

The Grainger College of Engineering **Coordinated Science Laboratory**

The Grainger College of Engineering **IBM-Illinois Discovery Accelerator Institute**

Unique Cybertwin to Model and Design Sustainable Robust Clouds

┚┖

Ravishankar (Ravi) K. Iyer

Electrical and Computer Engineering, Computer Science and

The Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Our Team

Haoran Qiu¹, Weichao Mao¹, Archit Patke¹, Shengkun Cui¹, Saurabh Jha² Chen Wang², Hubertus Franke², Chandra Narayanaswami², Zbigniew T. Kalbarczyk¹, Tamer Basar¹ **Ravishankar K. Iyer**¹

1

Clouds Increasingly the Backbone for Energy Hungry ML-driven Applications

The Sustainability Challenge

Cloud datacenters' carbon emissions: Today: **2-4%** (> Aviation industry) Tomorrow: **8%** (2030) [1]

"**Net Zero by 2050**: the world's most urgent mission" – United Nations

Embodied Emissions (35%) **Operational Emissions** (65%) $\left($ **ML (15%)** ^[3]

3

A datacenter at Meta [2]

[1] *Towards a Systematic Survey for Carbon Neutral Data Centers.* Zhiwei Cao, et al. https://arxiv.org/abs/2110.09284 [3] *Energy and Emissions of Machine Learning on Smartphones vs. the Cloud*. David Patterson, et al. CACM 2024 [2] *Chasing Carbon: The Elusive Environmental Footprint of Computing. Udit Gupta, et al. HPCA 2021.*

[1] *Carbon Footprint of Machine Learning Training*. [Google. https://blog.research.google/2022/02/good-news-about-carbon-footprin](https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html)t-of.html [2] *AI's Staggering Energy Cost*[. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-plan](https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/)et-2023/

ML in Systems and Cloud

ML has been increasingly used in systems for optimizing efficiency / energy while adapting to dynamic cloud environments… *assessment plus action*

How to optimize the use of green energy while meeting **cloud SLOs** and ensuring resilience against both **classic system failures** and potential new **vulnerabilities introduced by ML**?

Why Worry about SLOs and System Failures? (Impact on Carbon Footprint Optimization)

- Carbon footprint optimization can lead to **SLA**/**SLO violations** due to:
	- Processor throttling, load shaping, power capping, etc.
	- SLO violations lead to large financial losses in mission-critical systems
- Continuous fault management is needed to meet SLOs (e.g., in availability and performance) and deliver quality of service
	- By data redundancy (e.g., replication), compute redundancy, coding, storage
	- ML introduces different redundancy requirements and uncertainties especially in critical societal applications
- Fault management adds substantially to the energy consumption
	- 40-60% of the total performance cost is due to fault management overhead
- Not enough done to manage *Out of Distribution (OOD)* situations

Can We Rely on Batteries? No Free Lunch for Pure Green Energy

- Today, all green energy (e.g., solar, wind) has fossil fuel component!!
- Cost of resilience; Requires substantial cloud management efforts
	- Any instability can affect the resilience lead to high compute costs
- Power storage cost can be very high, estimated to be trillions of dollars
	- Storage (batteries, other?), unreliable and polluting
	- Currently only used in mission-critical situations
- Requires significant new research including in **SysML & resilience communities**

Transition to Green Computing: A Game-theoretic Perspective

Joint Model Overview: Carbon Footprint-SLO-Resilience Cross-stack Optimization

When Green Computing Meets Performance and Resilience SLOs. Haoran Qiu, Weichao Mao, Chen Wang, Saurabh Jha, Hubertus Franke, Chandra Narayanaswami, Zbigniew T. Kalbarczyk, Tamer Başar, Ravishankar K. Iyer*.* DSN 2024 Distrupt Track.

