
Towards Securing Graph Neural Networks in MLaaS

Xingliang Yuan
School of Computing and Information Systems

The University of Melbourne

29 June 2024 @ The 86th IFIP WG 10.4 Workshop

Outline

• Privacy-preserving Machine Learning for GNNs

• Addressing Training Data Misuse in GNNs

2

GNN: Powerful for Analysing Interconnected Information

3

Drug Discovery

Chip DesignSelf-driving

Fraud Detection Social Networks

Knowledge Graph

4

GNN Tasks
Node Classification
(Graph Convolutional Network [Kipf et al. (ICLR’17)])

Graph Classification
(GraphSAGE [Hamilton et al. NIPS’17])

Link Prediction
(GraphSAGE [Hamilton et al. NIPS’17])

Bank Drug discovery Recommendation systems

GNNs in Machine Learning as a Service (MLaaS)

GNN is increasingly featured on MLaaS platforms
• Amazon: SageMaker Support for DGL
• Google: Neo4j & Google Cloud Vertex AI
• Microsoft: Azure ML Spektral

GraphGuard 5

Towards Securing GNNs in MLaaS

Online predictionArchitecture for GNN training and serving

Client

Deployed
GNN Model

API

Request Prediction

• PPML for GNNs [XLLAYY24]: “OblivGNN: Oblivious Inference on Transductive and Inductive
Graph Neural Network”, USENIX Security, 2024

• Detecting and mitigating data misuse in GNNs [WZYWXPY24]: GraphGuard: Detecting and
Counteracting Training Data Misuse in Graph Neural Networks, NDSS, 2024.

• Verifying GNN predictions [WYWLXP24]: “Securing Graph Neural Networks in MLaaS: A
Comprehensive Realization of Query-based Integrity Verification”, IEEE S&P, 2024

• Model extraction [WYPY22]:“Model Extraction Attacks on Graph Neural Networks: Taxonomy
and Realisation”, AsiaCCS, 2022

OblivGNN: Oblivious Inference on Transductive and Inductive
Graph Neural Network

Zhibo Xu1,2, Shangqi Lai2, Xiaoning Liu3, Alsharif Abuadbba2, Xingliang Yuan1,4, and Xun Yi3
1Monash University, 2CSIRO’s Data61, 3RMIT University, 4The University of Melbourne

In the 33rd USENIX Security Symposium

8

Outline
• Introduction

• Motivation
• Related Work

• Preliminaries
• Graph Convolutional Networks and Node Classification
• Function Secret Sharing

• Protocol
• Strawman
• OblivGNN

• Experiments
• System

9

GNNs in Machine Learning as a Service (MLaaS)

AWS SageMaker for GNN training and inference

10

Privacy Concerns

Bank

Client

MLaaS

Perform GNN
Inference on

Is he a
fraud?

Your result sir

Privacy Concerns:

• Expose sensitive training/inference graph to MLaaS

• Collecting training graphs often requires a large

amount of human, computing, and economic resource

• Graph data is sensitive by nature, e.g., users’ financial

transactions, private friendships

• Expose proprietary GNN model parameters to MLaaS

11

Related Work in Privacy-Preserving Machine Learning

Trident, Chameleon, Falcon,
GAZELLE, MiniONN, Delphi, ABY3,
SecureML, BLAZE, XONN, AriaNN,

CryptGPU, SecureNN

SecGNN, CryptoGCN, LinGCN

Cannot support graph-structured data

• Do not offer full protection of graph
structure information
• Leak degree information
• Do not support the full settings of

GNN deployment
• Heavy computation cost (via FHE),

heavy communication cost due to the
large size of the graph

Traditional PPML Frameworks

PPML for GNNs

12

Outline
• Introduction

• Graph Neural Networks
• Machine Learning as a Service
• Design Goal
• Related Work

• Preliminaries
• Graph Convolutional Networks and Node Classification
• Function Secret Sharing

• Protocol
• Strawman
• OblivGNN

• Experiments
• System

13

Preliminaries – Graph Convolutional Network
Z=Softmax('𝐀 ReLU('𝐀)𝐅𝐖𝟏)𝐖𝟐)
• 𝐖𝟏 and 𝐖𝟐 are two trainable weight matrixes
• '𝐀 is the normalized adjacency matrix
•)𝐅 is the normalized feature matrix

• Activation functions:

• ReLU(𝑥) = 3𝑥	 if	𝑥 ≥ 0	
0	 if	𝑥 < 0	

• Softmax: 𝑧# =
$!"

