

Towards Securing Graph Neural Networks in MLaaS

Xingliang Yuan School of Computing and Information Systems The University of Melbourne

29 June 2024 @ The 86th IFIP WG 10.4 Workshop

Outline

- Privacy-preserving Machine Learning for GNNs
- Addressing Training Data Misuse in GNNs

GNN: Powerful for Analysing Interconnected Information

(iii

Шů

.

CGAME

Self-driving

Knowledge Graph

Node Classification

(Graph Convolutional Network [Kipf et al. (ICLR'17)])

Graph Classification

(GraphSAGE [Hamilton et al. NIPS'17])

Halicin [3]

Ne

Nile

Drug Resurpcising I

nature

bacteria

Cell Explore content Y About the journal Y Publish with us Y nature > news > article Graphical Abstrac NEWS | 20 February 2020

Powerful antibiotics disc using AI Machine learning spots molecules that work even against 'un

A trained deep neural network predict antibiotic activity in molecules that are structurally different from known antibiotics, among which Halicin exhibit

Article

Link Prediction (GraphSAGE [Hamilton et al. NIPS'17])

Bank

Drug discovery

Recommendation systems

GNNs in Machine Learning as a Service (MLaaS)

GNN is increasingly featured on MLaaS platforms

- Amazon: SageMaker Support for DGL
- Google: Neo4j & Google Cloud Vertex AI
- Microsoft: Azure ML Spektral

AWS Machine Learning Blog

Build a GNN-based real-time fraud detection solution using Amazon SageMaker, Amazon Neptune, and the Deep Graph Library

by Jian Zhang, Haozhu Wang, and Mengxin Zhu | on 11 AUG 2022 | in Amazon Neptune, Amazon SageMaker, Artificial Intelligence | Permalink | 🗩 Comments | Artificial Share

Fraudulent activities severely impact many industries, such as e-commerce, social media, and financial services. Frauds could cause a significant loss for businesses and consumers. <u>American consumers reported losing more than \$5.8 billion</u> to frauds in 2021, up more than 70% over 2020. Many techniques have been used to detect fraudsters—rule-based filters, anomaly detection, and machine learning (ML) models, to name a few.

MACHINE LEARNING	
How AWS uses graph neural networks to meet customer r	need
Data Science	
Graph Neural Network or	
The Complete Guid	е
Use graphs for smarter AI with Neo4j and Google Cloud Vertex AI January 13, 2022	I
· · · · · · ·	
	-0
	24

Towards Securing GNNs in MLaaS

- PPML for GNNs [XLLAY24]: "OblivGNN: Oblivious Inference on Transductive and Inductive Graph Neural Network", USENIX Security, 2024
- Detecting and mitigating data misuse in GNNs [WZYWXPY24]: GraphGuard: Detecting and Counteracting Training Data Misuse in Graph Neural Networks, NDSS, 2024.
- Verifying GNN predictions [WYWLXP24]: "Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification", IEEE S&P, 2024
- Model extraction [WYPY22]:"Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realisation", AsiaCCS, 2022

OblivGNN: Oblivious Inference on Transductive and Inductive Graph Neural Network

Zhibo Xu^{1,2}, Shangqi Lai², Xiaoning Liu³, Alsharif Abuadbba², **Xingliang Yuan**^{1,4}, and Xun Yi³ ¹*Monash University*, ²*CSIRO's Data61*, ³*RMIT University*, ⁴*The University of Melbourne*

In the 33rd USENIX Security Symposium

Outline

- Introduction
 - Motivation
 - Related Work
- Preliminaries
 - Graph Convolutional Networks and Node Classification
 - Function Secret Sharing
- Protocol
 - Strawman
 - OblivGNN
- Experiments
 - System

GNNs in Machine Learning as a Service (MLaaS)

AWS SageMaker for GNN training and inference

Privacy Concerns

Privacy Concerns:

- Expose sensitive training/inference graph to MLaaS
 - Collecting training graphs often requires a large amount of human, computing, and economic resource
 - Graph data is sensitive by nature, e.g., users' financial transactions, private friendships
- Expose proprietary GNN model parameters to MLaaS

