¥ AN RERR
Professional-Creative
ooooooooooo

Blockchain Room of Requirement (BR?):
An LLM-Enhanced Simulator for Blockchain Protocols

Cong Wang

Professor
Department of Computer Science
City University of Hong Kong

July 9, 2024

Blockchain Education

CoinDesk's Best Universities for Blockchain 2022

Scholarly Impact [l Campus Blockchain Offerings [l Employment and Industry Outcomes [l Academic Reputation

1. The Hong Kong Polytechnic University

2. National University of Singapore

3. University of Zurich

4. University of California-Berkeley

5. Cornell University

6. Tsinghua University

7. University College London

8. Stanford University

9. The University of New South Wales
10. Nanyang Technological University
11. University of Hong Kong

12. Shanghai Jiao Tong University

13. Peking University

14. Columbia University

15. Massachusetts Institute of Technology

16. Sun Yat-sen University
17. City University Hong Kong

18. New York University

19. Royal Melbourne Institute of Technology

20. Chinese University of Hong Kong

20 40 60 80 100

CoinDesk. Best Universities for Blockchain 2022. https://www.coindesk.com/layer2/2022/09/26/best-universities-for-blockchain-2022/

Blockchain Education

Cryptocurrency and blockchain
courses at top universities

Source: Coinbase analysis of U.S. News & World Report's ranking of Best Global Universitie

reports

Coinbase. The rise of crypto in higher education. https://www.coinbase.com/blog/the-rise-of-crypto-in-higher-education

The Teaching Issue

Students feel confused after blockchain classes...

* How do cryptographic hashes and digital sighatures work?

 What are the effects of decreasing Bitcoin's block interval?

* How can one get hands-on experience reproducing security incidents?
* Why do some “improvement” solutions fail?

* How do the economic models behind protocols function?

* How can security risks beyond the code level be recognized?

The Teaching Issue

Similar issue also happens in Internet education
The SEED Emulator [HotNets’ 22]

f | Router: 164/routere
ID: 2b0 154962

Set filter for
packet trace

So we seek for some playgrounds
and tools of blockchains S s .

Wenliang Du, Honghao Zeng, Kyungrok Won. 2022. SEED Emulator: An Internet Emulator for Research and Education. In Proc. of HotNets.

The Blockchain Demo

A web-based demonstration: blocks, transactions, hashes, etc.

BI Blockchain Demo Hash Block Blockchain Distributed Tokens Coinbase
fev Hash Nonce
Tx Tx
Transaction) Transaction) Transaction)
\~ an% ™~ S ™ S
Public Key Public Key Public Key
1 | ; . From: Darcy -> Bingley From: Ripley -> Lambert From: Emily
From: Elizabe | -> Jane From: Kane -> | Ash From: = Madis
N L L From: | Wickhan | -> Lydia From: Parker -> Dallas $ 20.00 From: Lucas
5 Sy
| - Al . - A ! From: | Lady Cz | -> | Collins $ 10.44 From: = Hicks -> | Newt
Owner 0's Owner 1's Owner 2's Prev: 000078be183417844c14a9251c:
Signature v Signature v Signature $ 6.42 From: | Charlot | -> Elizabe $ 88.32 From: = Bishop | -> | Burke
§ 45.00 From: Hudson _> | Gorman @Poc2c95f54a49b4f2bee7056¢
5’@9 690 Prev:
$ 92.00 From: @ Vasquez @ -> | Apone -
P ine
Owner 1's Owner 2's Owner 3's @P00c52990ee86de55ecabob32beefd745d71675dcl
Private Key Private Key Private Key Prev: 00000c52990ee86de55ecabob32beefd745d71675dc

Mine
@P078be183417844c14a9251ca246fb15df1074019¢

Mine

Original Bitcoin architecture

Simply a distributed ledger

Anders Brownworth. Blockchain Demo. https://andersbrownworth.com/blockchain/

Blockchain Evolves...

Distributed ledger Decentralized computing platform

Block Block And many other protocols...
7*{ Prev Hash ‘ ‘ Nonce | ﬁ[Prev Hash ‘ ’ Nonce ‘
Lo Lo L] Lo L L]
Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key
] Blockehaln Consensus Protocol Incentive Protocol
Hash| Hash | Hash
= S == S = (L:onsensus *Proof-of-Work *Proof-of-Stake ~ *Block reward *MEV reward *TX fee
Ve, Ve, ayer (CON)
B ag B ay
Oyvner 0's Owner 1's Owner 2's
Signature | Signature v Signature Network Communication Protocol Network Protocols
o &(\‘ Layer (NET) *TCP *IP *DNS *BGP *P2P overlay *Peer discovery *Timeout *Data propagation
Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key
Original Bitcoin architecture Current layered blockchain architecture [S&P’23]

Satoshi Nakamoto, 2008, Bitcoin: A Peer-to-Peer Electronic Cash System. Online at: https://bitcoin.org/bitcoin.pdf.
Liyi Zhou et al. 2023. SoK: Decentralized Finance (DeFi) Attacks. In Proc. of IEEE S&P.

Rapid Evolution of Blockchain

Opportunities &

 Market cap increase
e Scalability improvements
* Smart contract evolution

LN
I?:c::tlocol Assets / Tokens Atomic Composable Services Auxiliary
*Native *Fungible *Non-Fungible =~ *Exchange *Loan *Stablecoin *Mixer Services (AUX)
Layer (Pro) Ul
Market cap d 7d 1m 1y Al All coins v v,
2’::;;“ Data Structure Virtual Execution Environment Off-chain
- *Block *Transaction *Contracts *State machine *State transition Oracle
o TS Wallet
b C::s:n:llls Consensus Protocol Incentive Protocol o "
e I * _of- * _of- * * * erators
$2.5 ‘““‘1‘& Layer (CON) Proof-of-Work *Proof-of-Stake Block reward *MEV reward *TX fee P
$oT - o
- i L;f “ Network Communication Protocol Network Protocols
) / Layer (NET) *TCP *IP *DNS *BGP *P2P overlay *Peer discovery *Timeout *Data propagation
$1T “'-,“ Ly gi-‘
$5008 \"“""1 /
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Current layered blockchain architecture [S&P’23]

Liyi Zhou et al. 2023. SoK: Decentralized Finance (DeFi) Attacks. In Proc. of IEEE S&P.
Global Live Cryptocurrency Charts & Market Data. https://coinmarketcap.com/charts/

Rapid Evolution of Blockchain

" Em
0 1+ 100 ETH
-—J 300,000 USDT

o Eﬂ‘ Buy ETH with 14,286 USDT
f

o Buy USDT with 20 ETH
p Buy USDT with 5 ETH e o
3\ Sarns (4) .
AR TR
TR I% Get 45,714 USDT back o Gla'a Get 7 ETH back
€%, et 14,286 USDT back e i
=/ -
{CF () Victim
D
15))
i |
Financial loss: 50,000-45,714=4,286 USDT

Attacker
<
<
S(E) Revenue: 7-5=2 ETH

Sandwich attack [CHI'22]

Broadened attack surfaces &

<«

Network Communication Protocol Network Protocols
Layer (NET) *TCP *IP *DNS *BGP *P2P overlay *Peer discovery *Timeout *Data propagation

Current layered blockchain architecture [S&P’23]

Ye Wang, Patrick Zuest, Yaxing Yao, et al. 2022. Impact and User Perception of Sandwich Attacks in the DeFi Ecosystem. In Proc. of ACM CHI.

