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Clouds Increasingly the Backbone for Energy Hungry
ML-driven Applications
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Self-driving

AR/VR

Generative AI

Health Analytics

AI for Science
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Cloud datacenters’ carbon emissions: Today:     2-4% (> Aviation industry)
Tomorrow: 8% (2030) [1]

[1] Towards a Systematic Survey for Carbon Neutral Data Centers. Zhiwei Cao, et al. https://arxiv.org/abs/2110.09284

“Net Zero by 2050: the world's most urgent mission” – United Nations

Embodied Emissions (35%) Operational Emissions (65%) ML (15%) [3]

[3] Energy and Emissions of Machine Learning on Smartphones vs. the Cloud. David Patterson, et al. CACM 2024

[2] Chasing Carbon: The Elusive Environmental Footprint of Computing. Udit Gupta, et al. HPCA 2021.

A datacenter at Meta [2]

The Sustainability Challenge



Deep Learning / LLM Model Lifecycle

5

Model Serving

Fine-tuning
Domain-specific
Dataset

…
Fine-tuned LLMs

Chatbots,
Coding assistants,
Recommenders,
Marketing,
Search, …

Google estimate that [1], in 2021, 40% of carbon footprint 
goes to model training while 60% goes to model serving.

[1] Carbon Footprint of Machine Learning Training. Google. https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html 

Training of GPT-4:
• 25k Nvidia A100s
• ~90-100 days
• $100 million
• 50-60k MWh
Inference: 10x more [2]

[2] AI's Staggering Energy Cost. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/ 

https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/


ML in Systems and Cloud
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Datacenter management and cluster orchestration

• Container placement
• Capacity scaling

• Resource config
• Autoscaling

How to optimize the use of green energy while meeting cloud SLOs 
and ensuring resilience against both classic system failures and 

potential new vulnerabilities introduced by ML? 

ML has been increasingly used in systems for optimizing efficiency / energy while 
adapting to dynamic cloud environments… assessment plus action

• Power management
• Job scheduling Use of green energy?

Greener
Energy

!
𝒊
𝑷𝒐𝒘𝒆𝒓	 ∗ 	𝜟𝑻𝒊 ∗ 𝑪𝒂𝒓𝒃𝒐𝒏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚

Less
Energy



Why Worry about SLOs and System Failures?
(Impact on Carbon Footprint Optimization)
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• Carbon footprint optimization can lead to SLA/SLO violations due to:
• Processor throttling, load shaping, power capping, etc.
• SLO violations lead to large financial losses in mission-critical systems

• Continuous fault management is needed to meet SLOs (e.g., in availability and 
performance) and deliver quality of service
• By data redundancy (e.g., replication), compute redundancy, coding, storage
• ML introduces different redundancy requirements and uncertainties especially in critical 

societal applications

• Fault management adds substantially to the energy consumption
• 40-60% of the total performance cost is due to fault management overhead

• Not enough done to manage Out of Distribution (OOD) situations



Can We Rely on Batteries? No Free Lunch for Pure Green Energy
• Today, all green energy (e.g., solar, wind) has fossil fuel component!!

• Cost of resilience; Requires substantial cloud management efforts
• Any instability can affect the resilience lead to high compute costs

• Power storage cost can be very high, estimated to be trillions of dollars
• Storage (batteries, other?), unreliable and polluting
• Currently only used in mission-critical situations

• Requires significant new research including in SysML & resilience 
communities

8
https://www.technologyreview.com/2018/07/27/141282/the-25-trillion-reason-we-cant-rely-on-batteries-to-clean-up-the-grid/ 

https://www.technologyreview.com/2018/07/27/141282/the-25-trillion-reason-we-cant-rely-on-batteries-to-clean-up-the-grid/
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Two-fold meaning of “sustainability”:
• Sustainable Energy/Carbon Cost:  Minimize 

carbon footprint
• Sustainable Performance: Multi-tenant clouds 

need to deliver consistent SLA/SLOs

Managing future large-scale systems:

• How to achieve resilient, SLO-driven dynamic 
optimization towards green energy

• How to address system + ML resilience 
management?

Transition to Green Computing: A Game-theoretic Perspective

When Green Computing Meets Performance and Resilience SLOs. Haoran Qiu, Weichao Mao, Chen Wang, Saurabh Jha, Hubertus 
Franke, Chandra Narayanaswami, Zbigniew T. Kalbarczyk, Tamer Başar, Ravishankar K. Iyer. DSN 2024 Distrupt Track.

