
Real-time containers for mixed-criticality cyber-
physical cloud systems

Marcello Cinque
DIETI, Università degli Studi di Napoli Federico II, Italy

macinque@unina.it

87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Cyber-Physical Cloud
Recent spread of cloud technologies in industrial domains

● Use of virtualization, VMs, containers
hypervisors, orchestrators, …

… on cyber-physical systems

● With differentiated requirements

● Edge devices hosting different loads
○ real-time supervision and control
○ predictive maintenance
○ digital twins

● A multi-layered Mixed-Criticality System

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Why virtualization?
The automotive case

4

AN INTEL COMPANY

™

How to Integrate More Functionality onto a Smaller Number of More
Efficient ECUs—Without Increasing the Complexity of the Testing Effort

By Georg Doll

A Smart Way to Drive ECU
Consolidation

WHEN IT MATTERS, IT RUNS ON WIND RIVER

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Similar trends in the factory
Programmable factory floor
Industry “softwarization”

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

A consolidate trend in avionics

Federated Architecture Integrated Modular
Architecture (IMA)

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

A peculiar case: the ITER fusion reactor

ITER real-time control and monitoring infrastructure

9

ITER Tokamak

ITER Servers

monitoring

sensor reading

distributed
control

communication

ITER Applications

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

ITER CODAC Software Architecture

Sensors & Actuators

Signals
Conditioning

Fast
Control Loops Data Logger

Data Analysis
Computational

Intensive Control
Loops

AI Prediction

MPSoC

Server

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Towards Integrated Systems
• Towards an integrated development model rather than a federated one

Plasma
Control
System

Resource Utilization
System Scalability
Reliable Communication

• Why To Integrate?

• Main Challenges
Applications Isolation & Consolidation
Hardware/Software Heterogeneity

VM

VM

VM

VM

VM

VM

VM VM

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

How to isolate real-time workloads?

Figure 1: Hypervisor and OS combinations with related applications

thus embed both the application and the OS code, and can be
run directly on the physical hardware or on top of a hypervisor.

An alternative or complement to hypervisor-based virtual-
ization is OS-level virtualization. The goal is to obtain a virtual175

domain, called container, with its own virtual CPU and virtual
memory as in the traditional processes of an operating system, a
virtual filesystem, a virtual network, process and user manage-
ment. These virtual resources are distinct for each container in
the system.180

A container is not a virtual machine in the traditional sense,
since there is no emulation of the physical hardware. For this
reason, compared to full- and paravirtualization, this type of vir-
tualization is lighter. For this reason, containers are more and
more used in cloud environments to further improve applica-185

tion consolidation on the same hardware, avoiding replicating
the OS stack. For the same reason, container-based virtualiza-
tion is gaining momentum also in real-time systems [17, 23],
especially when stringent scalability and size constraints must
be met, providing additional isolation level, while leveraging190

container orchestration capabilities (e.g., Kubernetes [24]).
We remark that both container-and unikernel-based virtual-

ization do not include virtualization in the strict sense. How-
ever, both containers and unikernels are very spread concepts
in the context of virtualization systems literature, and are start-195

ing to gain attention in industrial and real-time systems as well,
thus we discuss these kinds of approaches in this survey.

Figure 2 wraps up the di↵erent virtualization approaches
discussed above, which are only a partial view of the entire vir-
tualization spectrum.200

⌅ Isolation properties. As mentioned previously, virtualiza-
tion is one of the enablers for mixed-criticality systems, where
in general there is the need to create strongly isolated partitions
that run applications a di↵erent level of criticality.

In this respect, virtualization must ensure isolation between205

virtual instances [25, 26, 27]. In simple terms, this means that

Figure 2: Examples of virtualization approaches.

applications running on a virtual domain must have the illusion
of being the only ones running on the physical machine. In
the context of virtualization, we mainly consider three isolation
properties.210

Temporal isolation, or temporal segregation, is the abil-
ity to isolate or limit the impact of resource consumption (e.g.
CPU, network, disk) of a virtual domain on the performance
degradation of other virtual domains. This means that a crit-
ical task running on a virtual domain (for example a task on215

a VM or inside a container) must not cause serious delays to
other critical and non-critical tasks running in a di↵erent vir-
tual domain, avoiding phenomena such as starvation, reduced
throughput and increased latency. Temporal isolation is cru-
cial in mixed-criticality systems, where tasks run in a criti-220

cal domain must guarantee specific performance Service Level
Agreements (SLAs) and must not interfere with each other.
In the context of safety-critical applications, some standards
(e.g., IEC 61508-3 annex F [28], ISO 26262-6 annex-D [10],
ARINC-653 [29], DO 178 6.3.3f [9], CAST-32A [30]) suggest225

adopting cyclic scheduling between virtual domains, to assure
static and predetermined time slots to each domain.