Liyi Zhou et al. 2023. SoK: Decentralized Finance (DeFi) Attacks. In Proc. of IEEE S&P.

Rapid Evolution of Blockchain

Broadened attack surfaces &

2a2

Blockchain

| | ive P |
oty RSt Pocksl e @ f:;‘;e(“:;;) “Proof-ofWork -Prootof-Stake *Block reward "MEV reard “TX fee
Block 50 Block 51 Block 52
. .)
519% attack Current layered blockchain architecture [S&P’23]

List of Blockchain Attack Vectors and Vulnerabilities You Should Know, https://kingslanduniversity.com/blockchain-attack-vectors-vulnerabilities
Liyi Zhou et al. 2023. SoK: Decentralized Finance (DeFi) Attacks. In Proc. of IEEE S&P.

10

Rapid Evolution of Blockchain

Broadened attack surfaces &

contract B calls back into contract A Ilzfc::tlocol Assets / Tokens Atomic Composable Services
before l"l' iS done upclating balances Layer (Pro) Native *Fungible *Non-Fungible Exchange *Loan *Stablecoin *Mixer
gmart Data Structure Virtual Execution Environment
ontract " F; PRy . S B0
Block *Transaction *Contracts State machine *State transition
Layer (SC)
checkbalance() . \
sensfunds() fallbackfunction()
updatebalance()
Sending funds

Reentrancy attack Current layered blockchain architecture [S&P’23]

What is a Reentrancy Attack in Smart Contracts and How to Prevent It? https://medium.com/blockchain-hacks/what-is-reentrancy-attack-in-smart-contracts-and-how-

to-prevent-them-d65ad76dce5f
Liyi Zhou et al. 2023. SoK: Decentralized Finance (DeFi) Attacks. In Proc. of IEEE S&P.

Rapid Evolution of Blockchain

Not isolated cases; such issues keep occurring...

Application layer

Munchables
| $63M
: 2024.03.27

Gala Games
e $220M
2024.05.20

Application layer Network layer Network layer Application layer
Harvest Finance Poly Network Ronin Network Euler Finance
$34M | $602M | $625M | $196M
: 2020.10.26 : 2021.08.10 : 2022.03.29 : 2023.03.13
=2020= : 2021 : 2022 3 2024
Compound Vulcan Forged . Terra Classic Multichain
feeel $89M $140M e $40B eae $231M
2020.11.26 2021.12.12 2022.05.08 2023.07.06
Application layer Application layer Application layer Network layer

Application layer

>

12

Three pieces of advice on how to learn computer security:

e Study. Studying can take many forms. It can be
classwork...reading...

 Do. Computer security is fundamentally a
practitioner’s art, and that requires practice...

Show. It doesn’t matter what you know or what you

))] Bruce Schneier
can do if you can’t demonstrate it to someone...

13
So You Want to Be a Security Expert? https://www.schneier.com/blog/archives/2012/07/how_to_become_a_1.html

Three pieces of advice on how to learn computer security:

 Do. Computer security is fundamentally a
practitioner’s art, and that requires practice...

 Show. It doesn’t matter what you know or what you
can do if you can’t demonstrate it to someone...

So You Want to Be a Security Expert? https://www.schneier.com/blog/archives/2012/07/how_to_become_a_1.html

14

Actually we already have a few places to DO and SHOW

15

Case Study' Terra UST/LUNA Incident

A new blockcham

TerraUSD (UST), a so-called
“stablecoin” that pegged to $1

LUNA token to help stabilize UST via arbitrage:

* A fixed exchange mechanism: 1 UST <=> S1 worth of LUNA

e If UST $0.9: buy 1 UST => exchange for LUNA => sell for S1 (earn $S0.1) => UST up

 |f UST $1.1: buy S1 LUNA => exchange for UST => sell for $1.1 (earn S0.1) => UST down

16
Terra Docs. https://docs.terra.money/learn/protocol

Case Study: Terra UST/LUNA Incident

The “stablecoin” seems not quite “stable”
* LUNA crash and UST depeg (far from $1)

1.0 e~
8 0.8
[a
&
‘5 0.61
O
o
9 0.41
3
® (o] —— LUNA
—— UST
0.0 BTC Almost SO!
01—05—22 05—05—22 09—05—22 13—05—22 17—05—22

Antonio Briola, David Vidal-Tomas, Yuanrong Wang, and Tomaso Aste. 2023. Anatomy of a Stablecoin’s failure: the Terra-Luna case. Finance Research Letters.

18

Case Study: Terra UST/LUNA Incident

rfterraluna - 2 yr. ago = e

<\ DU09

Terra [Luna | UST Ecosystem Risks - How real are they? UST hodlers
assemble!

@EJ SWiSSBorg Risk Report

If LUNA’s price is under pressure, UST holders could be fearing that the UST peg is at risk and decide to
redeem their UST positions. In order to do so, UST is burnt and LUNA is minted and sold on the market.
This would exacerbate further the decline of L s price, pushing more UST holders to sell their UST.
This vicious cycle is know and ‘bank run’ or ‘death spiral’, see Figure 1

How to demonstrate this? &

DU09. 2022. Terra / Luna / UST Ecosystem Risks - How real are they? UST hodlers assemble!.
19

https://www.reddit.com/r/terraluna/comments/s2bnbw/terra luna ust ecosystem risks how real are they/
SwissBorg. TerraLuna & UST - Risk Assessment. https://app.hubspot.com/documents/7219152/view/296921981?accessld=4d1141

https://www.reddit.com/r/terraluna/comments/s2bnbw/terra_luna_ust_ecosystem_risks_how_real_are_they/

Case Study: Terra UST/LUNA Incident

Replay historical transactions?
Yes, but what if we want to try more?

