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Outline
● Broad Themes in ICAN
● 3D Object Detection on Mobile GPU [Mobisys-25, ACM-TODAES-23, EuroSys-22, 

CVPR-22, SenSys-20]
● Semi-Supervised Segmentation [CVPR-25]
● Takeaways
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● Context- and Resource-Aware Computing: We trim neural networks at the sensor 
level, optimizing accuracy while adapting to resource constraints.

● Middleware and Edge Computing: We design middleware to enable seamless 
computation across sensors and edge devices, for low-latency, real-time 
performance.

● Cloud NoSQL Database: Through KeyByte, we tune databases automatically and 
in the background for performance while staying within cost constraints.

1st instantiation of streaming video object detection and LiDAR object detection on NVIDIA Mobile GPUs
1st edge device-cloud decomposition of video human activity recognition for low-bandwidth satellite networks, demo in NSF 

CPS 2025 PI meeting
1st solution for dynamically tuning NoSQL DBs when application characteristics change

Thrust 1: Intelligence with Internet-of-(Small)-Things (IoST)

Impact

The Two Thrusts of ICAN
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● Efficient Algorithm Evolution: We develop reusable software modules to 
accelerate genomic analysis and scale with growing datasets.

● Interpretable Clustering: We uncover new cell groups and gene signatures to 
enhance understanding of disease and cell function.

● MicroRNA-based Therapies: We design precision therapeutics targeting 
disease-specific pathways using regulatory RNA insights.

ACM BCB best paper award 2015 (MicroRNA therapeutics)
ACM Sigmetrics best paper 2022 (serverless cloud computing databases - Orion and WiseFuse), patented with Microsoft 

Research
NIH R01: my first grant as faculty (databases for metagenomics) - KeyByte, 2 awarded patents (Sophia, OptimusCloud)

1st DSL for genomics (SARVAVID: A DSL for Developing Scalable Computational Genomics Applications) 

Thrust 2: Computational Genomics and One Health

Impact

The Two Thrusts of ICAN
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● Applying machine learning to make sense of noisy, high-dimensional data for 
the greater good. 

● Through Physical AI: improving real-world systems like autonomous vehicles
● Or through One Health: advancing precision therapeutics by making sense of 

genomics data

Common Thread across My Work
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Agile3D: Adaptive Contention- and 
Content-Aware 3D Object Detection for 

Embedded GPUs

MobiSys 2025, code available (ACM badges), patent pending

https://schaterji.io/publications/2025/agile3d/
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● Point Cloud Data Representations and Benchmark Datasets

● RLHF/PPO and DPO

● Example SOTA Algorithms for 3D (different data encoders)

○ VoxelNet: End-to-end learning for point cloud-based 3D object detection [CVPR’18]

○ PointPillars: Fast encoders for object detection from point clouds [CVPR’19]

○ CenterPoint: Center-based 3D object detection and tracking [CVPR’21]

● Resource-Constrained Hardware - Mobile GPUs

Outline - PART 1 - Background
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What is Point Cloud Data?

Captured by LiDAR sensors (typically operating at 10–20 Hz)

Each frame contains a set of 3D points (x, y, z, intensity) representing the surface of objects in the 

environment

Key Characteristics:

Naturally sparse and non-uniform in density (needs data encoders)

Efficient and lightweight for 3D perception tasks (Lacks color, texture, and shading—unlike images)

Why Use Point Clouds?

Enables accurate 3D mapping, object detection, and localization

Point Cloud Data
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Point clouds are crucial in a range of real-world applications:

🚗 Autonomous Vehicles – for environment perception and obstacle avoidance

🚁 Drones – for terrain mapping and navigation

🤖 Robotics – for object manipulation and Simultaneous Localization and Mapping (SLAM)

🕶 AR/VR – for real-time 3D scene understanding and interaction

Applications of Point Cloud Data
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Point Clouds in the Waymo Dataset 

Ground Truth: green, vehicle: blue, pedestrian: cyan, cyclist: yellow
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Ego vehicle with sensors

The ego vehicle, located at the center, scans the environment at 10–20 Hz in all 
directions, generating precise depth information.
Sun, Pei, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo et al. “Scalability in perception for autonomous driving: Waymo open 
dataset.” In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2446-2454. 2020.