∑#∈[&,(] $
!"
, 𝑖 ∈ [1, 𝐶]

14

GNN Settings: Transductive and Inductive

？

？

Node Classification

Transductive

Training

Inductive

Inference

Training

Inference

Transductive:
• Unlabelled nodes and their connections

exist in the training
• Graph for training and inference remains

the same
• Query is a node ID/set of node IDs

Inductive:
• Updated nodes, features, connections

appear in the inference
• Query is a node ID/set of node IDs

15

Function Secret Sharing
Function Secret Sharing

KeyGen α, β → 𝑘&, 𝑘'
Eval 𝑘(, 𝑥 → 𝑦 (

Eval 𝑘&, 𝑥 + Eval 𝑘', 𝑥 = 3 𝛽, 𝑖𝑓𝑥 = α
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Distributed Point Functions: Arithmetic FSS:
Multiplication:
KeyGen× g°, 𝑟#*' , 𝑟#*+ , 𝑟,-. → 𝑘&×	, 𝑘'×
Eval× 𝑘(×, 𝑥'0 , 𝑥+0 → g(◦ 𝑥'×𝑥+ + 𝑟,-.
Eval× 𝑘&×, 𝑥'0 , 𝑥+0 + Eval× 𝑘'×, 𝑥'0 , 𝑥+0

= 𝑥'×𝑥+ + 𝑟,-.
Addition:
KeyGen1 g°, 𝑟#*' , 𝑟#*+ , 𝑟,-. → 𝑘&1	, 𝑘'1
Eval1 𝑘(1, 𝑥'0 , 𝑥+0 → g(◦ 𝑥' + 𝑥+ + 𝑟,-.
Eval1 𝑘&1, 𝑥'0 , 𝑥+0 + Eval1 𝑘'1, 𝑥'0 , 𝑥+0

= 𝑥' + 𝑥+ + 𝑟,-.

Equality Test:

Comparison:

Eval2 𝑘&, 𝑥′ + Eval2 𝑘', 𝑥′ = 3𝑦 = 1, 𝑖𝑓𝑥′ = 𝛾
0	 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

KeyGen2 α = 𝛾, β = 1 → 𝑘&2, 𝑘'2
Eval2 𝑘(2, 𝑥 → 𝑦 (

Eval3 𝑘&, 𝑥′ + Eval3 𝑘', 𝑥′ = 3𝑦 = 1, 𝑖𝑓𝑥′ ≤ 𝛾
0	 , 𝑖𝑓𝑥0 > 𝛾

KeyGen3 α = 𝛾, β = 1 → 𝑘&3, 𝑘'3
Eval3 𝑘(3, 𝑥 → 𝑦 (

[Boyle et al. CCS’16][Boyle et al. EUROCRYPT’21]

16

Outline
• Introduction

• Graph Neural Networks
• Machine Learning as a Service
• Design Goal
• Related Work

• Preliminaries
• Graph Convolutional Networks and Node Classification
• Function Secret Sharing

• Protocol
• Strawman
• OblivGNN

• Experiments
• Microbenchmark
• System

17

Strawman Approach

Activation Functions:
Polynomial approximation

Aggregation:
Beaver’s triple

Transductive setting

Labels

Sharing:
Additive Secret Sharing

18

Strawman Approach
Graph update:
update the graph

Inductive setting

Activation Functions:
Polynomial approximation

Aggregation:
Beaver’s triple

Labels

I can observe the
update pattern

Problem: Leak graph update access, suffering from leakage attack [Falzon and Paterson, ESORICS’22]

19

Strawman Approach

Problems: the communication cost is significant when re-uploading the updated graph.

Graph update:
reuploading the entire graph

Inductive setting

Activation Functions:
Polynomial approximation

Aggregation:
Beaver’s triple

Labels

20

Research Questions

1.How to enable secure GNN inference in the transductive and inductive
settings?

2.How to achieve data obliviousness with semi-honest security?

