THE UNIVERSITY OF

MELBOURNE

Towards Securing Graph Neural Networks in MLaaS

Xingliang Yuan
School of Computing and Information Systems
The University of Melbourne

29 June 2024 @ The 86th IFIP WG 10.4 Workshop



Outline

* Privacy-preserving Machine Learning for GNNs

* Addressing Training Data Misuse in GNNs



GNN: Powerful for Analysing Interconnected Information

L?Ie//// \\\ //cé" .
g 22 - @2 ——@ .
T ‘U:m? ———————— ﬁz s f! Ul?] @
Fraud Detection Social Networks

Google Invents Al That Learns a Key RevieW
Part of Chip Design

Graph Neural
Networks for
Self-Driving Ty \ e ‘
Google Proposes AI as Solutlon for
§pg¢ﬁllgr AI Chip Design naniate

chips to design

Raquel Urtasun

UberATG

Self-driving Chip Design Knowledge Graph



GNN Tasks

Node Classification
(Graph Convolutional Network [kipf et al. (ICLR17)])

Generall

Sumitomo
Royal Bank Scotland

Gen.Electric / \ Bank Nova
B |\, Scotia

Bear St¢arns
Intesa-Sanpaolo @ ,(l/.

uBSg
Aberdeen @ Soc |Generale @

l

Medlobanca @ k

Sumitomomitsui &
Friends Provident @

Fidelity Mng @

FP

Deutsche Bank

\ FMR Cor;;.

Cr.Suissefd-

Franklin Res.

Mitsubishi UFJ
Llcyds TSB
[+ y

HB
Bank of \o o
no° \

America
Goldman &
o Santander \
Morgan Stanleyo\ \

@ Capital Group

Prudential Fin,

@ ING

o Commerzbank

o Unicredito
[*) HSBC
RSP 9 Barclays
JP Morgan @
@ Chase BNP Paribas

9

Nomura

Wellington Mng.
Merrill Lynch

Bank

Graph Classification
(GraphSAGE [Hamilton et al. NIPS"17])

S _S
\(/

N

S
HN— T
N—N

A Deep Learning Approach to Antibiotic Discovery [2]

Halicin [3]
nature
Explore content v About the journal v Publish with us v :Ce“
S .. Graphical Abstract
NEWS | 20 February 2020
Powerful antibiotics disc
using Al
Machine learni that inst unt

bacteria.

Drug discovery

Link Prediction
(GraphSAGE [Hamilton et al. NIPS"17])

Pins: Visual bookmarks someone has

| «

. -
1 i saved from the internet to a board
== they've created.

NO,

Pin features: Image, text, links

I 1

uv% bty o]
Rod ol b CR A

Correspondence - = Man Sy -+ styie . e s Sty -
regina@csail.mitedu (R.B),

Authors

fang,
iS. Jaakkola,
Regina Barzilay, J. Colins

Boards

ficacy against broad-spect
bacterial infections in mice.

Recommendation systems



GNNs in Machine Learning as a Service (MLaaS)

GNN is increasingly featured on MLaaS platforms - ... scence :
* Amazon: SageMaker Support for DGL

« Google: Neo4j & Google Cloud Vertex Al How AWS uses graph neural

networks to meet customer needs

* Microsoft: Azure ML Spektral
Graph NeuralNetwork on AWS

| The Complete Guide

Jagreet Kaur | 27 June 2023

AWS Machine Learning Blog
Use graphs for smarter Al with Neo4j and

Build a GNN-based real-time fraud detection solution using Amazon Google Cloud Vertex Al
SageMaker, Amazon Neptune, and the Deep Graph Library

by Jian Zhang, Haozhu Wang, and Mengxin Zhu | on 11 AUG 2022 | in Amazon Neptune, Amazon SageMaker, Artificial
Intelligence | Permalink | ® Comments | @ Share

Fraudulent activities severely impact many industries, such as e-commerce, social media, and financial services. Frauds i [
could cause a significant loss for businesses and consumers. American consumers reported losing more than $5.8 billion

to frauds in 2021, up more than 70% over 2020. Many techniques have been used to detect fraudsters—rule-based

filters, anomaly detection, and machine learning (ML) models, to name a few.