Joint Model Overview: Carbon Footprint-SLO-Resilience
Cross-stack Optimization

Data

D
ata



Top-down vs. Bottom-up
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• Top-down approach (MLSys Workshop @NeurIPS23)
• Get the power cap based on carbon footprint optimization or power limits/budget
• Resource manager adjust resource allocation accordingly to compensate reduced core 

frequency
• Extra buffer added by bringing green energy; relaxing power cap

• Bottom-up approach
• Get the power demand based on the resource + frequency required to meet SLOs
• Aggregate to get the power demand distribution across servers/racks
• Minimize carbon footprint while meeting daily BE job throughput

II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

Intelligent InterfaceTop-down Bottom-up

Datacenter
State

Power 
Emergency

Normal 
Operation

Top-down
Bottom-up

Beyond Power 
Budget

More Green Energy
More uncertainty

SLO violations
Resilience issues

Lower carbon intensity

Less Green Energy
Less uncertainty
Meeting SLOs
Less resilience issues
Higher carbon intensity

Game-theoretic formulation of green 
energy supply vs. cloud SLOs



Bottom-up Approach with ML for Carbon Footprint Optimization
A Cyber-Twin for Continuous Green Transition
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• Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say 
[𝑡! , 𝑡!"#), which could be one hour or a half-hour, i.e., “time interval t”

• Carbon Intensity Forecasting: 𝐶𝐼(𝑡)
• Applications: Latency-critical (LC) jobs 𝑙 ∈ 𝐿𝐶(𝑡), Best-effort (BE) jobs 𝑏 ∈ 𝐵𝐸(𝑡)
• Servers: 𝑠 ∈ 𝑆(𝑡)
• Binary Decision Variable for Delaying BE job: 𝑑𝑒𝑙𝑎𝑦$(𝑡)

• Binary Decision Variable for Job Placement: 𝑝𝑙𝑎𝑐𝑒$,& 𝑡 , 𝑝𝑙𝑎𝑐𝑒',& 𝑡
• Power Consumption: server 𝑃& 𝑡 , LC job 𝑃' 𝑡 , BE job 𝑃$ 𝑡

• 𝑃& 𝑡 = ∑' 𝑃' 𝑡 9 𝑝𝑙𝑎𝑐𝑒',&(𝑡) + ∑$ 𝑃$(𝑡) 9 𝑝𝑙𝑎𝑐𝑒$,&(𝑡)
• Constraints:

• ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) ≤ 1, ∀𝑏, 𝑡;    ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) + 𝑑𝑒𝑙𝑎𝑦$ 𝑡 = 1, ∀𝑏, 𝑡;    ∑& 𝑝𝑙𝑎𝑐𝑒',&(𝑡) = 1, ∀𝑙, 𝑡
• ∑(∑$,& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) > 𝐷𝑎𝑖𝑙𝑦_𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Penalties: e.g., carbon intensity, SLO violations, resilience breakdowns

• Minimize Total Carbon Footprint: ∑&,( 𝑃&(𝑡) 9 𝐶𝐼(𝑡)

ML Scheduler

ML Autoscaler, e.g., FIRM (OSDI20)

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?

ML-driven time series



Model Serving Systems

Model Multiplexing

Request Scheduling

Model Serving System

M1 M3
M4

M1 M3M2

M4

…

M1 M3 …

UsersApplications

Requests

M2
M5

Model Registry
(ready-to-serve models)

Deploy

Worker 1

Exec Runtime

Worker 2

GPU Cluster
…

Worker N
…

14



Model Replication 
Scaler (Autoscale)

𝝁-Serve Model Serving Example: for Power-aware DL/LLM

Monitoring 
Datastore

Dynamic GPU 
Frequency Scaler

[ Online Phase ]

Model 
Specifications

GPU Cluster 
Specifications

[ Offline Phase ]

Power-aware 
Model Partitioning 

with Parallelism
Extending AlpaServe

(OSDI 2023)

Power-aware 
Model Placement

Model Partition 
Placement Plan

Primitive
Operators [1]

Sensitivity
Score Database

Profiling

Runtime Request 
SchedulerProxy Model

Exec time
prediction

[1] XLA’s HLO Representation, https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ops 

Proxy Model Runtime Request 
Scheduler

15

(Clustering based on 
similarity of performance 

sensitivities)

Power-aware Deep Learning Model Serving with µ-Serve. Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, 
Hubertus Franke, Zbigniew T. Kalbarczyk, Tamer Başar, Ravishankar K. Iyer. USENIX ATC 2024

Based on BERT trained on 
history input-output datasets 

https://github.com/openxla/stablehlo/blob/main/docs/spec.md


System and Models Setup

• Platform: AlpaServe and Ray
• VM on IBM Cloud: 16 vCPU 128 GiB RAM 

with 2x NVIDIA Tesla V100 16 GB
• Open-source LLMs and non-autoregressive 

models

• Model input from LMSYS-Chat-1M (largest 
open-source dataset available) and workload 
patterns from Azure Function Traces

17



Results: Power Saving

Compared to AlpaServe, 𝝁-Serve achieves 1.2–2.6x higher power saving by 
dynamic frequency scaling without SLO attainment violations.

