

Quantum-Inspired Computing for Cybersecurity

What is "Quantum-Inspired"?

Classical Computing

Quantum Computing

What is "Quantum-Inspired"?

Classical Computing

Quantum Computing

Quantum-Inspired Computing

Methods in:

- Optimization
- Search Algorithms
- Machine Learning
- ...

Applications in:

- Finance
- Medicine
- Cybersecurity
- ...

Advantages over Classical Computing:

- Richer search spaces, greater expressivity
- Possible speed-ups and performance improvements
- Reduced model parameters

QIML for Cybersecurity

Classical ML Framework

Update Parameters

QIML for Cybersecurity

QI Modifications to ML Framework

Density Matrix Encodings

- Class Separability
- Enhanced performance
- Adversarial robustness

Quantum Circuit Design

- Optimizing circuit models
- Steeper convergence

QIML: Density Matrix Encodings

Model network packet flows as quantum systems

QIML: Density Matrix Encodings

1. Greater class separability

- Can induce distinct clusters within data
- Simpler, more accurate ML classification

QIML: Density Matrix Encodings

2. Strong performing, and adversarially robust

- Competitively high performance compared to common IDS representations.
- Maintains resilience to adversarial attacks; excels at high attack strength.

QIML: Weight-Informed Circuit Design

QIML: Weight-Informed Circuit Design

Good performance, with faster convergence

- Compared to best performing circuit architectures, e.g. Hardware-Efficient Ansatz (HEA).
- Consistent across various parameter init. and entanglement schemes

Quantum-Inspired Computing: Drawbacks

Inefficiencies

- Density matrices require $O(2^n)$ memory, $O(nm^2)$ time (n = #datapoints, m = #features); classical-to-quantum transformation adds preprocessing cost.
- Quantum circuits can be exponentially inefficient when run classically.
 - More expressivity mean more computation.

Barren plateaus: vanishing gradients across exponential parameter

space.

Drawbacks

Inefficiencies

- Density matrices require O(2ⁿ) memory, O(nm²) time (n = #datapoints, m = #features); classical-to-quantum transformation adds preprocessing cost.
- Quantum circuits can be exponentially inefficient when run classically.
 - More expressivity mean more computation.
 - Barren plateaus: vanishing gradients across exponential parameter space.

Performance Walls

- Classical methods still superior: Traditional ML consistently outperforms QIML on standard benchmarks.
- Theoretical speedups rarely translate to practical gains on real problems.

Niches do exist; finding them is hard!

Future Directions

QI Modifications to ML Framework

- Quantum-inspired optimizers that help alleviate barren plateaus.
- Enhancing **prediction** routines with superposition-based uncertainty quantification.
- Further solidifying current understanding;
 - black-box adversarial scenarios for DMs,
 - fine-tuning circuit optimization pipeline.

Q&A

Classical Feature Vectors

QiML Feature Vectors

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} o E_{(lpha_1,\ldots,lpha_m)}(\mathbf{x}) o \ket{\psi}$$

Classical models used...

SVM Neural Network

...and also QiML-specific models

Decompositons

Circuit Learning

QiML IDS: Previous Works

Representation

QiML IDS: Previous Works

- Very few works using QIML for IDS [1-3]
 - Limited methodologies: only explore quantum circuit learning methods
 - Their results and decisions are not well explained.
 - Performance and training times are same or worse than classical methods.

QiML IDS: Previous Works

IDS wants to:

- Quickly and accurately detect attacks;
- Detect new, unseen attacks early; and
- Handle high throughput network traffic

We want to explore:

- How can QIML enhance IDS?
- What sorts of QIML methods can apply to IDS?

QiML IDS: Density Matrices

Start with the Encodings:

Think of packets within flows as a quantum system?

QiML IDS: Density Matrices

Start with the Encodings:

Think of packets within flows as a quantum system?

