
Unique Cybertwin to Model and Design
Sustainable Robust Clouds

0

Ravishankar (Ravi) K. Iyer
Electrical and Computer Engineering, Computer Science and

The Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

1

Haoran Qiu1, Weichao Mao1, Archit Patke1, Shengkun Cui1, Saurabh Jha2

Chen Wang2, Hubertus Franke2, Chandra Narayanaswami2, Zbigniew T. Kalbarczyk1, Tamer Basar1

Ravishankar K. Iyer1

Our Team

Clouds Increasingly the Backbone for Energy Hungry
ML-driven Applications

2

Self-driving

AR/VR

Generative AI

Health Analytics

AI for Science

3

Cloud datacenters’ carbon emissions: Today: 2-4% (> Aviation industry)
Tomorrow: 8% (2030) [1]

[1] Towards a Systematic Survey for Carbon Neutral Data Centers. Zhiwei Cao, et al. https://arxiv.org/abs/2110.09284

“Net Zero by 2050: the world's most urgent mission” – United Nations

Embodied Emissions (35%) Operational Emissions (65%) ML (15%) [3]

[3] Energy and Emissions of Machine Learning on Smartphones vs. the Cloud. David Patterson, et al. CACM 2024

[2] Chasing Carbon: The Elusive Environmental Footprint of Computing. Udit Gupta, et al. HPCA 2021.

A datacenter at Meta [2]

The Sustainability Challenge

Deep Learning / LLM Model Lifecycle

5

Model Serving

Fine-tuning
Domain-specific
Dataset

…
Fine-tuned LLMs

Chatbots,
Coding assistants,
Recommenders,
Marketing,
Search, …

Google estimate that [1], in 2021, 40% of carbon footprint
goes to model training while 60% goes to model serving.

[1] Carbon Footprint of Machine Learning Training. Google. https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html

Training of GPT-4:
• 25k Nvidia A100s
• ~90-100 days
• $100 million
• 50-60k MWh
Inference: 10x more [2]

[2] AI's Staggering Energy Cost. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/

https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/

ML in Systems and Cloud

6

Datacenter management and cluster orchestration

• Container placement
• Capacity scaling

• Resource config
• Autoscaling

How to optimize the use of green energy while meeting cloud SLOs
and ensuring resilience against both classic system failures and

potential new vulnerabilities introduced by ML?

ML has been increasingly used in systems for optimizing efficiency / energy while
adapting to dynamic cloud environments… assessment plus action

• Power management
• Job scheduling Use of green energy?

Greener
Energy

!
𝒊
𝑷𝒐𝒘𝒆𝒓	 ∗ 	𝜟𝑻𝒊 ∗ 𝑪𝒂𝒓𝒃𝒐𝒏𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚

Less
Energy

Why Worry about SLOs and System Failures?
(Impact on Carbon Footprint Optimization)

7

• Carbon footprint optimization can lead to SLA/SLO violations due to:
• Processor throttling, load shaping, power capping, etc.
• SLO violations lead to large financial losses in mission-critical systems

• Continuous fault management is needed to meet SLOs (e.g., in availability and
performance) and deliver quality of service
• By data redundancy (e.g., replication), compute redundancy, coding, storage
• ML introduces different redundancy requirements and uncertainties especially in critical

societal applications

• Fault management adds substantially to the energy consumption
• 40-60% of the total performance cost is due to fault management overhead

• Not enough done to manage Out of Distribution (OOD) situations

Can We Rely on Batteries? No Free Lunch for Pure Green Energy
• Today, all green energy (e.g., solar, wind) has fossil fuel component!!

• Cost of resilience; Requires substantial cloud management efforts
• Any instability can affect the resilience lead to high compute costs

• Power storage cost can be very high, estimated to be trillions of dollars
• Storage (batteries, other?), unreliable and polluting
• Currently only used in mission-critical situations

• Requires significant new research including in SysML & resilience
communities

8
https://www.technologyreview.com/2018/07/27/141282/the-25-trillion-reason-we-cant-rely-on-batteries-to-clean-up-the-grid/

https://www.technologyreview.com/2018/07/27/141282/the-25-trillion-reason-we-cant-rely-on-batteries-to-clean-up-the-grid/

9

Two-fold meaning of “sustainability”:
• Sustainable Energy/Carbon Cost: Minimize

carbon footprint
• Sustainable Performance: Multi-tenant clouds

need to deliver consistent SLA/SLOs

Managing future large-scale systems:

• How to achieve resilient, SLO-driven dynamic
optimization towards green energy

• How to address system + ML resilience
management?

