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Quantum-Inspired Computing
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Methods in:

Optimization
Search Algorithms
Machine Learning

Applications in:

Finance
Medicine
Cybersecurity

Advantages over
Classical Computing:
e Richersearch spaces,
greater expressivity
e Possible speed-ups and
performance
improvements
e Reduced model
parameters
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QI Modifications to ML Framework

Data | ‘ Learning | |
Encoding Model Op’nmzohonH Prediction

Update Parameters

® Density Matrix Encodings ® Quantum Circvit Design
O Class Separability O  Optimizing circuit models
O Enhanced performance O Steeper convergence

O Adversarial robustness



QIML: Density Matrix Encodings
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e Model network packet flows as quantum systems
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Quantum
System
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for IDS
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QIML: Density Matrix Encodings
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1. Greater class separability

O Can induce distinct clusters within data
O Simpler, more accurate ML classification

Dimension 2

Benign

- Attack

Dimension 2

300 - : , d\’ ¢
96 . 1T

200 1 ; D

AN g
100
0_.
—100
—200
—300

200 _100 0 100 200
Dimension 1
Raw IDS Data

T
300

150 A

100 4

50 4

04

—50 4

—100 1

—150 -

T-SNE Visualisations of the Mirai IDS dataset

Benign
Attack

T
100

|
%]
o
oA
w
o

Dimension 1

Flow IDS Data

Dimension 2

Benign Label 21

80

60

Attack Label [

i Benign
& - Attack

Dimension 1

DM Encoded



QIML: Density Matrix Encodings
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2. Strong performing, and adversarially robust

O Competitively high performance compared to common IDS representations.
O Maintains resilience to adversarial attacks; excels at high attack strength.

Accuracy vs. Aftack Strength
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e Classical NN weights and biases represent a learned
"oathway" from input to output.

\OW e Leverage to inform quantum circuit (model) design:
o Parameter initialization
o Entanglement (correlation) structure

/ Parameterized Quantum Circuit \
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QIML: Weight-Informed Circuit Design

Good performance, with faster convergence

O Compared to best performing circuit architectures, e.g. Hardware-Efficient
Ansatz (HEA).
O Consistent across various parameter init. and entanglement schemes
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Quantum-Inspired Computing: Drawbacks &) N ERATIA

e Inefficiencies
o Density matrices require O(2") memory, O(nm?) time (n = #datapoints, m =
#features); classical-to-quantum transformation adds preprocessing cost.
o Quantum circuits can be exponentially inefficient when run classically.
m  More expressivity mean more computation.
m Barren plateaus: vanishing gradients across exponential parameter

space. 2.500e-2
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Ave. Encoding Time per 5.000e-3

Instance for Mirai Dataset (s) 0.0006+0
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e Inefficiencies
o Density matrices require O(2") memory, O(nm?) time (n = #datapoints, m =
#features); classical-to-quantum transformation adds preprocessing cost.
o Quantum circuits can be exponentially inefficient when run classically.
m  More expressivity mean more computation.
m Barren plateaus: vanishing gradients across exponential parameter
space.

e Performance Walls

o Classical methods still superior: Traditional ML consistently outperforms QIML
on standard benchmarks.
o Theoretical speedups rarely franslate to practical gains on real problems.

Niches do exist; finding them is hard!
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QI Modifications to ML Framework

Data Learning
Encoding Model

A

Update Parameters

*  Quantum-inspired optimizers that help alleviate barren plateaus.
* Enhancing prediction routines with superposition-based uncertainty quantification.
* Further solidifying current understanding;

black-box adversarial scenarios for DMs,

fine-tuning circuit optimization pipeline.
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What does QiML Look Like?
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Classical gradient descent is sfill
the main optimization method




What does QiML Look Like?
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QiML IDS: Previous Works
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Dependancies

e Only with Tensor Networks
e Only with VQC/QSVM
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e Very few works using QIML for IDS [1-3

O

Limited methodologies: only explore quantum circuit learning

methods
Their results and decisions are not well explained.
Performance and training times are same or worse than

classical methods.
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e [DS wants to:
o Quickly and accurately detect attacks;
o Detect new, unseen attacks early; and
o Handle high throughput network traffic

e We want to explore:
o How can QIML enhance IDS¢
o What sorts of QIML methods can apply to IDS¢?