Density Matrices:

- Represent packet data as a mixture of outcomes, based on some probability
- Capture correlations between packets within flows

QiML IDS: Density Matrices

QiML IDS: Results

- Good performance
 - F1 Score: 98.35%
 - o AUC > 0.99
- Improvements over packet-based IDS in:
 - Performance
 - Training time

QiML IDS: Further Research

- Still in early stages, many things to explore:
 - Comparison against flow-based IDS
 - Better understand the effect of inducing correlations between packets within flows
 - Further exploit introduced quantum aspects
 - Explore additional encoding and learning methods

References

- 1. Payares, E. D., & Martínez-Santos, J. C. (2021). Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview. Quantum Computing, Communication, and Simulation, 11699, 35-43.
- 2. Laxminarayana, N., Mishra, N., Tiwari, P., Garg, S., Behera, B. K., & Farouk, A. (2022). Quantum-assisted activation for supervised learning in healthcare-based intrusion detection systems. IEEE Transactions on Artificial Intelligence.
- 3. Gouveia, A., & Correia, M. (2020, November). Towards quantum-enhanced machine learning for network intrusion detection. In 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA) (pp. 1-8). IEEE.

Appendix

hal

ck

- 3 What are the Probabilities p_i ?
 - Based on local and global protocol frequency
 - Several other viable choices: to be explored.

- 4 What is the Learning Model?
 - Neural network autoencoder
 - Several other viable choices: to be explored.

Background: Qubits

Classical Bit:
$$0 \text{ or } 1$$

Quantum Bit (Qubit):

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Background: Measurement

Background: Entanglement

- Entanglement represents the correlation between qubits in a system.
- Measurement on one part of the system can give information about other parts.

QiML IDS: Previous Works

- Very few works using QIML for IDS [1-3]:
 - They only use simulated quantum circuit learning algorithms

QiML IDS: Previous Works

However!

- Their results and decisions are not well explained.
- Performance and training times are same or worse than classical methods.
- Many other QIML, and encoding methods exist.

Quantum-Inspired Computing

Methods in

- Optimization
- Search Algorithms
- Machine Learning
- ...

Applications in

- Finance
- Medicine
- Cybersecurity
- ...

What is Quantum-Inspired Machine Learning (QiML)?

Quantum-Inspired Computing Methods

- 1. Tensor Network-based Learning Methods
- 2. Quantum Variational Algorithm Simulation
- 3. Other QiML Methods
- 4. Dequantized Algorithms

QiML Methods

1. Tensor Network-based Learning Methods

- Dequantized Algorithms
- Quantum Variational Algorithm Simulation
- 4. Other QiML Methods

QiML Methods: Tensor Networks

- ullet Quantum wavefunction $|\psi
 angle$ = big tensor
- Scales **exponentially** with number of qubits
- Decompose as a tensor network
- Now scales linearly with qubits!

$$|\psi\rangle = T \approx t_1 \otimes t_2 \otimes \cdots t_N$$

QiML Methods: Tensor Networks

• Supervised Learning:

• Treat the weight tensor W as a wavefunction, and decompose as a tensor network!

$$\begin{array}{|c|c|c|} f^l(x) = W^l \cdot \Phi(\mathbf{x}) \\ \text{Learning} & \text{Weight Kernelled} \\ \text{Function} & \text{Tensor Input Data} \\ \end{array}$$

$$\bigvee_{\Phi(\mathbf{x})}^{\ell} \approx \bigcap_{\Phi(\mathbf{x})}^{\ell} \bigvee_{\Phi(\mathbf{x})}^{\ell} = \prod_{f^{\ell}(\mathbf{x})}^{\ell}$$

QiML Methods: Tensor Networks

Common Tensor Network Decompositions:

QiML Methods

- Tensor Network-based Learning Methods
- 2. Quantum Variational Algorithm Simulation
- 3. Other QiML Methods
- Dequantized Algorithms

- Recall:
 - CC: Classical data and classical processing
 - CQ: Classical data and quantum processing
- QML = CQ (and QC, QQ)
- QiML = CC
 - Classical ML drawing inspiration from quantum mechanics/quantum computing, without need for quantum processing.
- If you can simulate QML classically, then this is also QiML!

C - classical, Q - quantum

Quantum Kernel Estimation (QKE)

• Support vector machine (SVM) — dual formulation

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
s.t. $0 \le \alpha_i \le C$, $\sum_{i=1}^{N} \alpha_i y_i = 0$

Quantum Kernel Estimation (QKE)

Leverage quantum feature maps to perform the kernel trick

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

• Classical Kernel:

$$K_{ij} = k(\vec{x}_i, \vec{x}_j)$$

• Quantum Kernel:

$$K_{ij} = \left| \left\langle \phi \left(\vec{x}_i \right) \mid \phi \left(\vec{x}_j \right) \right\rangle \right|^2$$

Quantum Variational Circuits (QVC)