Top-down vs. Bottom-up

- *Top-down* approach (MLSys Workshop @NeurIPS23)
	- Get the power cap based on carbon footprint optimization or power limits/budget
	- Resource manager adjust resource allocation accordingly to compensate reduced core frequency
	- Extra buffer added by bringing green energy; relaxing power cap
- *Bottom-up* approach
	- Get the power demand based on the resource + frequency required to meet SLOs
	- Aggregate to get the power demand distribution across servers/racks
	- Minimize carbon footprint while meeting daily BE job throughput

Bottom-up Approach with ML for Carbon Footprint Optimization A Cyber-Twin for Continuous Green Transition

- **Time Window:** We assume that the total period [0, T] is partitioned into sub-periods, say $[t_k, t_{k+1})$, which could be one hour or a half-hour, i.e., "**time interval t**"
- Carbon Intensity Forecasting, $CI(t) \rightarrow \text{ML-driven time series}$
- **Applications:** Latency-critical (LC) jobs $l \in LC(t)$, Best-effort (BE) jobs $b \in BE(t)$
- **Servers:** $s \in S(t)$
- **Binary Decision Variable** for Delaying BE job: delay_b(t)
- **Binary Decision Variable** for Job Placement: $place_{b,s}(t)$, $place_{l,s}(t)$
- **Power Consumption:** server $P_s(t)$, $\overline{\mathcal{L}}(\overline{C})$ job $P_l(t)$, BE job $P_b(t)$
	- $P_s(t) = \sum_l P_l(t) \cdot place_{ls}(t) + \sum_b P_b(t) \cdot \overline{place_{b,s}(t)}$
		- **ML Autoscaler, e.g., FIRM (OSDI20)**

ML Scheduler

- **Constraints:**
	- $\sum_{s} place_{b,s}(t) \leq 1, \forall b,t; \quad \sum_{s} place_{b,s}(t) + delay_b(t) = 1, \forall b,t; \quad \sum_{s} place_{l,s}(t) = 1, \forall l,t$
	- $\sum_{t} \sum_{b,s} place_{b,s}(t) > Daily_Throughput_Threshold$
- **Penalties:** e.g., carbon intensity, SLO violations, resilience breakdowns
- **Minimize** Total Carbon Footprint: $\sum_{s,t} P_s(t) \cdot CI(t)$

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?

Model Serving Systems

-Serve *Model Serving Example*: for Power-aware DL/LLM

[1] XLA's HLO Repres[entation, https://github.com/openxla/stablehlo/blob/main/docs/spec](https://github.com/openxla/stablehlo/blob/main/docs/spec.md).md#ops

Power-aware Deep Learning Model Serving with µ-Serve. Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke, Zbigniew T. Kalbarczyk, Tamer Başar, Ravishankar K. Iyer. USENIX ATC 2024

System and Models Setup

- **Platform**: AlpaServe and Ray
- **VM on IBM Cloud**: 16 vCPU 128 GiB RAM with 2x NVIDIA Tesla V100 16 GB
- Open-source LLMs and non-autoregressive models
- Model input from **LMSYS-Chat-1M** (largest open-source dataset available) and workload patterns from **Azure Function Traces**

Results: Power Saving

18

A Disruptive Systems Approach to Sustainable Computing with Efficient and Robust ML

Holistic (Green) Energy Optimization Jointly with Cloud Systems-ML Resilience

• NSF WSCS 2024, DSN 2024

DEPEND Group Contributions: A Disruptive Approach to Sustainable Computing with Efficient and Robust ML

• NSF WSCS 2024, DSN 2024

Are batteries the future to sustainable computing? AI/ML Cloud for Power Storage Serving

An intelligent, resilience-aware cloud is needed for power storage serving

Back up slides

Deep Learning and Foundation Model Era

Training compute (FLOPs) of milestone Machine Learning systems over time

[1] *Compute Trends across Three Eras of Machine Learning*. J. Sevilla, L. Hei[m, et al. https://arxiv.org/abs/220](https://arxiv.org/abs/2202.05924)2.05924

[1] *Carbon Footprint of Machine Learning Training*. [Google. https://blog.research.google/2022/02/good-news-about-carbon-footprin](https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html)t-of.html [2] *AI's Staggering Energy Cost*[. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-plan](https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/)et-2023/

Power Saving Opportunities

Challenge #1: Coarse-grained GPU Frequency Tuning

Challenge #2: Non-deterministic LLM Executions

Observation #1: Model Partitions Have Diverse Sensitivities

Observation #2: A Small Proxy Model Knows LLMs' Verbosity

- **A small proxy model (e.g., BERT-base/tiny) can predict well**
- Intuition: Hints on the output length (number of tokens) of LLM responses
	- "**Translate**..." -> Response length approximate to the prompt length
	- "Write an **article** about..." -> Long respo
	- "Summarize..." -> Shorter response than

Proxy models can indicate LLM verbosity to avoid HoL and potentially increase power-saving "**opportunities**"

How to design and train a lightweight predictor that can *understand the behavior* of an LLM and *estimate the output token length before serving the request* on the LLM?

