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Attacks to ML-based NIDS

Motivated attackers will try to defeat ML-based NIDS

They will craft attacks to one or multiple parts of the ML pipeline
* Using Adversarial Machine Learning (AML) techniques

There are several kinds of attacks
* From poisoning training data
* To directly changing model parameters
* Or adding noise to input data, to evade detection
The objective is to force the model to produce a wrong result, preferably in a
controlled way
In the case of NIDS, the objective of AML is to evade detection
* Allowing network attacks to be done without being detected
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Our overarching goal

Improve the resilience of ML-based NIDS to Adversarial Machine Learning

Main idea:

Use multiple replicas exploiting multiple forms of diversity to achieve the goal
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How can Adversarial Evasion be done in practice?

* Adding perturbations to network packets or to flows as a whole
» Packet-based attacks changing e.g. payload size (volume), packet interarrival (time)
* Indirect implications on extracted features
* Does not require access to the internal ML pipeline
* Practically exploitable, as attacker is the one who crafts the attack traffic
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Diversity-based approach

* Inspired on techniques for the development of fault-tolerant and secure systems
* Replication
* Diversity of replicas
« Exploit multiple forms of diversity
* Model diversity
* Feature diversity
 Combinations of both model and feature diversity in model ensembles

* Challenges
 Which models, which features, which combinations?
* How to combine possibly several model outputs?
« How to show effectiveness?
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Which models, which features, which combinations?

* Considered 5 models: DT, RF, XGB, MLP, TB
» Rationale: different structures, responding differently to each attack

« Applied feature selection processes, to find better feature combinations for each model

» Rationale: fine-tune model performance while obtaining multiple solutions in which
different combinations of features lead to similar performance, but are exposed
differently to each attack

» Use a genetic algorithm (GA) to search the large space of model ensembles to find
suitable solutions

* Rationale: using model ensembles provides redundancy, but it is important that
models in the ensemble are diverse, to make the whole set more resilient to attacks
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Optimizing feature selection and model architectures using NSGA-II

* Feature Selection
» Evolutionary selection throughout of NSGA-II

e Minimum: 5 Features, Maximum: 49 features

* Model Architecture
* Neural Networks: number of neurons and number of hidden layers

» Decision Trees: number of estimators and tree depth

* Optimization Objectives
* Ensemble Precision: Measured by AUC (Area Under the Curve)
* Ensemble Diversity: Measured by Disagreement
* Model Effort (cost):

* Neural Networks: number of neurons and hidden layers

* Trees: The number of trees and nodes
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The Pareto Fronts over generations: manual ensemble selection

127 ensembles - points
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Multi-objective evaluation

Parallel Coordinates Plot
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How to combine possibly several model outputs?

+ A few different approaches are possible
* Majority-vote
» Conservative approach

* Assumes that most models will output the correct decision (attacker can only
compromise a minority of models)

* Decide according to the response (Attack/No-Attack) that gathers more votes
* Requires odd number of models in the ensemble

* Any-vote
* Aggressive approach
* Assumes powerful attackers, but that at least one model will resist the attack
 |tis sufficient for a single model to output Attack to decide Attack
* Works for any number of models in the ensemble

* Averaged outputs

 Complex (ML-based) combinatorial output
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Individual 41

Attack Success Rate
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Impact of packet-based attacks

Diversity-based approach: Combination using Any-Vote
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Evasion is no longer successsful
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Impact of packet-based attacks

Individual 41 Diversity-based approach: Combination using Majority-Vote
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Conclusions

* Using diverse models and combining their results with a Any-vote approach allows
for improved resilience to realistic AML attacks

* There are still many open issues to be addressed
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Thank you for your attention!

Questions?

Contact: casim(@ciencias.ulisboa.pt
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