- Hybrid quantum-classical approach
- Classical optimizer adjusts the parameters of a quantum circuit
- Quantum analogues of neural networks

Quantum Variational Circuits (QVC)

- Hybrid quantum-classical approach
- Classical optimizer adjusts the parameters of a quantum circuit
- Quantum analogues of neural networks

• 1. Encoding Circuit

- \circ Encodes classical data into quantum state space using a non-linear feature map ϕ
- \circ Defined by circuit $\,U_{\phi}(ec{x})$; induces qubit state based on input data $\,ec{x}\,$

• 2. Variational Circuit

- Quantum circuit learns a generalized representation of the data
- \circ Layers of quantum gates parameterized by a set of "free parameters" heta

3. Measurement

- Collapsing the resulting state into classical information
- Expectation values → scalar cost function

4. Classical Optimization

 \circ Cost function optimized via gradient descent on classical computer, adjusting parameters θ

- QVC framework as a basis for more complex models:
 - Quantum Convolutional Neural Networks (QCNN),
 - Quantum Generative Adversarial Networks (QGAN),
 - Quantum Autoencoder (QAE), ...

QiML Methods:

- 1. Tensor Network-based Learning Methods
- 2. Dequantized Algorithms

3. Other QiML Methods

Quantum Variational Algorithm Simulation

QiML Methods: Other Methods

- Quantum inspiration in classical machine learning:
 - Quantum-Inspired Nearest Mean Classifiers
 - Density Matrix-based Feature Representations
 - Quantum Formalisms in Neural Networks
 - 0 ...
- Primarily takes advantage of the larger quantum feature space

QiML: Strengths

- Utilization of quantum feature spaces = greater expressivity
- Strengths over classical ML a mixed bag:
 - Inductive biases
 - Model size

QiML: Limitations

- Constraints on data that are not present in classical ML
 - Dequantized algorithms: low rank, sometimes well conditioned input matrix
 - Tensor network: low bond dimension.
 - O Quantum circuits: small datasets, small feature sets
- Models scale poorly
- Speed and performance issues
 - In general, comparable, or worse than classical ML

ML in Cybersecurity

- Learning Threat Patterns from Data
 - Intrusion detection systems
 - o Software vulnerability detection
 - Malware detection
 - Spam filtering
 - 0 ...

QiML in Cybersecurity

- Tensor Networks:
 - Anomaly detection [6]
- Quantum Variational Algorithm Simulation:
 - o DDoS detection [7]
 - Malware detection [7]
 - Source code vulnerability analysis [8]
 - Botnet detection [9]
 - Credit card fraud [10]
- However...
 - Small datasets and feature sets used
 - Needs excessive training time

Research Objectives

- 1. Deepen the understanding of how QiML can enhance cybersecurity
- 2. Explore QiML techniques and their impact on cybersecurity applications
- 3. Formulate advanced QiML strategies for enhanced cybersecurity

Apply learned understandings

Systematic approach to exploration of QiML applicability to IDS/SVD

Apply learned understandings

- Understanding the data: do quantum feature spaces help?
- Investigate suitable encoding schemes for the data.

Apply learned understandings

 Explore various architectures (tensor networks, QVC) and investigate their applicability.

Apply learned understandings

Formulate learning strategies tailored for these models.

Apply learned understandings

Evaluate methods and refine solutions based on findings

Evaluation

• **Datasets:** Benchmark IDS and SVD datasets

Dataset	Year	No. of Features	Data Type
KDD Cup99	1998	41	Emulated Traffic
NSL-KDD	1998	41	Emulated Traffic
ISOT	2010	49	Emulated Traffic
ISCX 2012	2012	8	Emulated Traffic
UNSW-NB15	2015	42	Emulated Traffic
KYOTO	2015	24	Real Traffic
CIC-IDS2017	2017	84	Emulated Traffic

Table 2: Publicly Available IDS Datasets [33]

Dataset	Year	No. of Functions	% of Vulnerabilities
Big-Vul	2020	188,636	5.78
Devign	2019	27,318	45.61
D2A	2021	1,295,623	1.44
$_{ m Juliet}$	2012	253,002	36.77

Table 3: Publicly Available Software Vulnerability Detection Datasets [20]

Evaluation

Metrics:

- Model Performance:
 - Accuracy,
 - Precision,
 - Recall,
 - F1
- Computational Efficiency:
 - Complexity analysis (big-O)
 - Empirical assessment (running time)
- Model Size:
 - Number of parameters