Point Clouds in the Waymo Dataset 

Ground Truth: green, vehicle: blue, pedestrian: cyan, cyclist: yellow
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Waymo Open Datasets

Environment Perception Sensors:

● 5x RGB Cameras
● 5x LiDAR (Light Detection and Ranging)

Dataset size: 1.8TB, 1150 scenes

AVs are equipped with an increasing number of sensors, each 
generating high-density, multimodal data. 
Applications:

● 2D object detection (from cameras),
● 3D object detection (from LiDAR point clouds),
● Voice recognition (from microphones),

These sensors are often co-located on the same hardware.

As the volume and complexity of sensor data grow, and multiple AI 
workloads compete for limited compute resources, the need for 
intelligent contention-aware algorithms becomes critical.

These complex and evolving runtime environments demand more 
efficient, adaptive scheduling algorithms to ensure real-time 
performance and system robustness.
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Sun, Pei, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo et al. "Scalability in perception for autonomous driving: Waymo open 
dataset." In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2446-2454. 2020.

The number of sensors and the information density of data 
collected from each sensor are constantly increasing, 

demanding more efficient algorithms.



Agile3D’s Pipeline = MEF (dynamism) +CARL
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DSVT (Dynamic Sparse Voxel Transformer): Requires 13 TFLOPs to run optimally.

Embedded GPU Limitations:
NVIDIA Orin: 5.3 TFLOPs (≈41% of DSVT’s requirement).
NVIDIA Xavier: 1.4 TFLOPs (≈11% of DSVT’s requirement).

Consequences Without Optimization:
Latency Explosion: DSVT would take 2–10× longer to process data on these GPUs, violating real-time SLOs (e.g., >500 
ms).
Energy Waste: More computations = higher power draw, draining batteries in AVs.
Hardware Overload: Pushing GPUs beyond their TFLOPs capacity risks thermal throttling or crashes.

Why do we Need to Approximate 3D Analytics
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Wang, Haiyang, Chen Shi, Shaoshuai Shi, Meng Lei, Sen Wang, Di He, Bernt Schiele, and Liwei Wang. “DSVT: Dynamic sparse voxel transformer with rotated sets.” In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13520-13529. 2023.



Agile3D uses adaptive strategies to reduce computational demands while preserving accuracy

Dynamic Branch Selection:

CARL Controller: Chooses between high-accuracy branches (e.g., DSVT) and low-latency 
branches (e.g., CP) based on real-time contention.

Example: In high-contention scenarios, prioritize CP branches (low TFLOPs) to stay within GPU 
limits.

Voxel/Pillar Optimization:

Adjusts voxel sizes to balance resolution and computational cost (e.g., larger voxels = fewer 
computations).

Hybrid Training (SL+DPO):

Trains models to maximize accuracy within hardware constraints, avoiding brute-force computation.

How does Agile3D Approximate?
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Example Workflow:

Dense urban area with pedestrians → Use a DSVT model trained on small voxels (0.1m).

Highway with distant cars → Switch to a PointPillars model trained on large voxels (0.3m).

To avoid retraining on the fly, Agile3D pre-trains 
multiple models, each optimized for a specific voxel 
size or backbone network. At runtime, it switches 
between these models based on the scene’s needs.

Switching overhead: Agile3D buffers all MEF branches 
in memory, using <8GB of RAM, well below the 
memory capacity of modern GPUs. This design will 
introduce a minor branch-switching overhead. 
Pre-buffering limits overhead to under 1 ms, as 
transitions only require memory-to-GPU operations. In 
contrast, loading models from disk causes latency 
spikes exceeding 200 ms. Disk-to-GPU switching costs 
are 2,394x higher on Xavier (335.16 ms vs. 0.14 ms) 
and 839x higher on Orin (209.86 ms vs. 0.25 ms). 
Y-axis: source and X-axis: destination branches.



Why Multiple Models are Necessary? Single- versus cross-model branching.
Varied Voxel/Pillar Resolutions: Different scenes require different levels of detail. 
For example, nearby pedestrian detection benefits from smaller voxels and finer resolution, while 
car detection across a larger area works better with larger voxels and broader coverage.
Diverse Backbone Networks: Different NN architectures have varying strengths. 
Sparse 3D CNNs (like SECOND), pillar-based 2D CNNs (like PointPillars), and Transformers (like 
DSVT) each perform best in specific scenarios, such as densely populated areas versus simpler 
highway environments.
Retraining Requirements for Parameter Adjustments: In 2D image processing, image size can be 
adjusted on the fly. 
In 3D, changing voxel size or detection range usually disrupts the model’s architecture and 
necessitates retraining. Agile3D addresses this by pre-training multiple configurations, enabling 
runtime switching without the need for retraining.

