

lama

pass@1 by difficulty

Python
0.228

0.500

0.504

Difficulty Level

0.2 0.3 0.4 0.5
pass@1

Difficulty Level

0.2 0.3 0.4 0.5
pass@1

m deepseck-© Decent performance on simple problems, drops significantly as difficulty increases
 Code-tuned LLMs lower perf on simple tasks but better on complex
« ICL showed no significant gains (the prompt was already detailed?)

Outcome rates

First lteration - Overall Results Last Iteration - Overall Results
12 No code
L No compi
=
0.125 S Timeout
)] g
0.371 = Failed
- Passed
o
3]
9
LL
No code
L No compi
0.133 .g Error
=)
e Timeout
()] |
0.415 i Failed
o
- Passed
o
3]
o
LL

. * No-compile in C++ was higher, runtime lower
“e StarCoder2:Instruct produces a higher number of non-compilable
F+ Allows understanding where the various LLMs solutions fail

Static analysis - Python

Cyclomatic Complexity (First Iteration)

6.62
5.98 5.87

6 > 75 546 5.35
L]

4

2

0

Cyclomatic Complexity (Last Iteration)
8

6.89

6.15 6.03
S 568 5.50
I I I I |

o)}

I

v}

()

M deepseek-coder-v2:16b M qwen2.5-coder-16bit:7h
sarcodeHig, 7: Static metrics of corrg

SOFTWARE AND SYSTEMS
ENGINEERING

LLOC (First Iteration)

20 19.19
16.93 16.76
15405
15 20 .
12.43 12,29
10
5
0
LLOC (Last Iteration)
19.93
20
15647
15

12,69

0

SLOC (First lteration)

20 18.77
16.54 16.37
15 1487 .
1221 12,14

10

5

0

SLOC (Last Iteration)

20 19.49

L
15 1287 1254
L]

B qwen2.5:14b

10

(&)

0

Static analvsis - C++

Cyclomatic Complexity (First Iteration) SLOC (First Iteration)
40
8 ¢ ¢ ® - . . ¢ .
6.11 5.99 633 5.99 30 . - .
6 5.62 5.64 24.80 25.36
22.65 22.78 - 21.72
4
2
0
Cyclomatic Complexity (Last Iteration) SLOC (Last Iteration)
™ ¢] ° .
6.33
6.09 5.99 5.99 5.63
4
2
0
B deepseek-coder-v2:16b M qwen2.5-coder-16bit:7b M gwen2.5-coder:14b B gwen2.5-coder:7b B gwen2.5:14b
starcoder2:instruct ® Reference Solutions

== ~isuc Fig. 8: Static metrics of correct generated vs. ref. sols. (C++)

SOFTWARE AND SYSTEMS
ENGINEERING

Commercial - Gemini 2.0-flash & GPT 4.1-m

Pass@1 Comparison Across Iterations and Difficulty Levels Pass@1 Comparison Across Iterations and Difficulty Levels
First Iteration First Iteration

0.849 0.849
0.8 0.736
0.637
0.6 0.6
0.441 0.433
0.4 0.381 04 0.338
0.270
0.195
0.2 0.180 0.149 0.2 0.135

Difficulty 0 Difficulty 1 Difficulty 2 Difficulty 3 Difficulty O Difficulty 1 Difficulty 2 Difficulty 3
Difficulty Level Difficulty Level

0.8 0.734

0.648

0.381 .

pass@1

Last Iteration Last Iteration
0.876
0.8 08 0.793
0.663 0.681
0.6
0.465 0.467 0.442 0.467
04
0 257 0.264
0.2 0.149
0 Difficulty O Difficulty 1 D|ff|cu|ty 2 Difficulty 3 0 Difficulty O Difficulty 1 Difficulty 2 Difficulty 3

Python Previous Best: C+t

Python - (0) 0.505 ; (3) 0.051
== CISUC C++ - (0) 0.473 ; (3) 0.089

ENGINEERING

10

B gemini
BN gpt-4.1

Common errors - Python [C++

e Runtime errors are often caused by missing or insufficient input validations
e unguarded memory access and arithmetic overflows
* high memory allocation without checking input sizes

e Lackof robustness is particularly concerning, as with Al-assisted code generation the programmer
will rely more and more on the system

o LLMs frequently omits essential checks, increasing the risk of bugs and vulnerabilities

CISUC

SOFTWARE AND SYSTEMS
ENGINEERING

11

Joao R. Campos
jrcampos@dei.uc.pt

CISUC, University of Coimbra

"=a CISUC

SSSSSSSSSSSSSSSSSS
EEEEEEEEEEE