GraphGuard 5



Towards Securing GNNs in MLaaS

!_ ................................. 1
raining Phase T : Deployed
Preprocessing : GNN Model
Function I :
| ot -2
|
|

iServing Phase

l |
l |
l |
| . .
: SageMaker I |
' GNN del
= ! L—/’—n'm/e_'— Training | & 'b |
2 ] I | |
Amazon S3 | Request f‘ Prediction |
l |
|
|
|
|

Bucket mmmmm B _
i i H o
G O T -
GNN model Function : M 4 . _ .
! SageMaker ; |
i _rostne ! | Client |
e 4
Architecture for GNN training and serving Online prediction

PPML for GNNs [XLLAYY24]: “OblivGNN: Oblivious Inference on Transductive and Inductive
Graph Neural Network”, USENIX Security, 2024

Detecting and mitigating data misuse in GNNs [WZYWXPY24]: GraphGuard: Detecting and
Counteracting Training Data Misuse in Graph Neural Networks, NDSS, 2024.

Verifying GNN predictions [WYWLXP24]: “Securing Graph Neural Networks in MLaaS: A
Comprehensive Realization of Query-based Integrity Verification”, IEEE S&P, 2024

Model extraction [WYPY22]:“Model Extraction Attacks on Graph Neural Networks: Taxonomy
and Realisation”, AsiaCCS, 2022



THE UNIVERSITY OF

3. MELBOURNE

MONASH @ DATA ' RMIT

© University UNIVERSITY

OblivGNN: Oblivious Inference on Transductive and Inductive
Graph Neural Network

Zhibo Xu'2, Shangqi Lai?, Xiaoning Liu3, Alsharif Abuadbba?, Xingliang Yuan'-4, and Xun Yi3
1Monash University, 2CSIRO’s Data61, 3RMIT University, 4 The University of Melbourne

In the 33rd USENIX Security Symposium



 |ntroduction

 Motivation
 Related Work

 Preliminaries
« Graph Convolutional Networks and Node Classification
« Function Secret Sharing

 Protocol

« Strawman
« ODblivGNN

* Experiments
e System



GNNSs in Machine Learning as a Service (MLaaS)

P — i — i — — i — — — — — — — — — — — — —— ——

| Training Phase

| P N
Graph Data —‘ reprocc.essmg '—“ %
Function

|
l GNN model SageMaker
— i - Training
D \ [
Y 4 0 T 4 X ! \
Bucket iServmg Phase i
| Graph & Postproc-essmg m |
GNN model Function It |
mode SageMaker |
| Hosting

AWS SageMaker for GNN training and inference



Privacy Concerns

Perform GNN Privacy Concerns:
Inference on

« EXpose sensitive training/inference graph to MLaaS

» Collecting training graphs often requires a large

amount of human, computing, and economic resource
« Graph data is sensitive by nature, e.g., users’ financial

transactions, private friendships

» Expose proprietary GNN model parameters to MLaaS

Client

10




Related Work in Privacy-Preserving Machine Learning

Traditional PPML Frameworks

Trident, Chameleon, Falcon,
GAZELLE, MiniONN, Delphi, ABY3,
SecureML, BLAZE, XONN, AriaNN,

CryptGPU, SecureNN

Cannot support graph-structured data

» Do not offer full protection of graph

structure information
: » Leak degree information
SeCGNN, CryptoGCN, LinGCN * Do not support the full settings of

GNN deployment
« Heavy computation cost (via FHE),
heavy communication cost due to the
large size of the graph

11



 Preliminaries
« Graph Convolutional Networks and Node Classification
« Function Secret Sharing

12



Preliminaries — Graph Convolutional Network

Z=Softmax(A ReLUAFW; )W)

* W, and W, are two trainable weight matrixes
« A is the normalized adjacency matrix

« F is the normalized feature matrix

e Activation functions:

_Jx ifx=0
ReLU(x) = {0 ifx <O

e Softmax: z; = . 1 €[1,C]
Zjef,c) €

RelLU /\/
softmax
class
H— —_— —>@

13



GNN Settings: Transductive and Inductive

Node Classification

— Trainin .
g @ Transductive:
 Unlabelled nodes and their connections

Transductive 4 — — — — — — — —

exist in the training
@ « Graph for training and inference remains
— Inference the same
* Query is a node ID/set of node IDs

— Training Inductive:
« Updated nodes, features, connections
appear in the inference

Inductive 4 — — — — — o

* Query is a node ID/set of node IDs
— Inference ?
14




Function Secret Sharing

AR aN sl [Boyle er al. CCS’16][Boyle et al. EUROCRYPT’21]

Distributed Point Functions: Arithmetic FSS:
KeyGen(a, B) — kg, kq Multiplication:
Eval(k;, x) — [y], KeyGen*(g°, 1, 12, Tour) = k&, ki

E l(k +E l(k ) . ,B, lfx = Evalx(k;)(; xi; xé) - gz (X]_XXZ) + Tout
val(ko, x) + Eval(ky, x) = 0, otherwise Eval* (kg, x1, x5) + Eval* (k{, x1, x3)
= X1 XX + Tout

Equality Test: Addition:
KeyGen=(a =y, =1) - kg, kI KeyGen™ (g°, 1k, 72 Tout ) = k& ki
Eval=(k,,x) = [yl Eval® (ky, x1,x3) = g, (x1 + x3) + Toue
1 ify — Eval® (k&, x7, x5) + Eval™ (ki, x7, x5)
Eval=(ko, x') + Eval=(ky, x") = |7 L ifx y T - _|1_ i 4
0 ,otherwise X1 T X2 T Tout

Comparison:

KeyGen<(a =y,B =1) - kg, kT
Eval<(ky,x) = [y],

0 ifx'>y

=1,ifx' <
Eval<(ko, x") + Eval<(ky, x") = {y iy

15



 Protocol

« Strawman
« ODblivGNN

16



Strawman Approach

Transductive setting

Sharing:

Additive Secret Sharing

Y

RelLU

1

4 4

/Aggregation:

Beaver’s triple

17

softmax
class

Labels

> | —>

Activation Functions:
Polynomial approximation

e



Strawman Approach

Inductive setting Graph update: <
update the graph

softmax -

class
Labels
A

B > —>

!/Aggregation:

Beaver’s triple | can observe the

Activation Functions:
Polynomial approximation

update pattern

Problem: Leak graph update access, suffering from leakage attack (raizon and paterson, ESoRICS22]

18



Strawman Approach

Inductive setting Graph update:
reuploading the entire graph

<€

RelLU

-/

softmax
class -

Labels
A

> | —>

Activation Functions:
Polynomial approximation

| 4

Aggregation:
Beaver’s triple

Problems: the communication cost is significant when re-uploading the updated graph.

19



Research Questions

1.How to enable secure GNN inference in the transductive and inductive
settings?

2. How to achieve data obliviousness with semi-honest security?

3. How to achieve high efficiency while achieving the above goals?

20



Protocol - Architecture

OblivGNN

i

GNN Model

<«

Model Owner Client

21

« Semi-honest Servers

* Non-colluding



Protocol — Security Guarantee

Protect graph information

« Adjacency Matrix A
« Feature Matrix F

Protect model information
* Weight Matrix Wy and W,

Protect access pattern to the graph structure A and node feature F

Protect client queries and inference results

22



OblivGNN Approach

Transductive Inductive

1 n [ | 2 n* c*
@. e '@ e
g ho : g ho
n|| Adjacency Matrix ( X in o ( X i ¢c|| Weight Matrix 0 : n’l| Adjacency Matrix ( X in © (X s ¢|| Weight Matrix 0
SO SO o 5 o
= l -
i [Wol : i Wol
: a ’ el 1 : A . P
[A] [¥] l I [& ]]4\ />|[F 1 l
I -
. " First Layer @ 1 @ Eval @ y
Online [ Activation Layer /' ReLU \ | 2 TEET { ~ RelU \
[ 1] Second Layer l I ] l
1
1
® z . e @ . @ PUN ®
- —
SR § P N Softmax ! o § oy Softmax
. . N 7o % Weight [ f o R PN Weight
n|| Adjacency Matrix (‘.\.>§ Jnlle k\)f/: ho$ 1 ™'|| Adjacency Matrix (‘\)i" "l g '\\)f/. h¢
| e LA I g ;]
|2 ® | : ®
g 0 T I a8 Results
b > N [z.] 1 — — [Z.]
,: A | [A] [2o]

