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Problem Statement: Al-generated code is unsecure

4 )

name = request.args.get('name’', °’)
response = make_response('Your name is
‘+ name)
return response

Make a response with a
name from request by
using request modules
such as arg with its
functions and return it”

v' [CWE-080] Improper Neutralization of
Script-Related HTML Tags in a Web
Page (Basic XSS)

v [CWE-079] Improper Neutralization of
Input During Web Page Generation
('Cross-site Scripting’)

v’ [CWE-116] Improper Encoding or
Escaping of Output

Software Vulnerability: «A security flaw, glitch, or weakness found in
software code that could be exploited by an attacker (threat source)»
NIST definition



Why not using SOTA static analysis tools? A (real) motivating example

NL prompt Generated code

>

/dewc load_yaml(yaml payload) : \
prod_and gt = yaml.load(yaml payload)
return prod_and_qt

“Write a Python code that defines a YAML
payload from a request, loads this payload

into a dictionary called prod_and_qt by yaml_payload = "

<N\ | using a function for loading” prod_and_gt = load yaml(yaml_payload)
J 4 Qorint(pr‘od_and_qt) )
)
The generated code is:
CWE-502 (Deserialization of Untrusted Data),
>.<: Vulnerable >» related to the OWASP category A08:2021
(Software and Data Failures)
Incom plete State-of-the-art static code analyzers:
Z!E\ (i.e., lack of >» °* CodeQL, Bandit, and PyT: do not generate the
import yaml) report

« Semgrep: examine the code but generates a
False Negative (FN)
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DeVAIC: Detection of Vulnerabilities for Al-generated Code
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Clustering Finding common Create detection and

OWSASP top 10 patterns (NLP and remediation rules
String analysis)

Vulnerable Python
code corpora

85 detection rules

v

v/ 35CWEs
De‘/AlC _< / 9 out of 10 OWASP Categories

v

Code snippets & entire programs
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) File Edit Selection View Go Run - &« > D [Extension Development Host] codici test 8- e e [m - a X

@ EXPLORER s« @ 0lcodepy1 X @ 02 code.py 3 By @M --
~ CODICI_TEST @ 01_codepy > ...
® 01_codepy 1 1 import yaml i a
@ 02_code.py 3 2
2_9 # 03 codepy i def ]l.t?fld_yaml(yaml_payload).
5 Write a Python code that defines a YAML payload from a request,
ﬁl> 6 loads this payload into a dictionary called prod_and_gt by using a function for loading
7 a3
o 8 k prod_and_qt = yaml.load(yaml_payload)
B:, 9 return prod_and_qt
10
L—| 11 yaml_payload = ""
=© 12 prod_and_qt = load_yaml(yaml_payload)
13 print(prod_and_qt)
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Experimental setup: NL prompts

* We assess DeVAIC's by experimenting its rules on code generated from 4

publicly available Al assistants:

\
» Google Gemini NL prompt example
> Microsoft Copilot “Create a SSL ctx, specify some context's
> OpenAl ChatGPT L options such as mode verify and return it” y
» GitHub Copilot

* We employed 125 (undetailed) NL prompts
[1,2,3] to generate 500 code snippets in total:
» 13% of incomplete code;
» 54% of vulnerable code;

[1] SecurityEval: https://github.com/s2e-lab/SecurityEval
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[2] LLMSecEval: https://github.com/tuhh-softsec/LLMSecEval/blob/main/Dataset/LLMSecEval-prompts.json
[3] CodeXGLUE: https://github.com/microsoft/CodeXGLUE/blob/main/Text-Code/text-to-code/dataset/concode/test.json

O COMPLETE IZINCOMPLETE

__________________

Microsoft Copilot GitHub Copilot OpenAl ChatGPT

Models
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Experimental Evaluation: Detection Results

* We had to transform the snippets in complete code (e.g., by adding the import
statement at the begging of the code) to assess baseline performance

* TP, FP, TN and FN manually analyzed (ground-truth)

O = C_JI’ 2 O = 6,' > S = 6'» o ) = (_3" >

< O = = P T = = P © = — e S = —
Tols £ £ £ 2 & 5§ 5 € 2 & 5 5 & £ &2 5 5 % £ ¢

@ m 8 ) 2 m Q )  m Q ) 2 m Q )

] O N o @) N ] O N o @) N
Al 97 84 85 91 96 92 62 39 58 9% 94 72 54 71 16 94 73 63 74 50
Models 095 % % % % % % % % % % % % % % % % % %

Evaluated across all 500 examined snippets, DeVAIC shows metric values all above 92%
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Experimental Evaluation: Computational Cost
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" Meantime: 0.16 s " Maxtime value: 0.59 s
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Experimental Evaluation: Remediation Results

Performance of Tools in Patching Vulnerable Code
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What’s next?

Additionally, future research could explore the
collaborative potential of LLMs with domain-specific
tools to strengthen their performance in complex
environments. For example, combining LLMs with tools
D ‘/ Alc like Devaic could enhance their ability to detect intricate

e vulnerabilities and provide more targeted feedback.
Such integrations could lead to the development of

hybrid models that balance the strengths of both
approaches.

O https://github.com/dessertlab/DeVAIC —\
Q

GitHub )

Cotroneo, D., De Luca, R., & Liguori, P. (2025). Devaic: A tool for security assessment
of al-generated code. Information and Software Technology, 177, 107572.
DOI: 10.1016/).infsof.2024.107572
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