
BEHROOZ SANGCHOOLIE
BEHROOZ.SANGCHOOLIE@RI.SE

88TH MEETING OF THE IFIP WORKING GROUP 10.4
SUMMER 2025, ISCHIA, ITALY

Error Space Pruning for
Model-Implemented Fault-
and Attack Injection
RISE Research Institutes of Sweden

Problem Description

• Increasing need for resilience towards faults and cybersecurity attacks

• Resilience may be achieved by layers of mechanisms for detecting and handling attacks

• In order to test these mechanisms, experimental verification techniques such as fault- and attack

injection can be employed

• Due to the complexity of systems, the efficiency of fault- and attack injection in terms of the time

and effort needed to explore the fault- or attack space (= error space) important

• Several techniques for reducing the error space to improve efficiency proposed1-4

4 I. Tuzov, D. de Andres, and J.-C. Ruiz. “Reversing FPGA architectures for speeding up
fault injection: does it pay?”, EDCC 2022.

2 A. C. Bagbaba, M. Jenihhin, J. Raik, and C. Sauer. “Efficient Fault Injection based on Dynamic HDL
Slicing Technique”. In: CoRR abs/2002.00787, 2020.

3 B. Sangchoolie, K. Pattabiraman, and J. Karlsson. “An Empirical Study of the Impact of Single and
Multiple Bit-Flip Errors in Programs”. In: IEEE Transactions on Dependable and Secure Computing
19.3, 2022.

1 B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. “A Comparison of Inject-on-Read and
Inject-on-Write in ISA-Level Fault Injection”, EDCC 2015.

Background – error space
reduction

• Inject-on-read1,2: Faults and attacks injected into resource immediately before resource is read (used)

• Inject-on-write3,4: Faults and attacks injected into resource immediately after written (created or updated)

• Fault list collapsing5,6: Collapse faults determined to be equivalent into equivalence classes

• Code-slicing7: Determine source code statements targeted for injection in order to affect a certain criterion

(target system output)

1 R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson. “Assembly-Level Pre-injection Analysis
for Improving Fault Injection Efficiency”, EDCC 2005.

2 G. Munkby and S. Schupp. “Improving Fault Injection of Soft Errors Using Program Dependencies”.
In: Testing: Academic Industrial Conference - Practice and Research Techniques. 2008.

3 J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock, and J. Haid. “Efficient fault emulation using
automatic pre-injection memory access analysis”. In: 2012 IEEE International SOC Conference. 2012.

4 B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. “A Comparison of Inject-on-Read and
Inject-on-Write in ISA-Level Fault Injection”, EDCC 2015.

5 L. Berrojo, I. Gonzalez, F. Corno, M. Reorda, G. Squillero, L. Entrena, and C. Lopez. “New techniques
for speeding-up fault-injection campaigns”. In: Proc. 2002 Design, Automation and Test in Europe
Conference and Exhibition. 2002.

6 D. Smith, B. Johnson, and J. Profeta. “System dependability evaluation via a fault list generation
algorithm”. In: IEEE Transactions on Computers 45.8, 1996.

7 A. C. Bagbaba, M. Jenihhin, J. Raik, and C. Sauer. “Efficient Fault Injection based on Dynamic HDL
Slicing Technique”. In: CoRR abs/2002.00787, 2020.

Background – error space
reduction

• Post-injection analysis1-4: Analyse results from fault/attack injection experiments to determine what experiments

to perform next

• Error space pruning5-8: Prune faults and attacks with known outcome or equivalent to other faults and attacks
determined through:

• Static (pre-injection) analyses

• Dynamic (post-injection) analyses

1 E. W. Czeck and D. P. Siewiorek. “Observations on the Effects of Fault Manifestation as a Function of
Workload”. In: IEEE Transactions on Computers, 41.5, 1992.

2 J. Aidemark, P. Folkesson, and J. Karlsson. “Path-based error coverage prediction”. In: Proceedings
Seventh International On-Line Testing Workshop. 2001.

4 B. Sangchoolie, K. Pattabiraman, and J. Karlsson. “One Bit is (Not) Enough: An Empirical Study of the
Impact of Single and Multiple Bit- Flip Errors”. In: 2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). 2017.

3 P. Folkesson and J. Karlsson. “Considering Workload Input Variations in Error Coverage Estimation”.
EDCC 1999.

5 S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran. “Relyzer: Exploiting Application-Level Fault
Equivalence to Analyze Application Resiliency to Transient Faults”. In: Proc. of the 17th International
Conference on Architectural Support for Programming Languages and Operating Systems, 2012.

6 F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson. “A Study of the Impact of Single Bit-Flip
and Double Bit-Flip Errors on Program Execution”. In: Computer Safety, Reliability, and Security.,
2013.

