
João R. Campos
jrcampos@dei.uc.pt

CISUC, University of Coimbra

87th Meeting of the IFIP Working Group 10.4

Beyond Functional Correctness
An Empirical Evaluation of Large Language Models 

for Text-to-Code Generation



Myself João R. Campos
2

• Assistant Professor at the University of Coimbra, CISUC, Software and Systems Engineering group (SSE)

• PhD in Informatics Engineering, ML-based OS-level Online Failure Prediction

• ~10 years in industry before 

• Researcher at Teaching: Software Security, Software Automation, Advanced Machine Learning Laboratory, 
Databases, Introduction to Programming, Advanced Machine Learning , Project Management (…)

Advancing dependable and secure systems by developing and tailoring state-of-the-art AI, grounded in a deep 
understanding of AI principles

• Devil is in the details, AI/ML will always output something and positive results look good J

• Recent studies observed that a high percentage of ML-based research does not hold in practice

• (but I also work with AI/ML in health, biology, and space domains - non safety-critical tasks)



• LLMs advances in the generation of code from natural language

• LLMs are significantly limited for complex problems

• Existing benchmarking works are limited

• Structured benchmarks/processes are needed

• Goal: define a systematic framework for assessing code generation 
capabilities of LLMs

Context
3



• CodeNet (IBM), ~4k problems, 55 languages, > 13M reference solutions

Dataset and Metrics
4



Workflow
5

Script Starts Send prompt to Ollama container

Send Code + input-output pair to API container

LLM generates an answer

API attempts to compile and execute the code

Passed
unit test?

Proceed to next
problem

Send feedback to Ollama
Container

YES NONO
Iter. limit
reached?

YES



pass@1 by difficulty
6

• Decent performance on simple problems, drops significantly as difficulty increases
• Code-tuned LLMs lower perf on simple tasks but better on complex
• ICL showed no significant gains (the prompt was already detailed?)



Outcome rates
7

Py
th

on
C+

+

• No-compile in C++ was higher, runtime lower
• StarCoder2:Instruct produces a higher number of non-compilable
• Allows understanding where the various LLMs solutions fail



Static analysis - Python
8



Static analysis - C++
9



Commercial – Gemini 2.0-flash & GPT 4.1-mini
10

Python C++Previous Best: 
Python – (0) 0.505 ; (3) 0.051
C++ - (0) 0.473 ; (3) 0.089



• Runtime errors are often caused by missing or insufficient input validations
• unguarded memory access and arithmetic overflows
• high memory allocation without checking input sizes

• Lack of robustness is particularly concerning, as with AI-assisted code generation the programmer 
will rely more and more on the system

• LLMs frequently omits essential checks, increasing the risk of bugs and vulnerabilities

Common errors – Python / C++
11



João R. Campos
jrcampos@dei.uc.pt

CISUC, University of Coimbra