Transition to Green Computing: A Game-theoretic Perspective

When Green Computing Meets Performance and Resilience SLOs. Haoran Qiu, Weichao Mao, Chen Wang, Saurabh Jha, Hubertus
Franke, Chandra Narayanaswami, Zbigniew T. Kalbarczyk, Tamer Başar, Ravishankar K. Iyer. DSN 2024 Distrupt Track.

Joint Model Overview: Carbon Footprint-SLO-Resilience
Cross-stack Optimization

Data

D
ata

Top-down vs. Bottom-up

11

• Top-down approach (MLSys Workshop @NeurIPS23)
• Get the power cap based on carbon footprint optimization or power limits/budget
• Resource manager adjust resource allocation accordingly to compensate reduced core

frequency
• Extra buffer added by bringing green energy; relaxing power cap

• Bottom-up approach
• Get the power demand based on the resource + frequency required to meet SLOs
• Aggregate to get the power demand distribution across servers/racks
• Minimize carbon footprint while meeting daily BE job throughput

II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

Intelligent InterfaceTop-down Bottom-up

Datacenter
State

Power
Emergency

Normal
Operation

Top-down
Bottom-up

Beyond Power
Budget

More Green Energy
More uncertainty

SLO violations
Resilience issues

Lower carbon intensity

Less Green Energy
Less uncertainty
Meeting SLOs
Less resilience issues
Higher carbon intensity

Game-theoretic formulation of green
energy supply vs. cloud SLOs

Bottom-up Approach with ML for Carbon Footprint Optimization
A Cyber-Twin for Continuous Green Transition

12

• Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say
[𝑡! , 𝑡!"#), which could be one hour or a half-hour, i.e., “time interval t”

• Carbon Intensity Forecasting: 𝐶𝐼(𝑡)
• Applications: Latency-critical (LC) jobs 𝑙 ∈ 𝐿𝐶(𝑡), Best-effort (BE) jobs 𝑏 ∈ 𝐵𝐸(𝑡)
• Servers: 𝑠 ∈ 𝑆(𝑡)
• Binary Decision Variable for Delaying BE job: 𝑑𝑒𝑙𝑎𝑦$(𝑡)

• Binary Decision Variable for Job Placement: 𝑝𝑙𝑎𝑐𝑒$,& 𝑡 , 𝑝𝑙𝑎𝑐𝑒',& 𝑡
• Power Consumption: server 𝑃& 𝑡 , LC job 𝑃' 𝑡 , BE job 𝑃$ 𝑡

• 𝑃& 𝑡 = ∑' 𝑃' 𝑡 9 𝑝𝑙𝑎𝑐𝑒',&(𝑡) + ∑$ 𝑃$(𝑡) 9 𝑝𝑙𝑎𝑐𝑒$,&(𝑡)
• Constraints:

• ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) ≤ 1, ∀𝑏, 𝑡; ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) + 𝑑𝑒𝑙𝑎𝑦$ 𝑡 = 1, ∀𝑏, 𝑡; ∑& 𝑝𝑙𝑎𝑐𝑒',&(𝑡) = 1, ∀𝑙, 𝑡
• ∑(∑$,& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) > 𝐷𝑎𝑖𝑙𝑦_𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Penalties: e.g., carbon intensity, SLO violations, resilience breakdowns

• Minimize Total Carbon Footprint: ∑&,(𝑃&(𝑡) 9 𝐶𝐼(𝑡)

ML Scheduler

ML Autoscaler, e.g., FIRM (OSDI20)

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?

ML-driven time series

Model Serving Systems

Model Multiplexing

Request Scheduling

Model Serving System

M1 M3
M4

M1 M3M2

M4

…

M1 M3 …

UsersApplications

Requests

M2
M5

Model Registry
(ready-to-serve models)

Deploy

Worker 1

Exec Runtime

Worker 2

GPU Cluster
…

Worker N
…

14

Model Replication
Scaler (Autoscale)

𝝁-Serve Model Serving Example: for Power-aware DL/LLM

Monitoring
Datastore

Dynamic GPU
Frequency Scaler

[Online Phase]

Model
Specifications

GPU Cluster
Specifications

[Offline Phase]

Power-aware
Model Partitioning

with Parallelism
Extending AlpaServe

(OSDI 2023)

Power-aware
Model Placement

Model Partition
Placement Plan

Primitive
Operators [1]