QiML IDS: Density Matrices
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e Start with the Encodings:
o Think of packets within flows as a quantum system®e
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e Start with the Encodings:
o Think of packets within flows as a quantum system®e
e Density Matrices:
o Represent packet data as a mixture of outcomes, based on
some probability
o Capture correlations between packets within flows

Classical Density
Int tafi =
nterpretation | | packet | Q) | Packet | (X) Q) | Packet Matrix

for IDS

S J
Y

Flow
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QiML IDS: Results
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e Good performance

o F1 Score: 98.35%
o AUC >0.99

Improvements over

packet-based IDS in:

o Performance
o Training time
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e Stillin early stages, many things to explore:

O

O

Comparison against flow-based IDS

Better understand the effect of inducing correlations
between packets within flows

Further exploit infroduced quantum aspects

Explore additional encoding and learning methods
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T oy | N | - 0)
Enfangled  ( ’ Measure only
Qubit System 1st qubit ...

.......

1)

e Enfanglement represents the correlation between qubits in a system.
e Measurement on one part of the system can give information about
other parts.

... and know outcome
of 2nd qubit!

@O @e= OO0
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e Very few works using QIML for IDS [1-3:
o They only use simulated quantum circuit learning algorithms

v
4 ) 4 ) (" Cost Function )
PTE@ | e |\
Classical : €T
o " HAF
Encoding Circuit Learning Circuit Classical Optimizer
1 |

updates 0
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e Howeverl

O

O

Their results and decisions are not well explained.

Performance and training times are same or worse than
classical methods.

Many other QIML, and encoding methods exist.
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Quantum-Inspired Computing Methods S MERATIA

1. Tensor Network-based Learning Methods
2. Quantum Variational Algorithm Simulation
3. Other QIML Methods

4. Dequantized Algorithms
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1. Tensor Network-based Learning Methods
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Quantum wavefunction W> = big tensor
Scales exponentially with number of qubits
Decompose as a tensor network

Now scales linearly with qubitsl!

P)=T~t @t -ty
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e Supervised Learning:
o Treat the weight tensor W as a wavefunction, and decompose as a tensor network!

fi(z) =W &(x)

Learning Weight Kernelled
Function Tensor  Input Data

V4
55660 B by — D00
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e Common Tensor Network Decompositions:

Matrix Product State / PEPS
Tensor Train

OOOOO0

Tree Tensor Network /
Hierarchical Tucker MERA

i L
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2. Quantum Variational Algorithm Simulation



QiML Methods: Q. Variational Alg. Simulation
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e Recall:

o CC: Classical data and classical processing
o CQ: Classical data and quantum processing

e QML =CQ (and QC, QQ)
e QIML=CC
= Classical ML drawing inspiration from quantum
mechanics/quantum computing, without need

for quantum processing.

e If you can simulate QML classically,
then this is also QIML!

data generating system

data processing device

CC | CQ

QC

C - classical, Q - quantum  [1]
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e Quantum Kernel Estimation (QKE)
o Support vector machine (SVM) — dual formulation

N NN
max Z o — 5 S: S: Yy K (X, X5)
i=1

i=1 j=1

N
s.t. 0<q; <C, Zoziyi =0
1=1



QiML Methods: Q. Variational Alg. Simulation \_AHENR

e Quantum Kernel Estimation (QKE)
o Leverage quantum feature maps to perform the kernel trick