3.How to achieve high efficiency while achieving the above goals?

21

Protocol - Architecture

• Non-colluding

• Semi-honest Servers

22

Protocol – Security Guarantee

• Protect access pattern to the graph structure !𝐀 and node feature #𝐅

• Protect graph information
• Adjacency Matrix !𝐀
• Feature Matrix #𝐅

• Protect model information
• Weight Matrix 𝐖𝟎 and 𝐖𝟏

• Protect client queries and inference results

23

OblivGNN Approach
Offline

Online

24

OblivGNN Approach
Offline

• Masking & secret share GNN model
Masks for Arithmetic
FSS gates

• Two servers need to recover the ASS shares (masked
data) before operating FSS circuits

• Matrices stored in secret shares to facilitate update!𝐀! 𝟎,
$𝐅! 𝟎,

𝐖𝟎
!
𝟎, 𝐖𝟏

!
𝟎

!𝐀! 𝟏, $𝐅
!
𝟏,

𝐖𝟎
!
𝟏, 𝐖𝟏

!
𝟏

Adjacency matrix: !𝐀! ← !𝐀	 + 𝑟$%& /𝑟$%'
Feature matrix: $𝐅! ← $𝐅	 + 𝑟$%& /𝑟$%'
Weight matrices: 𝐖𝟎,𝟏

! ← 𝐖𝟎,𝟏 + 𝑟$%& /𝑟$%'

25

OblivGNN Approach
Offline

DPF Key Pool
Generation

FSS Key Pool
Generation

𝑘): DPF Equality Test keys

𝑘*: DPF Comparison keys

𝑘+: DPF Client Query keys

𝑘,: DPF Feature Update keys

𝑘-: DPF Node Update keys

• Key generation

Multiplication:
KeyGen× g°, 𝑟$%& , 𝑟$%' , 𝑟/01 → 𝑘2×	, 𝑘&× : FSS Multiplication keys
Eval× 𝑘4×, 𝑥&! , 𝑥'! → g4◦ 𝑥&×𝑥' + 𝑟/01

Addition:
KeyGen5 g°, 𝑟$%& , 𝑟$%' , 𝑟/01 → 𝑘25	, 𝑘&5: FSS Addition keys
Eval5 𝑘45, 𝑥&! , 𝑥'! → g4◦ 𝑥& + 𝑥' + 𝑟/01

Online keys

26

OblivGNN Approach
Online – Oblivious Aggregation

Eval×(𝑘×, 1, 4)1 × 4 =

Eval×(𝑘×, 2, 5)2 × 5 =

Eval×(𝑘×, 3, 6)3 × 6 =

Eval5(𝑘5, ℎ)

Eval5(𝑘5, ℎ)

𝐖

Example:

…×!𝐀×#𝐅

= output+𝑟/01

Eval× 𝑘2×, 𝑥&! , 𝑥'! + Eval× 𝑘&×, 𝑥&! , 𝑥'!
= 𝑥&×𝑥' + 𝑟/01

Eval5 𝑘25, 𝑥&! , 𝑥'! + Eval5 𝑘&5, 𝑥&! , 𝑥'!
= 𝑥& + 𝑥' + 𝑟/01

𝑥&! = 𝑥& + 𝑟$%&
𝑥'! = 𝑥' + 𝑟$%'

27

OblivGNN Approach
Online – Oblivious Activation Function

ReLU

Softmax

Argmax

[Ryffel et al. PoPETs’22]

[Mohassel et al. IEEE S&P’21]
[Keller et al. CCS’20]

[Ryffel et al. PoPETs’22]

1) Each 𝑃4: DPF.Comp 𝑧 𝑖
2)	 Each 𝑃4: OblivBitFlip

Finding the largest element

Locating the largest element

28

OblivGNN Approach – Inductive Protocol

Online – Oblivious Graph Update

New Node Insertion Existing Graph Update
• Introduce new nodes
• Do NOT modify the existing graph

• Modify the existing graph
• Obliviously update adjacency matrix
• Obliviously update feature matrix

