
Path-Sensitive Code Embedding via Contrastive
Learning for Software Vulnerability Detection

Yulei Sui
University of New South Wales, Australia

1

The work was published at ISSTA 2022, Daejeon, South Korea

2024/06/28 @ 86th IFIP WG 10.4

joint work with Xiao Cheng, Guanqin Zhang, Haoyu Wang,

Contribution
A new path-sensitive code embedding utilizing

• precise path-sensitive value-flow analysis
• a pretrained value-flow path encoder via self-supervised contrastive learning

to significantly boost the performance and reduce the training costs of
later path-based prediction models to precisely pinpoint vulnerabilities.

22024/06/28 @ 86th IFIP WG 10.4

Software Vulnerability

3

Static Vulnerability Detector

4

……

Some Static Vulnerability
Detectors

User-Defined Specifications

Buffer Overflow
Memory Leak

Null Dereference
……
……

1. Rely heavily on user-defined rules and domain knowledge.

Pinpoint

SVF

2. Have difficulty in finding a wider range of vulnerabilities (e.g., naming
issues and incorrect business logic)

Learning-based Vulnerability Detector

5

Neural Network Models Learned Vulnerability Pattern

…… …… …… ……
…… …… …… ……
…… …… …… ……
…… …… …… ……
…… …… …… ……

Source Code

Learning-based Vulnerability Detector

6

Source Code Code Embedding
2D-embedding space

Prediction

Vulnerable
or Safe

Code Embedding

7

Source Code

Structure-unaware embedding

int main (…

Lexical Tokens Natural Language Processing

[1] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. NDSS (2018). https://doi.org/10.14722/ndss.2018.23158
[2] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen. 2021. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities. (2021), 1–1.
https://doi.org/10.1109/TDSC.2021.3051525

https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.1109/TDSC.2021.3051525

Code Embedding

8

Source Code

Structure-aware embedding

Program Dependence
Graphs

Graph Neural Network

[3] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural
Network. ACM Trans. Softw. Eng. Methodol. 30, 3, Article 38 (2021), 33 pages. https://doi.org/10.1145/3436877
[4] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability Detection with Fine-Grained Interpretations (FSE ’21). ACM, 292–303.
https://doi.org/10.1145/3468264.3468597

https://doi.org/10.1145/3436877
https://doi.org/10.1145/3468264.3468597

Limitations
• Existing models are still Insufficient for precise bug detection, because the

objective of these models is to produce classification results rather than
comprehending the semantics of vulnerabilities, e.g., pinpointing bug
triggering paths, which are essential for static bug detection.

9

Limitations

10

GNN: Path-unaware Message-passing

GNN: all pair-wise message passing

Message passing

Limitations

11

GNN: Path-unaware Message-passing

Context-insensitive

1

2

3 4

(1 (2

)2)1
Call
Return

(i Callsite i
)i Returnsite i

Path-insensitive

1 2 3

GNN does not distinguish feasible/infeasible program dependence paths.

Path-based Code Embedding
• The detection approach needs to work on a precise learning model that

can preserve value-flow paths such that we can check the feasibility.

12

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2vec: Learning Distributed Representations of Code. 3, POPL, Article 40 (Jan. 2019),
29 pages. https://doi.org/10.1145/3290353
[6] Yulei Sui, Xiao Cheng, Guanqin Zhang, and HaoyuWang. 2020. Flow2Vec: Value-Flow-Based Precise Code Embedding. Proc. ACM Program. Lang. 4,
OOPSLA, Article 233 (Nov. 2020), 27 pages. https://doi.org/10.1145/3428301

Abstract Syntax
Tree

Value-Flow
Graph

1. Aim at code classification and summarization.

2. Not suitable for path-based vulnerability detection due to
potentially unbounded number of paths.

Bag of paths

https://doi.org/10.1145/3290353
https://doi.org/10.1145/3428301

Path-based Code Embedding
• Path embedding model

• Preserve the in-depth semantics of paths

• Path selection strategy
• Preserve individual feasible paths with discriminative features

13

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

14

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

15

Vulnerability tags

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

16

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

17

Output

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

18

Self-Supervised

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

19

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

20

Vulnerability tags

The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on
value-flow paths.

21

Motivating Example

22

(a) Contrastive Value-Flow Embedding

Motivating Example

23

(a) Contrastive Value-Flow Embedding

Can cause unexpected behavior

Motivating Example

24

(a) Contrastive Value-Flow Embedding

Motivating Example

25

(a) Contrastive Value-Flow Embedding

Inf hd = log_kits(“head”);

rebuild_list(&hd);

set_status(&hd, &tl);

2

6

13

FLG

FLG

control-flow transfer condition

Motivating Example

26

(a) Contrastive Value-Flow Embedding

Motivating Example

27

(a) Contrastive Value-Flow Embedding

Value-Flow Path Encoder (VPE)

Motivating Example

28

(a) Contrastive Value-Flow Embedding

Local Encoding

Motivating Example

29

(a) Contrastive Value-Flow Embedding

Local Encoding

Motivating Example

30

(a) Contrastive Value-Flow Embedding

Local Encoding

Motivating Example

31

(a) Contrastive Value-Flow Embedding

Global encoding

BGRU+Attention

Motivating Example

32

(a) Contrastive Value-Flow Embedding

Motivating Example

33

(a) Contrastive Value-Flow Embedding

Contrastive Value-Flow Embedding Loss

Motivating Example

34

(b) Value-Flow Path Selection

Motivating Example

35

(b) Value-Flow Path Selection

Value-Flow Guard

Motivating Example

36

(b) Value-Flow Path Selection

3 9 13
!FLG FLG

2 6 15
FLG !FLG

Value-Flow Guard

Motivating Example

37

(c) Detection Model Training

Motivating Example

38

(c) Detection Model Training

Multi-head self-attention

Motivating Example

39

(c) Detection Model Training

Multi-head self-attention

+

Motivating Example

40

(c) Detection Model Training

soft attention

Motivating Example

41

(c) Detection Model Training

highest attention weights!

Experimental Evaluation

42

288 open-sourced projects
30Million lines of code

275K programs

Benchmarks

[7] Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward Epstein, Bo Yang, Jim Laredo, Alessandro Morari, and Zhong Su. 2021. D2A: A Dataset
Built for AI Based Vulnerability Detection Methods Using Differential Analysis. In Proceedings of the ACM/IEEE 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). ACM, New York, NY, USA.
[8] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings
of the 17th International Conference on Mining Software Repositories (MSR). ACM, 508–512. https://doi.org/10.1145/3379597.3387501
[9] YaQin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective Vulnerability Identification by Learning Comprehensive
Program Semantics via Graph Neural Networks. In Proceedings of the 33rd International Conference on Neural Information Processing Systems (NIPS ’19).
Curran Associates Inc. https://doi.org/10.5555/3454287.3455202

……

……

https://doi.org/10.1145/3379597.3387501
https://doi.org/10.5555/3454287.3455202

Experimental Evaluation

43

Benchmarks

Experimental Evaluation

44

Comparison with baselines

Experimental Evaluation

45

Comparison with baselines

Experimental Evaluation

46

Comparison with baselines

Experimental Evaluation

47

Comparison with baselines

Experimental Evaluation

48

Ablation Analysis

Thanks!

49

Q&A