How to “poke around” with it? &

20

Starting Point: Local Simulator - ¢ Hardhat

* A blockchain environment that runs on the local machine and allows
for quick development and testing,

* e.g., Ethereum and Hardhat

-

@ Welcome to Hardhat v2.22.2 $

? What do you want to do?
> Create a JavaScript project
Create a TypeScript project
Create a TypeScript project (with Viem)
Create an empty hardhat.config.js
Quit

Ethereum development environment for professionals, https://hardhat.org/

Starting Point: Local Simulator - ¢ Hardhat

A dominant blockchain simulator
* supported by Ethereum Foundation

* common usage, strong community support, and extensive documentation
and plugins

¢

¢
o0
¢ Hardhat :‘ 4

-w >

ethereum

Supported by V foundation

22
Documentation, https://hardhat.org/docs

Starting Point: Local Simulator « ¢

Inclusions:

* Local network with single node

Hardhat

Contract source

A 4

Solidity compiler

— T~

ABI

Byte code

* Smart contract compilation and deployment

* Transaction execution

Exclusions:

request Epre-prepareé prepare commit reply

* Consensus mechanism

* Network synchronization

* Block mining

w N - e A

R

Ethereum development environment for professionals, https://hardhat.org/docs
Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In Proc. of USENIX OSDI.
Coinbase. What is mining? https://www.coinbase.com/en-sg/learn/crypto-basics/what-is-mining

Y

Ethereum

23

Basic Workflow on ¢ Hardhat

- hardhat-tutorial npx hardhat init

Installation &
Initialization

€ Welcome to Hardhat v2.22.5 &
sudo apt update

sudo apt install curl git ? What do you want to do?

- . Create a JavaScript project
curl -fsSL https://deb.nodesource.com/setup 22.x | sud Cregte @ Tumeccrint brodect

bash — Create a TypeScript project (with Viem)
. . > Create an empty hardhat.config.js
sudo apt-get install -y nodejs

Quit
npm init
npm install --save-dev hardhat
npx hardhat init

24
https://hardhat.org/docs

Basic Workflow on ¢ Hardhat

- hardhat-tutorial npx hardhat init

Installation & Project
Initialization Configuration

€ Welcome to Hardhat v2.22.5 &

? What do you want to do?
Create a JavaScript project
Create a TypeScript project

Create a TiieScriit iroiect iwith AR (D)

Quit

25
https://hardhat.org/docs

require("@nomicfoundation/hardh
at—-toolbox"); i

@type

}
module.exports = { Hardhat

defaultNetwork: "hardhat",

The hardhat.config.js file gy network

chainId: 31337,
from: 0x123,
gas: 8000000,

gasPrice: 20000000000, (oAc
ggsMultipli?r: 1, . .
(off-the-shelf configuration SnitialBaseresheras: Mining
|S ra rely the bESt flt) Tnemon.icf "test
t:zzo&aisBalance: ''10000000" ,
1 . .ééunt: 20,
Have to go through the learning curve: - ISON-RPC
i. Understand the configuration options " privateeys 7P, network

balance:

"1000000000000" BlOCkS
e Read the software document 3

Il
blockGasLimit:

* Get familiar with libraries & protocols EXZea

allowUnlimitedContractSize:

ii. Modify the configuration file false,

allowBlocksWithSameTimestamp:
false,

iii. Check the correctness forking: £ ” EVM

"https://mainnet.infura.io/...

t.)llc.JckNumber: 12345678, HardfOFkS
}

hérdfork: "shanghai",
chains: {

1: {

Solidity

The Trend: ChatGPTed Interface

The LLM trend where many applications are being “ChatGPTed”

& GitHub Copilot @ @

Developer
OpenAl Codex

Al Assistant For Software Developers

Transactions Like an OG!

When MetaDock Met GPT Ghostwriter »3"& “@‘;‘-;
see Through ot s RN Wi Cabnine

replit

27

The hardhat.config.js file

c | ta? (off-the-shelf configuration

is rarely the best fit)

Have to go through the learning curve:

Also “ChatGPTed?”

. Check the correctness

require("@nomicfoundation/hardh
at—-toolbox"); i

@type

module.exports = {
defaultNetwork: "hardhat",
networks: {
hardhat: {
chainId: 31337,
from: 0x123,
gas: 8000000,
gasPrice: 20000000000,
gasMultiplier: 1,
minGasPrice: 0,
initialBaseFeePerGas:
'100000",
accounts: {
mnemonic: '"test
test ...",
accountsBalance: "10000000",

count: 20,

}
[
{
privateKey: "PK1",
balance:
'"1000000000000" ,

+

]'...
blockGasLimit:

30_000_000,

allowUnlimitedContractSize:
false,

allowBlocksWithSameTimestamp:
false,
forking: {
url:
"https://mainnet.infura.io/..."

’

blockNumber: 12345678,

}’...

hardfork: "shanghai",
chains: {

1: {

LLM-assisted Structured Output Generation

Structured Output
pecification, script, ...)

Natural Language | > (s

 Network configuration [NeurlPS’22, HotNets’23, CONEXT’24]
e Software specification [HotNets'23]
e Test script generation [QRS’23, TSE'24]

Luca Beurer-Kellner, Martin Vechey, Laurent Vanbever, et al. 2022. Learning to Configure Computer Networks with Neural Algorithmic Reasoning. In Proc. of NeurlPS.
Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, et al. 2023. Enhancing Network Management Using Code Generated by Large Language Models. In Proc. of HotNets.
Changjie Wang, Mariano Scazzariello, Alireza Farshin, et al. 2024. NetConfEval: Can LLMs Facilitate Network Configuration? In Proc. of CoNEXT.

Prakhar Sharma and Vinod Yegneswaran. 2023. PROSPER: Extracting Protocol Specifications Using Large Language Models. In Proc. of HotNets.

Shengcheng Yu, Chunrong Fang, Yuchen Ling, et al. 2023. LLM for Test Script Generation and Migration: Challenges, Capabilities, and Opportunities. In Proc. of QRS.
Max Schafer, Sarah Nadi, Aryaz Eghbali, et al. 2024. An Empirical Evaluation of Using Large Language Models for Automated Unit Test Generation. TSE.

29

The magical room that transforms
to meet the seeker's needs

W

30

Room of Requirement
in Blockchain: BR?

The magical room that transforms
to meet the seeker's needs

Y

31

Attempts

a) Streamlined Custom Configuration

b) Intended Transactions

32

LLM Optimization

General-purpose LLMs fail in domain-specific tasks,
e.g., loT fuzzing [S&P’24]

General-purpose LLM does not
work well for understanding loT
protocols [S&P’24]

Accuracy
o o
Accuracy
° o

chatGPT-3.5 Llama-2 PaLM Claude chatGPT-3.5

Large language models Large language models

(a) cmd identification accuracy (b) Format inference accuracy

Context matters!

33
Jincheng Wang, Le Yu, and Xiapu Luo. 2024. LLMIF: Augmented Large Language Model for Fuzzing |oT Devices. In Proc. of IEEE S&P.

LLM Optimization

“- Provide reference text

Language models can confidently invent fake answers, especially
when asked about esoteric topics or for citations and URLs. In the
same way that a sheet of notes can help a student do better on a test,
providing reference text to these models can help in answering with

fewer fabrications.”