18

Arrival Rate Scale

Arrival Rate Scale



A Disruptive Systems Approach to Sustainable Computing with Efficient and Robust ML

CPU Cloud Efficiency with ML

GPU Cloud Efficiency with ML

SIMPPO
• SoCC 2022, NeurIPS 2022
• MLSys @NeurIPS 2023

Serverless Computing

𝝁-Serve
• ATC 2024a
• NSDI 2025*

DL Model Serving

INDIGO
• ASPLOS*, COMPSYS 2022

Disaggregated Memory

Robust ML for Systems

FLASH
• MLSys 2024

Cloud Heterogeneity

AWARE
• ATC 2023, NeurIPS 2023

Reliable RL Exploration

MAPPO
• EuroMLSys 2022, WoSC 2021

Cloud Multi-tenancy

FIRM
• OSDI 2020

Microservices

Holistic (Green) Energy Optimization Jointly with Cloud Systems-ML Resilience
• NSF WSCS 2024, DSN 2024

19



DEPEND Group Contributions: A Disruptive Approach to 
Sustainable Computing with Efficient and Robust ML

CPU Cloud Efficiency with ML

GPU Cloud Efficiency with ML

SIMPPO
• SoCC 2022, NeurIPS 2022
• MLSys @NeurIPS 2023

Serverless Computing

𝝁-Serve
• ATC 2024a
• NSDI 2025*

DL Model Serving

INDIGO
• ASPLOS*, COMPSYS 2022

Disaggregated Memory

Robust ML for Systems

FLASH
• MLSys 2024

Cloud Heterogeneity

AWARE
• ATC 2023, NeurIPS 2023

Reliable RL Exploration

MAPPO
• EuroMLSys 2022, WoSC 2021

Cloud Multi-tenancy

FIRM
• OSDI 2020

Microservices

Holistic (Green) Energy Optimization Jointly with Cloud Systems-ML Resilience
• NSF WSCS 2024, DSN 2024

• Continuously manage resources and scheduling optimally
• Optimally manage robustness including system and ML reliability

20



Are batteries the future to sustainable computing?
AI/ML Cloud for Power Storage Serving

An intelligent, resilience-aware cloud is needed for power storage serving

21

Cloud for Serving Power Systems

Robustness?

Cost of Resilience?

Power systems 
management

Instability?

Good estimate of 
the battery storage 
costs essential

Heterogeneity?



Back up slides

22



Deep Learning and Foundation Model Era

[1] Compute Trends across Three Eras of Machine Learning. J. Sevilla, L. Heim, et al. https://arxiv.org/abs/2202.05924

Moore’s Law (2x every 18 months)

CPU

GPUDL Demand (10x every 18 months)

TPU

Efficiency is the key to further unlock scaling!

Performance efficiency

Utilization efficiency

Power efficiency?

23

https://arxiv.org/abs/2202.05924


Deep Learning / LLM Model Lifecycle
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Model Serving

Fine-tuning
Domain-specific
Dataset

…
Fine-tuned LLMs

Chatbots,
Coding assistants,
Recommenders,
Marketing,
Search, …

Google estimate that, in 2021, 40% of carbon footprint 
goes to model training while 60% goes to model serving.

[1] Carbon Footprint of Machine Learning Training. Google. https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html 

Training of GPT-4:
• 25k Nvidia A100s
• ~90-100 days
• $100 million
• 50-60k MWh
Inference: 10x more [2]

[2] AI's Staggering Energy Cost. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/ 

https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/


Power Saving Opportunities
214w -> 120w: 44% reduction

SLO

800 MHz
1.3 GHz

POLCA (Microsoft, ASPLOS24)

25



Challenge #1: Coarse-grained GPU Frequency Tuning

What frequency to run?

M1 M3M2

M4

…

M1 M3 …

Worker 1

Exec Runtime

Worker 2

GPU Cluster

…

Worker N
…

GPU1 Model A B C …

GPU2 Model B D E …

GPUN Model C A D …

…
Hard to figure out the optimal frequency

A model or a 
model partition

Power saving opportunity limited by the 
most sensitive partition since each device 

only supports coarse-grained tuning.