29

OblivGNN Approach – Inductive Protocol

New Node Insertion

Client/Model Owner

Sub-graph

Sub-graph
Adjacency Matrix

Sub-graph
Feature Matrix

Online – Oblivious Graph Update
𝑣! 𝑣" 𝑣… 𝑣$

𝑣& 1 1 … 0

𝑣' 1 1 … 0

𝑣… … … … …

𝑣* 0 0 … 1
Adjacency Matrix
(secret shared)

𝑣! 𝑣" 𝑣… 𝑣$ 𝑣$%"

𝑣& 1 1 … 0 1

𝑣' 1 1 … 0 1

𝑣… … … … … …

𝑣* 0 0 … 1 1

𝑣*1' 1 1 … 1 1
Inserted Adjacency Matrix

𝑓! 𝑓… 𝑓&

𝑣& 1 … 0

𝑣' 1 … 1

𝑣… … … …

𝑣* 0 … 1
Feature Matrix
(secret shared)

𝑓! 𝑓… 𝑓&

𝑣& 1 … 0

𝑣' 0 … 1

𝑣… … … …

𝑣* 0 … 1

𝑣*1' 1 … 0
Inserted Feature Matrix

• Protect connections of new
nodes

• Leak graph size

Append shares

Append shares

30

OblivGNN Approach – Inductive Protocol
Online – Oblivious Graph Update

0 1 … 𝑛
0 1 0 … 0

1 0 1 … 0

… … … … …

𝑛 0 0 … 1
Adjacency Matrix C[𝐀]	
(secret shared)

0 1 … 𝑛
0 1 1 … 0

1 1 1 … 0

… … … … …

𝑛 0 0 … 1
Client/Model Owner

Sub-graph

Sub-graph
Adjacency Matrix

Sub-graph
Feature Matrix Updated Adjacency Matrix

KeyGen(0||1,1) → 𝑘&5, 𝑘'5
KeyGen(1||0,1) → 𝑘&5, 𝑘'5

Eval(𝑘4-, 0||0)

Eval(𝑘4-, 1||0)

Eval(𝑘4-, …)

Eval(𝑘4-, 𝑛||0)

+

Existing Graph Update

31

OblivGNN Approach – Inductive Exclusive Ops
Online – Oblivious Graph Update

0 … 𝑐
0 1 … 0

1 1 … 1

… … … …

𝑛 0 … 1
Feature Matrix [$𝐅]
(secret shared)

Sub-graph

Sub-graph
Adjacency Matrix

Sub-graph
Feature Matrix

0 … 𝑐
0 1 … 0

1 0 … 1

… … … …

𝑛 0 … 1
Updated Feature Matrix

Client/Model Owner

KeyGen(1||0, 𝐹△(𝑣#)) → 𝑘&7, 𝑘'7

Eval(𝑘4,, 0||0)

Eval(𝑘4,, 1||0)

Eval(𝑘4,, …)

Eval(𝑘4,, 𝑛||0)

+

Perform oblivious graph updates via DPF write

Existing Graph Update

To further hide graph size, perform DPF full
domain evaluation over the graph with padding

32

OblivGNN Approach
Online – Client Query

Client

KeyGen 1,1 → 𝑘!" , 𝑘#"

0 2

1 7
… …

𝑛-1 4
𝑛 6

Server 1 Inference Results (Masked)
0 2
1 7
… …

𝑛-1 4

𝑛 6

Server 0 Inference Results (Masked)

𝑘"'

𝑘!'

0 !

7 !

…

0 !

0 !

0 "

7 "

…

0 "

0 "

I want inference
result of node 𝑣$∗

Eval 𝑘$" , 0 = 0 !

Eval(𝑘$" , 1) = 1 !

Eval(𝑘$" , …) = 0 !

Eval(𝑘$" , 𝑛) = 0 !

Eval(𝑘$" , 𝑛 + 1) = 0 !