--Six strategies for getting better results [OpenAl]

Context matters!

https://platform.openai.com/docs/guides/prompt-engineering

34

https://platform.openai.com/docs/guides/prompt-engineering/provide-reference-text

LLM Optimization
The optimization flow of LLMs [OpenAl DevDay’23]

Add HyDE retrieval + O
fact-checking step

Add simple retrieval [l —

& BR2 starts from here...

“RAG splits input documents into smaller chunks, and appends the

user prompt with the appropriate chunk via embedding similarity to
enable LLMs to use external knowledge.” [CONEXT'24]

Colin Jarvis and John Allard. 2023. Maximizing LLM Performance. https://www.youtube.com/watch?v=ahnGLM-RC1Y

Changjie Wang, Mariano Scazzariello, Alireza Farshin, et al. 2024. NetConfEval: Can LLMs Facilitate Network Configuration? In Proc. of CONEXT.

35

https://www.youtube.com/watch?v=ahnGLM-RC1Y

Retrieval-Augmented Generation (RAG)

2. Query

3. Semantic search

Externay
knowledge

4 Prompt submission 5. Get answer
Embedding Prompt '——».—R

1. Store

Rk wWwhRe

Store: Build up the vector DB

Query: Submit the request

Semantic search: Find the relevant contextual data

Prompt submission: Augment LLM prompts with contextual data

Get answer: Get the final answer
36

Retrieval-Augmented Generation (RAG)

A standard indexing pipeline: LangChain

1. Collect and load documents: e.g., by WebBaselLoader or DirectoryLoader

2. Split documents into chunks: e.g., recursively split by character, with chunk size
100 and overlap 20 by default

3. Encode the chunks into dense vector representations: with OpenAl embedding
models, e.g., text-embedding-3-small (with dimensions of 512 or 1536) @OpenAl
4. Store the vectors: e.g., by Facebook Al Similarity Search (FAISS) with squared

Euclidean (L2) distance N Meta
5. Vector store-backed retriever: find k nearest neighbors (KNN) to the query, k=4
by default

Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Proc. of NeurlPS.

Build a Retrieval Augmented Generation (RAG) App. https://python.langchain.com/v0.2/docs/tutorials/rag/

New embedding models and API updates. https://openai.com/index/new-embedding-models-and-api-updates/ 37
Faiss. https://github.com/facebookresearch/faiss

Retrieval-Augmented Generation (RAG)

SOTA optimizations to RAG pipeline: (our future work)
Enhanced data granularity (chunk size) [ICML23]

Adding metadata (for better context)

Mixed retrieval (multimodal input, knowledge graph)

Enhanced self-reflection [NeurlPS’23, ICLR’24]
Chunk reranking (prioritize most relevant) [EMNLP Findings’23]

A S

Freda Shi, Xinyun Chen, Kanishka Misra, et al. 2023. Large Language Models Can Be Easily Distracted by Irrelevant Context. In Proc. of ICML.

Shu Liu, Asim Biswal, Audrey Cheng, et al. 2024. Optimizing llm queries in relational workloads. arXiv (2024)

Yunfan Gao, Yun Xiong, Xinyu Gao, et al. 2024. Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv (2024).

Xin Cheng, Di Luo, Xiuying Chen, et al. 2023. Lift Yourself Up: Retrieval-augmented Text Generation with Self-Memory. In Proc. of NeurlPS.

Akari Asai, Zegiu Wu, Yizhong Wang, et al. 2024. Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection. In Proc. of ICLR. 38
Shengyao Zhuang, Bing Liu, Bevan Koopman, et al. 2023. Open-source Large Language Models are Strong Zero-shot Query Likelihood Models for Document Ranking. In Findings of EMNLP.

Retrieval-Augmented Generation (RAG)

Embedding Vector
| DB

1. Store
External

knowledge

Task: Jeopardy question Task: Multimodal generation Task: Program repair

generation External knowledge: External knowledge:
External knowledge: A combination of multimodal Historic bug-fix code pairs
Wikipedia [NeurlPS’20] text and images [ICML'23] [ESEC/FSE’23]

Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Proc. of NeurlPS.

Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, et al. 2023. Retrieval-Augmented Multimodal Language Modeling. In Proc. of ICML. 39

Matthew Jin, Syed Shahriar, Michele Tufano, et al. 2023. InferFix: End-to-End Program Repair with LLMs. In Proc. of ACM ESEC/FSE.

Retrieval-Augmented Generation (RAG)

External

knowledge
\/_-

>
Embedding Vector
DB

1. Store
Task: Protocol info extraction Task: Device response reasoning
External knowledge: External knowledge: Crashing
Specification document for testing case and device response
loT fuzzing [S&P’24] [S&P’24]

Jincheng Wang, Le Yu, and Xiapu Luo. 2024. LLMIF: Augmented Large Language Model for Fuzzing loT Devices. In Proc. of IEEE S&P.

40

Retrieval-Augmented Generation (RAG)

External
knowledge

Embedding

1. Store

ector
DB

Our Task: Configuration generation

External knowledge:

Hardhat configuration template

and specification document

xports
defaultNetwork:
networks: {
hardhat
v

url: "h‘rtpw: //.
accounts: [pkl,

"0.8.24"
settings: {
optimizer: {
enabled: true
runs: 200
}

Contiguration

[RUBEY ihen Hardhat is run, it searches for the closest “hardhat.config.is file starting from the
Currenl Working D)rectory This file normally lives in the root of your project. An empty
“hardhat.config.is' is enough for Hardhat to work.

The entirety of your Hardhat setup (i.e. your config, plugins and custom tasks) is contained in
this file.

" ## Available config options

ka To set up your config, you have to export an object from ‘hardhat.confia,is’.
This object can have entries like 'defaultNetwork®
Networks configuration

The “networks®

There are two kinds of networks in Hardhat: JSON-RPC based networks, and the built-in Hardhat
Network

You can customize which network is used by default when running Hardhat by setting the config's
“defaultNetwork® field. If you omit this config, its default value is ““hardhat" .

Hardhat Network

: ORI 12 cnat comes built-in with a special network called “hardhat'. When using this network, a
evmVersion: "shangha e rraeat Y pec el 2 us.ng his et

timeout: 40000

your smart contracts.

Hardhat Network has first-class support of Solidity. It always knows which smart contracts are
being run and exactly what they do and why they fail. Learn more about it he

See the Hardhat Network Configuration Reference for details on what can be configured

JSON-RPC based networks
[

These are networks that connect to an external node. Nodes can be running in your computer, like
Ganache, or remotely, like Infura or Alchemy.

ﬁrtlTn(T This kind of network is configured with objects with the following fields:

Jurl': The url of the node. This argunent 1s required for custom netuork

s.
“chainId': An optional number, used to validate the network Hardhat connects to. If not present,
this validation is omitted

“from': The address to use as default sender. If not present the first account of the node is
used.