Related Work in Privacy-Preserving Machine Learning

Traditional PPML Frameworks

Trident, Chameleon, Falcon, GAZELLE, MiniONN, Delphi, ABY³, SecureML, BLAZE, XONN, AriaNN, CryptGPU, SecureNN

PPML for GNNs SecGNN, CryptoGCN, LinGCN

Cannot support graph-structured data

- Do not offer full protection of graph structure information
 - Leak degree information
 - Do not support the full settings of GNN deployment
- Heavy computation cost (via FHE), heavy communication cost due to the large size of the graph

Outline

- Introduction
 - Graph Neural Networks
 - Machine Learning as a Service
 - Design Goal
 - Related Work
- Preliminaries
 - Graph Convolutional Networks and Node Classification
 - Function Secret Sharing
- Protocol
 - Strawman
 - OblivGNN
- Experiments
 - System

Preliminaries – Graph Convolutional Network

$Z = Softmax(\widehat{A} ReLU(\widehat{A}\widehat{F}W_1)W_2)$

- W_1 and W_2 are two trainable weight matrixes •
- $\widehat{\mathbf{A}}$ is the normalized adjacency matrix •
- $\hat{\mathbf{F}}$ is the normalized feature matrix
- Activation functions:
 - ReLU(x) = $\begin{cases} x & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$ Softmax: $z_i = \frac{e^{x_i}}{\sum_{j \in [1,C]} e^{x_i}}, i \in [1,C]$

GNN Settings: Transductive and Inductive

Node Classification

Transductive:

- Unlabelled nodes and their connections exist in the training
- Graph for training and inference remains the same
- Query is a node ID/set of node IDs

Inductive:

- *Updated* nodes, features, connections appear in the *inference*
- Query is a node ID/set of node IDs

Function Secret Sharing

Function Secret Sharing [Boyle et al. CCS'16][Boyle et al. EUROCRYPT'21]

Distributed Point Functions:

KeyGen(α, β) $\rightarrow k_0, k_1$ Eval(k_b, x) $\rightarrow [[y]]_b$ Eval(k_0, x) + Eval(k_1, x) = $\begin{cases} \beta, if x = \alpha \\ 0, otherwise \end{cases}$

Equality Test:

KeyGen⁼($\alpha = \gamma, \beta = 1$) $\rightarrow k_0^=, k_1^=$ Eval⁼($k_b^=, x$) $\rightarrow \llbracket y \rrbracket_b$ Eval⁼(k_0, x') + Eval⁼(k_1, x') = $\begin{cases} y = 1, if x' = \gamma \\ 0, otherwise \end{cases}$

Comparison:

KeyGen[<](
$$\alpha = \gamma, \beta = 1$$
) $\rightarrow k_0^<, k_1^<$
Eval[<]($k_b^<, x$) $\rightarrow [[y]]_b$

$$\operatorname{Eval}^{<}(k_{0}, x') + \operatorname{Eval}^{<}(k_{1}, x') = \begin{cases} y = 1, & \text{if } x' \leq \gamma \\ 0, & \text{if } x' > \gamma \end{cases}$$

Arithmetic FSS:

 $\overline{Multiplication:}$ KeyGen[×](g°, r_{in}^{1} , r_{in}^{2} , r_{out}) $\rightarrow k_{0}^{\times}$, k_{1}^{\times} Eval[×](k_{b}^{\times} , x_{1}' , x_{2}') \rightarrow g[°]_b ($x_{1} \times x_{2}$) + r_{out} Eval[×](k_{0}^{\times} , x_{1}' , x_{2}') + Eval[×](k_{1}^{\times} , x_{1}' , x_{2}') $= x_{1} \times x_{2} + r_{out}$ Addition: KeyGen⁺(g°, r_{in}^{1} , r_{in}^{2} , r_{out}) $\rightarrow k_{0}^{+}$, k_{1}^{+} Eval⁺(k_{b}^{+} , x_{1}' , x_{2}') \rightarrow g[°]_b ($x_{1} + x_{2}$) + r_{out} Eval⁺(k_{0}^{+} , x_{1}' , x_{2}') + Eval⁺(k_{1}^{+} , x_{1}' , x_{2}') $= x_{1} + x_{2} + r_{out}$