K(x;,x;)
e Classical Kernel: Kz’j — (j’“fj)

e Quantum Kernel: Ki; = ’<¢ (fz) ’ ¢ (fj)HQ



QiML Methods: Q. Variational Alg. Simulation
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e Quantum Variational Circuits (QVC)
Hybrid quantum-classical approach

Classical optimizer adjusts the parameters of a quantum circuit
Quantum analogues of neural networks

o

o

o

Preprocessing

QVC Framework

U(9)

Encoding Circuit

Variational Circuit

Cost Function

Va

~

A

Classical Optimizer

updates 6
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e Quantum Variational Circuits (QVC)
Hybrid quantum-classical approach

Classical optimizer adjusts the parameters of a quantum circuit
Quantum analogues of neural networks

o

o

o

Preprocessing

QVC Framework

U(9)

Encoding Circuit

Variational Circuit

Cost Function
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updates 6



QiML Methods: Q. Variational Alg. Simulation gﬁ. N

e 1. Encoding Circuit

o Encodes classical data into quantum state space using a non-linear feo’rure map Q§
o Defined by circuit U¢( ) induces qubit state based on input data T

- QVC Framework
Preprocessing
Dataset

7
N | a - N
Cost Function
0) — —H — A H
| Uy(Z) U(0) M
|0) — —H — A H
Encoding Circuit Variational Circuit Classical Optimizer

A

updates 6



QiML Methods: Q. Variational Alg. Simulation \_AHENR

e 2. Variational Circuit

o Quantum circuit learns a generalized representation of the data
o Layers of quantum gates parameterized by a set of “free parameters” 0

- QVC Framework
Preprocessing
Dataset

4 D / \ / Cost Function \
0) — — | A

: Us(x U(e
e o(2) || V) {sz\

Encoding Circuit I Variational Circuit Classical Optimizer

T

|

updates 6
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e 3. Measurement

o Collapsing the resulting state into classical information
o Expectation values — scalar cost function

- QVC Framework
Preprocessing
Dataset

4 N O ) 4 )

Cost Function

: Us(x U(e
e #(Z) © | w

Encoding Circuit Variational Circuit i { Classical Optimizer
A

M

updates 6
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e 4. Classical Optimization

o Cost function optimized via gradient descent on classical computer, adjusting
parameters v

- QVC Framework
Preprocessing
Dataset

4 D / \ / Cost Function \
0) — — A

: Uy(z U(6
10) — $E, “) —W}M

Encoding Circuit Variational Circuit Classical Optimizer
A |
|

updates 6
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e QVC framework as a basis for more complex models:

o Quantum Convolutional Neural Networks (QCNN),
o Quantum Generative Adversarial Networks (QGAN),
o Quantum Autoencoder (QAE), ...

27 ’_“hﬂ L}i 2 ,
j’L HEEaE R o

1

QCNN QGAN
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3. Other QiML Methods
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e Quantum inspiration in classical machine learning:
Quantum-Inspired Nearest Mean Classifiers
Density Matrix-based Feature Representations

o)
o)
O Quantum Formalisms in Neural Networks
o)

e Primarily takes advantage of the larger quantum feature space
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e Utilization of quantum feature spaces = greater expressivity

e Strengths over classical ML — a mixed bag:
o Inductive biases
o Modelsize
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e Constraints on data that are not present in classical ML

O Dequantized algorithms: low rank, sometimes well conditioned input matrix
O Tensor network: low bond dimension

O Quantum circuits: small datasets, small feature sets

e Models scale poorly

e Speed and performance issues
o In general, comparable, or worse than classical ML
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ML in Cybersecurity ) WESTERN

e lLearning Threat Patterns from Data
o Intfrusion detection systems

Software vulnerability detection

Malware detection

Spam filtering

@]
@]
@]
@]
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e Tensor Networks:
o Anomaly detection [¢]

e Quantum Variational Algorithm Simulation:
DDoS detection [7]

Malware detection (7]

Source code vulnerability analysis (8]

Botnet detection [9]