26



Challenge #2: Non-deterministic LLM Executions

• Autoregressive nature of LLMs
• Can lead to head-of-line (HoL) 

blocking in FCFS
• Likely SLO violations on job 

completion times (JCT)

2 2 8

8 2 2

Queue

(8+(8+2)+(8+2+2)) / 3 = 10

(2+(2+2)+(2+2+8)) / 3 = 6

Head-of-line blocking

Avg JCT:

Dataset: LMSYS-Chat-1M
A Large-Scale Real-World LLM Conversation Dataset

Power saving opportunity limited by 
nondeterminism and HoL problems

40% saving in JCT
27



Observation #1: Model Partitions Have Diverse Sensitivities

GPU1 A B C

GPU2 D

D

A B E

GPU1 A B C

GPU2 D

D

A B E

A B C D Less sensitive to 
frequency reduction

DA B E More sensitive to 
frequency reduction

😃

🙁

🙁

🙁 A model or a 
model partitionA

Power-aware partitioning and 
placement based on sensitivities 
can potentially increase power-

saving “opportunities” 

𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝑲𝑻

𝒅
𝑽

Sensitivity to Frequency Reduction
28



Observation #2: A Small Proxy Model Knows LLMs’ Verbosity

• A small proxy model (e.g., BERT-base/tiny) can predict well

• Intuition: Hints on the output length (number of tokens) of LLM responses
• “Translate…” -> Response length approximate to the prompt length
• “Write an article about…” -> Long response
• “Summarize…” -> Shorter response than the input query

How can identity 
protection services help 

protect me against 
identity theft?

LLM
(Model to Serve)

Output Length
Predictor

Many identity protection 
services monitor your credit 
reports , public records, and 

other sources for…

~200 tokens

Input Query

Output

Proxy models can indicate LLM 
verbosity to avoid HoL and potentially 
increase power-saving “opportunities” 

29



How to design and train a lightweight predictor that can 
understand the behavior of an LLM and estimate the output token 
length before serving the request on the LLM?

30



Workflow

GPU Cluster

Gateway Model Library
Requests

Virtualization

LLM Instance

End User

2 28

How can identity 
protection services 

help protect me 
against identity theft?

Oracle

Output Token Length

Many identity 
protection services 
monitor your credit 

reports…

Model Outputs

Input

Input Input

Output

Request Scheduler2 8
🤯😀

31



SSJF: Prediction-based Shortest Job First Scheduling

Job
Pool

J1

J2

J3

…

Speculative 
Shortest-Job-First 
(SSJF) Scheduler

…

M
odels Output Token 

Length PredictorPredicted
Length

<Model,
Input> Check if

Prediction
Cached

GPU
Cluster

• SSJF: Using output token length prediction as the exec time estimation
• Exec time = Const + K * Output token length

Model query overhead:
• E.g., input token processing

Prediction overhead:
• Deterministic inference time

Output

Update
Cache

Semantic
Cache

<input, length>

K: Per-token generation latency (constant for same instance)
• GPT-3.5: 35ms
• GPT-4: 94ms
• Llama-2-7B: 19ms
• Llama-2-70B: 46ms

Requests
(Input Query)

32

Users

Applications



Proxy-model-based Predictor

[CLS]

Tok 1

Tok 2
…

Tok N

… …

CLS

T1

T2

TN

BERTInput

…

[0, p25)

[p25, p50)

[p50, p75)

[p75, p99)

[p99, +)

Output Token
Length %ile

So
ft

m
ax

Pr
ed

ic
tio

n 
Cl

as
se

s

Multi-class Classifier

… …
More number of classes leads to low 
accuracy (regression is the hardest)

Less number of classes leads to worse 
scheduling (too coarse-grained)

How to decide X-class classification? Dependent on proxy model and LLM to serve

33

Offline Dataset on 
Model History Output



Evaluation:
Are the predictors lightweight?
Are the predictors useful in scheduling?

34



System and Models Setup

• Platform: AlpaServe and Ray
• VM on IBM Cloud: 16 vCPU 128 GiB RAM 

with 2x NVIDIA Tesla V100 16 GB
• Open-source LLMs and non-autoregressive 

models

• Model input from LMSYS-Chat-1M and 
workload patterns from Azure Function Traces

35



Results (1): Scheduling Performance - JCT

At varying rates

At varying variations

Reduce JCT by 34.5% / 39.6% / 33.2%
        Oracle by 43.7% / 58.2% / 43.0%

Reduce JCT by 30.5% / 39.0% / 35.0%
        Oracle by 37.6% / 52.9% / 41.5%

36



Results (2): Scheduling Performance - Throughput

At varying rates

At varying variations

↑ Throughput by 3.6x / 3.0x / 2.8x
          Oracle by 4.7x / 4.1x / 3.2x

↑ Throughput by 2.6x / 2.6x / 2.2x
          Oracle by 3.4x / 3.8x / 2.7x

37



Results (3): Scheduling Performance – Proxy Model Overhead

BERT-base Prediction Overhead
Avg Inference Latency = 7.6ms
• Median = 7.6ms
• P99 = 8.0ms
• Max = 20.2ms

Model-serving Duration
• P5 = 360ms
• P1 = 140ms
• P0.1 = 140ms
• Min = 120ms

𝝁-Serve improves JCT by 30-40% 
and throughput by 2.2-3.6x with 

negligible runtime overhead.