Outline

- Introduction
 - Graph Neural Networks
 - Machine Learning as a Service
 - Design Goal
 - Related Work
- Preliminaries
 - Graph Convolutional Networks and Node Classification
 - Function Secret Sharing
- Protocol
 - Strawman
 - OblivGNN
- Experiments
 - Microbenchmark
 - System

Strawman Approach

Strawman Approach

Problem: Leak graph update access, suffering from leakage attack [Falzon and Paterson, ESORICS'22]

Strawman Approach

Problems: the communication cost is significant when re-uploading the updated graph.

- 1. How to enable secure GNN inference in the *transductive* and *inductive* settings?
- 2. How to achieve data *obliviousness* with semi-honest security?
- 3. How to achieve high efficiency while achieving the above goals?

Protocol - Architecture

- Semi-honest Servers
- Non-colluding

Protocol – Security Guarantee

- Protect graph information
 - Adjacency Matrix $\widehat{\mathbf{A}}$
 - Feature Matrix \widehat{F}

- Protect model information
 - Weight Matrix W_0 and W_1
- Protect access pattern to the graph structure \widehat{A} and node feature \widehat{F}
- Protect client queries and inference results

Offline

- Two servers need to *recover* the ASS shares (masked data) before operating FSS circuits
- Matrices stored in secret shares to facilitate update

Offline

Key generation

FSS Key Pool Generation

Multiplication:

 $\begin{array}{l} \operatorname{KeyGen}^{\times}(g^{\circ}, r_{in}^{1}, r_{in}^{2}, r_{out}) \to k_{0}^{\times}, k_{1}^{\times} : \\ \operatorname{FSS} \text{ Multiplication keys} \\ \operatorname{Eval}^{\times}(k_{b}^{\times}, x_{1}', x_{2}') \to g_{b}^{\circ}(x_{1} \times x_{2}) + r_{out} \end{array}$

Addition:

KeyGen⁺(g°, $r_{in}^1, r_{in}^2, r_{out}$) $\rightarrow k_0^+, k_1^+$: FSS Addition keys Eval⁺(k_b^+, x_1', x_2') $\rightarrow g_b^\circ(x_1 + x_2) + r_{out}$ DPF Key Pool Generation

k^A: DPF Node Update keys

 $k^{\rm F}$: DPF Feature Update keys \downarrow Online keys

k^I: DPF Client Query keys

 $k^=$: DPF Equality Test keys

 $k^{<}$: DPF Comparison keys

Online – Oblivious Activation Function

1) Each
$$P_b$$
: DPF.Comp $(z[i])$
2) Each P_b : OblivBitFlip

$$\begin{bmatrix}
1 & [[b]]_0 = \text{Eval}(k_0, [[z]]_0), [[b]]_1 = \text{Eval}(k_1, [[z]]_1) \\
2 & [[b']]_0 = 0 - [[b]]_0, [[b']]_1 = 1 - [[b]]_1 \\
3 & [b'] = [[b']]_0 + [[b']]_1 = 1 - ([[b]]_0 + [[b]]_1) = 1 - b$$

$$\mathbf{Z}[i] := \begin{cases} \frac{\mathsf{OblivReLU}(z[i])}{\sum_i \mathsf{OblivReLU}(z[i])}, & \text{if } \sum_i \mathsf{OblivReLU}(z[i]) > 0\\ 1/L, & \text{otherwise} \end{cases}$$

1) Each $P_b: [\![s[j]]\!]_b \leftarrow \sum_{i \neq j} \mathsf{DPF.Comp}([\![z[i] - z[j]]\!]_b)$ Finding the largest element 2) Each $P_b: [\![z'[j]]\!]_b \leftarrow \mathsf{DPF.Equa}([\![s[j] - (L-1)]\!]_b)$ Locating the largest element