“gas’: Its value should be ‘"auto™ or a number.
used by default in every t f
estimated, Default value: N
“gasPrice’: Ils Valve should be < "auto™
value: * .

gasMu\upuer : A number used to multiply the results of gas estimation to give it some slack
due to the uncertainty of the estimation process. Default value:

“accounts™: This field controls which accounts Hardhat uses. It can use the node's accounts (by
setting it to “"remote™), a list of local accounts (by setting it to an array of hex-encoded
private keys), or use an HD Wallet. Default value: "*“remot

If a number is used, it will be the gas limit
"auto"' is used, the gas limit will be automatically

or a number. This parameter behaves Llike ‘gas'. Default

, “networks®, “solidity’, “paths’, and “mocha’.

config field is an optional object where network names map to their configuration.

n
instance of the Hardhat Network will be automatically created when you run a task, script or test

41

Attempt 1: LLM-assisted Configuration

A simple request in human language is all you need

Input Prompt:

You are a professional and experienced blockchain
developer. Do not explain or calculate yourself, your
answer should be in the same format as the provided
context in JavaScript, and follow the requirements
based on the question. No extra content except for
the codes in your answer.

<context> {context} </context>

Prompting instructions: background and
requirements for the generated contents

Retrieval: retrieved external data that to be
augmented into prompts, part of RAG.

: questions and demands from the
developers

42

Attempt 1: LLM-assisted Configuration

A simple request in human language is all you need

require("@nomicfoundation/hardhat-toolbox");

(h @type
Input Prompt:
module.exports = {
. . . defaultNetwork: '"hardhat",
You are a professional and experienced blockchain networks: {
developer. Do not explain or calculate yourself, your hardhat: {
answer should be in the same format as the provided) b
context in JavaScript, and follow the requirements Lol tyr | solidity: {
based on the question. No extra content except for version: "0.6.12", version: "0.8.7",
. settings: { settings: {
the codes in your answer. . evnVersion: "London,
’ }
<context> {context} </context> } i
}
Question: {“Compare the 4 EVM versions in solidity: { solidity: {
throughput: Istanbul, London, Shanghai, and s e
C W settings: { settings: {
ALLE Lk } evmVersion: "shanghai', evmVersion: "cancun",
N\ J I

}' }'

Attempt 1: LLM-assisted Configuration

A simple request in human language is all you need

Input Prompt:

You are a professional and experienced blockchain
developer. Do not explain or calculate yourself, your
answer should be in the same format as the provided
context in JavaScript, and follow the requirements
based on the question. No extra content except for
the codes in your answer.

<context> {context} </context>

Question: {“Try to configure Ethereum settings for
a better throughput.”}

require("@nomicfoundation/hardhat-toolbox");
@type

module.exports = {
defaultNetwork: "hardhat",
networks: {
hardhat: £
gas: 6000000,
gasPrice: 20000000000,
gesMultiplier: 1,
minGasPrice: 0,
initialBaseFeePerGas: "100000", default:
blockGasLimit: 300 000 000, 30_000_000
a.lowUnlimitedContractSize: true,
mihing: { default: false

auto: false,
interval: 1000, default: 3000

}
}

solidity: {
version: "@0.8.24",
settings: {
. evmVersion: "shanghai',
by 44
}

Attempt 1: LLM-assisted Configuration

A simple request in human language is all you need

LLM gives me a working configuration
=> |t understands my intention

=> More comprehensive and detailed evaluations
would enhance the credibility of the results
presented (our future work...)

45

Attempts

Recall we have two attempts:

b) Intended Transactions

46

Attempt 2: Intended Transactions

A series of prior works retrieve historical transactions to replay
[ATC’20, ATC’21, S&P’22, TOSEM’22, ISSTA’23, TSC’24]
* real-world transactions, easy to access...

Chenxing Li, Peilun Li, Dong Zhou, et al. 2020. A Decentralized Blockchain with High Throughput and Fast Confirmation. In Proc. of USENIX ATC.

Yeonsoo Kim, Seongho Jeong, Kamil Jezek, et al. 2021. An Off-The-Chain Execution Environment for Scalable Testing and Profiling of Smart Contracts. In Proc. of USENIX ATC.
Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying Blockchain Extractable Value: How dark is the forest? In Proc. of IEEE S&P.

Siwei Wu, Lei Wu, Yajin Zhou, et al. 2022. Time-travel Investigation: Toward Building a Scalable Attack Detection Framework on Ethereum. TOSEM.

Huawei Huang, Xiaowen Peng, Jianzhou Zhan, et al. 2022. BrokerChain: A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding. In Proc. of INFOCOM.
Mingxi Ye, Yuhong Nan, Zibin Zheng, et al. 2023. Detecting State Inconsistency Bugs in DApps via On-Chain Transaction Replay and Fuzzing. In Proc. of ISSTA.

Yuan Huang, Rong Wang, Xiangping Chen, et al. 2024. Ethereum Transaction Replay Platform Based on State-wise Account Input Data. IEEE Transactions on Services Computing.

47

Attempt 2: Intended Transactions

More literature here,

e Banking transactions: * Fixed transactions [DAPPS'22]

We want to build BR? to be able to respond to our intentions.

enerative adversarial networ * Real-world workload traces [EuroSys’23]

[UCAmI 22] ’ » A workload generator to simulate
* Arbitrary values [ICDE"22] concurrent users [TC’24]

Kyle Nickerson, Terrence Tricco, Antonina Kolokolova, et al. 2022. Banksformer: A Deep Generative Model for Synthetic Transaction Sequences. In Proc. of ECML PKDD.

Kamwoo Lee, et al. 2018. Generating Synthetic Bitcoin Transactions and Predicting Market Price Movement via Inverse Reinforcement Learning and Agent-Based Modeling. Journal of Artificial Societies and Social Simulation.

Pablo de Juan Fidalgo, Carmen Camara, and Pedro Peris-Lopez. 2022. Generation and Classification of lllicit Bitcoin Transactions. In Proc. of UCAmI.

Wangze Ni, Peng Cheng, and Lei Chen. 2022. Mixing Transactions with Arbitrary Values on Blockchains. In Proc. of ICDE.

Bulat Nasrulin, Martijn De Vos, Georgy Ishmaev, et al. 2022. Gromit: Benchmarking the Performance and Scalability of Blockchain Systems. In Proc. of DAPPS.

Tien Tuan Anh Dinh, Ji Wang, Gang Chen, et al. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In Proc. of SIGMOD.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, et al. 2018. Untangling Blockchain: A Data Processing View of Blockchain Systems. IEEE Transactions on Knowledge and Data Engineering

Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, et al. 2021. RainBlock: Faster Transaction Processing in Public Blockchains. In Proc. of USENIX ATC. 48
Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, et al. 2023. Diablo: A Benchmark Suite for Blockchains. In Proc. of EuroSys.

Mohammadreza Rasolroveicy, Wejdene Haouari, and Marios Fokaefs. 2024. BlockCompass: A benchmarking platform for blockchain performance. IEEE Transactions on Computers.

