Dependable software engineering
Can we increase trust in our components?

Marcelo Pasin Hes SO unine’

eeeeeeeeeeeeeeeeeee Université de Neuchatel

achhochschule Westschwe
University of Applied Sciences an d Arts 9 Ge
Western Switzerland

IFIP Working Group 10.4
& =g Dependable Computing and Fault Tolerance
=% Ifip . . oo
87t meeting — Praia do Forte, Bahia, Brazil — 6-10 Feb 2025

How much we can trust In
current software distributions?

* Let’s say we want to deploy a web server
* Example: nginx, latest version: 1.27

 Easy today
« apt 1nstall nginx
« docker run nginx
« kubectl apply (vour manifest here)

e |Is it safe?

* Existing tools:
* GitHub Dependabot, OWASP dependency check
* npm/pi/cargo audit, Snyk, Trivy
* SCAs Black Duck, JFrog Xray, Sonatype Nexus

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

What is the fundamental problem?

* Software can be hacked (old story)

* All software is the result of compositions
* Including numerous dependencies (and sub-dependencies)
« Composition is done at different levels (compilation, packaging, etc)

* Itis hard to figure out what we are actually executing
* Itis hard to ensure trust in software supply chains (traceability)
 Can any of my components be hacked?

* The composition (supply) chains can be hacked
1. Malicious additions to genuine source code
2. Abuses in the distribution (malicious replacements, homonyms, etc)

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

How bad is this problem?

How much we can trust in existing software dependencies?

* Analysed Docker Hub's 1000 Top Repositories

* Safe to assume they are widely deployed,
maybe even in critical systems

* Used information from images’ BOMs
* 63% of images contained a BOM

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

Other (<3%)

Maven
[NPM
[Debian

Go

Python

PHP
[RedHat

||

Median: 246.5

Docker Hub dependencies

1 T
1 1
1 1
1 1
! H
T T
o o

1 1
1 1
1 1
1 1
I
T T
o o
o (o] (] <
—

1204

sabeuw Jo Jaquinp

204
0

o
o
o
-
-
o
n
on
@
@)
C
o
©
C
(b}
Q.
(D)
()]
X QQQ”
000, 0
@
00% m
(b}
(b}
QQ,D p
(D)
006 m
o
QQD valu
@]
QQnO m
-
Qan Z
QQ\.
o

Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

7 Feb 2025

Docker Hub dependencies

‘ [At latest patch version [No reported vulnerabilities
[At latest minor version - Critical
I At latest major version [High
[Behind latest major version © Medium
Low
" Unspecified

Dependencies versions’ upkeep Known CVE vulnerabilities

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 5

How can we add trust?

Full traceability can help solving the problem

* Consider software composition as a tree
* Executable is the root, sources are leaves
 Composition points are edges
* Intermediary files are nodes in the tree

 Simple steps
* Annotate all nodes in the tree
e Certify source code at all leaves

* Add traceability throughout the tree
* Annotate node with children’s hashes (its sources)

* Attest the executable code (the root) before executing

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

Basic traceable software supply chain

translate compose

Al #75fell |]

Source —>®—> Object w Linked
Code Code Code

N

#45fcla #75fell #0abcle

Libraries

#87ff3a

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

Certification

* Expert code review
* Actual visual code review
* Formal analysis
* Pen tests
* |Acan helpin all steps, some can be automated

* Not flawless, but many decent techniques exist

* |If pass, a certificate is issued and signed
* All source files must carry a certificate

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

Traceability

e Start with certified/signed sources

* Hashes are combined at every composition (ex. linking)
* E.g. Merkle trees

* Annotations must be implemented at all stages
* Compilation, linking, composition, layering, etc.

* There are not many popular standards
* How to annotate

* How to represent the trace tree
 Current BOMs / manifests could be extended with annotations

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

Attacks to the supply chain

7 Feb 2025

Source
Code

#45fcla

Marcelo Pasin -

Object
Code

#75fell

A | #75fell ||

Linked
Code

#0abcle

#87ff3a

Dependable software engineering - IFIP WG 10.4 87th Meeting

10

Trusted computing

* Need to trust all tools used in the path from source to binary
* Make sure only genuine tools are running

* Implemented with trusted execution environment (TEE)
* Intel SGX & TDX, AMD SEV, Arm TrustZone & CCA, RISC-V CoVE

* Changes to running software can be detected
* Trusted hardware provide remote attestation

* Annotations can be signed inside TEE, increasing trust in the chain

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 1 1

Trusted traceable software supply chain

7 Feb 2025

> Linked

Code

J g J g
TEE TEE
Source >® > Object
Code Code
: N 4 :
#45fcla #75fell

Libraries

#87ff3a

#0abcle

Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

12

Prototype implementation

* Development chain for Rust into WebAssembly
* Implemented in COOperation with SCS https://www.scs.ch/
* Relies on previous work with UNINE

* Wasmsign
* Embed metadata in WebAssembly binaries

* Wasmshield

* Integrated with Rust DK
* Custom workflows to produce, bundle, and verify proofs

* Componentintegrity
* SBOM vulnerability assessment

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting

13

Wrap-up

* Fully trusted traceability is rather easy to implement
* Need modifications in the tools for code transformation
* Great help from trusted execution environments

Hes unine:

Th a n k yo u fo r yo u r ti m e ! Université de Neuchdatel

0006

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 1 4