SSJF: Prediction-based Shortest Job First Scheduling

• Exec time = *Const* + *K* * Output token length

Model query overhead:

• E.g., input token processing

Prediction overhead:

- Deterministic inference time
- *K*: Per-token generation latency (constant for same instance)
	- GPT-3.5: 35ms
	- GPT-4: 94ms
- Llama-2-7B: 19ms
- Llama-2-70B: 46ms

Proxy-model-based Predictor

How to decide X-class classification? Dependent on proxy model and LLM to serve

More number of classes leads to **low accuracy** (regression is the hardest)

Less number of classes leads to worse scheduling (too **coarse-grained**)

Evaluation: Are the predictors lightweight? Are the predictors useful in scheduling?

System and Models Setup

- **Platform**: AlpaServe and Ray
- **VM on IBM Cloud**: 16 vCPU 128 GiB RAM with 2x NVIDIA Tesla V100 16 GB
- Open-source LLMs and non-autoregressive models
- Model input from **LMSYS-Chat-1M** and workload patterns from **Azure Function Traces**

Results (1): Scheduling Performance - JCT

36

Results (2): Scheduling Performance - Throughput

37

Results (3): Scheduling Performance – Proxy Model Overhead

Results (4): At Varying Batch Sizes

-Serve continues to provide **improvement in JCT and throughput** under **various batch sizes** with a diminishing return.

Continuous (iterative) batching > dynamic batching (same observation as in Orca, OSDI 22)

Results (5): Integration with vLLM

• Model: facebook/opt-350m, max memory usage: 23.6 GB, 75-85% SM utilization

Results (6): Power Saving

41

Dependable Transition to Green Computing

Two-fold meaning of sustainability:

- **Sustainable Energy/Carbon Cost**: Minimize carbon footprint
- **Sustainable Performance**: Multi-tenant clouds need to deliver consistent SLA/SLOs

Key Research Questions:

- How to achieve resilient, **SLO-driven** dynamic optimization of **green energy** usage
- How to address **System + ML resilience management**?

Overview of Proposal

Top-down vs. Bottom-up

- *Top-down* approach (MLSys Workshop @NeurIPS23)
	- Get the power cap based on carbon footprint optimization or power limits/budget
	- Resource manager adjust resource allocation accordingly to compensate reduced core frequency
- *Bottom-up* approach
	- Get the power demand based on the resource + frequency required to meet SLOs
	- Aggregate to get the power demand distribution across servers/racks
- Minimize carbon footprint while meeting daily BE job throughput **II. Cluster Management (Resource Management and Scheduling) I. Power Supply Management** Energy Sources *Top-down Intelligent Interface Bottom-up* **Datacenter State** Power **Emergency** Normal Operation *Top-down Bottom-up* Beyond Power Budget

Bottom-up Approach with ML for Carbon Footprint Optimization

- **Time Window:** We assume that the total period [0, T] is partitioned into sub-periods, say $[t_k, t_{k+1})$, which could be one hour or a half-hour, i.e., "**time interval t**"
- Carbon Intensity Forecasting: $CI(t)$
- **Applications:** LC jobs $l \in LC(t)$, BE jobs $b \in BE(t)$
- **Servers:** $s \in S(t)$
- **Binary Decision Variable** for Delaying BE job: $delay_b(t)$
- **Binary Decision Variable** for Job Placement: $place_{bs}(\vec{t})$, $place_{ls}(t)$
- **Power Consumption:** server $P_s(t)$, $\overline{\mathcal{L}}$ (b) $P_l(t)$, BE job $P_b(t)$
	- $P_s(t) = \sum_l P_l(t) \cdot place_{l,s}(t) + \sum_b P_b(t) \cdot \overline{plate_{b,s}(t)}$ **RL Autoscaler, e.g., FIRM (OSDI20)**
- **Constraints:**
	- \sum_{s} place_{b,s}(t) ≤ 1 , ∇b , t; \sum_{s} place_{b,s}(t) + $delay_b(t) = 1$, ∇b , t; \sum_{s} place_{l,s}(t) = 1, ∇l , t