38



Results (4): At Varying Batch Sizes

𝝁-Serve continues to provide improvement in JCT and throughput 
under various batch sizes with a diminishing return.

Continuous (iterative) batching > dynamic batching 
(same observation as in Orca, OSDI 22)

39



Results (5): Integration with vLLM
• Model: facebook/opt-350m, max memory usage: 23.6 GB, 75-85% SM utilization

SJF (oracle) achieves 43% and 6.3x improvement in JCT and throughput than FCFS.

𝝁-Serve (SSJF) achieves 33% and 4.9x improvement in JCT and throughput than FCFS.

40



Results (6): Power Saving

Compared to AlpaServe, 𝝁-Serve achieves 1.2–2.6x higher power saving by 
dynamic frequency scaling without SLO attainment violations.

41



Cloud DC #1 Cloud DC #2

CM

Power Grid

Energy Sources

Multi-Cloud 
Computer

Cost Model

Cloud DC #3

CM

SCADA

…
DC Power Sys (PS)

PS PS

End Users
SLAs

Jobs

Job Submission:
Best-effort Jobs:

Server #1 Server #2

BE
 V

M
BE

 V
M

LC
 V

M
LC

 V
M

…

High-bandwidth Network Fabric
Rack #1

Resource Scaler Resource Scaler
Power Capper Power Capper

Top-of-Rack Switch

Rack-level Power Management

…

BE
 V

M
BE

 V
M

BE
 V

M
LC

 V
M …

Sys-operator Sys-operator

BE
Power Delivery:
Latency-critical Jobs: LC

ML-based Decision-Making Framework

Power Supply 
Forecasting
Workload 

Forecasting

Optimizer

Power 
Delivery

Job 
Delivery

Meta-RL

Cluster Manager
(e.g., BorgMaster, 

KubeMaster)

…

Rack #2

Rack #3

Phase I: Intra-Cluster Resource & Job 
Management for Local Carbon Optimization

Phase II: Inter-Cluster Power & Job Management

Cluster Manager (CM)

Rack #4

Rack #5
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Two-fold meaning of sustainability:
• Sustainable Energy/Carbon Cost:  Minimize 

carbon footprint
• Sustainable Performance: Multi-tenant clouds 

need to deliver consistent SLA/SLOs

Key Research Questions:

• How to achieve resilient, SLO-driven 
dynamic optimization of green energy usage

• How to address System + ML resilience 
management?

Dependable Transition to Green Computing

Overview of Proposal



Top-down vs. Bottom-up
• Top-down approach (MLSys Workshop @NeurIPS23)

• Get the power cap based on carbon footprint optimization or power limits/budget
• Resource manager adjust resource allocation accordingly to compensate reduced core 

frequency

• Bottom-up approach
• Get the power demand based on the resource + frequency required to meet SLOs
• Aggregate to get the power demand distribution across servers/racks
• Minimize carbon footprint while meeting daily BE job throughput

II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

Intelligent InterfaceTop-down Bottom-up

Datacenter
State

Power 
Emergency

Normal 
Operation

Top-down
Bottom-up

Beyond Power 
Budget



Bottom-up Approach with ML for Carbon Footprint Optimization
• Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say 
[𝑡! , 𝑡!"#), which could be one hour or a half-hour, i.e., “time interval t”

• Carbon Intensity Forecasting: 𝐶𝐼(𝑡)
• Applications: LC jobs 𝑙 ∈ 𝐿𝐶(𝑡), BE jobs 𝑏 ∈ 𝐵𝐸(𝑡)
• Servers: 𝑠 ∈ 𝑆(𝑡)
• Binary Decision Variable for Delaying BE job: 𝑑𝑒𝑙𝑎𝑦$(𝑡)
• Binary Decision Variable for Job Placement: 𝑝𝑙𝑎𝑐𝑒$,& 𝑡 , 𝑝𝑙𝑎𝑐𝑒',& 𝑡
• Power Consumption: server 𝑃& 𝑡 , LC job 𝑃' 𝑡 , BE job 𝑃$ 𝑡

• 𝑃& 𝑡 = ∑' 𝑃' 𝑡 9 𝑝𝑙𝑎𝑐𝑒',&(𝑡) + ∑$ 𝑃$(𝑡) 9 𝑝𝑙𝑎𝑐𝑒$,&(𝑡)
• Constraints:

• ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) ≤ 1, ∀𝑏, 𝑡;    ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) + 𝑑𝑒𝑙𝑎𝑦$ 𝑡 = 1, ∀𝑏, 𝑡;    ∑& 𝑝𝑙𝑎𝑐𝑒',&(𝑡) = 1, ∀𝑙, 𝑡
• ∑(∑$,& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) > 𝐷𝑎𝑖𝑙𝑦_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Minimize Total Carbon Footprint: ∑&,( 𝑃&(𝑡) 9 𝐶𝐼(𝑡)

ML Scheduler

RL Autoscaler, e.g., FIRM (OSDI20)

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?