- — — -

\ Evalx(g‘. [+ D)

+&

)

—J

": eval* (8% [l < H. B < B

[ Eval=(&:,s[j] —(m-1))

(Eval<( <, vIWoD) |

\*m is the no. of elements in a row )

23



OblivGNN Approach

Masks for Arithmetic
« Masking & secret share GNN model FSS gates

Adjacency matrix: A’ « A  +([r}/r2
Feature matrix: F'«F +ri/id
Weight matrices: Wy 1 < W,

« Two servers need to recover the ASS shares (masked
data) before operating FSS circuits

[A'], [¥'], [A'].. [F],,  Matrices stored in secret shares to facilitate update

[W5lo [[wwl, w1,

24



OblivGNN Approach

Key generation

FSS Key Pool
Generation

Multiplication:

KeyGen*(g°, v, 2, rour) = kX, k¥ :[FSS Multiplication keys

Eval*(k;, x1,x3) = gZ(X1><xz) + Tout

Addition:
KeyGen™ (g°, 1k, r2 Tout ) = k&, ki :|FSS Addition keys
Eval* (ky, x1, x3) = gp(x1 + 22) + Toue

25

DPF Key Pool
Generation

k%: DPF Node Update keys
kF: DPF Feature Update keys
k': DPF Client Query keys
k=: DPF Equality Test keys

k<: DPF Comparison keys

—_—

- Online keys




OblivGNN Approach

Online — Oblivious Aggregation [EAGINGIYESIEZYRBNCINCAR Y

Example:

x| =x; +1d
xé = Xy +Ti2n

Evalt(kd, x1, x5) + Evalt(k{, x1, x5)

(

) )

x4 4| = Eval* (k*, 1/4)

X Eval*(k*, 25
> val™( Eval™ (k™,

X" | = Eval*(k*,3, = OUtPUlFTout
6 (k*,3)6) y

26

7

\




OblivGNN Approach

Online — Oblivious Activation Function

RelLU

[Ryffel et al. POPETs’22]

Softmax

[Mohassel et al. IEEE S&P’21]
[Keller et al. CCS’20]

Argmax

[Ryffel et al. POPETs’22]

2) Each P,: OblivBitFlip 2) [6'To=0—[b]o, [6']1 =1 —[b],

1) Each Py: DPFComp(z[L]) 1) [[bﬂo :Eval(ko, [[Zﬂ()), [[bﬂ] :Eval(kl, HZH])
{ 3) b =[6To+[6]1 =1—([6]o+[6]1)=1—"b

Y OblivReLU(2[i]) ’

Zii OBIVRELU() i ¥ OblivReLU(2[i]) > 0
A=
1/L, otherwise

1) Each Py: [s[j]], < ¥Xiz; DPF.Comp([z[i] —z[/]]») Finding the largest element
2) Each Py: [Z'[j]]» + DPF.Equa([s[j]— (L—1)],) Locating the largest element

27



OblivGNN Approach — Inductive Protocol

Online — Oblivious Graph Update

( \

New Node Insertion Existing Graph Update
 Introduce new nodes * Modify the existing graph
« Do NOT modify the existing graph  Obliviously update adjacency matrix

» Obliviously update feature matrix

28



OblivGNN Approach — Inductive Protocol

Online — Oblivious Graph Update Vo Vi V. Uy Vpiq

Vg V4 U Uy
New Node Insertion
Vg |11 0
v, | 1]1 0
Sub-graph v, lo]o]..|1
Adjacency Matrix : |
‘ ‘ (secret shared) Inserted Adjacency Matrix
Client/Model Owner
Sub-graph Sub-graph o J. Je
Adjacency Matrix Feature Matrix vo |11]..]0 Vg | 11]..]0
v, |1]..]1]| Appendshares ‘1 o I
» Protect connections of new v | 1. v.
Eodc;s o IR v, |0]..[]1
cax graph size Feature Matrix vn+1-