Eval(𝑘$" , 0) = 0 #

Eval(𝑘$" , 1) = 1 #

Eval(𝑘$" , …) = 0 #

Eval(𝑘$" , 𝑛) = 0 #

Eval(𝑘$" , 𝑛 + 1) = 0 #

×

×

×

×

×

×

×

×

×

×

Σ

Σ

33

Outline
• Introduction

• Graph Neural Networks
• Machine Learning as a Service
• Design Goal
• Related Work

• Preliminaries
• Graph Convolutional Networks and Node Classification
• Function Secret Sharing

• Protocol
• Strawman
• OblivGNN

• Experiments
• System

34

Experiments
• Platform

• Server
• 3.70GHz Intel(R) Xeon(R) E-2288G CPU
• 64GB RAM and 128GB external storage
• Ubuntu 20.04.5 LTS

• MP-SPDZ [Keller et al. (CCS’20)]

• Datasets
• Cora, Citeseer and Pubmed

• Baseline
• Baseline: pure additive secret shares for inference.
• OblivGNN: additive secret shares with FSS for oblivious inference.

35

Experiments – System
System Online Runtime:

Online Communication (GB):

Graph Update Cost:

Reduction: 10× - 151×

Logarithm growth with graph size

36

Future Work

• To enable efficient encrypted GNN training

• To scale PPML for GNNs for large graphs

• To deploy encrypted GNN training and inference protocols to GPU

Outline

• Privacy-preserving Machine Learning for GNNs

• Addressing Training Data Misuse in GNNs

37

GraphGuard: Detecting and Counteracting Training
Data Misuse in Graph Neural Networks

Bang Wu, He Zhang, Xiangwen Yang, Shuo Wang, Minhui Xue,
Shirui Pan and Xingliang Yuan

In the Network and Distributed System Security Symposium (NDSS), 2024

38

Data Misuse aginst GNNs in MLaaS

GNN deployment raise data misuse concerns.

39

GNN development

1. Gather data for GNN training

2. Deploys GNNs.

3. Sell API to GNN users.

Data
Owner

Graph
Data

Model
Developer

GNN
Model

GNN Users MLaaS
Server

Prediction
API

GNN
Model

Deploy

Sell

Gather
Misuse

Data Misuse in GNNs

Graphs can be illegally/unintentionally collected for GNN training!

40

Drug Discovery Chip DesignFraud Detection
[ZYYW+23] [DLSD+20] [MGYJ+21]

Data error leads to
incorrect predictions

Mislead GNN prediction Compromise IP
of data owners

Chip floorplan needs
intellectual effort

Transaction records
are private

Leverage sensitive data
against privacy attacks

How to deal with data misuse?

• Detection--Membership Inference
• Identify if a specific graph has been used without authorization.

• Stealing Links [HJBG+]
• Node-Level Membership Inference [HWWB+21]
• Graph-level Membership Inference [WYPY21]

• Mitigation--Machine Unlearning
• Make the GNN model forget about misused graph data.

• GraphEraser [CZWB+22]
• GNNDelete [CDHA+23]

41

[HJBG+21] [HWWB+21] He, Xinlei, et al. "Node-level membership inference attacks against graph neural networks." arXiv 2021.
[WYPY21] Wu, Bang, et al. "Adapting membership inference attacks to GNN for graph classification: Approaches and implications." ICDM 2021.
[CZWB+22] Chen, Min, et al. "Graph unlearning." CCS 2022.
[CDHA+23] Cheng, Jiali, et al. "GNNDelete: A General Strategy for Unlearning in Graph Neural Networks." ICLR 2023.

Requirements of Mitigating Data Misuse in MLaaS

42

• Task Requirements
R1 - Misuse Detection - Detect the data misused GNNs

R2 - Misuse Mitigation - Remove the impact of misused data to the model

• (MLaaS) Setting Requirements
R3 - Data Privatisation - Keep sensitive information about the graph locally

R4 - GNN Model Agnostic - No assumption on GNN training/model architecture

Prior Work: Not Applicable to MLaaS

• Assume that the server can access the exact training samples;

[HWWB+21]

[CZWB+22]

Querying the exact
training graph

43

Prior Work: Not Applicable to MLaaS

• Require modifications in the GNN architecture or training process.

[HWWB+21]

[CDHA+23]

Additional functions in GNNs

44

Our Design -- GraphGuard

45

• Identify if 𝐺e	is used in 𝑓f∗ 	training (R1)
• Membership inference

• Eliminate the impact of 𝐺e on 𝑓f∗ (R2)
• Unlearning

• Do not leverage the graph structure (R3)

• Utilize only standard APIs in MLaaS (R4)

GraphGuard - Detection

• How to perform membership inference without
the graph structure?
• Prior study: proactive MIA. [SDSJ20]
• Our design: radioactive graph

[SDSJ20] Sablayrolles, A., et.al. Radioactive data: tracing through training. ICML 2020.