Fast Recovery from Systems-ML Failure Domains

In
pu

t

O
ut

pu
t

Model Training
Model Inference Classic Systems Resilience

Critical 
Services

Non-Critical 
Services

Split Reward Model

ML Agent Resilience

Model with 
attention to 

the “tail”

Model 
retrained with 
redistribution

More 
Samples

OOD
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Fast detection of OOD and differential service recovery are critical



Robust and Reliable ML for Sustainable Computing – 
Autoscaling as an Example

Managing autoscaling under 
failures

Managing autoscaling 
assuming no failures

(e.g., FIRM)

Modify the autoscaler to 
support RL-driven recovery

FIRM
(OSDI 2020)

Major Components of the 
recovery architecture

Incorporating recovery into 
FIRM

Take advantage of FIRM’s key architecture 
as well as training/inference process (RL) 
to inform the recovery



FIRM: An Intelligent Fine-Grained Resource 
Management Framework for SLO-Oriented 
Cloud Microservices
OSDI 2020
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What FIRM Does in SLO Mitigation
A Two-tier ML+RL Framework
• Integrating ML/RL in SLO-oriented resource management

• Reduces SLO violation mitigation time by up to 9×
• Reduces the average tail latencies by up to 11×
• Reduces the overall average requested CPU limit by up to 62%

• Decoupling with SVM-based root cause analysis to reduce RL state-action-space
• Interpretability & Less training

• RL to generate workload-specific SLO violation mitigation policies
• Operationalized on IBM Cloud

SVM 
Model

Critical Path 
Analysis

RL 
Model

CP Root
Cause Mitigation

Reprovision

K8S Cluster
Tracing Data 

(App + Systems)
Resource 
Reprovisioning 
Actions



Data for State Inference

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx            
PHP-FPM

Load 
Balancer

Tracing Module

Microservice 
Instance

Replica Set

Tracing
Coordinator 

• Real-time observability on request execution 
provided by end-to-end distributed tracing

• Recreate the anomaly and auto-label training 
data driven with performance anomaly 
injection

• States (assume that such info is available):
• Application-level: latency, request rates, payload
• OS-level: CPU/memory utilization, network 

bandwidth, I/O usage, cache hit/misses



Step #1: Identifying Critical Components with SVM-based
Root Cause Analysis

• SVM-based critical component localization
• Given individual latency vector Ti, and 

end-to-end latency vector TCP

• Relative importance (RI): Pearson 
correlation coefficient between Ti and 
TCP -> Variance explained

• Congestion intensity (CI): 99-th 
percentile value divided by various 
percentiles (e.g., median) of Ti -> 
Chance of improvement

• SVM(RI, CI) -> binary output: Y or N 
microservice candidate for SLO 
violations

Ex
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Critical Path Extraction

Critical Instance Extraction

Execution 
History Graph

Telemetry 
Data

Candidates
cr i t i cal Component ( )

l ongest Pat h( )Critical
Paths

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx            
PHP-FPM

Load 
Balancer

Tracing Module

Microservice 
Instance

Replica Set

Tracing
Coordinator 

SVM-based
root cause analysis

Which microservice instance 
should we focus on?



Step #2: SLO Violation Mitigation with RL
• SLO violation mitigation action generation based on RL

• Identifies low-level resource in contention (state approximation)
• Estimates reprovisioning resources to mitigate the SLO violation (action 

inference)
• Action model:

• CPU: CPU limits
• Memory: capacity + bandwidth
• LLC: capacity (intel-cat)
• I/O: bandwidth (blkio)
• Network: bandwidth (qdisc)

R
L-based R

esource 
Estim

ator R
e-allocation 

Actions

Performance
Counters

D
eploym

ent M
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CPU LLC Memory

I/O Network Replicas

Controlled Resources
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Execution 
History Graph
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Candidates
cr i t i cal Component ( )

l ongest Pat h( )Critical
Paths

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx            
PHP-FPM

Load 
Balancer

Tracing Module

Microservice 
Instance

Replica Set

Tracing
Coordinator 

RL Agent K8s Environment

SLO

Utilization

States

Actions

Takes as input the 
current states

Continuously 
tune the policy

RL provides a feedback control-
based dynamic environment

Managing the tradeoff 
between meeting the SLOs 
and the utils levels

Policy

Decides the scaling 
of resources



RL Agent

CPU

Utilization

Memory

Bandwidth

LLC

Bandwidth

LLC

Capacity

Disk I/O

Bandwidth

Network

Bandwidth

Microservices 
Managed by FIRM

Actions (at)

Performance & Resource Measurements

States (st)

Rewards (rt)
SLO

Utilization

Actor

Critic
Vt

SLO

Violation

Arrival

Rate

RL Formulation and Reward Function
• Optimizes end-to-end objectives:

• Maximize resource utilization 
efficiency

• Minimize SLO violation
• (assuming no failures in the systems)

𝑆𝑀! = min(
𝐿𝑎𝑡𝑒𝑛𝑐𝑦"#$
𝐿𝑎𝑡𝑒𝑛𝑐𝑦!

