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Quantum-Inspired Computing

Methods in:
● Optimization
● Search Algorithms
● Machine Learning
● …

Applications in:
● Finance
● Medicine
● Cybersecurity
● ...

Advantages over 
Classical Computing:
● Richer search spaces, 

greater expressivity
● Possible speed-ups and 

performance 
improvements 

● Reduced model 
parameters
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QIML for Cybersecurity

Data 
Encoding

Learning 
Model Optimization

QI Modifications to ML Framework

Prediction

Update Parameters

● Density Matrix Encodings
○ Class Separability
○ Enhanced performance
○ Adversarial robustness

● Quantum Circuit Design
○ Optimizing circuit models
○ Steeper convergence



QIML: Density Matrix Encodings

● Model network packet flows as quantum systems

⊗ ⊗ ⊗… =
Composite 
Quantum 
System
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Packet Packet Packet⊗ ⊗ ⊗…

Flow

= Density
Matrix



QIML: Density Matrix Encodings

1. Greater class separability
○ Can induce distinct clusters within data
○ Simpler, more accurate ML classification

Raw IDS Data Flow IDS Data DM Encoded

T-SNE Visualisations of the Mirai IDS dataset Attack LabelBenign Label



QIML: Density Matrix Encodings

2. Strong performing, and adversarially robust
○ Competitively high performance compared to common IDS representations.
○ Maintains resilience to adversarial attacks; excels at high attack strength.

FGSM (ε) C&W (C) JSMA (θ)

Accuracy vs. Attack Strength RawStats. Enc.DM Enc.



QIML: Weight-Informed Circuit Design

. . .

● Classical NN weights and biases represent a learned 
"pathway" from input to output.

● Leverage to inform quantum circuit (model) design:
o Parameter initialization
o Entanglement (correlation) structure

Parameterized Quantum Circuit



QIML: Weight-Informed Circuit Design

Good performance, with faster convergence
○ Compared to best performing circuit architectures, e.g. Hardware-Efficient 

Ansatz (HEA).
○ Consistent across various parameter init. and entanglement schemes

Training Losses Validation Losses

Iris Dataset (4 Qubits)

Test Acc.
(%)



Quantum-Inspired Computing: Drawbacks

● Inefficiencies
○ Density matrices require O(2n) memory, O(nm2) time (n = #datapoints, m = 

#features); classical-to-quantum transformation adds preprocessing cost.
○ Quantum circuits can be exponentially inefficient when run classically. 

■ More expressivity mean more computation.
■ Barren plateaus: vanishing gradients across exponential parameter 

space.

Ave. Encoding Time per 
Instance for Mirai Dataset (s)



Drawbacks

● Inefficiencies
○ Density matrices require O(2n) memory, O(nm2) time (n = #datapoints, m = 

#features); classical-to-quantum transformation adds preprocessing cost.
○ Quantum circuits can be exponentially inefficient when run classically. 

■ More expressivity mean more computation.
■ Barren plateaus: vanishing gradients across exponential parameter 

space.
● Performance Walls

○ Classical methods still superior: Traditional ML consistently outperforms QIML 
on standard benchmarks.

○ Theoretical speedups rarely translate to practical gains on real problems.

Niches do exist; finding them is hard!



Future Directions

Data 
Encoding

Learning 
Model Optimization

QI Modifications to ML Framework

Prediction

Update Parameters

• Quantum-inspired optimizers that help alleviate barren plateaus.
• Enhancing prediction routines with superposition-based uncertainty quantification.
• Further solidifying current understanding; 

• black-box adversarial scenarios for DMs, 
• fine-tuning circuit optimization pipeline.
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What does QiML Look Like?

Data 
Encoding

Learning 
Model Optimization Prediction

Update Parameters

Classical models used…

SVM Neural Network

…and also QiML-specific models

Decompositons

Circuit Learning

U

U

U

U

U

U



Classical gradient descent is still 
the main optimization method
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Prediction is mostly the same…
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…quantum measurement can also be used!

What does QiML Look Like?

