
Report on Cybersecurity 
challenges and opportunities in 

critical systems

The 87th Meeting of the IFIP WG 10.4 on Dependable Computing and 
Fault-Tolerance

Praia do forte
10/02/2025



3 presentations

• Session chair: Pascal Felber
• Confidential Encoded Processing/Computing to Build Safety 

Critical Systems
• Christof Fetzer

• Research Challenges at the Intersection of Cybersecurity and 
Safety
• Bruno Crispo

• Dependable software engineering: can we increase trust in our 
components?
• Marcelo Pasin



Confidential Encoded Processing/Computing to Build 
Safety Critical Systems

• Confidential Computing key principles and main benefits
• Problem

• Large number of vulnerabilities and corresponding fixes that need to be installed
• Migrating an enclave VM is difficult due to (among others) keys associated with hosts 

• Presented Solution: 
• A mechanism for updating/moving hosts, VMs, Pods
• Secret provisioning in Scone

Q&A:
• Q: Adoption of Confidential Computing: How did you convince customers to invesrt in CC
• A: German health regulation has put CC as a requirement



Research Challenges at the Intersection of Cybersecurity 
and Safety

Context
• Amount of attacks is increasing in mission critical systems
• There are many security off the shelf solutions 
Problem
• Their assumptions are not well explicited (example of TLS and traffic analysis)
• On the importance of choosing the most appropriate (off the shelf) security solution (example of stardard
ISO15118)

TEEs as a good off the shelf solution to enforce confientiality and integrity but TEE solutions are very
heterogeneous and lack interoperability
Intrusion detection (based on classifcation, anomaly detection etc) is a good alternative

Problem: what do we do in case of intrusion detection
• Automated response is not satisfactory
• Remote healing of a comproposed device is very challenging

Long Q&A session about the interaction between security and safety



Dependable software engineering: can we increase 
trust in our components?

Problem
• How much we can trust current software distributions
Problem quantification
• On a 1000 analyzed dockerhub repositories that have about 400 dependencies on average

each, half of the projects have unpatched dependencirs that have known CVEs
Solution key principles
• Add Treacability and attest the code execution (using TEEs)
• A traceable software supply chain with annotations -> use TEEs to make sure the annotations are 

generated correctly
Q&A 
How much do you need to trust the compiler?
Is transparency a good thing? 