OblivGNN Approach – Inductive Protocol

- Introduce *new* nodes
- Do NOT modify the existing graph

- Modify the *existing* graph
 - Obliviously update adjacency matrix
 - Obliviously update feature matrix

OblivGNN Approach – Inductive Protocol

Online – Oblivious Graph Update

New Node Insertion

Adjacency Matrix

- Protect connections of new nodes
- Leak graph size

OblivGNN Approach – Inductive Protocol

Online – Oblivious Graph Update

Existing Graph Update

OblivGNN Approach – Inductive Exclusive Ops

Online – Oblivious Graph Update

Existing Graph Update

Perform oblivious graph updates via DPF write

To further hide graph size, perform DPF full domain evaluation over the graph with padding

Outline

- Introduction
 - Graph Neural Networks
 - Machine Learning as a Service
 - Design Goal
 - Related Work
- Preliminaries
 - Graph Convolutional Networks and Node Classification
 - Function Secret Sharing
- Protocol
 - Strawman
 - OblivGNN
- Experiments
 - System

Experiments

Platform

- Server
 - 3.70GHz Intel(R) Xeon(R) E-2288G CPU
 - 64GB RAM and 128GB external storage
 - Ubuntu 20.04.5 LTS
- MP-SPDZ [Keller et al. (CCS'20)]

Datasets

Cora, Citeseer and Pubmed

Dataset	Nodes	Feature	Edge	Classes
Cora	2708	1433	5429	7
Citeseer	3327	3703	4732	6
Pubmed	19717	500	44338	3

Baseline

- Baseline: pure additive secret shares for inference.
- OblivGNN: additive secret shares with FSS for oblivious inference.

Experiments – System

System Online Runtime:

Graph Update Cost: | Logarithm growth with graph size

Online Communication (GB):

Reduction: $10 \times -151 \times$

	Baseline	OblivGNN
Cora	34.21	0.29
Citeseer	61.81	0.41
Pubmed	16.33	1.65

(b) Node/Feature Update Time Cost

1001

2001

Domain Size

3001

50

0-

- To enable efficient encrypted GNN training
- To scale PPML for GNNs for large graphs
- To deploy encrypted GNN training and inference protocols to GPU

Outline

- Privacy-preserving Machine Learning for GNNs
- Addressing Training Data Misuse in GNNs

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph Neural Networks

Bang Wu, He Zhang, Xiangwen Yang, Shuo Wang, Minhui Xue, Shirui Pan and **Xingliang Yuan**

In the Network and Distributed System Security Symposium (NDSS), 2024

Data Misuse aginst GNNs in MLaaS

GNN deployment raise data misuse concerns.

GNN development

- 1. Gather data for GNN training
- 2. Deploys GNNs.
- 3. Sell API to GNN users.

Data Misuse in GNNs

Graphs can be illegally/unintentionally collected for GNN training!

Mislead GNN prediction

Data error leads to incorrect predictions

Fraud Detection

Leverage sensitive data against privacy attacks

Transaction records are private

Chip Design

Compromise IP of data owners

Chip floorplan needs intellectual effort

How to deal with data misuse?

- **Detection**--<u>Membership Inference</u>
 - Identify if a specific graph has been used without authorization.
 - Stealing Links [HJBG+]
 - Node-Level Membership Inference [HWWB+21]
 - Graph-level Membership Inference [WYPY21]
- Mitigation--Machine Unlearning
 - Make the GNN model forget about misused graph data.
 - GraphEraser [CZWB+22]
 - GNNDelete [CDHA+23]

[HJBG+21] [HWWB+21] He, Xinlei, et al. "Node-level membership inference attacks against graph neural networks." *arXiv* 2021. [WYPY21] Wu, Bang, et al. "Adapting membership inference attacks to GNN for graph classification: Approaches and implications." *ICDM* 2021. [CZWB+22] Chen, Min, et al. "Graph unlearning." *CCS* 2022. [CDHA+23] Cheng, Jiali, et al. "GNNDelete: A General Strategy for Unlearning in Graph Neural Networks." *ICLR 2023*.

