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Quantum Computin
or Nightmare:

Otimization

Logistics problems
Combinatorial optimization

Simulations

Precise molecular models
New materials

Artificial Intelligence

More compact models
Energy efficiency

Criptanalysis

Breaking asymmetric

cryptography protocols




Quantum Computing
Potential Applications

Petroleum

o Geophysics and
Seismic

o Inversion and
Imaging

o Well
Optimization

o Routing
Problems

Chemistry

o Quantum
Batteries

o Thermal
Machines

o Molecules
Simulation

Finance

o Portfolio
optimization

o Credit Risk

o Credit Scoring

o Feature
Selection

o Quantum
Classifiers

o Quantum
Generative
adversarial
network (GANSs)

o Variational
Quantum
Classifiers

o Unit Commitment
Problem

o Multisource
simulations



Quantum Computing
Quantum Threat

* Quantum algorithms have the potential to break current classical cryptography

* Grover’s Algorithm (https://arxiv.org/pdf/quant-ph/9605043)
o Faster search algorithm for unsorted data

* Shor’s Algorithm (https://arxiv.org/abs/quant-ph/9508027)

o Can break asymmetric algorithms (RSA, DH, ECC)

o Solves the underlying hard-problems — factoring large integer numbers, discrete logarithm —
exponentially faster than best known classic algorithm



https://arxiv.org/pdf/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9508027

Quantum Threat to Cryptographic Systems
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* RSA Encryption based on key size: Current RSA keys are 2048
bits.

* In May 2024, Shanghai University researchers factored a 50-bit
integer using D-Wave's Advantage quantum computer.

it ] Bl 5 11 Vaol. 47 No. §
CHINESE JOUIRNAIL OF COMPUTERS May 2024
Quantum Annealing Public Key Cryptographic Attack Algorithm Based on
D-Wave Advantage

WANG Chao WANG Qi-I HONG Chun-Ler HU Qiao-Yun PEI Zhi
( Key Laboratory of Specialty Fiber Optics and Optical Access Networks » Shanghai University « Shanghai  200444)

* Currently, 3072 bits are considered safe for RSA

e BUT until when?

"Quantum Safe Cryptography and Security’, ETSL



Quantum Computing
Rapid Advancements

QUBIT R&D EFFORT AND ROADMAP
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- QPUs with hundreds/thousands of qubits is a reality
- Suppressing errors due to noise/imperfections is a
challenge

©

.1V qubits

A variety of architectures/hardwares is available

Quantum Technology Market Map — Quantum Computers
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Quantum Computing
Today

Technology

= Google breakthrough paves way for
~ large-scale quantum computers

Google has built a quantum computer that makes fewer errors as it is scaled up, and this

may pave the way for machines that could solve useful real-world problems for the first

time WAV AL LD L L
By Matthew Sparkes Quantum Computing Is Developing Faster Than Expected —

B 5 September 2024

e QUEFa Survey

Quantum Computing Business, Research  Mati Swayne * August 6, 2024

Microsoft-Led Team Achieves Record For Reliable Logical

/4
Qubits In Quantum Computing
WD
,//O‘v Research  Matt Swayne = [Sepiember10,2024

FT Financial Times

Scientific breakthrough gives new hope to building quantum
computers

One of the biggest remaining technical hurdles in the race to build practical quantum
computers has been cleared, according to experts in... 09 December 2024



Possible solutions

Post-quantum Cryptography

* Security based on the computational
complexity of encryption algorithms

* May not be a long-term solution

*  More efficient key-cracking
algorithms are coming

* Evolution of computing power

Quantum Criptography

* Security based on the laws of physics
* Unconditional security

* Requires dedicated hardware

* Field tests around the world

* Easy integration with existing network
infrastructure

* Range of up to ~350 km demonstrated

*  Mbps (kbps) secret key rate for short
(long) distances



Quantum Key Distribution (QKD)
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Quantum light: discrete or continuous

Key coding
Detection
Pre-processing
Error correction

Throughput

Limitations

Polarization of single photons
Weakened coherent pulses

Single photon

Low computational complexity

6.5 b/s @ 405km
(b/pulse) @ 1002km (TF)

Detector temperature

System speed

Sensitive to co-propagation with
classic signs

Quadrature field modulation

Coherent detection
(homodyne/heterodyne

DSP routines (synchronization,
equalization, etc.)