(secret shared) Inserted Feature Matrix

29



OblivGNN Approach — Inductive Protocol

Online — Oblivious Graph Update

Existing Graph Update

0 1 .. n 0O 1 .. n

Sub-graph 0o [1]o].]o — Eval(k® 0[|0) 0 i. 0

1 |0o|1]..]0 «| Eval(k#, 1]|0 1 1]..]10

Client/Model Owner — Eval(k{,*,...)
Sub-graph Sub-graph n [0]0]..]1 «— Eval(ks,n||0) n |0]0]..[]1
Adjacency Matrix Feature Matrix Adjacency Matrix [A] Updated Adjacency Matrix

secret shared
KeyGen(0]|1,1) — k&, k2 ( )

KeyGen(1]]|0,1) — k&, k#

30



OblivGNN Approach — Inductive Exclusive Ops

Online — Oblivious Graph Update

Existing Graph Update

0 .. c 0 .. c
0 1]1..10 «— Eval(kE,OHO) 0 1.0
8 ‘ ‘ 1 . | Lo Eval(k},1]|0) ‘ 1 . o |1
Client/Model Owner «— Eval(k}, ...)
Sub-graph Sub-graph n [0]..[]1 «— Eval(k$,n||0) n |0]..]1
Adjacency Matrix Feature Matrix Feature Matrix [F] Updated Feature Matrix

secret shared
KeyGen(1]]0, F,(v;)) = k§, k& ( )

Perform oblivious graph updates via DPF write

To further hide graph size, perform DPF full
domain evaluation over the graph with padding

31




OblivGNN Approach

Online — Client Query Server 0 Inference Results (Masked)

0 2 | X
[0lo
X
710 1 ’
x| - o | X
[ 4 X
| want inference %
result of node v;=

N

Client

KeyGen(1,1) — kb, ki

[04 0 2 X
071, 1 7 X
y [ .
[0], X
[0]4 n-1 4 X
X

32

Eval(k},0) = [0],
Eval(kl,1) = [1],
Eval(k}, ...) = [0],
Eval(kl,n) = [0,

Eval(ki,n + 1) = [0],

Server 1 Inference Results (Masked)

Eval(kl,0) = [0],

Eval(kl,1) =11,
Eval(k},...) = [0];
Eval(k},n) = [0],

Eval(k},n + 1) = [0],



* Experiments
e System

33



* Platform
« Server
« 3.70GHz Intel(R) Xeon(R) E-2288G CPU
« 64GB RAM and 128GB external storage
 Ubuntu 20.04.5 LTS
o MP-SPDZ [keller et al. (cCS™20)]

 Datasets
 (Cora, Citeseer and Pubmed

Dataset | Nodes Feature Edge Classes
Cora 2708 1433 5429 7

Citeseer | 3327 3703 4732 6

Pubmed | 19717 500 44338 3

« Baseline

« Baseline: pure additive secret shares for inference.
» ODblivGNN: additive secret shares with FSS for oblivious inference.

34



Experiments — System

System Online Runtime: Graph Update Cost: | Logarithm growth with graph size
| B'aseline : i =B B'aseline —
104 E OblivGNN _ 104 B OblivGNN =i
§ § % 20 A R Tt
E 38.17% g E 38.17% 5;1‘00‘ : Lij_l— T
§ E E g E, 1504 -
Z 5 2 5 % é; 100—:_ -
S 1/° 1% e} 1.56% — 1% = = N P —— == e e
\ % I = = 1 1001 2001 3001
0 g § ; § : 0 = : § = r Domain Size
Cora Citeseer Pubmed Cora Citeseer Pubmed
(a) Transductive (b) Inductive (a) Node/Feature Update Key Size
BT e T e
? 200 Time -
§‘§ 1504+= qumnf — ===t -
S :
Online Communication (GB): | Reduction: 10x - 151x o s ——— —— !
1 1001 2001 3001
- Domain Size
Baseline OblivGNN (b) Node/Feature Update Time Cost
Cora 34.21 0.29
Citeseer 61.81 0.41
Pubmed 16.33 1.65