Facilities & Costs

• Facilities:

Use of supercomputing (Pawsey) and HPC (CSIRO) if necessary

Costs:

No estimated costs

Confirmation of Candidature

- QiML survey paper completed draft chapter in thesis
- Investigating QiML techniques for IDS possible 2nd paper & draft chapter

Candidature Plan

		Year 1						Year 2						Year 3																						
	2023					2024							2025					20	26																	
TASK	3	4	5	6	7	8	9	10	11	12	1	. 2	3	4	5	5 6	5 7	' 8	3 9	9 10	0 1:	1 12	2 1	. 2	3	4	5	6	7	8	9	10	11	12	1	2
Literature Review																																				
First Paper (Survey)																																				
Proposal Submission																																				
Apply baseline QiML to IDS																																				
Second Paper								Π										Π			Τ															П
Substantial Piece of Writing																																				
Confirmation of Candidature																																				
Apply baseline QiML to SVD								П										Π			Τ															
Third Paper																																				
Enhancing IDS Methods																																				
Mid candidature progress review 1								Т										Г			Τ															
Enhancing SVD Methods																																				
Fourth Paper																																				
Thesis Writing																																				
Mid candidature progress review 3																																				
Thesis Submission																																				

References

- 1. Schuld, M., & Petruccione, F. (2021). Machine learning with quantum computers. Berlin: Springer.
- 2. Prateek Joshi. (2013). Quantum Encryption And Black Holes Part 2/2 Perpetual Enigma.
- 3. Stoudenmire, E., & Schwab, D. J. (2016). Supervised learning with tensor networks. Advances in neural information processing systems, 29.
- 4. Tensor Network. (2023). Tensor Network.
- 5. Kerenidis, I., & Prakash, A. (2016). Quantum recommendation systems. arXiv preprint arXiv:1603.08675.
- 6. Wang, J., Roberts, C., Vidal, G., & Leichenauer, S. (2020). Anomaly detection with tensor networks. arXiv preprint arXiv:2006.02516.
- 7. Payares, E., & Martinez-Santos, J. (2021). Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview. Quantum Computing, Communication, and Simulation, 11699, 35–43.
- 8. Masum, M., Nazim, M., Faruk, M., Shahriar, H., Valero, M., Khan, M., Uddin, G., Barzanjeh, S., Saglamyurek, E., Rahman, A., & others (2022). Quantum Machine Learning for Software Supply Chain Attacks: How Far Can We Go?. In 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 530–538).
- 9. Suryotrisongko, H., & Musashi, Y. (2022). Evaluating hybrid quantum-classical deep learning for cybersecurity botnet DGA detection. Procedia Computer Science, 197, 223–229.
- 10. Herr, D., Obert, B., & Rosenkranz, M. (2021). Anomaly detection with variational quantum generative adversarial networks. Quantum Science and Technology, 6(4), 045004.

Appendix

• Tensor Arithmetic - Tensor Diagram Notation

$$= \sum_{j} M_{ij} v_{j}$$

$$= A_{ij} B_{jk} = AB$$

$$= A_{ij} B_{ji} = \text{Tr}[AB]$$

Many-body quantum wavefunction:

$$|\Psi\rangle = \sum_{s_1 s_2 \cdots s_N} \Psi^{s_1 s_2 \cdots s_N} |s_1 s_2 \cdots s_N\rangle$$

- Decompose as a tensor network Matrix Product State (MPS):
 - o Tensor with N sites, each of dimension d: **d**^N parameters.
 - MPS with bond dimension m: Ndm² parameters; now scales linearly with N!

$$T_{s_1 s_2 s_3 s_4 s_5 s_6} \approx \sum_{\alpha} A_{\alpha_1}^{s_1} A_{\alpha_1 \alpha_2}^{s_2} A_{\alpha_2 \alpha_3}^{s_3} A_{\alpha_3 \alpha_4}^{s_4} A_{\alpha_4 \alpha_5}^{s_5} A_{\alpha_5}^{s_6}$$

- Supervised Learning:
 - Treat the weight vector W as a wavefunction, and decompose as a tensor network!

$$f^l(x) = W^l \cdot \Phi(\mathbf{x})$$

$$W_{s_1 s_2 \dots s_N}^l = \sum_{\{a\}} A_{s_1}^{\alpha_1} A_{s_2}^{\alpha_1 \alpha_2} \cdots A_{s_j}^{l:\alpha_j \alpha_{j+1}} \cdots A_{s_N}^{\alpha_{N-1}}$$