ML Scheduler

- $\sum_{t} \sum_{b}$, place_{h, s}(t) > Daily_Threshold
- **Minimize** Total Carbon Footprint: $\sum_{s,t} P_s(t) \cdot CI(t)$

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?

Fast Recovery from Systems-ML Failure Domains

Fast detection of OOD and differential service recovery are critical

Robust and Reliable ML for Sustainable Computing – Autoscaling as an Example

FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Cloud Microservices

OSDI 2020

What FIRM Does in SLO Mitigation

A Two-tier ML+RL Framework Integrating ML/RL in SLO-oriented resource management Reduces SLO violation mitigation time by up to $9 \times$ Reduces the average tail latencies by up to $11 \times$ Reduces the overall average requested CPU limit by up to 62% • Decoupling with SVM-based root cause analysis to reduce RL state-action-space • Interpretability & Less training • RL to generate workload-specific SLO violation mitigation policies • Operationalized on IBM Cloud **Reprovision** Critical Path CP SVM Root RL Root RL Reprovision
Cause Model Mitigation Analysis **Model Model Tracing Data Resource (App + Systems) Reprovisioning K8S Cluster** Front End **Actions**Product Auth User Cart Product Payment

Data for State Inference

- Real-time observability on request execution provided by end-to-end distributed tracing
- Recreate the anomaly and auto-label training data driven with performance anomaly injection
- States (assume that such info is available):
	- Application-level: latency, request rates, payload
	- OS-level: CPU/memory utilization, network bandwidth, I/O usage, cache hit/misses

Anomaly Model

Step #1: Identifying Critical Components with SVM-based Root Cause Analysis

Which microservice instance should we focus on?

• **SVM-based critical component localization**

- Given individual latency vector T_i , and end-to-end latency vector T_{CP}
- **Relative importance (RI)**: Pearson correlation coefficient between *Ti* and T_{CP} -> Variance explained
- **Congestion intensity (CI)**: 99-th percentile value divided by various percentiles (e.g., median) of $T_i \rightarrow$ Chance of improvement
- **SVM(RI, CI) -> binary output: Y or N** microservice candidate for SLO violations

Step #2: SLO Violation Mitigation with RL

RL Formulation and Reward Function

FIRM in the Process of Handling Cloud Failures and Recovery

Case Study: Handling Failures in Cloud Systems

- **FIRM** represents a category of *learning-based systems management* solutions
	- Application-centric for sustainable computing
	- Learned model is from the traces/dataset generated from the application running on the cloud environment
- However, when deploying such ML/RL agents in production cloud systems, it is critical to ensure the **robustness** and **reliability** of the learned models in:
	- Handling failures in the systems (maintain some of the critical services as the bottom line) without violating any SLAs/SLOs, especially for those *mission-critical* applications.

Problem Statement

- Take FIRM as the basis, which will function well if there's NO failure
- Now, your cloud is hit by a series of failures that significantly impact the normal operations (latency/availability SLOs) of your managed services
- Your goal is to design a mitigation strategy by re-engineering the RL solution to maintain the SLOs for critical applications (hospitals, financial sectors) while tolerating a lower SLOs for non-critical applications
- In doing so, you need to re-engineer the RL solution (e.g., the reward function) to bring back the system to its normal functionality

Failure Example #1

In the early training stages, RL agents tend to generate poor autoscaling decisions (due to RL exploration)

• Lower than baseline rewards (i.e., worse agent performance) and more SLO violations

- Overprovisioning -> CPU & memory utils deficit compared w/ baseline
- Unable to re-scale properly for workloads changes -> SLO violations

