
Dependable software engineering
Can we increase trust in our components?

IFIP Working Group 10.4
Dependable Computing and Fault Tolerance
87th meeting – Praia do Forte, Bahia, Brazil – 6-10 Feb 2025

Marcelo Pasin

How much we can trust in
current software distributions?
• Let’s say we want to deploy a web server
• Example: nginx, latest version: 1.27

• Easy today
• apt install nginx
• docker run nginx
• kubectl apply (your manifest here)

• Is it safe?
• Existing tools:
• GitHub Dependabot, OWASP dependency check
• npm/pi/cargo audit, Snyk, Trivy
• SCAs Black Duck, JFrog Xray, Sonatype Nexus

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 1

What is the fundamental problem?

• Software can be hacked (old story)

• All software is the result of compositions
• Including numerous dependencies (and sub-dependencies)
• Composition is done at different levels (compilation, packaging, etc)

• It is hard to figure out what we are actually executing
• It is hard to ensure trust in software supply chains (traceability)
• Can any of my components be hacked?

• The composition (supply) chains can be hacked
1. Malicious additions to genuine source code
2. Abuses in the distribution (malicious replacements, homonyms, etc)

Remember

- SolarWinds

- Log4j?

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 2

How bad is this problem?

How much we can trust in existing software dependencies?

• Analysed Docker Hub's 1000 Top Repositories
• Safe to assume they are widely deployed,

maybe even in critical systems

• Used information from images’ BOMs
• 63% of images contained a BOM

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 3

Docker Hub dependencies2.1. PROBLEM STATEMENT CHAPTER 2. MOTIVATION

Figure 2.2: Number of dependencies per image

contain a list of dependencies the image requires to run. We evaluated the latest image
version available on each of the 1000 repositories. Of these 1000 images, 37.0% did not
have an accessible SBOM, which meant that their dependencies could not be evaluated.
The remaining 630 presented a distribution of the number of dependencies illustrated
by Figure 2.2.

The source registries these dependencies came from also varied. This provenance infor-
mation was collected to be able to evaluate a dependency’s version and whether it was
being kept updated or not (the version upkeep) by comparing the version listed in the
SBOMwith the latest one available on the source registry. The top three source registries
in order are listed below. A more complete overview of the sources can be seen in Figure
2.3.

• 37.4% dependencies were sourced from the Maven Repository using the package
manager maven

• 21.6% from the Node.js Repository using Node Package Manager (NPM), program-
matically known as npm

• 13.2% from the Debian Repository using deb

Of the dependencies sourced from these top three registries, and those with valid, ac-
cessible version metadata, the distribution of version maintenance shown in Figure 2.4
was observed2. 37.2% of the dependencies were up to date (at the latest minor version),
30.9% were on the latest major release and 31.9% were behind the latest major release.

2Of the evaluated dependencies, 66.9% did not have a valid version entry on one of the three package
repositories. This is further explained in Section 6.

8

CHAPTER 2. MOTIVATION 2.1. PROBLEM STATEMENT

Figure 2.3: Package repositories of the dependencies

Figure 2.4: Version upkeep of the dependencies with valid and accessible version meta-
data

Titus Abele — Secure software engineering for WebAssembly components 9

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 4

Dependencies sourcesNumber of dependencies

Docker Hub dependencies

CHAPTER 2. MOTIVATION 2.1. PROBLEM STATEMENT

Figure 2.3: Package repositories of the dependencies

Figure 2.4: Version upkeep of the dependencies with valid and accessible version meta-
data

Titus Abele — Secure software engineering for WebAssembly components 9

2.1. PROBLEM STATEMENT CHAPTER 2. MOTIVATION

Figure 2.5: Highest ranked vulnerability per image

More surprisingly, Docker Hub also publishes Common Vulnerabilities and Exposures
(CVE) statistics for the images that are paired up with a SBOM. We observed that 26.8%
of the images had at least one vulnerability that warranted the "Critical" severity on
the CVSS. A more detailed view of the proportion of highest ranking vulnerabilities per
image can be seen in Figure 2.5.