- Supervised Learning:
 - Input data as a tensor, with some local feature mapping

$$|f^l(x) = W^l \cdot \Phi(\mathbf{x})|$$

$$\Phi(\mathbf{x}) = \phi(x_1) \otimes \phi(x_2) \otimes \cdots \otimes \phi(x_N)$$

$$\phi(x_j) = \left[\cos\left(\frac{\pi}{2}x_j\right), \sin\left(\frac{\pi}{2}x_j\right)\right]$$

$$\Phi = igchtarrow egin{matrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \ d & d & d & d & d \ \phi^{s_1} & \phi^{s_2} & \phi^{s_3} & \phi^{s_4} & \phi^{s_5} & \phi^{s_6} \ \end{pmatrix}$$

- Optimization:
 - Gradient descent-based methods (mostly batch or stochastic GD)
 - O Density Matrix Renormalization Group (DMRG) "sweeping" algorithm

- Unsupervised Learning:
 - Encode some probability distribution into a wavefunction $\,\Psi(x)$, modelled by:

$$P(x) = \frac{|\Psi(x)|^2}{\sum |\Psi(x)|^2}$$

- Decompose via some tensor network Adjust parameters of the wavefunction such that the distribution given above is as close as possible to the data distribution in
 - Negative log-likelihood (NLL) typically used as cost function

Common Tensor Network Decompositions:

- Classical algorithms that scrutinize notions of "quantum supremacy"
- "quantum supremacy":
 - quantum computing's ability to strictly outperform classical systems
 - I.e. quantum algorithms are exponentially faster than classical ones
- "Are QML algorithms inherently more powerful, or can this be attributed to strong assumptions regarding I/O state preparation?"
- "How to **compare the speed** of quantum algorithms with quantum I/O to classical algorithms with classical I/O?"

- "Are QML algorithms inherently more powerful, or can this be attributed to strong assumptions regarding I/O state preparation?"
- Prevailing assumptions in QML; either:
 - \circ computing $|v\rangle$ from some input vector v is **arbitrarily fast**, or;
 - the necessary quantum states come into the system already prepared.
- The cost of state preparation is non-trivial!
- Quantum supremacy is only apparent if state preparation is performed in poly-logarithmic time!

Kerenidis and Prakash: explicit I/O quantum state preparation routine

• Kerenidis and Prakash: explicit I/O quantum state preparation routine

- "Sample and Query Access" Classical L2-norm sampling assumptions
- For a vector $v \in \mathbb{C}^N$, we have SQ(v) if, in $\operatorname{polylog}(N)$ time, we can:
 - \circ Sample: sample independently U_i from U with prob. $x_i^2/\|x\|$
 - \circ **Query**: output entries v_i of v
 - \circ Norm: determine ||v||

- Successfully Dequantized ML Routines:
 - Recommendations Systems
 - Supervised Clustering
 - Matrix Inversion
 - Principal Component Analysis
 - Support Vector Machines
 - Semi-definite Programming
 - Quantum Singular Value Transformation (QSVT)
 - Hamiltonian Simulation
 - Discriminant Analysis

 Briefly describe qsvt, or rec. Sys. not sure which one will be more digestible?