Attempt 2: Intended Transactions

Intention-based generation:

To trigger some specific functions of smart contracts, under certain
circumstances, based on external context

20 — Ea&

LLMs DApp smart contracts

49

Attempt 2: LLM-assisted Transaction Synthesis

External

knowledge

.

Embedding

1. Store

External knowledge

Vector
DB

* DApp smart contract source code

* Transaction script templates for

potential behaviors (e.g., swaps)

 Documentation (how to send tx)

(Similar methodology following TSE’24)

Max Schafer, Sarah Nadi, Aryaz Eghbali, et al. 2024. An Empirical Evaluation of Using Large Language Models for Automated Unit Test Generation. IEEE Transactions on Software Engineering.

T) README S License

Uniswap V3
[© une IESEEN © vess WOESEE] O . Fequire('dotenv').co

This repository contains the core smarl

uniswap-v3-periphery repository. ync function main()
Bug bounty const signer = awa
This repository is subject to the Uniswy const startTime =

txNum = 100;
Local deployment . !
ploy txPromises =

In order to deploy this code to a local

the factory bytecode located at @unis| L= 0; id

€ t txPromise

mport { signer[@].sendTransad

abi. a5 FACTORY_ABI, -

bytecode a5 FACTORY_BYTECODE, to: signer([1].
value: ethers.p

} from ‘@uniswap/v3-core/artifac|
/ depoy the bytecode
H;

txPromises.push (4

core/artifacts/contracts/UniswapV3

This will ensure that you are testing ag|
and all Uniswap code will correctly intd

Using solidity interfaces await Promise.all(t
The Uniswap V3 interfaces are availabl] const endTime = Dat
core, e con elapsedTime
const tps = txNum
console. log(Trans

inport *@uniswap/v3-core/contrac|

contract MyContract {
TUniswapV3Pool pool;

V3 Protocol

Guides.

Implement A Swap

Single Swaps

onst { ethers } = require("hardhat");

3 UniswapDocs Concepts Contracts SDKs APls. Give Feedback Whitepaper GitHub c7

B > viemeed > o Soghseus Heptu?
Single Swaps
Swaps are the most with the The youhowto

implement a single-path swap contract that uses two functions that you create:

+ swapExactInputSingle

+ swapExactOutputSingle

The swapExactInputSingle function s for performing exact input swaps, which swap a fixed amount of one.
token for a maximum possible amount of another token. This function uses the ExactInputSingleParans
struct and the exactInputSingle function from the ISwapRouter interface.

The swapExac 3 function s for output swaps,

possible amount of one token for a fixed amount of another token. This function uses the
struct and the function from the ISwapRouter interface,

For simplification, the example hardcodes the token contract addresses, but as explained further below the
be moified and

When trading from a smart contract, the most important thing to keep in mind is that access to an external
price source i required. Without this, trades can be frontrun for considerabe loss,

Note: The swap examples are not production ready cade, and are implemented in a simplistic manner for the
purpose of learning.

Set Up the Contract

Declare the solidity version used to compi

ary nested arrays
and structs to be encoded and decoded i

Import the two relevant contracts from the npm package installation

50

Attempt 2: LLM-assisted Transaction Synthesis

const { ethers } = require("hardhat");
require('dotenv').config();

async function main() {

const signer = await ethers.getSigners();

const startTime = Date.now();
const txNum = 100;
const txPromises = [];

for (let i = 0; i < txNum; i++) {
const txPromise =
signer[0].sendTransaction({
to: signer[1].address,

value: ethers.parseEther("0.1")
1915

txPromises.push(txPromise);

await Promise.all(txPromises);
const endTime = Date.now();
const elapsedTime = endTime - startTime;

const tps = txNum / (elapsedTime / 1000);

console. log(Transactions per second:

5. Get answer

Generate JavaScript scripts to send transactions

@@

(web3.js & ethers.js libraries allow developers to interact
with Ethereum easily) 51

Interact

—

Attempt 2: LLM-assisted Transaction Synthesis

Last Step: scripts are executed to send transactions
* just like people “send” transactions on real blockchains

: Libraries, Node, Wallet, : : From: User Add. To: Contract Add. :
: Operations, etc. I : Payload: [State, Operation, ...] Signature 1
______ m—————]

1
' New
— " /_j Transaction
esponse L3 virtual Machine

(JavaScript code)
T Install DApps >

Attempt 2: LLM-assisted Transaction Synthesis

Recall that a simple request in human language is all you need

const { ethers } = require('hardhat");
require('dotenv').config();

Input Prompt: async function main() {
const signer = await ethers.getSigners();

You are a professional and experienced blockchain const _stertTmE—bBate. now() :

developer. Do not explain or calculate yourself, your cons? txNum = 100000;
answer should be in the same format as the provided const TxPremises—=—17;
context in]avaScrlpt, and follow the requirements S (e A= 08 8 @ Sl fe) b
based on the question. No extra content except for const txPromise = signer[0].sendTransaction({
the codes in your answer. to: signer[l].address,
value: ethers.parseEther("0.1")

});

<context> {context} </context> txPromises.push(txPromise);

}

. o JU1 . .
Question: {“Try to configure Ethereum settings for P e -

a better throughput.”} const endTime = Date.now();

const elapsedTime = endTime - startTime;

const tps = txNum / (elapsedTime / 1000);
console. log(Transactions per second: ${tps}’);

BR? workflow:
1 prompt, 2 contexts,
2 generation outputs

-

Input Prompt:

You are a professional and experienced blockchain
developer. Do not explain or calculate yourself, your
answer should be in the same format as the provided
context in JavaScript, and follow the requirements
based on the question. No extra content except for
the codes in your answer.

<context> {context} </context>
Question: {“Reproduce the Terra incident with

oversell/bailout ratio of 0.5, for both UST and
LUNA.”} <

module.exports = {
defaultNetwork: "hardhat",
networks: {
hardhat: {
}
i

solidity: {
version: "0.8.24",
settings: {
evmVersion: "shanghai',

}
}

async function swapLuna() {
async function swapUst ()¢

async function swapUsdt() {

const tx = await routerContract.exactInputSingle(<{
tokenIn: process.env.USDT=ADDRESS,
tokenQut: process.env.UST_ADDRESS,
amountIn: ethers.utils.parseUnits("1000"),

;o
}

consts/oversellLuna = 10;
const, oversellUst = 10;
const “hailoutUst = 20; default:

for (let i }
for (let j

for (let k

0; j < oversellUst; j++) { swapUst()
0; k < bailoutUst; k++) { swapUsdt()

0; i < oversellLuna; i++) { swapLuna()

}
}

Demonstration: Terra UST/LUNA Incident

Demonstrate the depeg risk of Terra UST/LUNA (“death spiral”)

ratio of
oversell/bailout | ®-01—*4-0>—e—1——15——2-5"3

D
(=)

UST Price

()
I~
I IINA Price
s 8
D ()
W
|

| | |
5 10 15 20 5 10 15 20
Simulation Round Simulation Round

Simulation results

UST

1.0 |- - =i

0.8
0.6
0.4
0.2
0.0

e UST —— LU*IA
1 | I

5.5

5.7 9 5.11 5.13 5.15

Real-world fluctuation

LUNA
100

80

60

40

20

55

Demonstration: Beyond

* Vulnerability demonstration
* demonstrate how and why the protocols can fail

* Ethereum Improvement Proposal (EIP) demonstration
 demonstrate the potential consequences of “improvements”

* Tokenomics demonstration
 demonstrate protocols from the economic aspect

56

Limitations and Future Plans

1. Build the benchmarking dataset
- As done by other tasks: HumanEval, CausalBench, ReasonEval, NetConfEval [CONEXT’24] ...