Sensitivity
Score Database

Profiling

Runtime Request
SchedulerProxy Model

Exec time
prediction

[1] XLA’s HLO Representation, https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ops

Proxy Model Runtime Request
Scheduler

15

(Clustering based on
similarity of performance

sensitivities)

Power-aware Deep Learning Model Serving with µ-Serve. Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang,
Hubertus Franke, Zbigniew T. Kalbarczyk, Tamer Başar, Ravishankar K. Iyer. USENIX ATC 2024

Based on BERT trained on
history input-output datasets

https://github.com/openxla/stablehlo/blob/main/docs/spec.md

System and Models Setup

• Platform: AlpaServe and Ray
• VM on IBM Cloud: 16 vCPU 128 GiB RAM

with 2x NVIDIA Tesla V100 16 GB
• Open-source LLMs and non-autoregressive

models

• Model input from LMSYS-Chat-1M (largest
open-source dataset available) and workload
patterns from Azure Function Traces

17

Results: Power Saving

Compared to AlpaServe, 𝝁-Serve achieves 1.2–2.6x higher power saving by
dynamic frequency scaling without SLO attainment violations.

18

Arrival Rate Scale

Arrival Rate Scale

A Disruptive Systems Approach to Sustainable Computing with Efficient and Robust ML

CPU Cloud Efficiency with ML

GPU Cloud Efficiency with ML

SIMPPO
• SoCC 2022, NeurIPS 2022
• MLSys @NeurIPS 2023

Serverless Computing

𝝁-Serve
• ATC 2024a
• NSDI 2025*

DL Model Serving

INDIGO
• ASPLOS*, COMPSYS 2022

Disaggregated Memory

Robust ML for Systems

FLASH
• MLSys 2024

Cloud Heterogeneity

AWARE
• ATC 2023, NeurIPS 2023

Reliable RL Exploration

MAPPO
• EuroMLSys 2022, WoSC 2021

Cloud Multi-tenancy

FIRM
• OSDI 2020

Microservices

Holistic (Green) Energy Optimization Jointly with Cloud Systems-ML Resilience
• NSF WSCS 2024, DSN 2024

19

DEPEND Group Contributions: A Disruptive Approach to
Sustainable Computing with Efficient and Robust ML

CPU Cloud Efficiency with ML

GPU Cloud Efficiency with ML

SIMPPO
• SoCC 2022, NeurIPS 2022
• MLSys @NeurIPS 2023

Serverless Computing

𝝁-Serve
• ATC 2024a
• NSDI 2025*

DL Model Serving

INDIGO
• ASPLOS*, COMPSYS 2022

Disaggregated Memory

Robust ML for Systems

FLASH
• MLSys 2024

Cloud Heterogeneity

AWARE
• ATC 2023, NeurIPS 2023

Reliable RL Exploration

MAPPO
• EuroMLSys 2022, WoSC 2021

Cloud Multi-tenancy

FIRM
• OSDI 2020

Microservices

Holistic (Green) Energy Optimization Jointly with Cloud Systems-ML Resilience
• NSF WSCS 2024, DSN 2024

• Continuously manage resources and scheduling optimally
• Optimally manage robustness including system and ML reliability

20

Are batteries the future to sustainable computing?
AI/ML Cloud for Power Storage Serving

An intelligent, resilience-aware cloud is needed for power storage serving

21

Cloud for Serving Power Systems

Robustness?

Cost of Resilience?

Power systems
management

Instability?

Good estimate of
the battery storage
costs essential

Heterogeneity?

Back up slides

22

Deep Learning and Foundation Model Era

[1] Compute Trends across Three Eras of Machine Learning. J. Sevilla, L. Heim, et al. https://arxiv.org/abs/2202.05924

Moore’s Law (2x every 18 months)

CPU

GPUDL Demand (10x every 18 months)

TPU

Efficiency is the key to further unlock scaling!

Performance efficiency

Utilization efficiency

Power efficiency?

23

https://arxiv.org/abs/2202.05924

Deep Learning / LLM Model Lifecycle

24

Model Serving

Fine-tuning
Domain-specific
Dataset

…
Fine-tuned LLMs

Chatbots,
Coding assistants,
Recommenders,
Marketing,
Search, …

Google estimate that, in 2021, 40% of carbon footprint
goes to model training while 60% goes to model serving.