• Detection goal
Detect data misuse (R1) via API (R4) without the
graph structure (R3).

Training
Graph

Radioactive
Graph

Train Train

Query

Output Output

46

GNNs trained on them react differently for
specific node attribute queries.

GraphGuard - Detection

Pipeline:
1. Revise node attributes from 𝐺$% to 𝐺$

before publishing graph

47

GraphGuard - Detection

Pipeline:
1. Revise node attributes from	𝐺$% to 𝐺$

before publishing graph
2. Data misuse during training
3. GNN being deployed

48

GraphGuard - Detection

Pipeline:
1. Revise node attributes from 𝐺$%	to 𝐺$

before publishing graph
2. Data misuse during training
3. GNN being deployed

4. Query graph #𝐺$ with node attributes only
(without structure)

5. Obtain predictions 𝑓&∗ #𝐺$

49

GraphGuard - Detection

Pipeline:
1. Revise node attributes from 𝐺$% to 𝐺$

before publishing graph
2. Data misuse during training
3. GNN being deployed

4. Query graph #𝐺$ with node attributes only
(without structure)

5. Obtain predictions 𝑓&∗ #𝐺$
6. Membership inference 9𝒜

50

GraphGuard - Mitigation

• Design intuitions
- Well-generalized GNNs do not learn the exact graph structure
- Unlearning a subgraph does not rely on the exact sub-graph structure

• Mitigation goal
Perform unlearning (R2) by fine-tuning the target GNNs (R4) without utilising the exact
graph structure (R3).

• Our design
- Leverage MIA for graph synthesis
- Use synthetic graph for unlearning

51

GraphGuard - Mitigation

52

6. MLaaS receives an unlearning request

GraphGuard - Mitigation

53

6. MLaaS receives an unlearning request
7. (1) Data Gathering

𝑋$, 9𝒜 from the data owner
𝑋'% from the model owner

7. (2) Graph Synthesize
Unlearning graph <𝐺$ by	𝑋$, 𝑓&∗ 	and 9𝒜
Remaining graph <𝐺(by	𝑋'% , 𝑓&∗ 	and 9𝒜

GraphGuard - Mitigation

54

6. MLaaS receives an unlearning request
7. (1) Data Gathering

𝑋$, 9𝒜 from the data owner
𝑋'% from the model owner

7. (2) Graph Synthesize
Unlearning graph <𝐺$ by	𝑋$, 𝑓&∗ 	and 9𝒜
Remaining graph <𝐺(by	𝑋'% , 𝑓&∗ 	and 9𝒜

8. Fine-tuning 𝑓&∗ :
Increase loss on <𝐺$
Decrease loss on <𝐺(

Evaluations - Detection

Metric - AUC

55

Observations
• Our design achieve higher detection rates
• Baseline MIA only satisfied R1-Detectable & R4-Model Agnostic

Evaluations - Mitigation
• Effectiveness - MIA ASR before/after unlearning

• Utility - Model ACC before/after unlearning

56

Evaluations - Mitigation
• Efficiency - Time cost of retraining and our unlearning method.

57

Take Away

• Definition of New Problem
• We define the graph misuse in MLaaS-deployed GNNs

• Requirement Formulation
• Task Requirements: (R1) detectable, (R2) remedial
• (MLaaS) Setting Requirements: (R3) data privatization, (R4) model agnostic

• An Integrated Pipeline
• Radioactive data driven detection technique
• Unlearning methodology w/o confidential graph structure

• Code: https://github.com/GraphGuard/GraphGuard-Proactive

58

https://github.com/GraphGuard/GraphGuard-Proactive

Challenges Ahead

• How to enable privacy-preserving auditing for data misuse in the ML
pipeline?
• Will perturbed data be exploited to recover the original data?

• How to enable privacy-preserving unlearning?
• Will synthesized data be exploited to recover the unlearning request?

• How to enable verifiable machine unlearning?
• Ensure the execution of unlearning

59

Thanks! xingliang.yuan@unimelb.edu.au