Data 
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Learning 
Model Optimization Prediction

Update Parameters
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QiML IDS: Previous Works

Representation



QiML IDS: Previous Works

● Very few works using QIML for IDS [1-3]

○ Limited methodologies: only explore quantum circuit learning 
methods

○ Their results and decisions are not well explained.
○ Performance and training times are same or worse than 

classical methods.



QiML IDS: Previous Works

● IDS wants to:
○ Quickly and accurately detect attacks;
○ Detect new, unseen attacks early; and
○ Handle high throughput network traffic

● We want to explore:
○ How can QIML enhance IDS?
○ What sorts of QIML methods can apply to IDS?



QiML IDS: Density Matrices

● Start with the Encodings:
○ Think of packets within flows as a quantum system?
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● Start with the Encodings:
○ Think of packets within flows as a quantum system?

● Density Matrices:
○ Represent packet data as a mixture of outcomes, based on 

some probability
○ Capture correlations between packets within flows

QiML IDS: Density Matrices

Classical
Interpretation
for IDS

Packet Packet Packet⊗ ⊗ ⊗…

Flow

= Density
Matrix



QiML IDS: Density Matrices



QiML IDS: Results

● Good performance
○ F1 Score: 98.35%
○ AUC > 0.99

● Improvements over 
packet-based IDS in:
○ Performance
○ Training time



QiML IDS: Further Research

● Still in early stages, many things to explore:
○ Comparison against flow-based IDS
○ Better understand the effect of inducing correlations 

between packets within flows
○ Further exploit introduced quantum aspects
○ Explore additional encoding and learning methods
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Quantum-Inspired IDS: Density Matrices



Quantum-Inspired IDS: Density Matrices

● ① How is a “Flow” 
Determined?
○ Packets-per-time interval 

(10ms, 1sec, 10sec, etc.)
○ Packets-per-

communication channel 
(from source to dest.)



Quantum-Inspired IDS: Density Matrices

● ② What Features are Used?
○ Packet Header 

information (IP src/dst, 
port src/dst, TCP/UDP 
information, etc.)

○ First N-bytes also 
commonly used: to be 
explored



Quantum-Inspired IDS: Density Matrices

● ③ What are the 
Probabilities      ?
○ Based on local and 

global protocol 
frequency

○ Several other viable 
choices: to be 
explored.



Quantum-Inspired IDS: Density Matrices

● ④ What is the Learning 
Model?
○ Neural network 

autoencoder
○ Several other viable 

choices: to be 
explored.



Background: Qubits

Classical Bit: Quantum Bit (Qubit):

[2]



Background: Measurement

Qubit: Measurement Classical Information



Background: Entanglement

● Entanglement represents the correlation between qubits in a system.
● Measurement on one part of the system can give information about 

other parts.

Entangled
Qubit System

Measure only
1st qubit …

… and know outcome 
of 2nd qubit!



QiML IDS: Previous Works

● Very few works using QIML for IDS [1-3]:
○ They only use simulated quantum circuit learning algorithms



QiML IDS: Previous Works

● However!
○ Their results and decisions are not well explained.
○ Performance and training times are same or worse than 

classical methods.
○ Many other QIML, and encoding methods exist.



Quantum-Inspired Computing

Methods in:
● Optimization
● Search Algorithms
● Machine Learning
● …

Applications in:
● Finance
● Medicine
● Cybersecurity
● ...



What is Quantum-Inspired Machine Learning (QiML)?

QML

QiML

QML



Quantum-Inspired Computing Methods

1. Tensor Network-based Learning Methods

2. Quantum Variational Algorithm Simulation

3. Other QiML Methods

4. Dequantized Algorithms
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QiML Methods: Tensor Networks

● Quantum wavefunction          = big tensor
● Scales exponentially with number of qubits
● Decompose as a tensor network
● Now scales linearly with qubits!

[3]



QiML Methods: Tensor Networks

● Supervised Learning: 
○ Treat the weight tensor W as a wavefunction, and decompose as a tensor network!

