@ UniversiTa pecu STUDI
o NapoL Feperico

et
B .. @2
NA AR E CECCEENTA 202 oy f‘gﬂzacfnz;:_

Secure Code Generation: Identifying and Remediating
Vulnerabilities in Al-Generated Code

Domenico Cotroneo, Roberta De Luca, Pietro Liguori
DIETI, University of Naples Federico ll, Italy
letro.liguori@unina.it

http://wpage.unina.it/pietro.liguori

Annual IEEE/IFIP
International

DEpendable
and Secure

Software Engineering

and Real-Time
Systems

mailto:pietro.liguori@unina.it
http://wpage.unina.it/pietro.liguori

Problem Statement: Al-generated code is unsecure

4)

name = request.args.get('name’', °’)
response = make_response('Your name is
‘+ name)
return response

Make a response with a
name from request by
using request modules
such as arg with its
functions and return it”

v' [CWE-080] Improper Neutralization of
Script-Related HTML Tags in a Web
Page (Basic XSS)

v [CWE-079] Improper Neutralization of
Input During Web Page Generation
('Cross-site Scripting’)

v’ [CWE-116] Improper Encoding or
Escaping of Output

Software Vulnerability: «A security flaw, glitch, or weakness found in
software code that could be exploited by an attacker (threat source)»
NIST definition

Why not using SOTA static analysis tools? A (real) motivating example

NL prompt Generated code

>

/dewc load_yaml(yaml payload) : \
prod_and gt = yaml.load(yaml payload)
return prod_and_qt

“Write a Python code that defines a YAML
payload from a request, loads this payload

into a dictionary called prod_and_qt by yaml_payload = "

<N\ | using a function for loading” prod_and_gt = load yaml(yaml_payload)
J 4 Qorint(pr‘od_and_qt))
)
The generated code is:
CWE-502 (Deserialization of Untrusted Data),
>.<: Vulnerable >» related to the OWASP category A08:2021
(Software and Data Failures)
Incom plete State-of-the-art static code analyzers:
Z!E\ (i.e., lack of >» °* CodeQL, Bandit, and PyT: do not generate the
import yaml) report

« Semgrep: examine the code but generates a
False Negative (FN)

pietro.liguori@unina.it - 3

DeVAIC: Detection of Vulnerabilities for Al-generated Code

[0) === C‘
Za—[® —— N\

Clustering Finding common Create detection and

OWSASP top 10 patterns (NLP and remediation rules
String analysis)

Vulnerable Python
code corpora

85 detection rules

v

v/ 35CWEs
De‘/AlC _< / 9 out of 10 OWASP Categories

v

Code snippets & entire programs

pietro.liguori@unina.it - 4

) File Edit Selection View Go Run - &« > D [Extension Development Host] codici test 8- e e [m - a X

@ EXPLORER s« @ 0lcodepy1 X @ 02 code.py 3 By @M --
~ CODICI_TEST @ 01_codepy > ...
® 01_codepy 1 1 import yaml i a
@ 02_code.py 3 2
2_9 # 03 codepy i def]l.t?fld_yaml(yaml_payload).
5 Write a Python code that defines a YAML payload from a request,
ﬁl> 6 loads this payload into a dictionary called prod_and_gt by using a function for loading
7 a3
o 8 k prod_and_qt = yaml.load(yaml_payload)
B:, 9 return prod_and_qt
10
L—| 11 yaml_payload = ""
=© 12 prod_and_qt = load_yaml(yaml_payload)
13 print(prod_and_qt)

D=

B

8

®
'{:6:25' > OUTLINE

> TIMELINE
E®0&4®1 wo Ln14,Col 1 Spaces:4 UTF-8 CRLF {} Python 3126 & o 0

@ S T [9 6.7 N @ e) RO 13;12/12123ﬁ

Q Cerca

Experimental setup: NL prompts

* We assess DeVAIC's by experimenting its rules on code generated from 4

publicly available Al assistants:

\
» Google Gemini NL prompt example
> Microsoft Copilot “Create a SSL ctx, specify some context's
> OpenAl ChatGPT L options such as mode verify and return it” y
» GitHub Copilot