The other crucial property is spatial isolation (also known
as memory isolation or spatial segregation). This property de-
scribes the ability to isolate code and data between virtual do-230

mains and between virtual domains and hosts. This means
that a task should not be able to alter private data belonging to
other tasks, including devices assigned to a specific task. Spa-
tial isolation is usually implemented using hardware memory
protection mechanisms, such as the Memory Management Unit235

(MMU). Considering the case of shared physical devices, also
I/O isolation becomes important. Often, the IOMMU is used
to properly resolve the isolation of memory-mapped devices.
In some cases, access to hardware devices from the di↵erent
virtual domains is serialized.240

Finally, fault isolation, or fault/error containment, prevents
that failures, occurring in a virtual domain, are propagated to
the hypervisor and/or to other virtual domains, causing block-
ages or even stopping the whole system.

3

M. Cinque et al., “Virtualizing Mixed-Criticality Systems: A Survey of Industrial Trends and Issues”
Future Generation Computer Systems, Volume 129, 2022

Guest OS vs Hypervisor

Figure 1: Hypervisor and OS combinations with related applications

thus embed both the application and the OS code, and can be
run directly on the physical hardware or on top of a hypervisor.

An alternative or complement to hypervisor-based virtual-
ization is OS-level virtualization. The goal is to obtain a virtual175

domain, called container, with its own virtual CPU and virtual
memory as in the traditional processes of an operating system, a
virtual filesystem, a virtual network, process and user manage-
ment. These virtual resources are distinct for each container in
the system.180

A container is not a virtual machine in the traditional sense,
since there is no emulation of the physical hardware. For this
reason, compared to full- and paravirtualization, this type of vir-
tualization is lighter. For this reason, containers are more and
more used in cloud environments to further improve applica-185

tion consolidation on the same hardware, avoiding replicating
the OS stack. For the same reason, container-based virtualiza-
tion is gaining momentum also in real-time systems [17, 23],
especially when stringent scalability and size constraints must
be met, providing additional isolation level, while leveraging190

container orchestration capabilities (e.g., Kubernetes [24]).
We remark that both container-and unikernel-based virtual-

ization do not include virtualization in the strict sense. How-
ever, both containers and unikernels are very spread concepts
in the context of virtualization systems literature, and are start-195

ing to gain attention in industrial and real-time systems as well,
thus we discuss these kinds of approaches in this survey.

Figure 2 wraps up the di↵erent virtualization approaches
discussed above, which are only a partial view of the entire vir-
tualization spectrum.200

⌅ Isolation properties. As mentioned previously, virtualiza-
tion is one of the enablers for mixed-criticality systems, where
in general there is the need to create strongly isolated partitions
that run applications a di↵erent level of criticality.

In this respect, virtualization must ensure isolation between205

virtual instances [25, 26, 27]. In simple terms, this means that

Figure 2: Examples of virtualization approaches.

applications running on a virtual domain must have the illusion
of being the only ones running on the physical machine. In
the context of virtualization, we mainly consider three isolation
properties.210

Temporal isolation, or temporal segregation, is the abil-
ity to isolate or limit the impact of resource consumption (e.g.
CPU, network, disk) of a virtual domain on the performance
degradation of other virtual domains. This means that a crit-
ical task running on a virtual domain (for example a task on215

a VM or inside a container) must not cause serious delays to
other critical and non-critical tasks running in a di↵erent vir-
tual domain, avoiding phenomena such as starvation, reduced
throughput and increased latency. Temporal isolation is cru-
cial in mixed-criticality systems, where tasks run in a criti-220

cal domain must guarantee specific performance Service Level
Agreements (SLAs) and must not interfere with each other.
In the context of safety-critical applications, some standards
(e.g., IEC 61508-3 annex F [28], ISO 26262-6 annex-D [10],
ARINC-653 [29], DO 178 6.3.3f [9], CAST-32A [30]) suggest225

adopting cyclic scheduling between virtual domains, to assure
static and predetermined time slots to each domain.