Learning 
Function

Weight 
Tensor

Kernelled 
Input Data

≈
[3]



QiML Methods: Tensor Networks

● Common Tensor Network Decompositions:

[4]



QiML Methods

1. Tensor Network-based Learning Methods

2. Quantum Variational Algorithm Simulation

3. Other QiML Methods

4. Dequantized Algorithms



QiML Methods: Q. Variational Alg. Simulation

● Recall:
○ CC: Classical data and classical processing
○ CQ: Classical data and quantum processing

● QMLi = CQ (and QC, QQ)
● QiML = CC

QiML = Classical ML drawing inspiration from quantum

QiML = mechanics/quantum computing, without need

QiML = for quantum processing.

● If you can simulate QML classically, 
then this is also QiML!

[1]



QiML Methods: Q. Variational Alg. Simulation

● Quantum Kernel Estimation (QKE)
○ Support vector machine (SVM) — dual formulation



QiML Methods: Q. Variational Alg. Simulation

● Quantum Kernel Estimation (QKE)
○ Leverage quantum feature maps to perform the kernel trick 

● Classical Kernel: 

● Quantum Kernel:



QiML Methods: Q. Variational Alg. Simulation

● Quantum Variational Circuits (QVC)
○ Hybrid quantum-classical approach
○ Classical optimizer adjusts the parameters of a quantum circuit
○ Quantum analogues of neural networks



QiML Methods: Q. Variational Alg. Simulation

● Quantum Variational Circuits (QVC)
○ Hybrid quantum-classical approach
○ Classical optimizer adjusts the parameters of a quantum circuit
○ Quantum analogues of neural networks



QiML Methods: Q. Variational Alg. Simulation

● 1. Encoding Circuit
○ Encodes classical data into quantum state space using a non-linear feature map
○ Defined by circuit             ; induces qubit state based on input data  



QiML Methods: Q. Variational Alg. Simulation

● 2. Variational Circuit
○ Quantum circuit learns a generalized representation of the data
○ Layers of quantum gates parameterized by a set of “free parameters”



QiML Methods: Q. Variational Alg. Simulation

● 3. Measurement
○ Collapsing the resulting state into classical information
○ Expectation values → scalar cost function 



QiML Methods: Q. Variational Alg. Simulation

● 4. Classical Optimization
○ Cost function optimized via gradient descent on classical computer, adjusting 

parameters     



● QVC framework as a basis for more complex models:
○ Quantum Convolutional Neural Networks (QCNN),
○ Quantum Generative Adversarial Networks (QGAN),
○ Quantum Autoencoder (QAE), …

QiML Methods: Q. Variational Alg. Simulation

QGANQCNN



QiML Methods:

1. Tensor Network-based Learning Methods

2. Dequantized Algorithms

3. Other QiML Methods

4. Quantum Variational Algorithm Simulation



QiML Methods: Other Methods

● Quantum inspiration in classical machine learning:
○ Quantum-Inspired Nearest Mean Classifiers
○ Density Matrix-based Feature Representations
○ Quantum Formalisms in Neural Networks
○ …

● Primarily takes advantage of the larger quantum feature space



QiML: Strengths 

● Utilization of quantum feature spaces = greater expressivity

● Strengths over classical ML — a mixed bag:
○ Inductive biases
○ Model size



QiML: Limitations

● Constraints on data that are not present in classical ML
○ Dequantized algorithms: low rank, sometimes well conditioned input matrix
○ Tensor network: low bond dimension
○ Quantum circuits: small datasets, small feature sets

● Models scale poorly

● Speed and performance issues
○ In general, comparable, or worse than classical ML



ML in Cybersecurity

● Learning Threat Patterns from Data
○ Intrusion detection systems
○ Software vulnerability detection
○ Malware detection
○ Spam filtering
○ …



QiML in Cybersecurity

● Tensor Networks:
○ Anomaly detection [6]

● Quantum Variational Algorithm Simulation:
○ DDoS detection [7]

○ Malware detection [7]

○ Source code vulnerability analysis [8]

○ Botnet detection [9]

○ Credit card fraud [10]

● However…
○ Small datasets and feature sets used
○ Needs excessive training time



Research Objectives

1. Deepen the understanding of how QiML can enhance cybersecurity

2. Explore QiML techniques and their impact on cybersecurity applications

3. Formulate advanced QiML strategies for enhanced cybersecurity



Methodology

● Systematic approach to exploration of QiML applicability to IDS/SVD

Data 
Preparation

Model 
Design

Learning 
Strategy

Evaluation

Proposed QiML Framework

Apply learned understandings



Methodology

● Understanding the data: do quantum feature spaces help?
● Investigate suitable encoding schemes for the data.