* We employed 125 (undetailed) NL prompts
[1,2,3] to generate 500 code snippets in total:
» 13% of incomplete code;
» 54% of vulnerable code;

[1] SecurityEval: https://github.com/s2e-lab/SecurityEval

100% — r—————
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Occurrences [%]

Google Gemini

[2] LLMSecEval: https://github.com/tuhh-softsec/LLMSecEval/blob/main/Dataset/LLMSecEval-prompts.json
[3] CodeXGLUE: https://github.com/microsoft/CodeXGLUE/blob/main/Text-Code/text-to-code/dataset/concode/test.json

O COMPLETE IZINCOMPLETE

Microsoft Copilot GitHub Copilot OpenAl ChatGPT

Models

pietro.liguori@unina.it - 6

Experimental Evaluation: Detection Results

* We had to transform the snippets in complete code (e.g., by adding the import
statement at the begging of the code) to assess baseline performance

* TP, FP, TN and FN manually analyzed (ground-truth)

O = C_JI’ 2 O = 6,' > S = 6'» o) = (_3" >

< O = = P T = = P © = — e S = —
Tols £ £ £ 2 & 5§ 5 € 2 & 5 5 & £ &2 5 5 % £ ¢

@ m 8) 2 m Q) m Q) 2 m Q)

] O N o @) N] O N o @) N
Al 97 84 85 91 96 92 62 39 58 9% 94 72 54 71 16 94 73 63 74 50
Models 095 % % % % % % % % % % % % % % % % % %

Evaluated across all 500 examined snippets, DeVAIC shows metric values all above 92%

pietro.liguori@unina.it -7

Experimental Evaluation: Computational Cost

E1Bard EBing [ChatGPT B Copilot

1.000

100

[EEY
o

i eI

PR

WY
N R R
RS

Execution Time (s)

Logarithmic Scale (base 10)

agtm gt
-l..:.-.

T
e

DeVAIC Bandit CodeQL Semgrep

Static Analysis Tools

" Meantime: 0.16 s " Maxtime value: 0.59 s

= Median time: 0.14 s ® Mintime value: 0.10 s pietro.liguori@unina.it - 8

Experimental Evaluation: Remediation Results

Performance of Tools in Patching Vulnerable Code

100 { o B FatchitPy
0 CodeOL
Bd % Bl Semgrep
B E—3 Bandit
) ChatGET-4a
B daude-315
60 -
Fa
- 5%
_m -
20 -
0 3 | 0% F M o S
[%] Patched/Detected [36] PatchedAulnerable
Preliminary evaluation on a set of Tasks

code generated by GitHub Copilot pietro.liguori@unina.it - 9

What’s next?

Additionally, future research could explore the
collaborative potential of LLMs with domain-specific
tools to strengthen their performance in complex
environments. For example, combining LLMs with tools
D ‘/ Alc like Devaic could enhance their ability to detect intricate

e vulnerabilities and provide more targeted feedback.
Such integrations could lead to the development of

hybrid models that balance the strengths of both
approaches.

O https://github.com/dessertlab/DeVAIC —\
Q

GitHub)

Cotroneo, D., De Luca, R., & Liguori, P. (2025). Devaic: A tool for security assessment
of al-generated code. Information and Software Technology, 177, 107572.
DOI: 10.1016/).infsof.2024.107572

pietro.liguori@unina.it - 10

https://github.com/dessertlab/DeVAIC

	Slide 1: Secure Code Generation: Identifying and Remediating Vulnerabilities in AI-Generated Code
	Slide 2: Problem Statement: AI-generated code is unsecure
	Slide 3: Why not using SOTA static analysis tools? A (real) motivating example
	Slide 4: DeVAIC: Detection of Vulnerabilities for AI-generated Code
	Slide 5
	Slide 6: Experimental setup: NL prompts
	Slide 7: Experimental Evaluation: Detection Results
	Slide 8: Experimental Evaluation: Computational Cost
	Slide 9: Experimental Evaluation: Remediation Results
	Slide 10: What’s next?