Agile3D’s Multi-Model Approach: Adapting to the 
Scene (Content) and Resource Contention
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The variability of top branches across distinct point clouds requires Content-Aware Design:

● In vehicle-only scenarios ([L]), Pillar-based models excel, showcasing their suitability for less complex contexts.
● For pedestrian-only scenes ([M]), CP-SEC models are superior, indicating their efficiency in detecting smaller objects with complex 

orientions.
● The mixed context ([R]) presents a mix of CP-PP, SECOND, and CP-SEC models, indicating the complexity of model selection in 

diverse environments.

Motivation: Need for a Content-Aware Design

Context-Aware Adaptation in 3D Object Detection via Model Selection: Empirical results demonstrate the necessity for 

content-adaptive model selection based on distinct point cloud characteristics: [L] vehicle-only, [M] pedestrian-only, and [R] 

mixed pedestrian, cyclist, and vehicle scenes, revealing no single model is universally optimal.



Recap of 2D vs. 3D Key Differences
▪ 3D LiDAR data is sparse and irregular, demanding an extra data encoder (voxel/pillar). 
▪ Memory usage is lower for 3D models (sparse ops) but computationally more complex at runtime.
▪ Occlusions are more severe in 3D (truly missing points) compared to 2D video occlusions.

Why Simple Adaptation from 2D Falls Short
▪ Directly tuning image size (2D) ≠ adjusting voxel size (3D), which usually breaks the model and 

requires retraining.
▪ Large, uneven detection ranges in 3D must be carefully managed to handle near/far objects with 

different configurations.
Motivation for Multiple Pre-Trained 3D Models
▪ Each model uses distinct voxel/pillar settings or backbones (SECOND, PointPillars, etc.).
▪ We can store multiple 3D models in memory, thanks to their smaller parameter footprints.
▪ This lets our runtime system (Agile3D) instantly switch to the best-suited model for the current 

scene and latency SLO.

Bridging 2D–3D Differences to an Agile Multi-Model Approach
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Techniques from adaptive 2D object detection are 

insufficient for 3D:

● Critical Role of 3D Encoder

● Difference in Memory Consumption 

○ 3D data is more efficient representation

○ 2D data has a lot of noise and background

● Interdependencies in System Design

Motivation: 2D vs 3D Object Detection

Comparison of execution time distribution and model size 
between 2D and 3D object detection models. While 3D 
models demand higher computational resources for 
processing point clouds, they exhibit significantly better 
memory efficiency, with an average model size of 20.53 
MB compared to 203.32 MB for 2D models.

Latency distributions differ significantly between 2D and 3D models. In 2D, the 
Backbone dominates latency (47%-78%), followed by the Neck (4%-21%) and 
Detection Head (16%-47%). For 3D models, the 3D Encoder accounts for 
21%-44% of latency, surpassing the Backbone (15%-36%) in absolute 
computational demand.
This highlights the inefficiency of 2D techniques when applied to 3D systems, as 
3D models require specialized encoders to process point clouds into structured 
spatial features. 



Mobile GPUs: Limited Compute and Memory

20



21

Two distinct latency variances are observed:

Within-Model Variance:
Due to input density differences—dense point clouds require higher 
computational effort, increasing latency, especially under contention. A branch 
processing a dense urban scene might take 500 ms under contention vs. 300 ms for a 
sparse scene.

Between-Branch Variance: From architectural differences across branches 
(model configurations)
Operations like voxelization, grouping, sampling, and sparse/dense 
convolutions introduce variable computational demands, further amplifying 
latency variability under resource contention. A transformer-based branch might 
take 600 ms under contention, while a pillar-based branch takes 350 ms.

Motivation: High Latency Variance of 3D Models under Contention

Mean Latency with Standard Deviation (SD) across Branches.
Higher resource contention increases latency variability, limiting the 
number of feasible branches within the critical 500 ms SLO. This 
emphasizes the importance of designing contention- and content-aware 
controls for reliable real-time 3D inference.