, 1)

(SLO	maintenance)

Resource	Usage
of	𝑖	at	time	𝑡

Resource	limit
of	𝑖	at	time	𝑡

Mitigate SLO 
Violation Fast

Avoid Over-
provisioning

𝑟 𝑡 = 	𝛼 F 𝑆𝑀! F ℛ + (1 − 𝛼) FJ
%

|ℛ|
𝑅𝑈!%/𝑅𝐿!%

Reward Penalty

Yes?
Yes No



FIRM in the Process of Handling Cloud 
Failures and Recovery
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Case Study: Handling Failures in Cloud Systems
• FIRM represents a category of learning-based systems management solutions

• Application-centric for sustainable computing
• Learned model is from the traces/dataset generated from the application running on the 

cloud environment

• However, when deploying such ML/RL agents in production cloud systems, it 
is critical to ensure the robustness and reliability of the learned models in:
• Handling failures in the systems (maintain some of the critical services as the bottom 

line) without violating any SLAs/SLOs, especially for those mission-critical applications.

K8S ClusterTracing Data 
(App + Systems)

Resource 
Reprovisioning 
Actions



Problem Statement
• Take FIRM as the basis, which will function well if there’s NO failure

• Now, your cloud is hit by a series of failures that significantly impact the 
normal operations (latency/availability SLOs) of your managed services

• Your goal is to design a mitigation strategy by re-engineering the RL solution to 
maintain the SLOs for critical applications (hospitals, financial sectors) while 
tolerating a lower SLOs for non-critical applications

• In doing so, you need to re-engineer the RL solution (e.g., the reward function) 
to bring back the system to its normal functionality



Failure Example #1

In the early training stages, RL agents tend to generate 
poor autoscaling decisions (due to RL exploration)

• Lower than baseline rewards (i.e., worse agent 
performance) and more SLO violations

RL Episodes EP #1-100 EP #101-200 EP #201-300 EP #301-400

CPU Util -32.3% ± 14% -42.9% ± 15% -22.1% ± 12% -10.0% ± 6%

Memory Util -28.8% ± 11% -30.5% ± 10% -26.5% ± 8% -7.8 % ± 2%

SLO Violations 56.1 ± 14x 22.2 ± 7x 12.7 ± 5x 10.1 ± 3x

Overprovisioning -> CPU & memory 
utils deficit compared w/ baseline

Unable to re-scale properly for 
workloads changes -> SLO violations

FIRM (OSDI 2020)



Failure Example #2

During policy-serving stage, RL agent performance 
degrades when workloads are updated

Trained policies are application-specific, costly to 
adapt to new applications

• 45.6% reward degradation (~230 eps retraining)

Workload changes leads to 21.8% reward drops  

Enabling built-in intelligence in cloud systems with less manual intervention 
while achieving high robustness and self-adaptation (in both training/inference)



Failure Example #3
• Challenges due to Scalability and Multi-tenancy

• RL-based solutions for resource management / autoscaling: e.g., FIRM
• A single RL agent in an isolated environment – which we call “single-agent RL”

• RL assumes that the underlying environment is stationary (state transitions)

• Not true anymore! from each agent’s perspective when multiple self-interested RL agents 
are added to manage diverse function workloads (single-agent RL not aware of the others)

RL Environment
(FaaS Platform)

Policy 𝜋! Action 𝐴"
Function

ManagesVertical Scaling

Horizontal Scaling

State 𝑆" , Rewards 𝑅"

On receiving 𝑆!(), was it 
caused by my action 𝐴!?

Policy 𝜋!!

Policy 𝜋!"

Policy 𝜋!#

…

Shared RL
Environment



An Example Solution
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Managing a system 
management task

Systems Failure Diagnosis 
& Mitigation / Recovery
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Discussion
• Systems + ML Resilience

• New fault model that combines the intricate relation between system and ML 
failures is needed

• Fast recovery under the new fault model
• Scalability: How to make the optimization framework scalable to the large number of 

applications and servers in a datacenter cluster
• Introducing hierarchy -> How to deal with out of capacity and job migration

• Feasibility of optimization solution: How to assess the feasibility?
• E.g., cluster capacity is enough for all LC job to meet SLOs
• Especially when there are failures or capacity loss in the cluster, feasibility is 

affected

• Time granularity
• Energy optimization and power management in the level of minutes or hours
• Resource management and ML/RL agents are in the level of seconds
• When to trigger the optimizer to run (i.e., frequency)