35



Future Work

* To enable efficient encrypted GNN training
» To scale PPML for GNNs for large graphs

« To deploy encrypted GNN training and inference protocols to GPU

36



Outline

* Addressing Training Data Misuse in GNNs



GraphGuard: Detecting and Counteracting Training
Data Misuse in Graph Neural Networks

Bang Wu, He Zhang, Xiangwen Yang, Shuo Wang, Minhui Xue,
Shirui Pan and Xingliang Yuan
In the Network and Distributed System Security Symposium (NDSS), 2024




Data Misuse aginst GNNs in MLaaS

GNN deployment raise data misuse concerns.

GNN development gu % Gather

o Data Graph | Misuse GNN  Model
1. Gather data for GNN tralnlng Owner Data Model Developer
Deploy
2. Deploys GNNs. 4

Prediction
3. Sell API to GNN users. g% g% Sl | apy %ED @
GNN Users ﬁ GNN = MLaaS
Model Server




Data Misuse in GNNs

Graphs can be illegally/unintentionally collected for GNN training!

2 D ' E\
- P N
lr ,r’/:// Flg/ = h \ S
[ /// N
¥ a & . o 2
gy W g B0
e | [ZYYW+23] [DLSD+20] al
Drug Discovery Fraud Detection

Leverage sensitive data

Mislead GNN prediction against privacy attacks

Data error leads to Transaction records
incorrect predictions are private

VDD

=GND  [MGYJ+21]
Chip Design

Compromise IP

of data owners

Chip floorplan needs
intellectual effort

40



How to deal with data misuse?

« Detection--Membership Inference
* |dentify if a specific graph has been used without authorization.

« Stealing Links [HJBG+]
* Node-Level Membership Inference [HWWB+21]
« @Graph-level Membership Inference [WYPY21]

» Mitigation--Machine Unlearning

« Make the GNN model forget about misused graph data.
« GraphEraser [CZWB+22]
« GNNDelete [CDHA+23]

[HIBG+21] [HWWB+21] He, Xinlei, et al. "Node-level membership inference attacks against graph neural networks." arXiv 2021.
[WYPY21] Wu, Bang, et al. "Adapting membership inference attacks to GNN for graph classification: Approaches and implications." ICDM 2021.
[CZWB+22] Chen, Min, et al. "Graph unlearning." CCS 2022.

[CDHA+23] Cheng, Jiali, et al. "GNNDelete: A General Strategy for Unlearning in Graph Neural Networks." ICLR 2028.
41



Requirements of Mitigating Data Misuse in MLaaS

» Task Requirements

R1 - Misuse Detection - Detect the data misused GNNs

R2 - Misuse Mitigation - Remove the impact of misused data to the model

* (MLaaS) Setting Requirements
R3 - Data Privatisation - Keep sensitive information about the graph locally

R4 - GNN Model Agnostic - No assumption on GNN training/model architecture

42



Prior Work: Not Applicable to MLaaS

 Assume that the server can access the exact training samples;

[HWWB+21]

Querying the exact
training graph

Predict

[CZWB+22]

[ Attack Model J

43



Prior Work: Not Applicable to MLaaS

* Require modifications in the GNN architecture or training process.

Additional functions in GNNs

Jake| NNO

44



Our Design -- GraphGuard

* |dentity if G, is used in fy- training (R1)
« Membership inference

* Eliminate the impact of G, on fy- (R2)
* Unlearning

* Do not leverage the graph structure (R3)

« Utilize only standard APls in MLaaS (R4)

Model Owner

'.f::

Authorised Graph G2,

|
I I
|
Graph G},

1 Train
Misused GNN fp-

Data Owner
|
Io/o\oI
Unauthorised
Graph G,

— — — — — —

[ GNN Serving |
I\ Instance

45




GraphGuard - Detection

e Detection goa| specific node attribute queries.