Failure Example #2

Enabling built-in intelligence in cloud systems with less manual intervention while achieving high robustness and self-adaptation (in both training/inference)

Failure Example #3

- **Challenges due to Scalability and Multi-tenancy**
	- **RL-based solutions** for resource management / autoscaling: e.g., FIRM
	- A single RL agent in an isolated environment which we call "**single-agent RL**"
- RL assumes that the underlying environment is **stationary** (state transitions)
	- **Not true anymore!** from each agent's perspective when multiple self-interested RL agents are added to manage diverse function workloads (single-agent RL not aware of the others)

An Example Solution

Discussion

- **Systems + ML Resilience**
	- New fault model that combines the intricate relation between system and ML failures is needed
	- Fast recovery under the new fault model
- **Scalability**: How to make the optimization framework scalable to the large number of applications and servers in a datacenter cluster
	- Introducing hierarchy -> How to deal with out of capacity and job migration
- **Feasibility** of optimization solution: How to assess the feasibility?
	- E.g., cluster capacity is enough for all LC job to meet SLOs
	- Especially when there are failures or capacity loss in the cluster, feasibility is affected
- **Time granularity**
	- Energy optimization and power management in the level of minutes or hours
	- Resource management and ML/RL agents are in the level of seconds
	- When to trigger the optimizer to run (i.e., frequency)

Holistic Optimization with Renewable Energy & Embodied Carbon Emission

• NSF WSCS 2024, DSN 2024

Back up slides

Dependable Transition to Green Computing

Two-fold meaning of sustainability:

- **Sustainable Energy/Carbon Cost**: Minimize carbon footprint
- **Sustainable Performance**: Multi-tenant clouds need to deliver consistent SLA/SLOs

Key Research Questions:

- How to achieve resilient, **SLO-driven** dynamic optimization of **green energy** usage
- How to address **System + ML resilience management**?

Overview of Proposal

Top-down vs. Bottom-up

- *Top-down* approach (MLSys Workshop @NeurIPS23)
	- Get the power cap based on carbon footprint optimization or power limits/budget
	- Resource manager adjust resource allocation accordingly to compensate reduced core frequency
- *Bottom-up* approach
	- Get the power demand based on the resource + frequency required to meet SLOs
	- Aggregate to get the power demand distribution across servers/racks
	- Minimize carbon footprint while meeting daily BE job throughput **Datacenter State**

Bottom-up Approach with ML for Carbon Footprint Optimization

- **Time Window:** We assume that the total period [0, T] is partitioned into sub-periods, say $[t_k, t_{k+1})$, which could be one hour or a half-hour, i.e., "**time interval t**"
- Carbon Intensity Forecasting: $CI(t)$
- **Applications:** LC jobs $l \in LC(t)$, BE jobs $b \in BE(t)$
- **Servers:** $s \in S(t)$
- **Binary Decision Variable** for Delaying BE job: $delay_b(t)$
- **Binary Decision Variable** for Job Placement: $place_{bs}(\vec{t})$, $place_{ls}(t)$
- **Power Consumption:** server $P_s(t)$, $\overline{\mathcal{L}}$ (b) $P_l(t)$, BE job $P_b(t)$
	- $P_s(t) = \sum_l P_l(t) \cdot place_{l,s}(t) + \sum_b P_b(t) \cdot \overline{place_{b,s}(t)}$ **RL Autoscaler, e.g., FIRM (OSDI20)**
- **Constraints:**
	- \sum_{s} place_{b,s}(t) ≤ 1 , ∇b , t; \sum_{s} place_{b,s}(t) + $delay_b(t) = 1$, ∇b , t; \sum_{s} place_{l,s}(t) = 1, ∇l , t

ML Scheduler

- $\sum_{t} \sum_{b}$, place_{h, s}(t) > Daily_Threshold
- **Minimize** Total Carbon Footprint: $\sum_{s,t} P_s(t) \cdot CI(t)$

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?

67

Fast Recovery from Systems-ML Failure Domains

Fast detection of OOD and differential service recovery are critical

Multi-tier ML-driven Framework

- Power distribution
- Workload & power supply forecasting
	- Job characteristics
	- Load prediction
	- Power generation condition (e.g., weather) prediction