Credit card fraud [10]

o O O O O

e However...

o Small datasets and feature sets used
o Needs excessive training time
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1. Deepen the understanding of how QIML can enhance cybersecurity
2. Explore QIML technigues and their impact on cybersecurity applications

3. Formulate advanced QIML strategies for enhanced cybersecurity
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Proposed QiML Framework p N
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Preparation Design Strategy g y

\ - /0 /. \_ J /

Apply learned understandings

e Systematic approach to exploration of QIML applicability to IDS/SVD
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Apply learned understandings

e Understanding the data: do quantum feature spaces help@
e Investigate suitable encoding schemes for the data.
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Proposed QiML Framework p N
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Apply learned understandings

e Explore various architectures (tensor networks, QVC) and investigate
their applicability.
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Proposed QiML Framework p N
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Apply learned understandings

e Formulate learning strategies tailored for these models.
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Apply learned understandings

e Evaluate methods and refine solutions based on findings
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e Datasets: Benchmark IDS and SVD datasefts

Dataset Year | No. of Features Data Type
KDD Cup99 | 1998 41 Emulated Traffic
NSL-KDD 1998 41 Emulated Traffic
ISOT 2010 49 Emulated Traffic
ISCX 2012 2012 8 Emulated Traffic
UNSW-NB15 | 2015 42 Emulated Traffic

KYOTO 2015 24 Real Traffic
CIC-IDS2017 | 2017 84 Emulated Traffic

Table 2: Publicly Available IDS Datasets [33]

Dataset | Year | No. of Functions | % of Vulnerabilities
Big-Vul | 2020 188,636 5.78

Devign 2019 27,318 45.61

D2A 2021 1,295,623 1.44

Juliet 2012 253,002 36.77

Table 3: Publicly Available Software Vulnerability Detec-

tion Datasets [20]
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e Metrics:
o Model Performance:
m Accuracy,
m Precision,
m Recall,
m FI
o Computational Efficiency:
m  Complexity analysis (big-O)
m  Empirical assessment (running time)
o ModelSSize:
m  Number of parameters
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e Facilities:
o Use of supercomputing (Pawsey) and HPC (CSIRO) if necessary

e Costs:
o No estimated costs
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e QIML survey paper completed — draft chapter in thesis

e Investigating QIML techniques for IDS — possible 2"? paper & draft
chapter
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Year 2

Year3

- 2024

2025

2026

TASK

Literature Review

First Paper (Survey)

Proposal Submission

Apply baseline QiML to IDS

Second Paper

Substantial Piece of Writing

Confirmation of Candidature

Apply baseline QiML to SVD

Third Paper

Enhancing IDS Methods

Mid candidature progress review 1

Enhancing SVD Methods

Fourth Paper

Thesis Writing

Mid candidature progress review 3

Thesis Submission
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e Tensor Arithmetic - Tensor Diagram Notation

E ? i ‘j O = Z M;jv;
- vector J j /

M;, i —@—j @@ = AiBjy =AB
- maftrix /

Liji o @@ = A;,B; =T[AB]
- 3-tensor J \\-//
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e Many-body quantum wavefunction:

V) =

E (D8182“SA7’8152..

§182*SN

'3N>

Decompose as a tensor network - Matrix Product State (MPS):

Tensor with N sites, each of dimension d: dN parameters.
MPS with bond dimension m: Ndm2 parameters; now scales linearly with N!

o

o

E S1
3r;1828384$586 ~ /4

A

o102

Az

Qo3

Al

304

Az

o0

56
A
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e Supervised Learning:

o Treat the weight vector W as a wavefunction, and decompose as a tensor network!

f ()

=W &(x)

{a}

a1 AO01O2 Lajogir ||
SlSQSN_EAA A%

Sj

QN-—1
. ASN
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e Supervised Learning:
o Input data as a tensor, with some local feature mapping

f'(z) = W' &(x)