Detect data misuse (R1) via API (R4) without the Training Radioactive
graph structure (R3). Graph Graph
« How to perform membership inference without E E
the graph structure? | rain | weain
 Prior study: proactive MIA. [SDSJ20] Query
* QOur design: radioactive graph O . .
1 Output 1 Output

alil afill

[SDSJ20] Sablayrolles, A., et.al. Radioactive data: tracing through training. ICML 2020.

O GNNs trained on them react differently for

46



GraphGuard - Detection

Pipeline: G | 1
st 0] = argmemL(fg(Gm)),
. . 0 1
1. Revise nod_e a.ttrlbutes from G, to G, i 0 = argmin L(fy(C5)), |
before publishing graph Femmonomesooonetonoosooooooooood
Data Owner “

i
@ Proactive Graph Construction

0% Perturb r?

Gp




GraphGuard - Detection

Pipeline: G

st 0] = argmeinL(fg(an)),
. . O 1
1. Revise nod_e a.ttrlbutes from G, to G, i 6r = argmin L(f5(G2.)), |
before publishing graph s LI SRR
Data misuse during training e ———
@ Proactive Graph Czonstruction

GNN being deployed

-% Perturb c?

Gp




GraphGuard - Detection

Pipeline:

1.

Revise node attributes from G to G,
before publishing graph

Data misuse during training
GNN being deployed

Query graph G, with node attributes only
(without structure)

Obtain predictions fy-(G,)

Data Owner Lzt

@ Proactive Graph Construction

Remove l
Structure
o
[ ]

e e e e e e e e e e e -
P

Model Developer

@ Graph is used for GNN training
without authorization

Gather/Steal Graph Data> Q% Train

Gy fo;

€© Deploy Malicious

MLaaS Server
GNNs via MLaaS

o
O Query °ec (
[ ]

D

v

fo:

MLaaS Serving
Instance

O Obtain nall] for (Gy)

49



GraphGuard - Detection

Pipeline:

1.

Revise node attributes from G to G,
before publishing graph

Data misuse during training
GNN being deployed

Query graph G, with node attributes only
(without structure)

Obtain predictions fy-(G,)

Membership inference A

e e T

Data Owner Lzi*

@ Proactive Graph Construction

Remove l
Structure
o
[ ]

Model Developer

Gather/Steal Graph Data

MLaaS Server

0 Query

(0]
o (e}

® 9

[ )

Gy

@ Graph is used for GNN training
without authorization

O@ Train
Gp fo;

€© Deploy Malicious
GNNs via MLaaS

v

Detection
Inference Model

|:| : Benign
Misused

@ Response Analysis and Misuse | _

fo:

for (Gy)

O Obtain nall] for (Gy)

MLaaS Serving
Instance

50




GraphGuard - Mitigation

 Mitigation goal
Perform unlearning (R2) by fine-tuning the target GNNs (R4) without utilising the exact
graph structure (R3).

* Design intuitions
- Well-generalized GNNs do not learn the exact graph structure
- Unlearning a subgraph does not rely on the exact sub-graph structure

* Our design
- Leverage MIA for graph synthesis
- Use synthetic graph for unlearning



GraphGuard - Mitigation

6. MLaaS receives an unlearning request
MLaaS

Data Owner S
erver

@ Unlearning Request

Inference
Model




GraphGuard - Mitigation

6. MLaaS receives an unlearning request
/.

(1) Data Gathering

X,, A from the data owner

X9 from the model owner

(2) Graph Synthesize

Unlearning graph G, by X,,, fa- and A
Remaining graph G, by X9, , fo- and A

MLaaS @ Unlearning Graph Synthesis
Data Owner S
erver 0% Svnthesi %

o o Synthesize

S/

Xy Gy
@ Unlearning Request

> ° .
Inference e g oo Synthesize e
Model *eXp . —>
X G,
4
7
%
‘7
a4
7 1
v !
/7 !
7 v
/ .