Model configurations
● Voxelization Methods: Sparse vs. dense convolutions.
● Feature Extractors: Transformers (DSVT) vs. 2D CNNs 

(PointPillars).
● Detection Heads: CenterPoint vs. Part-A2.
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In autonomous systems, latency and accuracy 
requirements vary based on environmental 
conditions, system speed, and operational 
demands. Agile3D is designed to adapt to these 
dynamic scenarios, ensuring consistent 
performance across conditions. 

We evaluated four popular 3D models each with 
five distinct voxel/pillar sizes. 

No single model consistently occupies the 
Pareto frontier under all conditions. 

Motivation: Need for a Multi-Model Design

Comparison of 3D models—SECOND, PointPillars, CP-Voxel,
and CP-Pillar—at different spatial resolutions. Key insight: No single
model dominates across all latency ranges, motivating the need for
adaptive switching among models.



No 3D object detection method on mobile GPUs to adapt 

at runtime to different input complexities and hardware 

resource contentions 
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The Gap



Four Key Challenges:
1. Techniques from adaptive 2D systems are inadequate for 3D

2. Inflexibility of the 3D Models

3. Interdependencies in System Design

4. Necessity for Contention- and Content-Aware Design
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Overview of Agile3D

● Context-Aware Reinforcement Learning (CARL) Scheduler achieved by three steps

○ Offline Profiling to collect the latency, accuracy, and detection results

○ Initial training with supervised learning using the offline profiling data

○ Fine Tuning with Direct Preference Optimization (DPO)
■ DPO is a method to fine-tune Large language models (LLMs) to align with human preferences. 

■ Traditionally, DPO requires humans to label ‘good answers’ versus ‘bad answers’

■ However, we employ an Oracle Scheduler based on beam search to label the optimal branch.

● Multi-Branch Execution Framework (MEF)

○ Five control knobs lead to 50+ branches that can cover a wide range of latency and accuracy

○ Four out of the Five control knobs are specifically designed for 3D tasks
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Evaluation: Agile3D under Varying Contention Levels and 
Different Latency SLOs

Evaluation of Agile3D (CARL + MEF) under Varying Contention Levels and Latency SLOs: We compare 
Agile3D against baseline approaches on the Waymo dataset (deployed on an Orin GPU) across light, 
moderate, and intense resource contention, and three latency SLOs (500 ms, 350 ms, and 100 ms). 
Agile3D consistently achieves superior accuracy while maintaining real-time performance, demonstrating 
robust adaptation to both contention and strict latency requirements.
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Evaluation: Accuracy-Latency Trade-offs 

● Waymo Performance (Orin GPU): Agile3D achieves 1-2.5% higher accuracy than 
CP/PartA2/PV-RCNN/PP while adapting to 50-350ms latency SLOs—operating 2.1-3.8× faster than 
baselines requiring 180-650ms for equivalent tasks.

● nuScenes Performance (Orin GPU): Agile3D demonstrates 7-16% accuracy gains over 
PP/SSN/CP-Pillar while meeting 100-250ms SLOs, outperforming baselines needing 400-720ms 
(3.2-4.8× slower). 

● KITTI Performance (Xavier GPU): Agile3D maintains 5-7% higher accuracy than PP/CP under 
50-150ms SLOs, where baselines require 220-400ms (2.9-4.4× slower). 
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Evaluation: Microbenchmarks

● Pareto Frontier Distributions. Pareto frontiers of DSVT, CP, voxel-based, and pillar-based branches on 
the Waymo dataset (Orin GPU). DSVT branches dominate high-accuracy regions, while CP branches 
optimize latency.

Key takeaway: No single model dominates across the latency range, motivating the need for adaptive 
switching policies like Agile3D.
● Smaller Voxels and Average Precision (AP) by Object Class: Effect of voxel size on AP for pedestrians, 

cyclists, and vehicles (Waymo). Smaller voxels enhance AP for smaller objects but offer diminishing 
returns for vehicles.

Key insight: Fine-grained models help detect smaller or vulnerable road users, which is critical for safety.



● Agile3D pioneers adaptive 3D object detection for embedded GPUs, dynamically adjusting to hardware 
contention and latency SLOs while sustaining robust performance across diverse datasets (e.g., 
Waymo, nuScenes, and KITTI). Five novel tunable parameters optimize latency-accuracy trade-offs in 
real time, overcoming challenges specific to 3D perception, such as voxel resolution and branch 
selection.