P(x)=0¢(11)®(12) ® -+ ® ¢ (vN)

81 82 83 84 85 S¢

»=000000

¢81 ¢S2 ¢S3 ¢S4 ¢S5 ¢86
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e Opftimization:
O Gradient descent-based methods (mostly batch or stochastic GD)
O  Density Matrix Renormalization Group (DMRG) “sweeping” algorithm

) )
Gradient Update

N\ & Dimension
N @ Contraction Exchange

:> v |:>
Sweeping Window

m ZigZag Shifting m

SVD Split —Q@

-

To be updated in next stage :
@
\

~ 4

[ — -

1
1
\



Fegaz] THE UNIVERSITY OF

1 . WESTERN
QiML Methods: Tensor Networks A\ ENGN

e Unsupervised Learning:
O Encode some probability distribution info a wavefunction \I/(a:) modelled by:

— u@P
> [U(a)P

O Decompose via some tensor network
O  Adjust poroménrgﬂ:s) of the wavefunction such that the distribution given above is as close
as possible to the data distribution in .
m Negative log-likelihood (NLL) typiEally used as cost function

P(x)
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e Common Tensor Network Decompositions:

Matrix Product State / PEPS
Tensor Train

efeteletete

Tree Tensor Network /
Hierarchical Tucker MERA

4

Ladn i
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e Classical algorithms that scrutinize notions of “quanfum supremacy”

e ‘“quantum supremacy’”:
o quantum computing's ability to strictly outperform classical systems
o l.e.quantum algorithms are exponentially faster than classical ones

o “Are QML algorithms inherently more powerful, or can this be aftributed
to strong assumptions regarding 1/O state preparatione”

e “How to compare the speed of quantum algorithms with quantum 1/O to
classical algorithms with classical I/O¢”
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e “Are QML algorithms inherently more powerful, or can this be aftributed
to strong assumptions regarding 1/O state preparatione”

e Prevailing assumptions in QML; either:
o computing [v) from some input vector ¥ is arbitrarily fast, or;
o the necessary quantum states come into the system already prepared.

e The cost of state preparation is non-trivial!
e Quantum supremacy is only apparent if state preparation is performed
in poly-logarithmic timel
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e Kerenidis and Prakash: explicit I/O quantum state preparation routine

n
A cR¥ = [ O ] lv) = szm forv e C"
i=1
lall* = 1| AlI%
llas|® = | AC1, )12 / \ lazll* = [lA(2,-)|?
|A(L, 1) + |A(1,2))? |A(1,3)|* + |A(1, 4)? |A(2,1)]* +A(2,2)/* |A(2,3)]* + |A(2,4)*
T N T~ N
[A(1,1)[? |A(1,2)]? |A(1,3)[? |A(1,4)[* |4(2,1)[? |4(2,2)[* |A(2,3)/? |A(2,4)]?
v v v v v v v v
A(1,1) A(1,2) A(1,3) A1,4) A(2,1) A(2,2) A(2,3) A(2,4)
[A(1,1)] [A(1,2)] [A(1,3)] |A(1,4)| 1A(2,1)] 14(2,2)] A(2,3) [A(2,4)]
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e Kerenidis and Prakash: explicit I/O quantum state preparation routine

e Assumes quantum access to this data structure with
prepared quantum states.

e Promising candidate for demonstrably exponential
Improvement.

e Howeverl
o This structure actually also fulfills classical L2-norm
sampling assumptions.
o Imposing similar constraints on I/O allows for fairer
comparison between quantum and classical
algorithms.
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e “Sample and Query Access” - Classical L2-norm sampling assumptions

e Foravector v € CY, we have SQ(v) if, in polylog(N) time, we can:
o Sample: sample independently U; from U with prob. x?/| x|
o Query: output entries U; of U
o Norm: determine HUH

PR
<K { o~]