The other crucial property is spatial isolation (also known
as memory isolation or spatial segregation). This property de-
scribes the ability to isolate code and data between virtual do-230

mains and between virtual domains and hosts. This means
that a task should not be able to alter private data belonging to
other tasks, including devices assigned to a specific task. Spa-
tial isolation is usually implemented using hardware memory
protection mechanisms, such as the Memory Management Unit235

(MMU). Considering the case of shared physical devices, also
I/O isolation becomes important. Often, the IOMMU is used
to properly resolve the isolation of memory-mapped devices.
In some cases, access to hardware devices from the di↵erent
virtual domains is serialized.240

Finally, fault isolation, or fault/error containment, prevents
that failures, occurring in a virtual domain, are propagated to
the hypervisor and/or to other virtual domains, causing block-
ages or even stopping the whole system.

3

A plethora of approaches available

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Cyber-Physical Cloud

Our vision

Containers
everywhere!

Assure isolation at edge/things
layer by running containers in
isolation

Real-Time
containers

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Real-Time containers

• Key benefits
• Same abstraction from the

cloud to the edge and things
• Integration with DevOps
• Integration with Orchestrators
• Lightweight solution,

compared to VMs
• Fit the Real-Time FaaS1 model

1) M. Cinque. Real-Time FaaS: serverless computing for Industry 4.0. Service Oriented Computing and Applications 17(2), 2023

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Challenges of real-time containers

1. How to achieve isolation with containers?
• Need to go beyond OS-level virtualization

2. Ho to deal with heterogenous hardware?

3. How to orchestrate considering mixed-criticality?

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Recent studies focused on containers for real-time environments, with:
● RT-Linux: running containers on a PREEMPT_RT patched kernel with the

SCHED_DEADLINE policy for group scheduling (rt-cgroups), affinity, isolcpu, …
● Dual-kernels: mapping containers on Xenomai or RTAI1
● Sandboxes: run as lightweight VMs (RunX, firecracker, gvisor, partitioned containers2, …)
● Baremetal: run on accelerators (e.g., Zephyr app on an RPU)

Many proposals for real-time containers!

1. M. Barletta, M. Cinque, R. Della Corte, L. De Simone,
“Achieving isolation in mixed-criticality industrial edge systems
with real-time containers”, in ECRTS 2022

2. M. Barletta, M. Cinque, R. Della Corte, G. Farina, L. De Simone,
D. Ottaviano. “Partitioned Containers: Towards Safe Clouds for
Industrial Applications”, DSN 2023 – Disrupt Track

Challenge
Can we transparently map a container on all this different

“backends”, based on criticality requirements?

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Mapping containers on backends

RT-Linux Dual-
kernel RunX Partitioned

container
Baremetal

on MPSoCs

ba
ck
en
ds

co
nt
ai
ne
rs

OCI

ISOLATION ASSURANCE

https://github.com/runphi

D. Ottaviano, M. Barletta, F. Boccola, Zero-Interference Containers: A Framework to Orchestrate
Mixed-Criticality Applications, DSN 2025

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Benefits of RunPhi

• Transparency
• docker run works to run the same RT-POSIX container on Linux

or on Zephyr on a Cortex-R co-processor

• Mixed-Criticality native
• Redundancy with diversity for free
• Seamless migration on different backends
• Diversified rolling upgrade

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Challenges of real-time containers

1. How to achieve isolation with containers?
• Need to go beyond OS-level virtualization

2. How to deal with heterogenous hardware?
• How to extend isolation to MPSoCs?

3. How to orchestrate considering mixed-criticality?

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Still problems on MPSoCs!

In
pu

t

O
ut

pu
t

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

From Hypervisor to Omnivisor

üSpatial Isolation
üTemporal Isolation

D. Ottaviano, F. Ciarolo, R. Mancuso, M. Cinque. The Omnivisor: A real-time static partitioning hypervisor extension for
heterogeneous core virtualization over MPSoCs. ECRTS 2024

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Same workload with the Omnivisor

In
pu

t

O
ut

pu
t

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Challenges of real-time containers

1. How to achieve isolation with containers?
• Need to go beyond OS-level virtualization

2. How to deal with heterogenous hardware?
• How to extend isolation to MPSoCs?

3. How to orchestrate considering mixed-criticality?
• How to map containers on nodes

• Considering their criticality
• With bounded time

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Orchestration issues

• Orchestrators map containers on nodes only
considering CPU/memory/storage requirements