8 B. Sangchoolie, K. Pattabiraman, and J. Karlsson. “An Empirical Study of the Impact of Single and
Multiple Bit-Flip Errors in Programs”. In: IEEE Transactions on Dependable and Secure Computing
19.3, 2022.

7 I. Tuzov, D. de Andres, and J.-C. Ruiz. “Reversing FPGA architectures for speeding up fault injection:
does it pay?”, EDCC 2022.

Model-implemented fault/attack
injection

• Useful for early dependability evaluation of software developed as models

• Injections performed using fault and attack injection blocks inserted into target system model

Original model

Model with fault/attack
injection support

MODIFI tool

• MODIFI1 is a fault/attack injection tool for Simulink

models

• Provides a large number of fault/attack models, e.g., bit-

flip faults, stuck-at faults, sensor faults, replay attacks,

jamming attacks, …

• Includes support for analyzing and visualizing

fault/attack injection results

• Simulink models are commonly used in the automotive

and avionic domains.

1 R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren. “MODIFI: A MODel-Implemented Fault
Injection Tool”. In: Computer Safety, Reliability, and Security, 2010.

Pre-injection in MODIFI:
No pre-injection analysis

= fault/attack location
 23 locations

Pre-injection in MODIFI:
Inject-on-read

= fault/attack location
 14 locations
 23-14 = 9 locations reduction
 39 % reduction in error space

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2022). 2022.

Pre-injection in MODIFI:
Inject-on-write

= fault/attack location
 9 locations
 23-9 = 14 locations reduction
 61 % reduction in error space

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2022). 2022.

Pre-injection in MODIFI:
Inject-on-write

= fault/attack location
 9 locations
 23-9 = 14 locations reduction
 61 % reduction in error space

Drawback:
Inject-on-read and inject-on-write

can exploit only part of the error
space

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2022). 2022.

Pre-injection in MODIFI:
Error space pruning of signals

= fault/attack locations
 23 locations
= pruned locations
 5 locations pruned
 22 % reduction in error space

+

Folkesson P, Sangchoolie B, Kleberger P: On the evaluation of three pre-injection analysis techniques
suitable for model-implemented fault- and attack injection.In: 27th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2022). 2022.

Pre-injection in MODIFI:
Error space pruning of signals and
ports

= fault/attack locations
 23 locations
= pruned locations
 14 locations pruned
 61 % reduction in error space

+

Experimental results: Error space
reduction comparison

• Pre-injection analysis performed for 9 Mathworks automotive example models

• Comfort control model (LC), Brake-By-Wire model (BBW), Aero Engine Control Model (AEC)

Discussions

• The error space pruning techniques are built with

the assumption of “faults in equivalence classes lead

to the same outcome”.

• Fault injection results show that the assumption

holds.

Discussions

• The error space pruning techniques are built with

the assumption of “faults in equivalence classes lead

to the same outcome”.

• Fault injection results show that the assumption

holds.

• The computational cost of the error space pruning

techniques is in order of seconds and scales linearly

with the number of injectable signals in the model.

• Depending on the size of the model under test,

each injection could take minutes.

➔ Significant reduction in testing time.

Acknowledgement

This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No
876852. The JU receives support from the
European Union’s Horizon 2020 research and
innovation programme and Austria, Czech
Republic, Germany, Ireland, Italy, Portugal, Spain,
Sweden, Turkey.
Disclaimer: The ECSEL JU and the European
Commission are not responsible for the content on
this presentation or any use that may be made of
the information it contains.

This project has received funding from Swedish VINNOVA FFI

project (Diary number: 2018- 05013, 2019-03071)
This project has received funding from the Chips
Joint Undertaking (JU) under Grant Agreement No.
101095835 (project AGRARSENSE). The JU
receives support from the European Union’s
Horizon 2020 research and innovation programme
and Sweden, Spain, France, Ireland, Austria, the
Netherlands, Italy, Poland, Germany, Norway,
Finland, Latvia, Czechia, Türkiye.
Disclaimer: The Chips JU and the European
Commission are not responsible for the content on
this presentation or any use that may be made of
the information it contains.

	Presentation
	Slide 1
	Slide 2: Problem Description
	Slide 3: Background – error space reduction
	Slide 4: Background – error space reduction
	Slide 5: Model-implemented fault/attack injection
	Slide 6: MODIFI tool
	Slide 7: Pre-injection in MODIFI: No pre-injection analysis
	Slide 8: Pre-injection in MODIFI: Inject-on-read
	Slide 9: Pre-injection in MODIFI: Inject-on-write
	Slide 10: Pre-injection in MODIFI: Inject-on-write
	Slide 11: Pre-injection in MODIFI: Error space pruning of signals
	Slide 12: Pre-injection in MODIFI: Error space pruning of signals and ports
	Slide 13: Experimental results: Error space reduction comparison
	Slide 14: Discussions
	Slide 15: Discussions
	Slide 16: Acknowledgement