/ -\n\\"\f\,,
Jasl? = 14QL, )7 (el = 141 \

— e W - —

‘ |A(L, 1)]? + |A(1, 2) 2 ‘ |A(1,3)]% + |A(L, 4) 2 | [A(2,1)[2 + |A(2,2)[? ’ 1A(2,3)[2 + |A(2, 4) 2 ‘

= = = oy 2 S5
Lagor | Lac2e | [1aeer | [1agor | [aeor | [14e2r | e | |l4eor
| ) ! ! J ' ! '
A(1,1) A(1,2) A(1,3) A(1,4) A(2,1) A(2,2) (2 3) A(2,4)

|A(1L, 1)) |A(1,2)| |A(1, 3)] |A(L, 4)] |A(2,1)] |A(2,2)| (2,3) |A(2,4)]
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e Successfully Dequantized ML Routines:

o

o O O 0O O O O o©°

Recommendations Systems

Supervised Clustering

Matrix Inversion

Principal Component Analysis

Support Vector Machines

Semi-definite Programming

Quantum Singular Value Transformation (QSVT)
Hamiltonian Simulation

Discriminant Analysis
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e Briefly describe gsvt, orrec. Sys. not sure which one will be more
digestible?¢
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e Deqguantized Algorithm - Landscape and Complexities Overview

| Quantum Algorithm | Dequantized Algorithms
Rec. Systems Al Az AN NAN"Y A% lAllE
[129], [250], [36],[35], [13] o o412’ a16g6 o6e6”’ o9¢?
Supervised Clustering ||-’Vf||§:||""||2 ||M||4p||""||4 ||M||§,||w||4
[152], [251], [36] £ £2 ’ €2
PCA IX1ENXI X113 X115
[153], [251], [36] A ”X”12112n6€12’ "X"ZAIZC,I%G
Matrix Inversion Al kS||A[I%IlAll" lAlI%1A]1%2 lANSIANS  NlAll%log(e)  [IANGIANY  NlAllE
[91], [89], [36],[90], [35], [232] [13] o o226 o286 o124 o8¢t o8e2 7 ollg2
SVM 1 WLl 1
[204], [63], [36] peEs POY\Le) 8¢S
SDP 1ANZ VmllAC))2 mk>7 1A 22 m||AC)|| L
+ —a5— +
[263], [37], [36] £7.5 6‘4 892 d 546 528
QSVT d|lAllFlI]| d*2||A|lS, A[16K20 (d? + x) d'||All%
[91], [36], [126], [13] @) (A)b e’ £6 €2
P 6 16 4 9
HS 1HI| IHIIZIHI | H [z | H|
[91], [36], [13] F R 2
DA 1Bl W% IBISIBIY W IwW(™
[47], [36] 830’7 307 6510 6516
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e Deqguantized Algorithm - Landscape and Complexities Overview

Rec. Systems
[129], [250], [36],[35], [13]
Supervised Clustering
[152], [251], [36]
PCA
[153], [251], [36]

Matrix Inversion
[91], [89], [36],[90], [35], [232] [13]
SVM
[204], [63], [36]
SDP
[263], [37], [36]
QSVvVT
[91], [36], [126], [13]
HS
[91], [36], [13]
DA
[47], [36]

| Quantum Algorithm |
lAlLe IAIE
pe o412’
A% i I wil®
£ £2 ’
36
IXILE X1 X
Ake ”X”12}'12n6€12’
Al KSJAlS AN
o o226
1 11
2363 poly (35 )
AC |17 s Vm|AC) |12 mk>7
els &t 22£92 ’6
dl|AllglIB]l d”||Allg
p@V)(A)b &
IIH|II1H]|*
"H”F -
£
IBIE W% IBIGIBI*  (IWIIEIW]*
347 3o7 £6510 £6516