• They are not able to
prioritize service
requests1

Time for K8S to start a high-priority container while
applying an increasing number of interfering requests

1. M. Barletta, M. Cinque, L. De Simone, S. Toscano.
PREEMPT-K8S: Pod Prioritization for Mixed-
Criticality Edge-Cloud Services, DSD 2025

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Criticality-Aware Monitoring and Orchestration for Containerized Industry 4.0 Environments 13

WN

WN

Compute Cluster

New component Basic component

Control Plane

Launcher
State Monitor

User API

SchedulerResource Manager &
Accounting

Network
ManagerResource

Assurance

Criticality Real-time

Real-time

Consensus

Master Nodes

Worker Node
Jobs

Criticality Real-time

. . .

JobN

Job1

. . .

Worker Agent
Resource

Assurance Real-time Network
Container
Runtime

state

actions

WN

WN

Legend

RTJobN

Criticality Real-timeRTJob1

NetworkCriticality Real-time

Fig. 3. Proposed Architecture of k4.0s.

state of the nodes, as if it was integrated into the scheduler itself. In the latter, it must be aware
only of schedulers and the state of its node. However, intermediate solutions are possible, like for
example one scheduling agent for every speci�ed number of nodes, with di�erent impacts on the
overhead of the scheduling process. We adopt the strategy of installing a scheduling agent for each
node (the real-time module in the agent) to foster the system �exibility: as long as a node provides
an agent respecting the protocol, every scheduling scheme and every hypervisor/OS is allowed.
Indeed, the orchestration scheduler is not aware of the particular schedulability test performed
on worker nodes, and schedulability tests are pluggable. This enables the use of a broad range
of virtualization approaches that host containerized applications, each characterized by di�erent
real-time frameworks.
I Resource assurance monitor, control-side. This module collects information about the
assurance levels of the worker nodes and their real-time capabilities over time. The Scheduler uses
this information to implement a placement aware of the isolation assurance for the resources on
the nodes, enforcing the aggregation policies to match the resources’ assurance with the criticality
of the jobs. For example, nodes with high assurance for speci�c resources are �rst selected for
high-criticality jobs, while nodes with lower overall assurance levels are preferred for low-criticality
jobs; this avoids the occupancy of highly isolated assurance nodes, which can be exploited for
future critical tasks.
I Network manager. This component manages virtual networks and keeps track of the physical
network topology and the di�erent types of networks. Although this component already exists in
several container orchestration systems, we highlight its importance and extend its duties. The
scheduler delegates to it the schedulability test strictly related to the network requirements, both
on the node and the end-to-end communication path. For example, the Network manager keeps
track of timeslots used in a TDMA-based network, delay matrices for best-e�ort networks, and
available capacity for each physical link. The network manager coordinates and communicates with
the network component of the worker agent to provide services usually o�ered in orchestration
systems currently available, such as load balancers and proxies, which allow coping with rules of
routing in the complex virtualized networks. Similarly, we extend the collaboration between these

J. ACM, Vol. 1, No. 1, Article . Publication date: May 2023.

k4.0s: an orchestrator for I4.0

Criticality aware
Criticality matches the node
assurance

Worker nodes assurance
monitoring
Assurance is periodically updated

M. Barletta, M. Cinque, R. Della Corte, L. De Simone. Criticality-Aware Monitoring and Orchestration for Containerized
Industry 4.0 Environments. ACM Transactions on Embedded Computing Systems.. 2023

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

PREEMPT-K8S

• A preemptable
Kubernetes
controller able to
fully prioritize
critical requests1

Time for K8s, K8s + FlowSchema (FS) + Priority Class
(PC), and PREEMPT-K8S to start a high-priority container
while applying an increasing number of interfering requests

1. M. Barletta, M. Cinque, L. De Simone, S. Toscano.
PREEMPT-K8S: Pod Prioritization for Mixed-
Criticality Edge-Cloud Services, DSD 2025

macinque@unina.it87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025

Anacapri, Capri Island, Italy
October 13-17, 2025

https://capric-school.github.io/

Questions ?Thank you !

87th IFIP WG 10.4 Meeting – Ischia, June 29th 2025 macinque@unina.it