Requirements of Mitigating Data Misuse in MLaaS

Task Requirements

<u>R1</u> - Misuse Detection - Detect the data misused GNNs

R2 - Misuse Mitigation - Remove the impact of misused data to the model

• (MLaaS) Setting Requirements

- **<u>R3</u>** Data Privatisation Keep sensitive information about the graph locally
- **<u>R4</u> GNN Model Agnostic** No assumption on GNN training/model architecture

Prior Work: Not Applicable to MLaaS

Assume that the server can access the exact training samples;

Prior Work: Not Applicable to MLaaS

• Require modifications in the GNN architecture or training process.

Our Design -- GraphGuard

- Identify if G_p is used in f_{θ^*} training (**R1**)
 - Membership inference
- Eliminate the impact of G_p on f_{θ^*} (**R2**)
 - Unlearning
- Do not leverage the graph structure (R3)
- Utilize only standard APIs in MLaaS (R4)

Detection goal

Detect data misuse (**R1**) via API (**R4**) without the graph structure (**R3**).

- How to perform membership inference without the graph structure?
 - Prior study: proactive MIA. [SDSJ20]
 - Our design: radioactive graph

GNNs trained on them react differently for specific node attribute queries.

[SDSJ20] Sablayrolles, A., et.al. Radioactive data: tracing through training. ICML 2020.

Pipeline:

1. Revise node attributes from G_p^0 to G_p before publishing graph

Pipeline:

- 1. Revise node attributes from G_p^0 to G_p before publishing graph
- 2. Data misuse during training
- 3. GNN being deployed

Pipeline:

- 1. Revise node attributes from G_p^0 to G_p before publishing graph
- 2. Data misuse during training
- 3. GNN being deployed
- 4. Query graph \hat{G}_p with node attributes only (without structure)
- 5. Obtain predictions $f_{\theta^*}(\hat{G}_p)$

Pipeline:

- 1. Revise node attributes from G_p^0 to G_p before publishing graph
- 2. Data misuse during training
- 3. GNN being deployed
- 4. Query graph \hat{G}_p with node attributes only (without structure)
- 5. Obtain predictions $f_{\theta^*}(\hat{G}_p)$
- 6. Membership inference $\hat{\mathcal{A}}$

• Mitigation goal

Perform unlearning (**R2**) by fine-tuning the target GNNs (**R4**) without utilising the exact graph structure (**R3**).

• Design intuitions

- Well-generalized GNNs do not learn the exact graph structure
- Unlearning a subgraph does not rely on the exact sub-graph structure

• Our design

- Leverage MIA for graph synthesis
- Use synthetic graph for unlearning

6. MLaaS receives an unlearning request

- 6. MLaaS receives an unlearning request
- 7. (1) Data Gathering X_p , $\hat{\mathcal{A}}$ from the data owner X_m^0 from the model owner
- 7. (2) Graph Synthesize Unlearning graph \tilde{G}_p by X_p , f_{θ^*} and $\hat{\mathcal{A}}$ Remaining graph \tilde{G}_r by X_m^0 , f_{θ^*} and $\hat{\mathcal{A}}$

- 6. MLaaS receives an unlearning request
- 7. (1) Data Gathering X_p , $\hat{\mathcal{A}}$ from the data owner X_m^0 from the model owner
- 7. (2) Graph Synthesize Unlearning graph \tilde{G}_p by X_p , f_{θ^*} and $\hat{\mathcal{A}}$ Remaining graph \tilde{G}_r by X_m^0 , f_{θ^*} and $\hat{\mathcal{A}}$
- 8. Fine-tuning f_{θ^*} : Increase loss on \tilde{G}_p Decrease loss on \tilde{G}_r