However, when an image containing vulnerabilities of any severity is run, there are no
warnings or other indications to inform the user of the potential risk. This could be ex-
ploited as an attacker could use these known vulnerabilities to find containers running
vulnerable images. A demonstration of a standard pull and run of a popular image con-
taining multiple vulnerabilities of all severities can be found in Listing 2.1. The vulner-
abilities in the dependencies of this image are documented on its DockerHub repository
page. The vulnerabilities are categorized as follows: 3 are designated as critical, 35 as
high, 16 as medium, 26 as low, and 1 as unspecified. It is important to note that the user
is neither notified nor warned about these vulnerabilities, and the decision to pull and
run the image is made at the user’s own risk. This is additionally supported by the lack of
accountability of pre-compiled binaries being pulled and executed inside the containers.
Typically, packages stemming from the package repository associated with the Go pro-
gramming language are distributed as binary blobs, these account for 7.5%. This could
also be the case of any linked libraries associated with Rust or C++. Docker’s SBOM
lacks information surrounding these dependencies.

Even more concerning are the findings of Zimmermann et al. (2019) which say that in
2018 for any one NPM package there were on average a staggering 80 dependencies that
this single package depended on; in addition to the one, all 80 also requiring full trust
from the user. If we suppose a constant average probability for any package to contain a
vulnerability, we may infer that said probability for that single package is increased 80

10

Dependencies versions’ upkeep Known CVE vulnerabilities

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 5

How can we add trust?

Full traceability can help solving the problem
• Consider software composition as a tree

• Executable is the root, sources are leaves
• Composition points are edges
• Intermediary files are nodes in the tree

• Simple steps
• Annotate all nodes in the tree
• Certify source code at all leaves
• Add traceability throughout the tree

• Annotate node with children’s hashes (its sources)
• Attest the executable code (the root) before executing

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 6

Basic traceable software supply chain

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 7

Source
Code

Compiler LinkerObject
Code

Linked
Code

Libraries

#45fc1a #75fe11 #0abc1e

#87ff3a

#45fc1a #75fe11#75fe11#75fe11

translate compose

Certification

• Expert code review
• Actual visual code review
• Formal analysis
• Pen tests
• IA can help in all steps, some can be automated

• Not flawless, but many decent techniques exist

• If pass, a certificate is issued and signed
• All source files must carry a certificate

Is the “flawless fault

detector” a thing?

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 8

Traceability

• Start with certified/signed sources
• Hashes are combined at every composition (ex. linking)
• E.g. Merkle trees

• Annotations must be implemented at all stages
• Compilation, linking, composition, layering, etc.

• There are not many popular standards
• How to annotate
• How to represent the trace tree
• Current BOMs / manifests could be extended with annotations

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 9

Attacks to the supply chain

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 10

Source
Code

Compiler LinkerObject
Code

Linked
Code

Libraries

#45fc1a #75fe11 #0abc1e

#87ff3a

#45fc1a #75fe11#75fe11#75fe11

In
se

rt
m

al
ic

io
us

 c
od

e

In
se

rt
m

al
ic

io
us

 c
od

e

Trusted computing

• Need to trust all tools used in the path from source to binary
• Make sure only genuine tools are running

• Implemented with trusted execution environment (TEE)
• Intel SGX & TDX, AMD SEV, Arm TrustZone & CCA, RISC-V CoVE

• Changes to running software can be detected
• Trusted hardware provide remote attestation

• Annotations can be signed inside TEE, increasing trust in the chain

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 11

Trusted traceable software supply chain

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 12

Source
Code

Compiler LinkerObject
Code

Linked
Code

Libraries

#45fc1a #75fe11 #0abc1e

#87ff3a

#45fc1a #75fe11#75fe11#75fe11

TEE TEE

Prototype implementation

• Development chain for Rust into WebAssembly
• Implemented in cooperation with SCS https://www.scs.ch/

• Relies on previous work with UNINE

• Wasmsign
• Embed metadata in WebAssembly binaries

• Wasmshield
• Integrated with Rust DK

• Custom workflows to produce, bundle, and verify proofs
• Component integrity
• SBOM vulnerability assessment

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 13

Wrap-up

• Fully trusted traceability is rather easy to implement
• Need modifications in the tools for code transformation
• Great help from trusted execution environments

Thank you for your time !

7 Feb 2025 Marcelo Pasin - Dependable software engineering - IFIP WG 10.4 87th Meeting 14

