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Contribution
A new path-sensitive code embedding utilizing 

• precise path-sensitive value-flow analysis
• a pretrained value-flow path encoder via self-supervised contrastive learning

to significantly boost the performance and reduce the training costs of 
later path-based prediction models to precisely pinpoint vulnerabilities.
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Software Vulnerability
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Static Vulnerability Detector
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Some Static Vulnerability 
Detectors

User-Defined Specifications

Buffer Overflow
Memory Leak

Null Dereference
……
……

1. Rely heavily on user-defined rules and domain knowledge.

Pinpoint

SVF

2.   Have difficulty in finding a wider range of vulnerabilities (e.g., naming 
issues and incorrect business logic)



Learning-based Vulnerability Detector
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Learning-based Vulnerability Detector
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Code Embedding
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Source Code

Structure-unaware embedding
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Lexical Tokens Natural Language Processing
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Code Embedding
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Source Code

Structure-aware embedding

Program Dependence 
Graphs

Graph Neural Network
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Limitations
• Existing models are still Insufficient for precise bug detection, because the 

objective of these models is to produce classification results rather than 
comprehending the semantics of vulnerabilities, e.g., pinpointing bug 
triggering paths, which are essential for static bug detection.
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Limitations
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GNN: Path-unaware Message-passing

GNN: all pair-wise message passing

Message passing



Limitations
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GNN: Path-unaware Message-passing

Context-insensitive
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GNN does not distinguish feasible/infeasible program dependence paths.



Path-based Code Embedding
• The detection approach needs to work on a precise learning model that 

can preserve value-flow paths such that we can check the feasibility. 
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Abstract Syntax 
Tree

Value-Flow 
Graph

1. Aim at code classification and summarization.

2.   Not suitable for path-based vulnerability detection due to 
potentially unbounded number of paths.

Bag of paths
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Path-based Code Embedding
• Path embedding model

• Preserve the in-depth semantics of paths

• Path selection strategy
• Preserve individual feasible paths with discriminative features
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The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on 
value-flow paths.

14



The Aim of This Work
• ContraFlow: a path-sensitive code embedding approach which uses self-

supervised contrastive learning to pinpoint vulnerabilities based on 
value-flow paths.

15

Vulnerability tags
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Self-Supervised
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Vulnerability tags
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Motivating Example

22

(a) Contrastive Value-Flow Embedding



Motivating Example
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(a) Contrastive Value-Flow Embedding

Can cause unexpected behavior



Motivating Example
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(a) Contrastive Value-Flow Embedding



Motivating Example
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(a) Contrastive Value-Flow Embedding

Inf hd = log_kits(“head”);

rebuild_list(&hd);

set_status(&hd, &tl);

2

6

13

FLG

FLG

control-flow transfer condition



Motivating Example
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(a) Contrastive Value-Flow Embedding



Motivating Example
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(a) Contrastive Value-Flow Embedding

Value-Flow Path Encoder (VPE)



Motivating Example
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(a) Contrastive Value-Flow Embedding

Local Encoding



Motivating Example

29

(a) Contrastive Value-Flow Embedding

Local Encoding



Motivating Example
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(a) Contrastive Value-Flow Embedding

Local Encoding



Motivating Example
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(a) Contrastive Value-Flow Embedding

Global encoding

BGRU+Attention



Motivating Example

32

(a) Contrastive Value-Flow Embedding



Motivating Example
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(a) Contrastive Value-Flow Embedding

Contrastive Value-Flow Embedding Loss



Motivating Example
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(b) Value-Flow Path Selection



Motivating Example
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(b) Value-Flow Path Selection

Value-Flow Guard



Motivating Example
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(b) Value-Flow Path Selection
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Value-Flow Guard



Motivating Example
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(c) Detection Model Training



Motivating Example
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(c) Detection Model Training

Multi-head self-attention



Motivating Example
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(c) Detection Model Training

Multi-head self-attention

+



Motivating Example
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(c) Detection Model Training

soft attention



Motivating Example
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(c) Detection Model Training

highest attention weights! 



Experimental Evaluation
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288 open-sourced projects
30Million lines of code

275K programs 

Benchmarks
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Benchmarks
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Comparison with baselines
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Comparison with baselines
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Comparison with baselines
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Comparison with baselines
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Ablation Analysis
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