CPU Cloud Efficiency with ML

GPU Cloud Efficiency with ML

SIMPPO
• SoCC 2022, NeurIPS 2022
• MLSys @NeurIPS 2023

Serverless Computing

𝝁-Serve
• ATC 2024a
• AIOps 2024

DL Model Serving

INDIGO
• ASPLOS*, COMPSYS 2022
• NSDI 2025*

Disaggregated Memory

Robust ML for Systems

FLASH
• MLSys 2024

Cloud Heterogeneity

AWARE
• ATC 2023, NeurIPS 2023

Reliable RL Exploration

MAPPO
• EuroMLSys 2022
• WoSC 2021

Cloud Multi-tenancy

FIRM
• OSDI 2020

Microservices

Holistic Optimization with Renewable Energy & Embodied Carbon Emission

• NSF WSCS 2024, DSN 2024
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Back up slides
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Two-fold meaning of sustainability:
• Sustainable Energy/Carbon Cost:  Minimize 

carbon footprint
• Sustainable Performance: Multi-tenant clouds 

need to deliver consistent SLA/SLOs

Key Research Questions:

• How to achieve resilient, SLO-driven 
dynamic optimization of green energy usage

• How to address System + ML resilience 
management?

Dependable Transition to Green Computing

Overview of Proposal



Top-down vs. Bottom-up

66

• Top-down approach (MLSys Workshop @NeurIPS23)
• Get the power cap based on carbon footprint optimization or power limits/budget
• Resource manager adjust resource allocation accordingly to compensate reduced core 

frequency

• Bottom-up approach
• Get the power demand based on the resource + frequency required to meet SLOs
• Aggregate to get the power demand distribution across servers/racks
• Minimize carbon footprint while meeting daily BE job throughput

II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

Intelligent InterfaceTop-down Bottom-up

Datacenter
State

Power 
Emergency

Normal 
Operation

Top-down
Bottom-up

Beyond Power 
Budget



Bottom-up Approach with ML for Carbon Footprint Optimization
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• Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say 
[𝑡! , 𝑡!"#), which could be one hour or a half-hour, i.e., “time interval t”

• Carbon Intensity Forecasting: 𝐶𝐼(𝑡)
• Applications: LC jobs 𝑙 ∈ 𝐿𝐶(𝑡), BE jobs 𝑏 ∈ 𝐵𝐸(𝑡)
• Servers: 𝑠 ∈ 𝑆(𝑡)
• Binary Decision Variable for Delaying BE job: 𝑑𝑒𝑙𝑎𝑦$(𝑡)
• Binary Decision Variable for Job Placement: 𝑝𝑙𝑎𝑐𝑒$,& 𝑡 , 𝑝𝑙𝑎𝑐𝑒',& 𝑡
• Power Consumption: server 𝑃& 𝑡 , LC job 𝑃' 𝑡 , BE job 𝑃$ 𝑡

• 𝑃& 𝑡 = ∑' 𝑃' 𝑡 9 𝑝𝑙𝑎𝑐𝑒',&(𝑡) + ∑$ 𝑃$(𝑡) 9 𝑝𝑙𝑎𝑐𝑒$,&(𝑡)
• Constraints:

• ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) ≤ 1, ∀𝑏, 𝑡;    ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) + 𝑑𝑒𝑙𝑎𝑦$ 𝑡 = 1, ∀𝑏, 𝑡;    ∑& 𝑝𝑙𝑎𝑐𝑒',&(𝑡) = 1, ∀𝑙, 𝑡
• ∑(∑$,& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) > 𝐷𝑎𝑖𝑙𝑦_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Minimize Total Carbon Footprint: ∑&,( 𝑃&(𝑡) 9 𝐶𝐼(𝑡)

ML Scheduler

RL Autoscaler, e.g., FIRM (OSDI20)

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?



Fast Recovery from Systems-ML Failure Domains
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Multi-tier ML-driven Framework
Cloud DC 1

Cluster Manager (CM)

Cloud DC 2

CM

Power Grid

Energy Sources

Multi-Cloud 
Computer

Cost Model

Cloud DC 3

CM

SCADA

…

DC Power Sys (PS)

PS PS

End Users
SLAs

Jobs

Job Submission: Power Delivery:

ML-based Decision-Making Framework

Power Supply 
Forecasting
Workload 

Forecasting

Optimizer

Power 
Delivery

Job 
Delivery

Meta-RLW
or

kl
oa

d
Po

w
er

Time

• Power distribution
• Workload & power supply 

forecasting
• Job characteristics
• Load prediction
• Power generation condition 

(e.g., weather) prediction



Power/SLA
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II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

III. Resilience Management
(Failure Detection, Diagnosis, and Recovery)

ML/RL-driven 
Management PoliciesReward Models

Split Reward Recovery Acceleration
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On-node Power Control

Resource Config & Scaling
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