2. Evaluate the quality of the output
- Traditional measurements: accuracy score, F1 score... [S&P’24, NeurIPS’23, ICLR’23, ICSE’'24]
- Al-assisted evaluations

3. Optimize the standard RAG pipeline

- Embedding model customization, fine-tuned retrieval distance metrics...

4. Extend similar work to Testnet
- Realistic blockchain environment [FC’20, ATC’21]

Saad Ullah, Mingji Han, Saurabh Pujar, et al. 2024. LLMs Cannot Reliably Identify and Reason About Security Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and Benchmarks. In Proc. of IEEE S&P.
Mark Chen, Jerry Tworek, Heewoo Jun, et al. 2021. Evaluating Large Language Models Trained on Code. arXiv (2021).

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, et al. 2023. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation. In Proc. of NeurlPS.
Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, et al. 2023. Multi-lingual Evaluation of Code Generation Models. In Proc. of ICLR.

Xueying Du, Mingwei Liu, Kaixin Wang, et al. 2024. Evaluating Large Language Models in Class-Level Code Generation. In Proc. of ICSE.

Yunfan Gao, Yun Xiong, Xinyu Gao, et al. 2024. Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv (2024).

Yu Zhou, Xingyu Wu, Beicheng Huang, et al. 2024. CausalBench: A Comprehensive Benchmark for Causal Learning Capability of Large Language Models. arXiv (2024).

Shijie Xia, Xuefeng Li, Yixin Liu, et al. 2024. Evaluating Mathematical Reasoning Beyond Accuracy. arXiv (2024).

Changjie Wang, Mariano Scazzariello, Alireza Farshin, et al. 2024. NetConfEval: Can LLMs Facilitate Network Configuration? In Proc. of CONEXT.

Federico Franzoni, lvan Abellan, and Vanesa Daza. 2020. Leveraging Bitcoin Testnet for Bidirectional Botnet Command and Control Systems. In Proc. of FC.

Yeonsoo Kim, Seongho Jeong, Kamil Jezek, et al. 2021. An Off-The-Chain Execution Environment for Scalable Testing and Profiling of Smart Contracts. In Proc. of USENIX ATC.

57

Acknowledgement

Shengchen LING
Research assistant (incoming PhD)
Department of Computer Science

City University of Hong Kong

Research interest: blockchain security & DeFi
Email: shengling2 @cityu.edu.hk

Homepage: https://0xjackling.github.io/

Dr. Yufei CHEN

Postdoc

Department of Computer Science

City University of Hong Kong

Research interest: Al for security & Al safety
Email: yufeichen8@cityu.edu.hk
Homepage: https://yfchen1994.github.io

58

https://0xjackling.github.io/
https://yfchen1994.github.io/

LN RAWN =

WWWWWWWNRNNNNNNNNNRRPRRRPBRRERRRR
QU RARWNPOLVLONOOTUARWNROLONIDUAWNRO

References

CoinDesk. Best Universities for Blockchain 2022. https://www.coindesk.com/layer2/2022/09/26/best-universities-for-blockchain-2022/
Coinbase. The rise of crypto in higher education. https://www.coinbase.com/blog/the-rise-of-crypto-in-higher-education

Blockchain and Cryptocurrency: What You Need to Know. https://drive.google.com/file/d/1sVo7QLkEvma__PCLLJib19aleXRifkBW/view
Blockchain And Money. https://ocw.mit.edu/courses/15-s12-blockchain-and-money-fall-2018/

Decentralized Finance MOOC. https://defi-learning.org/f22

Wenliang Du, Honghao Zeng, Kyungrok Won. 2022. SEED Emulator: An Internet Emulator for Research and Education. In Proc. of HotNets.
J Scott Christianson. The Blockchain Game. https://www.instructables.com/The-Blockchain-Game/

Anders Brownworth. Blockchain Demo. https://andersbrownworth.com/blockchain/

Satoshi Nakamoto, 2008, Bitcoin: A Peer-to-Peer Electronic Cash System. Online at: https://bitcoin.org/bitcoin.pdf.

Liyi Zhou et al. 2023. SoK: Decentralized Finance (DeFi) Attacks. In Proc. of IEEE S&P.

. Global Live Cryptocurrency Charts & Market Data. https://coinmarketcap.com/charts/
. Ye Wang, Patrick Zuest, Yaxing Yao, et al. 2022. Impact and User Perception of Sandwich Attacks in the DeFi Ecosystem. In Proc. of ACM CHI.
. List of Blockchain Attack Vectors and Vulnerabilities You Should Know, https://kingslanduniversity.com/blockchain-attack-vectors-vulnerabilities

What is a Reentrancy Attack in Smart Contracts and How to Prevent It? https://medium.com/blockchain-hacks/what-is-reentrancy-attack-in-smart-contracts-and-how-to-prevent-them-d65ad76dce5f

. So You Want to Be a Security Expert? https://www.schneier.com/blog/archives/2012/07/how_to_become_a_1.html

Terra Docs. https://docs.terra.money/learn/protocol
Antonio Briola, David Vidal-Tomas, Yuanrong Wang, and Tomaso Aste. 2023. Anatomy of a Stablecoin’s failure: the Terra-Luna case. Finance Research Letters.
DUQ09. 2022. Terra / Luna / UST Ecosystem Risks - How real are they? UST hodlers assemble!. https://www.reddit.com/r/terraluna/comments/s2bnbw/terra_luna_ust_ecosystem_risks_how_real_are_they/

. SwissBorg. TerraLuna & UST - Risk Assessment. https://app.hubspot.com/documents/7219152 /view/296921981?accessld=4d1141

Ethereum development environment for professionals, https://hardhat.org/

. Documentation, https://hardhat.org/docs
. Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In Proc. of USENIX OSDI.
. Coinbase. What is mining? https://www.coinbase.com/en-sg/learn/crypto-basics/what-is-mining

Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, et al. 2022. Learning to Configure Computer Networks with Neural Algorithmic Reasoning. In Proc. of NeurlPS.

. Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, et al. 2023. Enhancing Network Management Using Code Generated by Large Language Models. In Proc. of HotNets.