Dequantized Algorithm - Landscape and Complexities Overview

	Quantum Algorithm		Dequantized A	lgorithms			
Rec. Systems	$ A _F$	$ A _F^{24}$	$ A _F^6 A ^{10}$	$ A _F^6$	$\ A\ _F^4$		
[129], [250], [36],[35], [13]	σ	$\overline{\sigma^{24}} \varepsilon^{12}$,	$\sigma^{16} \varepsilon^6$,	$\sigma^6 \varepsilon^6$,	$\overline{\sigma^9 \varepsilon^2}$		
Supervised Clustering	$ M _F^2 w ^2$	$ M _F^4 w ^4$	$\ M\ _F^4 \ w\ ^4$				
[152], [251], [36]	ε	${\varepsilon^2}$,	${\varepsilon^2}$				
PCA	$ X _F X $	$ X _F^{36}$	$ X _F^6$				
[153], [251], [36]	${\lambda_k \varepsilon}$	$ X ^{12}\lambda_k^{12}\eta^6\varepsilon^{12}$	$\frac{1}{\ X\ ^2 \lambda_k^2 \eta^6 \varepsilon^6}$				
Matrix Inversion	$ A _F$	$ k^6 A _F^6 A ^{16}$	$ A _F^6 A ^{22}$	$ A _F^6 A ^6$	$ A _F^4 \log(c)$	$ A _F^6 A ^2 A ^2$	$A\ _F^4$
[91], [89], [36],[90], [35], [232] [13]	σ	$\sigma^{22} \varepsilon^6$,	$\sigma^{28} \varepsilon^6$,	$\sigma^{12}\varepsilon^4$,	$\sigma^8 \varepsilon^4$,	$\sigma^8 \varepsilon^2$, σ	$^{11} \varepsilon^2$
SVM	_1	$\operatorname{poly}\left(\frac{1}{2},\frac{1}{2}\right)$	1				
[204], [63], [36]	$\lambda^3 \varepsilon^3$	poly $(\bar{\lambda}, \bar{\varepsilon})$,	$\lambda^{28} \varepsilon^6$				
SDP	$ A^{(\cdot)} _F^7 \sqrt{m} A^{(\cdot)} _F^2$	mk^{57}	$ A^{(\cdot)} _F^{22} \sqrt{m} A^{(\cdot)} _F^{14}$				
[263], [37], [36]	${\varepsilon^{7.5}}$ + ${\varepsilon^4}$	$\overline{\varepsilon^{92}}$,	$\frac{\varepsilon^{46}}{\varepsilon^{46}}$ + $\frac{\varepsilon^{28}}{\varepsilon^{28}}$				
QSVT	$d A _F b $	$d^{22} A _F^6$	$ A _F^6 \kappa^{20} (d^2 + \kappa)$	$d^{11}\ A\ _F^4$			
[91], [36], [126], [13]	$\overline{p^{(QV)}(A)b}$	${\varepsilon^6}$,	${\varepsilon^6}$,	$\overline{\varepsilon^2}$			
HS		$ H _F^6 H ^{16}$	$\ H\ _F^4 \ H\ ^9$				
[91], [36], [13]	$\ H\ _F$	${\varepsilon^6}$,	${\varepsilon^2}$				
DA	$ B _F^7 W _F^7$	$ B _F^6 B ^4 W _F^7 W ^{10}$					
[47], [36]	$\frac{1}{\varepsilon^3 \sigma^7} + \frac{1}{\varepsilon^3 \sigma^7}$	$\frac{1}{\varepsilon^6\sigma^{10}} + \frac{1}{\varepsilon^6\sigma^{16}}$					