Data 
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Proposed QiML Framework



Methodology

● Explore various architectures (tensor networks, QVC) and investigate 
their applicability.
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Methodology

● Formulate learning strategies tailored for these models.

Data 
Preparation

Model 
Design

Learning 
Strategy

Evaluation

Apply learned understandings

Proposed QiML Framework



Methodology

● Evaluate methods and refine solutions based on findings

Data 
Preparation

Model 
Design

Learning 
Strategy

Evaluation

Apply learned understandings

Proposed QiML Framework



Evaluation

● Datasets: Benchmark IDS and SVD datasets



Evaluation

● Metrics:
○ Model Performance: 

■ Accuracy, 
■ Precision, 
■ Recall, 
■ F1

○ Computational Efficiency: 
■ Complexity analysis (big-O) 
■ Empirical assessment (running time)

○ Model Size: 
■ Number of parameters



Facilities & Costs

● Facilities:
○ Use of supercomputing (Pawsey) and HPC (CSIRO) if necessary

● Costs:
○ No estimated costs



Confirmation of Candidature

● QiML survey paper completed – draft chapter in thesis

● Investigating QiML techniques for IDS – possible 2nd paper & draft 
chapter



Candidature Plan
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QiML Methods: Tensor Networks

● Tensor Arithmetic - Tensor Diagram Notation

- vector

- matrix

- 3-tensor



QiML Methods: Tensor Networks

● Many-body quantum wavefunction:

● Decompose as a tensor network - Matrix Product State (MPS):
○ Tensor with N sites, each of dimension d: dN parameters. 
○ MPS with bond dimension m: Ndm2 parameters; now scales linearly with N!



QiML Methods: Tensor Networks

● Supervised Learning: 
○ Treat the weight vector W as a wavefunction, and decompose as a tensor network!



QiML Methods: Tensor Networks

● Supervised Learning: 
○ Input data as a tensor, with some local feature mapping

;



QiML Methods: Tensor Networks

● Optimization: 
○ Gradient descent-based methods (mostly batch or stochastic GD)
○ Density Matrix Renormalization Group (DMRG) “sweeping” algorithm



QiML Methods: Tensor Networks

● Unsupervised Learning: 
○ Encode some probability distribution into a wavefunction           , modelled by:

○ Decompose             via some tensor network
○ Adjust parameters of the wavefunction such that the distribution given above is as close 

as possible to the data distribution in      .
■ Negative log-likelihood (NLL) typically used as cost function



QiML Methods: Tensor Networks

● Common Tensor Network Decompositions:



QiML Methods: Dequantized Algorithms

● Classical algorithms that scrutinize notions of “quantum supremacy”
● “quantum supremacy”: 

○ quantum computing's ability to strictly outperform classical systems
○ I.e. quantum algorithms are exponentially faster than classical ones

● “Are QML algorithms inherently more powerful, or can this be attributed 
to strong assumptions regarding I/O state preparation?”

● “How to compare the speed of quantum algorithms with quantum I/O to 
classical algorithms with classical I/O?”



QiML Methods: Dequantized Algorithms

● “Are QML algorithms inherently more powerful, or can this be attributed 
to strong assumptions regarding I/O state preparation?”

● Prevailing assumptions in QML; either:
○ computing        from some input vector      is arbitrarily fast, or;
○ the necessary quantum states come into the system already prepared.

● The cost of state preparation is non-trivial!
● Quantum supremacy is only apparent if state preparation is performed 

in poly-logarithmic time!