Changjie Wang, Mariano Scazzariello, Alireza Farshin, et al. 2024. NetConfEval: Can LLMs Facilitate Network Configuration? In Proc. of CONEXT.
Prakhar Sharma and Vinod Yegneswaran. 2023. PROSPER: Extracting Protocol Specifications Using Large Language Models. In Proc. of HotNets.
Shengcheng Yu, Chunrong Fang, Yuchen Ling, et al. 2023. LLM for Test Script Generation and Migration: Challenges, Capabilities, and Opportunities. In Proc. of QRS.

. Max Schafer, Sarah Nadi, Aryaz Eghbali, et al. 2024. An Empirical Evaluation of Using Large Language Models for Automated Unit Test Generation. IEEE Transactions on Software Engineering.

Jincheng Wang, Le Yu, and Xiapu Luo. 2024. LLMIF: Augmented Large Language Model for Fuzzing loT Devices. In Proc. of IEEE S&P.

. Prompt engineering, https://platform.openai.com/docs/guides/prompt-engineering
. Colin Jarvis and John Allard. 2023. Maximizing LLM Performance. https://www.youtube.com/watch?v=ahnGLM-RC1Y
. Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Proc. of NeurlPS.

Build a Retrieval Augmented Generation (RAG) App. https://python.langchain.com/v0.2/docs/tutorials/rag/

. New embedding models and APl updates. https://openai.com/index/new-embedding-models-and-api-updates/

Faiss. https://github.com/facebookresearch/faiss 59

37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.
65.
66.
67.
68.
69.

References

Freda Shi, Xinyun Chen, Kanishka Misra, et al. 2023. Large Language Models Can Be Easily Distracted by Irrelevant Context. In Proc. of ICML.

Shu Liu, Asim Biswal, Audrey Cheng, et al. 2024. Optimizing llm queries in relational workloads. arXiv (2024)

Yunfan Gao, Yun Xiong, Xinyu Gao, et al. 2024. Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv (2024).

Xin Cheng, Di Luo, Xiuying Chen, et al. 2023. Lift Yourself Up: Retrieval-augmented Text Generation with Self-Memory. In Proc. of NeurlPS.

Akari Asai, Zeqiu Wu, Yizhong Wang, et al. 2024. Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection. In Proc. of ICLR.

Shengyao Zhuang, Bing Liu, Bevan Koopman, et al. 2023. Open-source Large Language Models are Strong Zero-shot Query Likelihood Models for Document Ranking. In Findings of EMNLP.
Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, et al. 2023. Retrieval-Augmented Multimodal Language Modeling. In Proc. of ICML.

Matthew Jin, Syed Shahriar, Michele Tufano, et al. 2023. InferFix: End-to-End Program Repair with LLMs. In Proc. of ACM ESEC/FSE.

Chenxing Li, Peilun Li, Dong Zhou, et al. 2020. A Decentralized Blockchain with High Throughput and Fast Confirmation. In Proc. of USENIX ATC.

Yeonsoo Kim, Seongho Jeong, Kamil Jezek, et al. 2021. An Off-The-Chain Execution Environment for Scalable Testing and Profiling of Smart Contracts. In Proc. of USENIX ATC.

Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying Blockchain Extractable Value: How dark is the forest? In Proc. of IEEE S&P.

Siwei Wu, Lei Wu, Yajin Zhou, et al. 2022. Time-travel Investigation: Toward Building a Scalable Attack Detection Framework on Ethereum. TOSEM.

Huawei Huang, Xiaowen Peng, Jianzhou Zhan, et al. 2022. BrokerChain: A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding. In Proc. of INFOCOM.

Mingxi Ye, Yuhong Nan, Zibin Zheng, et al. 2023. Detecting State Inconsistency Bugs in DApps via On-Chain Transaction Replay and Fuzzing. In Proc. of ISSTA.

Yuan Huang, Rong Wang, Xiangping Chen, et al. 2024. Ethereum Transaction Replay Platform Based on State-wise Account Input Data. IEEE Transactions on Services Computing.

Kyle Nickerson, Terrence Tricco, Antonina Kolokolova, et al. 2022. Banksformer: A Deep Generative Model for Synthetic Transaction Sequences. In Proc. of ECML PKDD.

Kamwoo Lee, et al. 2018. Generating Synthetic Bitcoin Transactions and Predicting Market Price Movement via Inverse Reinforcement Learning and Agent-Based Modeling. Journal of Artificial Societies and
Social Simulation.

Pablo de Juan Fidalgo, Carmen Camara, and Pedro Peris-Lopez. 2022. Generation and Classification of lllicit Bitcoin Transactions. In Proc. of UCAmI.

Wangze Ni, Peng Cheng, and Lei Chen. 2022. Mixing Transactions with Arbitrary Values on Blockchains. In Proc. of ICDE.

Bulat Nasrulin, Martijn De Vos, Georgy Ishmaev, et al. 2022. Gromit: Benchmarking the Performance and Scalability of Blockchain Systems. In Proc. of DAPPS.

Tien Tuan Anh Dinh, Ji Wang, Gang Chen, et al. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In Proc. of SIGMOD.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, et al. 2018. Untangling Blockchain: A Data Processing View of Blockchain Systems. IEEE Transactions on Knowledge and Data Engineering
Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, et al. 2021. RainBlock: Faster Transaction Processing in Public Blockchains. In Proc. of USENIX ATC.

Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, et al. 2023. Diablo: A Benchmark Suite for Blockchains. In Proc. of EuroSys.

Mohammadreza Rasolroveicy, Wejdene Haouari, and Marios Fokaefs. 2024. BlockCompass: A benchmarking platform for blockchain performance. IEEE Transactions on Computers.

Saad Ullah, Mingji Han, Saurabh Pujar, et al. 2024. LLMs Cannot Reliably Identify and Reason About Security Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and Benchmarks. In Proc. of IEEE
S&P.

Mark Chen, Jerry Tworek, Heewoo Jun, et al. 2021. Evaluating Large Language Models Trained on Code. arXiv (2021).

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, et al. 2023. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation. In Proc. of NeurlPS.
Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, et al. 2023. Multi-lingual Evaluation of Code Generation Models. In Proc. of ICLR.

Xueying Du, Mingwei Liu, Kaixin Wang, et al. 2024. Evaluating Large Language Models in Class-Level Code Generation. In Proc. of ICSE.

Yu Zhou, Xingyu Wu, Beicheng Huang, et al. 2024. CausalBench: A Comprehensive Benchmark for Causal Learning Capability of Large Language Models. arXiv (2024).

Shijie Xia, Xuefeng Li, Yixin Liu, et al. 2024. Evaluating Mathematical Reasoning Beyond Accuracy. arXiv (2024).

Federico Franzoni, Ivan Abellan, and Vanesa Daza. 2020. Leveraging Bitcoin Testnet for Bidirectional Botnet Command and Control Systems. In Proc. of FC.

60

Thank you!

Questions?

61