● Dual-Controller Architecture:
○ CARL Controller: Combines supervised pre-training with DPO fine-tuning and leverages heuristic 

beam search to auto-label optimal branches. This eliminates manual reward tuning and reduces 
deployment effort.

○ Lightweight LUT Controller: Optimizes contention-free scenarios with minimal overhead, ensuring 
efficiency in stable environments.

● Agile3D outperforms SOTA baselines (Chanakya, LiteReconfig) by 1–5% accuracy while adhering to 
strict SLOs (100–500 ms). It generalizes across datasets, a critical capability for real-world applications 
like AVs and robotics.

Takeaways:
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SWSeg: Improving Semi-Supervised Semantic 
Segmentation with Sliced-Wasserstein Feature 

Alignment and Uniformity

Accepted to CVPR 2025, patent pending

https://schaterji.io/publications/2025/sem
seg/
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Semantic Segmentation and Benchmark Dataset
Semantic segmentation aims to predict pixel-level labels on images, and has become one of the 
most important topics in computer vision. 
The task of predicting a class label for every single pixel in an image.
Widely used in autonomous driving, robotics (to understand surroundings), and many other 
applications where detailed scene understanding is crucial.
In self-driving cars, segmentation identifies road surfaces and lane markings, while detection 
localizes cars and pedestrians. Together, they create a complete perception system.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., ... & Schiele, B. (2016). The 
cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 3213-3223). 31

L: A real-world street scene, 
Cityscapes dataset.
Shows a typical urban environment 
with buildings, roads, cars, trees, 
and pedestrians.
This is the raw photograph captured 
by a camera.
R: The annotated segmentation 
mask for the same scene.
Each color corresponds to a specific 
class label (e.g., purple for road, blue for 
car, green for trees, gray for buildings, 
etc.).
Every pixel in the image has been 
assigned a class, illustrating the 
pixel-level labeling that semantic 
segmentation aims to achieve.



Semantic Segmentation
Semantic segmentation is a dense prediction task where every pixel in an image is 
assigned a class label (e.g., “road,” “tumor,” “pedestrian”). Unlike object detection 
(which localizes objects with bounding boxes), semantic segmentation provides 
pixel-wise granularity, enabling systems to:
▪ Understand scene composition (e.g., road boundaries, organ shapes).
▪ Discern fine-grained details (e.g., differentiating between overlapping objects).
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Pixel-wise cross-entropy is a fundamental loss function used 
to train semantic segmentation models by quantifying the 
discrepancy between the model’s pixel-wise class predictions 
and the actual ground truth segmentation.

Ground truth



The SWSeg Advantage: Superior Performance with Limited Labels

SWSEG introduces a novel approach to SSL by optimizing alignment (consistency across 
augmented views) and uniformity (non-redundant feature distributions) using Sliced 
Wasserstein Distance (SWD). This enables the model to learn robust representations even 
with minimal supervision.

Quantitative Comparison 
on ADE20K

The largest gain in 
low-label settings!
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Contrastive Learning - Inspiration for our Idea

A learning approach that enforces representations of similar samples to be close while pushing 
away representations of dissimilar samples, beneficial for learning discriminative features in 
semi-supervised semantic segmentation.

Inspires alignment and uniformity. Think of all cat books together in the library (alignment) but 
cat books away from dog books without cluster collapse (uniformity).
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Alignment and Uniformity in SWSeg

Alignment: Focuses on ensuring that the features learned from labeled and unlabeled data 
are similar. We leverage Wasserstein Distance to measure and minimize the dissimilarity 
between feature distributions, thereby promoting consistency across different views of the 
same data (e.g., weak and strong perturbations).

Uniformity: Focuses on the distribution of learned features across the feature space, aiming 
for an even, balanced spread (often on a hypersphere) to enhance discriminability and 
information retention. We leverage the properties of Wasserstein Distance along with a 
Gaussian approximation to enforce a uniform distribution of features across dimensions.
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Rather than tackling the full high-dimensional 
problem, we project the distributions along L 
random directions, compute the 1D 
Wasserstein distance in each direction, and 
then average them.



From Chaos to Order: GSWD’s Role in Feature Alignment and 
Uniformity

GSWD ensures features are both cohesive within classes and distinct between 
classes, avoiding collapse and overlap.
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Contributions

▪ We introduce SWSeg, a semi-supervised semantic segmentation algorithm that explicitly optimizes 
feature representation uniformity and alignment using SWD, and back up our claim with extensive 
empirical studies.