Dequantized Algorithms
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2
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1
22846
1AC 22 m|lAC) |24
+
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e Recall:

o CC: Classical data and classical processing

data processing device
o CQ: Classical data and quantum processing

CC | CQ

e QML =CQ (and QC, QQ)
e QiIML=CC
= Classical ML drawing inspiration from quantum

mechanics/quantum computing, without need

data generating system

QC

C - classical, Q - quantum

for quantum processing.

e If you can simulate QML classically,
then this is also QIML!
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e Simulating Quantum Computation - Challenges:

o Quantum state spaces grow exponential with number of qubits
o Quantum phenomena (superposition, entanglement, interference) requires the storage
of all amplitudes exactly

e PC with 16GB GPU memory = 30 qubits
e >50 qubits requires HPC/supercomputing
e However, low-qubit simulations have shown comparable results
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e Quantum Kernel Estimation (QKE)
o Dual representation of the support vector machine (SVM)

N NN
max Z o — 5 S: S: Yy K (X, X5)
i=1

i=1 j=1

N
s.t. 0<q; <C, Zoziyi =0
1=1
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e Quantum Kernel Estimation (QKE)
o Leverage quantum feature maps to perform the kernel trick

K(x;,x;)
e Classical Kernel: Kz’j — (j’“fj)

e Quantum Kernel: Ki; = ’<¢ (fz) ’ ¢ (fj)HQ
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e Quantum Variational Circuits (QVC)
Hybrid quantum-classical approach

Classical optimizer adjusts the parameters of a quantum circuit
Quantum analogues of neural networks

o

o

o

Preprocessing

QVC Framework

U(9)

Encoding Circuit

Variational Circuit

Cost Function

Va

~

A

Classical Optimizer

updates 6
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e 1. Encoding Circuit

o Encodes classical data into quantum state spoce using a non-linear feature map Q§
o Defined by circuit Uy(Z), and acts on data: & — Uy(F)[0)*"

- QVC Framework
Preprocessing
Dataset

7
N | a - N
Cost Function
0) — —H — A H
| Uy(Z) U(0) M
|0) — —H — A H
Encoding Circuit Variational Circuit Classical Optimizer

A

updates 6
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e 2. Variational Circuit

o Quantum circuit that represents and approximates a target function for the given task
o Layers of quantum gates parameterized by a set of “free parameters” 0

- QVC Framework
Preprocessing
Dataset

4 D / \ / Cost Function \
0) — — | A

: Us(x U(e
e o(2) || V) {sz\

Encoding Circuit I Variational Circuit Classical Optimizer

T

|

updates 6
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e 3. Measurement

o Collapsing the resulting state into classical information, based on chosen basis
o Expectation value of observable 1/: f(0) = (0|UT(0)MU(0)|0) — scalar cost function

- QVC Framework
Preprocessing
Dataset

7
N A - )
Cost Function
0)— Ak
| Us(2) U(0) w
|0) — A H
Encoding Circuit Variational Circuit i { Classical Optimizer

A

updates 6
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e 4. Classical Optimization
of ((9> optimized via gradient descent, adjusting parameters 0
- QVC Framework
Preprocessing
Y 53
a N 7 I 4 N\

Cost Function

0 A

: Uy(z U(6
10) — $E, “) —W}w

Encoding Circuit Variational Circuit Classical Optimizer
A |
|

updates 6
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QiML Methods: Q. Variational Alg. Simulation

e QVC framework as a basis for more complex frameworks:
o Quantum Convolutional Neural Networks (QCNN),
o Quantum Generative Adversarial Networks (QGAN),
o Quantum Circuit Born Machines (QCBM), ...

Training

° Fake

- B ——— ‘ -
Input Conv1 Pool1 Conv2 Pool2 FC 4‘

: i e
‘ . m - @
. Generator I Real
A / :
QEc i &
[0]0]10/0 i e
v, ISR Discriminator
U; = |1 Ie) | | >
U v, ) |
v, S
Y A
U, L]

Real images Sample image

a8
~

>
00000
[ X1 ) ) ]

V)i

]

QGAN