High computational complexity

* 0.7 Gb/s @ 5km
* 0.3 Gb/s @ 10km
* 25.4Kb/s @ 100km

* High computational load (pre/post)
* Reach
» Security analysis in development




Quantum cryptography

with continuous variables

* Integration with current telecom A
technologies

* Miniaturization (photonic circuits)

* Increased distance and key
generation rate

 New, more secure protocols

* Measurement Device
Independent

 Twin-field

 Distribution of entanglement
* The road to quantum internet

* Quantum Memories

* Quantum Repeaters

Hajomer et al, Optica 11, 1197-1204 (2024)
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Quantum Networks Worldwide

China

USA UK Russia
O Boston (DARPA, 2004) O Kazan (2016)
QO Washington, DC (2006) | QO Moscow (2017)
O NIST local network (2006/2007/2019) O Moscow-St. Petersburg
Q Columbus, Ohio (2013) 0 Nationwide network
QO Cambridge-Lexington (2018) 7
Q Boston-Washington, DC
O Boston-Georgia-California
“ N
.
o’ o
South Africa 45ps0 /
2 O Tokyo (2010/2013/2015)
Q Durban (2009/2010) O Nationwide network

South Korea

O Seongsu-Bundang (2016)
@ Metropolitan network (2016)
O Nationwide network

IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 839-894 (2022)




China Quantum Network - Beijing-Shangai
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Chen et al,, Nature 589, 214 (2021)



Intercontinental link — Austria-China

Micius — Graz, Austria
| Sifted key  QBER | Final key
06/18/2017 | 1361kb | 1.4% . ' Micius — Xinglong, China

06/19/2017 | 711kb | 2.3% _— S S Sifted key | QBER | Final key
06/23/2017 | 700 kb 4% 1.2% | 61kb

06/26/2017 | 1220 kb 5%~ 2 ! 06/15/2017 608 11% | 141kb

LB . Pais

06/24/2017 L 1.1% | 198 kb

7600km

Micius — Nanshan, China
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Liao et al., PRL 120(3): 030501 (2018)



QKD
Applications

* Unconditional security of
sensitive and confidential
information

* Integrity of critical
infrastructure and sensitive
data

OOOOOOOOO

=3 FEB 2022

FIRST QUANTUM SAFE DATA
TRANSFER PERFORMED AT
DANSKE BANK

Secure data transfers are necessary in the fight
against cybercrime and now researchers at the
Danish Technical University (DTU) have
accomplished secure transfer of data using
quantum technology.

Garcia et. al (2024) https://doi.org/10.1016/j.comcom.2023.11.010

TLS CLIENT TLS SERVER
_ Classical channel
. 7Y\ o n'n (11 3
X.509 | Step 2: Key ID notification | x 509
(Client key exchange) Step 3:
1 Get key
Key, Key id Key, Key id
Get key ( y yid) (Key (y ) with
key ID
Quantum channel
r
— Service channel —

QKD TX (Alice)
KMS Alice

QKD RX (Bob)
KMS Bob

Examples:

 TLS (transport layer security) - client-server protocol for
internet

*  Communication between remote datacenters

*  Protecting cloud services



Quantum Cryptography
When to invest?

y = lempo de migracao x = Prazo de seguranca para a informacao

z = lempo para ameaca quantica

Remaining transition period: 7-9 years

NIST launched NIST PQC standard NIST PQC standard | II
Public Key PQC Competition defined implemented [ ]
Cryptography |
Development®
2020 2022 2024 2026
2016
Quantum
Computing
Development Google declares QC breaks RSA-2048 QC breaks RSA-2048
“quantum supremacy” Aggressive view Conservative view

@ Encryption relying on current public key cryptography Bl Fublic Key Crypto? vulnerable to QC

® susceptible to “store now, break later” attacks

. Public Key Crypto augmented with PQC

Sources: NIST Post-Quantum Cryptography timeline, BCG analysis
Note: PQC: Post-Quantum Cryptography. NIST: National Institute of Standards and Technology USA.
Based on NIST PQC timeline

Public Key Cryptography (up to RSA-2048)

ing the. c;e/e fOr_thé,_-Tszuantum safe Cryptography Workshop’,
€ sf’/g/Wor s’hop/ZO 3/ 01309 CRYPTO/e-proceedings_Crypto_2013.pdf
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