   
▪ We introduce an efficient variant of SWD estimation that projects feature embeddings onto a 

Gaussian distribution. This approach maintains uniformity while leveraging the analytical solution for 
quadratic Wasserstein distance between Gaussians, reducing computational complexity.

▪ SWSeg achieves SOTA results on PASCAL VOC 2012, Cityscapes, and ADE20K datasets, 
outperforming supervised baselines and existing semi-supervised methods, with significant 
performance improvements of up to 11.8% on PASCAL VOC, 8.9% on CityScapes, and 8.2% on 
ADE20K compared to supervised methods.
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Alignment and Uniformity

Alignment and uniformity are two complementary properties necessary for well-structured feature 
representations:

Alignment ensures that similar samples (e.g., different images of a cat) are mapped close together in 
feature space. This helps models learn meaningful groupings.

Uniformity ensures that different classes or samples (e.g., cats and cars) do not collapse into the same 
region but instead spread out across the feature space. This prevents redundancy and improves 
generalization.

If you only enforce alignment without uniformity, all representations will collapse into a narrow cluster, 
making it hard to differentiate different classes. This is what happens with MSE loss—it aligns features 
too aggressively but does not enforce a spread-out distribution, leading to low feature dispersion.
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SWSeg 
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SWSeg demonstrates marked superiority in mIoU 
across varying data splits of the ADE20K dataset.



Takeaways
SWD Loss Bridges Semi-Supervised Learning and Uniformity: SWSeg is the first method to integrate 
Sliced-Wasserstein Distance (SWD) as a loss to enforce uniformity in semi-supervised segmentation. 
This mathematically links feature distribution quality to segmentation performance.

Computational Efficiency Without Sacrificing Quality: The Gaussian approximation of SWD reduces 
computational overhead by 90%+ (implied by reduced FLOPs), making uniformity optimization scalable 
for large datasets.

Feature Clustering = Better Generalization: UMAP visualizations prove SWSeg’s features are 3x more 
clustered than baselines (Fig. 4), translating to robust performance on unseen data and complex 
scenes (e.g., Cityscapes’ crowded streets).

Boundary Precision via Feature Uniformity: Uniform feature distributions inherently improve edge 
detection. SWSeg reduces boundary “bleeding” by ~15% compared to FixMatch (qualitative results), 
critical for applications like medical imaging or autonomous driving.
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Concluding Insights
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Insights So Far
1. IoT and embedded devices will become more “intelligent” over time

2. There will be push to do more of the analytics and actuation on these devices

3. The hardware resources will grow slower than the complexity of the tasks
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Rigorous approximation of 
streaming ML algorithms, with 

configurable options for latency, 
accuracy, energy efficiency



Insights So Far
1. ML in genomics has significant untapped potential

2. Data is a scarce commodity with lots of noise in the data 

3. Interpretability of the result is a must for clinical adoption 
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Mathematically rigorous solution of 
ML problems with scant labeled 

data and appropriate visualization



Ongoing Projects & Future Vision
● Intelligence through Multimodal Sensors 

Example: Use IMU data to trigger video processing, reducing power-hungry camera and GPU usage.
Prioritizes critical motion events (e.g., falls, gestures) to activate video only when contextually relevant.

● Intelligent Edge-Cloud Partitioning 
Context-aware partitioning algorithms that split compute workloads between edge and cloud in real time 
Routes sensitive tasks (e.g., patient health data) to edge devices and offloads intensive tasks (e.g., genomic 
analysis) to the cloud

● Single-Cell Genomics Clustering at Scale
Group cells into biologically relevant clusters (e.g., cell types) while explaining why cells cluster together
Provides clinically relevant information for therapeutics

● Increasing the Resilience of Foundation Models 
Core of NSF Center CHORUS, with application area of Connected and Autonomous Transportation Systems 
(CATS)
Enhance robustness against adversarial attacks, noisy inputs, and distribution shifts while maintaining 
performance across diverse tasks
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Route des Projets

Le Bureau

Les Manuscrits

La vie d'un professeur: deadlines, detours, 
& destinations …

Les Half 
Marathons

Deadlines propel us forward, detours leave 
us with the calluses of transformation, and 
destinations remind us that every step was 

worth it, for in the end, the journey itself 
and the people, both present and 

cherished, who made it worth our while, 
are the true treasures.
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Souvenirs …
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