18 = for Pl A Afe-(6))

|
|

|

| l 2 Jo =)

i | ag’ Loss = 1 — A(f3+(6))
|

|

A |




GraphGuard - Mitigation

6. MLaaS receives an unlearning request

@ Unlearning Graph Synthesis © Membership-aware Fine-tuning

7. (1) Data Gathering PO o | P (e
X, A from the data owner S Xy G, G Fneaning ooy
Xy, from the model owner e e e f . § fa
7. (2) Graph Synthesize ' . i
Unlearning graph G, by X,,, fa- and A ;,”/I
Remaining graph G, by X9, , fo- and A //I','
8. Fine-tuning fp- : I l

Increase loss on G,
Decrease loss on G,

for — A(for(6))

|
|

|

| l 2 J6 = cna

i | ag’ Loss=1—u‘i(fg*(6))l
| - |




Evaluations - Detection

GCN GraphSage GAT GIN

Baseline Ours A Baseline Ours A Baseline Ours A Baseline Ours A
Cora 0.874 0.999 | 10.125 | 0.864 0.999  10.135 0.927 1.0 10.073  0.857 1.0 10.143
Citeseer | 0.711 0.999 | 10.288 | 0.822 1.0 10.178  0.723 0.999  10.276 0.767 1.0 10.233
Pubmed | 0.906 1.0 170.094 | 0.902 1.0 10.098 1.0 1.0 0 0.932 1.0 10.068
Flickr 1.0 1.0 0 0.994 1.0 170.006  0.996 1.0 10.004  0.998 1.0 10.002

Metric - AUC

Observations

« Our design achieve higher detection rates

« Baseline MIA only satisfied R1-Detectable & R4-Model Agnostic

55



Evaluations - Mitigation

- Effectiveness - MIA ASR before/after unlearning

GCN GraphSage GAT GIN
Before  After A Before  After A Before  After A Before  After A
Cora 86.9 51.8 | 351 833 545 | 288 85.6 475 | 381 91.7 479 | | 43.8
Citeseer | 91.3 68.7 | 226 812 56.1 | 251 614 60.3 | 110 86.2 46.2 | | 40.0
Pubmed | 93.6 492 | 444  85.7 532 | 325 824 497 | 327 84.1 47.6 | | 36.5
« Utility - Model ACC before/after unlearning
GCN GraphSage GAT GIN
R U A R U A R U A R U A
Cora 75.7 74.3 1 1.2 67.4 66.5 109 83.1 81.5 1 1.6 86.4 85.1 113
Citeseer | 81.1 80.0 411 70.0 68.7 413 82.2 80.1 121 79.5 78.9 1 0.6
Pubmed | 81.8 79.8 120 82.5 80.3 122 83.6 81.3 123 83.6 82.8 1 0.8

56



Evaluations - Mitigation

 Efficiency - Time cost of retraining and our unlearning method.

GCN GraphSage

R Ours Times(?) R Ours | Times(T)
Cora 3.615 0.725 =499 4.188 0.643 | =~6.51
Citeseer | 1.746  0.375 =~4.66 2.023 0.333 | =~6.08
Pubmed | 4.201 3.043 =138 4.865 2.670 | ~1.82

GAT GIN
R Ours Times(t) R Ours  Times(T)
Cora 3.600 0.720 ~5.0 4.26 1.225 =3.48
Citeseer | 1.737 0375 =~4.63 2.058 0.613 =3.56
Pubmed | 4.190 3.017 =139 4.968 5124 =~0.97




Take Away

* Definition of New Problem
» We define the graph misuse in MLaaS-deployed GNNs

* Requirement Formulation

- Task Requirements: (R1) detectable, (R2) remedial
« (MLaa$S) Setting Requirements: (R3) data privatization, (R4) model agnostic

* An Integrated Pipeline

» Radioactive data driven detection technique

« Unlearning methodology w/o confidential graph structure Artifact
Evaluated

A NDsSs

 Code: https://github.com/GraphGuard/GraphGuard-Proactive

Available

Functional

58


https://github.com/GraphGuard/GraphGuard-Proactive

Challenges Ahead

« How to enable privacy-preserving auditing for data misuse in the ML
pipeline?
» Will perturbed data be exploited to recover the original data?

« How to enable privacy-preserving unlearning?
» Will synthesized data be exploited to recover the unlearning request?

» How to enable verifiable machine unlearning?
« Ensure the execution of unlearning

Thanks! xingliang.yuan@unimelb.edu.au



