
Discovering and classifyng residual defects
in the new era of AI-based

Code Generators
Domenico Cotroneo,

Pietro Liguori, Giuseppe De Rosa, Benedetta Gaia Varriale

https://dessert.unina.it

The Challenge of Predicting Residual Faults

Residual faults are bugs that remain after extensive testing.
It is still an open and challenging issues

real test cases

residual faults

AI Code Generators: A New Source of Residual Bugs

AI-based code generators (e.g., Copilot, ChatGPT) produce large volumes of
code.

AI code generators aren’t only used to write new features. They’re increasingly
integrated into comemercial tools that apply patches automatically
(e.g., CodeQL, CoPilot, sourcery etc...)

AI-generated code is syntactically correct, but often buggy, vulnerable, and
unnatural.

Subtle, non-obvious (maybe unknown and/or difficult to detect) bugs can
escape traditional review and testing.

Write a Java Funtion that multiplies two matrixes that
stores the result in a static cache

import java.util.*;

public class LeakyMatrixMultiplier {
 // Simulate a cache that is never cleared (memory leak)
 private static Map<String, int[][]> resultCache = new HashMap<>();

 public static int[][] multiply(int[][] A, int[][] B) {
 int rowsA = A.length;
 int colsA = A[0].length;
 int colsB = B[0].length;

 int[][] result = new int[rowsA][colsB];

 for (int i = 0; i < rowsA; i++) {
 for (int j = 0; j < colsB; j++) {
 for (int k = 0; k < colsA; k++) {
 result[i][j] += A[i][k] * B[k][j];
 }
 }

 for (int i = 0; i < rowsA; i++) {
 for (int j = 0; j < colsB; j++) {
 for (int k = 0; k < colsA; k++) {
 result[i][j] += A[i][k] * B[k][j];
 }
 }
 }

 // Store result in a static cache that never release entries
 String key = UUID.randomUUID().toString();
 resultCache.put(key, result);

 return result;
 }

The use of statistical metrics
Process metrics tell us how the code
changes over time.

Product metrics tell us what the
structure and complexity are.

But neither tells us how unusual or
unnatural the code is.

Statistical metrics e.g., cross-
entropy(which captures the
naturalness of code, i.e, its ability to
be repetitive and predictable) are
beign used in literature

507,000 code samples (Python and Java). We used
ChatGPT, DeepSeek-Coder, and Qwen-Coder,

Our idea that targets Java systems
We started with more thatn 200K Java funtions form human-made code repositories
Make classification through software code metrics

open source
Java projects

JavaBugs.csv

Code properties extraction
data extraction 1. product metrics

2. process metrics
3.semantic relation

ships (call graphs,
taint analysis, cross-
code interactions)

model
training

3. statistical code metrics
(entropy, statistical

distributions)

selection of
most relevant

metrics/relationships

model
training

contributions (ongoing work)
JavaBugs, a new dataset with (residual) faulty methods and classes
from open source Java projects. It provides complete information
about the source of the code

Subset of relevant metrics and reltionships that enable accurate
residual fault prediction

Model for classification of residual bugs through the relevant
metrics

preliminary experiments - metrics extraction

Metrics extraction:
we want to study how the combination of three different types of metrics
could be useful in residual faults prediction. We considered:

process metrics
product metrics
statistical code metrics (entropy, which captures the naturalness of
code, i.e, its ability to be repetitive and predictable, as it is the product
of human effort (Hindle et al.))

https://dl.acm.org/doi/10.5555/2337223.2337322

preliminary experiments - entropy

We observed a difference at line level:
the entropy of a fixed or faulty line is higher than the one of correct line,

This leads us to the conclusion that also the fixed lines are less natural than the
correct ones(Jiang et al.) In the next steps we will understand how to use this
information.

https://dl.acm.org/doi/10.1145/3718083
https://dl.acm.org/doi/10.1145/3718083

preliminary experiments - process metrics
In this preliminary phase, we picked these three metrics because their
boxplots show wide spreads and clear outliers, making it easy to spot
elements with unusually high new code additions, overall churn from commits,
and single-commit change spikes

Ongoing work and conclusion

Preliminary experiments suggested use that
we can use cross-entropy even though we have to shift the analysis from
function level to line level
Process metrics can be also used to leverage the characterization

We are train our final model and analse the results

We are extending the dataset that contains both AI- and human -generated code in order
to compare the types and the density of residual faults