Evaluations - Detection

		GCN		G	raphSag	e		GAT			GIN	
	Baseline	Ours	Δ	Baseline	Ours	Δ	Baseline	Ours	Δ	Baseline	Ours	Δ
Cora	0.874	0.999	↑0.125	0.864	0.999	↑0.135	0.927	1.0	↑0.073	0.857	1.0	↑0.143
Citeseer	0.711	0.999	↑0.288	0.822	1.0	↑0.178	0.723	0.999	↑0.276	0.767	1.0	↑0.233
Pubmed	0.906	1.0	↑0.094	0.902	1.0	↑0.098	1.0	1.0	0	0.932	1.0	↑0.068
Flickr	1.0	1.0	0	0.994	1.0	↑0.006	0.996	1.0	↑0.004	0.998	1.0	↑0.002
				Metric - AUC								

Observations

- Our design achieve higher detection rates
- Baseline MIA only satisfied R1-Detectable & R4-Model Agnostic

Evaluations - Mitigation

• Effectiveness - MIA ASR before/after unlearning

		GCN		GraphSage			GAT					
	Before	After	Δ	Before	After	Δ	Before	After	Δ	Before	After	Δ
Cora	86.9	51.8	↓ 35.1	83.3	54.5	↓ 28.8	85.6	47.5	↓ 38.1	91.7	47.9	↓ 43.8
Citeseer	91.3	68.7	↓ 22.6	81.2	56.1	↓ 25.1	61.4	60.3	↓ 1.10	86.2	46.2	↓ 40.0
Pubmed	93.6	49.2	↓ 44.4	85.7	53.2	↓ 32.5	82.4	49.7	↓ 32.7	84.1	47.6	↓ 36.5

• Utility - Model ACC before/after unlearning

		GCN	GCN GraphSage				GAT				GIN	
	R	U	Δ	R	-U	Δ	R	U	Δ	R	U	Δ
Cora	75.7	74.3	↓ 1.2	67.4	66.5	↓ 0.9	83.1	81.5	↓ 1.6	86.4	85.1	↓ 1.3
Citeseer	81.1	80.0	↓ 1.1	70.0	68.7	↓ 1.3	82.2	80.1	↓ 2.1	79.5	78.9	↓ 0.6
Pubmed	81.8	79.8	↓ 2.0	82.5	80.3	↓ 2.2	83.6	81.3	↓ 2.3	83.6	82.8	↓ 0.8
ı												

Evaluations - Mitigation

• Efficiency - Time cost of retraining and our unlearning method.

		GCN			GraphSage	
	R	Ours	Times(†)	R	Ours	Times(†)
Cora	3.615	0.725	≈ 4.99	4.188	0.643	≈ 6.5 1
Citeseer	1.746	0.375	≈ 4.66	2.023	0.333	≈6.08
Pubmed	4.201	3.043	≈ 1.38	4.865	2.670	≈ 1.82

		GAT			GIN	
	R	Ours	Times(†)	R	Ours	Times(↑)
Cora	3.600	0.720	≈ 5.0	4.26	1.225	≈ 3.48
Citeseer	1.737	0.375	≈ 4.63	2.058	0.613	pprox3.56
Pubmed	4.190	3.017	≈ 1.39	4.968	5.124	≈ 0.97

Take Away

Definition of New Problem

• We define the graph misuse in MLaaS-deployed GNNs

Requirement Formulation

- Task Requirements: (R1) detectable, (R2) remedial
- (MLaaS) Setting Requirements: (R3) data privatization, (R4) model agnostic

An Integrated Pipeline

- Radioactive data driven detection technique
- Unlearning methodology w/o confidential graph structure
- Code: https://github.com/GraphGuard/GraphGuard-Proactive

Challenges Ahead

- How to enable privacy-preserving auditing for data misuse in the ML pipeline?
 - Will perturbed data be exploited to recover the original data?
- How to enable privacy-preserving unlearning?
 - Will synthesized data be exploited to recover the unlearning request?
- How to enable verifiable machine unlearning?
 - Ensure the execution of unlearning

Thanks! xingliang.yuan@unimelb.edu.au