QiML Methods: Dequantized Algorithms

● Kerenidis and Prakash: explicit I/O quantum state preparation routine



QiML Methods: Dequantized Algorithms

● Kerenidis and Prakash: explicit I/O quantum state preparation routine

● Assumes quantum access to this data structure with 
prepared quantum states.

● Promising candidate for demonstrably exponential 
improvement.

● However!
○ This structure actually also fulfills classical L2-norm 

sampling assumptions.
○ Imposing similar constraints on I/O allows for fairer 

comparison between quantum and classical 
algorithms.



QiML Methods: Dequantized Algorithms

● “Sample and Query Access” - Classical L2-norm sampling assumptions
● For a vector              , we have            if, in                    time, we can:

○ Sample: sample independently        from       with prob.  
○ Query: output entries        of 
○ Norm: determine 



QiML Methods: Dequantized Algorithms

● Successfully Dequantized ML Routines:
○ Recommendations Systems
○ Supervised Clustering
○ Matrix Inversion
○ Principal Component Analysis
○ Support Vector Machines
○ Semi-definite Programming
○ Quantum Singular Value Transformation (QSVT)
○ Hamiltonian Simulation
○ Discriminant Analysis



QiML Methods: Dequantized Algorithms

● Briefly describe qsvt, or rec. Sys. not sure which one will be more 
digestible?



QiML Methods: Dequantized Algorithms

● Dequantized Algorithm - Landscape and Complexities Overview



QiML Methods: Dequantized Algorithms

● Dequantized Algorithm - Landscape and Complexities Overview



QiML Methods: Q. Variational Alg. Simulation

● Recall:
○ CC: Classical data and classical processing
○ CQ: Classical data and quantum processing

● QMLi = CQ (and QC, QQ)
● QiML = CC

QiML = Classical ML drawing inspiration from quantum

QiML = mechanics/quantum computing, without need

QiML = for quantum processing.

● If you can simulate QML classically, 
then this is also QiML!



QiML Methods: Q. Variational Alg. Simulation

● Simulating Quantum Computation - Challenges:
○ Quantum state spaces grow exponential with number of qubits
○ Quantum phenomena (superposition, entanglement, interference) requires the storage 

of all amplitudes exactly

● PC with 16GB GPU memory ≈ 30 qubits
● >50 qubits requires HPC/supercomputing
● However, low-qubit simulations have shown comparable results



QiML Methods: Q. Variational Alg. Simulation

● Quantum Kernel Estimation (QKE)
○ Dual representation of the support vector machine (SVM)



QiML Methods: Q. Variational Alg. Simulation

● Quantum Kernel Estimation (QKE)
○ Leverage quantum feature maps to perform the kernel trick 

● Classical Kernel: 

● Quantum Kernel:



QiML Methods: Q. Variational Alg. Simulation

● Quantum Variational Circuits (QVC)
○ Hybrid quantum-classical approach
○ Classical optimizer adjusts the parameters of a quantum circuit
○ Quantum analogues of neural networks



QiML Methods: Q. Variational Alg. Simulation

● 1. Encoding Circuit
○ Encodes classical data into quantum state space using a non-linear feature map
○ Defined by circuit             , and acts on data: 



QiML Methods: Q. Variational Alg. Simulation

● 2. Variational Circuit
○ Quantum circuit that represents and approximates a target function for the given task
○ Layers of quantum gates parameterized by a set of “free parameters”



QiML Methods: Q. Variational Alg. Simulation

● 3. Measurement
○ Collapsing the resulting state into classical information, based on chosen basis
○ Expectation value of observable      :                                                   → scalar cost function



QiML Methods: Q. Variational Alg. Simulation

● 4. Classical Optimization
○ optimized via gradient descent, adjusting parameters     



QiML Methods: Q. Variational Alg. Simulation

● QVC framework as a basis for more complex frameworks:
○ Quantum Convolutional Neural Networks (QCNN),
○ Quantum Generative Adversarial Networks (QGAN),
○ Quantum Circuit Born Machines (QCBM), …

QCNN QGAN