Dequantized Algorithm - Landscape and Complexities Overview

	Quantum Algorithm		Dequantized A	lgorithms		_
Rec. Systems	$ A _F$	$ A _F^{24}$	$ A _F^6 A ^{10}$	$ A _F^6$	$ A _F^4$	
[129], [250], [36],[35], [13]	σ	$\overline{\sigma^{24} \varepsilon^{12}}$,	$\sigma^{16} \varepsilon^6$,	$\sigma^6 \varepsilon^6$,	$\overline{\sigma^9 \varepsilon^2}$	
Supervised Clustering	$ M _F^2 w ^2$	$ M _F^4 w ^4$	$\ M\ _F^4 \ w\ ^4$			_
[152], [251], [36]	ε	${\varepsilon^2}$,	${\varepsilon^2}$			
PCA	$ X _F X $	$ X _F^{36}$	$ X _F^6$			
[153], [251], [36]	${\lambda_k \varepsilon}$	$ X ^{12}\lambda_k^{12}\eta^6\varepsilon^{12}$	$\frac{1}{\ X\ ^2 \lambda_k^2 \eta^6 \varepsilon^6}$			
Matrix Inversion	$ A _F$	$k^6 A _F^6 A ^{16}$	$ A _F^6 A ^{22}$	$ A _F^6 A ^6$	$ A _F^4 \log(c)$	$ A _F^6 A ^2 A _F^4$
[91], [89], [36],[90], [35], [232] [13]	$\overline{\sigma}$	$\sigma^{22} \varepsilon^6$,	$\sigma^{28} \varepsilon^6$,	$\sigma^{12}\varepsilon^4$,	$\overline{\sigma^8 \varepsilon^4}$,	$\overline{\sigma^8 \varepsilon^2}$, $\overline{\sigma^{11} \varepsilon^2}$
SVM	1	poly $\left(\frac{1}{2}, \frac{1}{2}\right)$,	1			
[204], [63], [36]	$\lambda^3 \varepsilon^3$	[λ ε]	$\lambda^{28} \varepsilon^6$			
SDP	$ A^{(\cdot)} _F^7 \sqrt{m} A^{(\cdot)} _F^2$	mk^{57}	$ A^{(\cdot)} _F^{22} \sqrt{m} A^{(\cdot)} _F^{14}$			
[263], [37], [36]	$-\frac{\varepsilon^{7.5}}{\varepsilon^{7.5}}$ + $-\frac{\varepsilon^4}{\varepsilon^4}$	$\overline{\varepsilon^{92}}$,	$\frac{\varepsilon^{46}}{\varepsilon^{46}}$ + $\frac{\varepsilon^{28}}{\varepsilon^{28}}$			
QSVT	$d A _F b $	$d^{22}\ A\ _F^6$	$ A _F^6 \kappa^{20} (d^2 + \kappa)$	$d^{11}\ A\ _F^4$		
[91], [36], [126], [13]	$\overline{p^{(QV)}(A)b}$	${\varepsilon^6}$,	${\varepsilon^6}$,	$\overline{\varepsilon^2}$		
HS		$ H _F^6 H ^{16}$	$\ H\ _F^4 \ H\ ^9$			
[91], [36], [13]	$\ H\ _F$	${\varepsilon^6}$,	${\varepsilon^2}$			
DA	$ B _F^7 W _F^7$	$ B _F^6 B ^4 W _F^7 W ^{10}$				
[47], [36]	$\frac{\overline{\varepsilon^3 \sigma^7} + \overline{\varepsilon^3 \sigma^7}}{\varepsilon^3 \sigma^7}$	$\frac{1}{\varepsilon^6 \sigma^{10}} + \frac{1}{\varepsilon^6 \sigma^{16}}$				

- Recall:
 - CC: Classical data and classical processing
 - CQ: Classical data and quantum processing
- QML = CQ (and QC, QQ)
- QiML = CC
 - Classical ML drawing inspiration from quantum mechanics/quantum computing, without need for quantum processing.
- If you can simulate QML classically, then this is also QiML!

C - classical, Q - quantum

- Simulating Quantum Computation Challenges:
 - Quantum state spaces grow exponential with number of qubits
 - Quantum phenomena (superposition, entanglement, interference) requires the storage of all amplitudes exactly
- PC with 16GB GPU memory ≈ 30 qubits
- >50 qubits requires HPC/supercomputing
- However, low-qubit simulations have shown comparable results

Quantum Kernel Estimation (QKE)

Dual representation of the support vector machine (SVM)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
s.t. $0 \le \alpha_i \le C$, $\sum_{i=1}^{N} \alpha_i y_i = 0$

Quantum Kernel Estimation (QKE)

Leverage quantum feature maps to perform the kernel trick

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

• Classical Kernel:

$$K_{ij} = k(\vec{x}_i, \vec{x}_j)$$

• Quantum Kernel:

$$K_{ij} = \left| \left\langle \phi \left(\vec{x}_i \right) \mid \phi \left(\vec{x}_j \right) \right\rangle \right|^2$$

Quantum Variational Circuits (QVC)

- Hybrid quantum-classical approach
- Classical optimizer adjusts the parameters of a quantum circuit
- Quantum analogues of neural networks

1. Encoding Circuit

- Encodes classical data into quantum state space using a non-linear feature map ϕ Defined by circuit $U_\phi(\vec x)$, and acts on data: $\vec x \to U_\phi(\vec x)|0\rangle^{\otimes n}$

• 2. Variational Circuit

- Quantum circuit that represents and approximates a target function for the given task
- \circ Layers of quantum gates parameterized by a set of "free parameters" heta

• 3. Measurement

- Collapsing the resulting state into classical information, based on chosen basis
- \circ Expectation value of observable M: $f(\theta) = \langle 0|U^\dagger(\theta)MU(\theta)|0\rangle \to \text{scalar cost function}$

4. Classical Optimization

 $\circ f(\theta)$ optimized via gradient descent, adjusting parameters θ

- QVC framework as a basis for more complex frameworks:
 - Quantum Convolutional Neural Networks (QCNN),
 - Quantum Generative Adversarial Networks (QGAN),
 - Quantum Circuit Born Machines (QCBM), ...

QCNN QGAN