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Problem Description

• Increasing need for resilience towards faults and cybersecurity attacks

• Resilience may be achieved by layers of mechanisms for detecting and handling attacks

• In order to test these mechanisms, experimental verification techniques such as fault- and attack 

injection can be employed

• Due to the complexity of systems, the efficiency of fault- and attack injection in terms of the time 

and effort needed to explore the fault- or attack space (= error space) important

• Several techniques for reducing the error space to improve efficiency proposed1-4

4 I. Tuzov, D. de Andres, and J.-C. Ruiz. “Reversing FPGA architectures for speeding up
fault injection: does it pay?”, EDCC 2022.
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3 B. Sangchoolie, K. Pattabiraman, and J. Karlsson. “An Empirical Study of the Impact of Single and 
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1 B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. “A Comparison of Inject-on-Read and 
Inject-on-Write in ISA-Level Fault Injection”, EDCC 2015.



Background – error space 
reduction

• Inject-on-read1,2: Faults and attacks injected into resource immediately before resource is read (used)

• Inject-on-write3,4: Faults and attacks injected into resource immediately after written (created or updated)

• Fault list collapsing5,6: Collapse faults determined to be equivalent into equivalence classes

• Code-slicing7: Determine source code statements targeted for injection in order to affect a certain criterion 

(target system output)
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automatic pre-injection memory access analysis”. In: 2012 IEEE International SOC Conference. 2012.

4 B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. “A Comparison of Inject-on-Read and 
Inject-on-Write in ISA-Level Fault Injection”, EDCC 2015.

5 L. Berrojo, I. Gonzalez, F. Corno, M. Reorda, G. Squillero, L. Entrena, and C. Lopez. “New techniques
for speeding-up fault-injection campaigns”. In: Proc. 2002 Design, Automation and Test in Europe
Conference and Exhibition. 2002.

6 D. Smith, B. Johnson, and J. Profeta. “System dependability evaluation via a fault list generation 
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Background – error space 
reduction

• Post-injection analysis1-4: Analyse results from fault/attack injection experiments to determine what experiments 

to perform next

• Error space pruning5-8: Prune faults and attacks with known outcome or equivalent to other faults and attacks 
determined through:

• Static (pre-injection) analyses

• Dynamic (post-injection) analyses

1 E. W. Czeck and D. P. Siewiorek. “Observations on the Effects of Fault Manifestation as a Function of
Workload”. In: IEEE Transactions on Computers, 41.5, 1992.

2 J. Aidemark, P. Folkesson, and J. Karlsson. “Path-based error coverage prediction”. In: Proceedings
Seventh International On-Line Testing Workshop. 2001.

4 B. Sangchoolie, K. Pattabiraman, and J. Karlsson. “One Bit is (Not) Enough: An Empirical Study of the 
Impact of Single and Multiple Bit- Flip Errors”. In: 2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). 2017.

3 P. Folkesson and J. Karlsson. “Considering Workload Input Variations in Error Coverage Estimation”. 
EDCC 1999.

5 S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran. “Relyzer: Exploiting Application-Level Fault
Equivalence to Analyze Application Resiliency to Transient Faults”. In: Proc. of the 17th International 
Conference on Architectural Support for Programming Languages and Operating Systems, 2012.

6 F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson. “A Study of the Impact of Single Bit-Flip
and Double Bit-Flip Errors on Program Execution”. In: Computer Safety, Reliability, and Security., 
2013.
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Model-implemented fault/attack 
injection

• Useful for early dependability evaluation of software developed as models

• Injections performed using fault and attack injection blocks inserted into target system model

Original model

Model with fault/attack
injection support



MODIFI tool

• MODIFI1 is a fault/attack injection tool for Simulink 

models

• Provides a large number of fault/attack models, e.g., bit-

flip faults, stuck-at faults, sensor faults, replay attacks, 

jamming attacks, …

• Includes support for analyzing and visualizing 

fault/attack injection results

• Simulink models are commonly used in the automotive 

and avionic domains.

1 R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren. “MODIFI: A MODel-Implemented Fault
Injection Tool”. In: Computer Safety, Reliability, and Security, 2010.



Pre-injection in MODIFI:
No pre-injection analysis

= fault/attack location
 23 locations



Pre-injection in MODIFI:
Inject-on-read

= fault/attack location
 14 locations
 23-14 = 9 locations reduction
 39 % reduction in error space

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International 
Symposium on Dependable Computing (PRDC 2022). 2022.



Pre-injection in MODIFI: 
Inject-on-write

= fault/attack location
 9 locations
 23-9 = 14 locations reduction
 61 % reduction in error space

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International 
Symposium on Dependable Computing (PRDC 2022). 2022.



Pre-injection in MODIFI: 
Inject-on-write

= fault/attack location
 9 locations
 23-9 = 14 locations reduction
 61 % reduction in error space

Drawback:
Inject-on-read and inject-on-write 

can exploit only part of the error 
space

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International 
Symposium on Dependable Computing (PRDC 2022). 2022.



Pre-injection in MODIFI:
Error space pruning of signals

= fault/attack locations
 23 locations
= pruned locations
 5 locations pruned
 22 % reduction in error space

+

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International 
Symposium on Dependable Computing (PRDC 2022). 2022.



Pre-injection in MODIFI:
Error space pruning of signals and 
ports

= fault/attack locations
 23 locations
= pruned locations
 14 locations pruned
 61 % reduction in error space

+



Experimental results: Error space 
reduction comparison

• Pre-injection analysis performed for 9 Mathworks automotive example models

• Comfort control model (LC), Brake-By-Wire model (BBW), Aero Engine Control Model (AEC)



Discussions

• The error space pruning techniques are built with 

the assumption of “faults in equivalence classes lead 

to the same outcome”.

• Fault injection results show that the assumption 

holds.



Discussions

• The error space pruning techniques are built with 

the assumption of “faults in equivalence classes lead 

to the same outcome”.

• Fault injection results show that the assumption 

holds.

• The computational cost of the error space pruning 

techniques is in order of seconds and scales linearly 

with the number of injectable signals in the model.

• Depending on the size of the model under test, 

each injection could take minutes.

➔ Significant reduction in testing time.
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