[1] Carbon Footprint of Machine Learning Training. Google. https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html

Training of GPT-4:
• 25k Nvidia A100s
• ~90-100 days
• $100 million
• 50-60k MWh
Inference: 10x more [2]

[2] AI's Staggering Energy Cost. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/

https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/

Power Saving Opportunities
214w -> 120w: 44% reduction

SLO

800 MHz
1.3 GHz

POLCA (Microsoft, ASPLOS24)

25

Challenge #1: Coarse-grained GPU Frequency Tuning

What frequency to run?

M1 M3M2

M4

…

M1 M3 …

Worker 1

Exec Runtime

Worker 2

GPU Cluster

…

Worker N
…

GPU1 Model A B C …

GPU2 Model B D E …

GPUN Model C A D …

…
Hard to figure out the optimal frequency

A model or a
model partition

Power saving opportunity limited by the
most sensitive partition since each device

only supports coarse-grained tuning.

26

Challenge #2: Non-deterministic LLM Executions

• Autoregressive nature of LLMs
• Can lead to head-of-line (HoL)

blocking in FCFS
• Likely SLO violations on job

completion times (JCT)

2 2 8

8 2 2

Queue

(8+(8+2)+(8+2+2)) / 3 = 10

(2+(2+2)+(2+2+8)) / 3 = 6

Head-of-line blocking

Avg JCT:

Dataset: LMSYS-Chat-1M
A Large-Scale Real-World LLM Conversation Dataset

Power saving opportunity limited by
nondeterminism and HoL problems

40% saving in JCT
27

Observation #1: Model Partitions Have Diverse Sensitivities

GPU1 A B C

GPU2 D

D

A B E

GPU1 A B C

GPU2 D

D

A B E

A B C D Less sensitive to
frequency reduction

DA B E More sensitive to
frequency reduction

😃

🙁

🙁

🙁 A model or a
model partitionA

Power-aware partitioning and
placement based on sensitivities
can potentially increase power-

saving “opportunities”

𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝑲𝑻

𝒅
𝑽

Sensitivity to Frequency Reduction
28

Observation #2: A Small Proxy Model Knows LLMs’ Verbosity

• A small proxy model (e.g., BERT-base/tiny) can predict well

• Intuition: Hints on the output length (number of tokens) of LLM responses
• “Translate…” -> Response length approximate to the prompt length
• “Write an article about…” -> Long response
• “Summarize…” -> Shorter response than the input query

How can identity
protection services help

protect me against
identity theft?

LLM
(Model to Serve)

Output Length
Predictor

Many identity protection
services monitor your credit
reports , public records, and

other sources for…

~200 tokens

Input Query

Output

Proxy models can indicate LLM
verbosity to avoid HoL and potentially
increase power-saving “opportunities”

29

How to design and train a lightweight predictor that can
understand the behavior of an LLM and estimate the output token
length before serving the request on the LLM?

30

Workflow

GPU Cluster

Gateway Model Library
Requests

Virtualization

LLM Instance

End User

2 28

How can identity
protection services

help protect me
against identity theft?

Oracle

Output Token Length

Many identity
protection services
monitor your credit

reports…

Model Outputs

Input

Input Input

Output

Request Scheduler2 8
🤯😀

31

SSJF: Prediction-based Shortest Job First Scheduling

Job
Pool

J1

J2

J3

…

Speculative
Shortest-Job-First
(SSJF) Scheduler

…

M
odels Output Token

Length PredictorPredicted
Length

<Model,
Input> Check if

Prediction
Cached

GPU
Cluster

• SSJF: Using output token length prediction as the exec time estimation
• Exec time = Const + K * Output token length

Model query overhead:
• E.g., input token processing

Prediction overhead:
• Deterministic inference time

Output

Update
Cache

Semantic
Cache

<input, length>

K: Per-token generation latency (constant for same instance)
• GPT-3.5: 35ms
• GPT-4: 94ms
• Llama-2-7B: 19ms
• Llama-2-70B: 46ms

Requests
(Input Query)

32

Users

Applications

Proxy-model-based Predictor

[CLS]

Tok 1

Tok 2
…

Tok N

… …

CLS

T1

T2

TN

BERTInput

…

[0, p25)

[p25, p50)

[p50, p75)

[p75, p99)

[p99, +)

Output Token
Length %ile

So
ft

m
ax

Pr
ed

ic
tio

n
Cl

as
se

s

Multi-class Classifier

… …
More number of classes leads to low
accuracy (regression is the hardest)

Less number of classes leads to worse
scheduling (too coarse-grained)

How to decide X-class classification? Dependent on proxy model and LLM to serve

33

Offline Dataset on
Model History Output

Evaluation:
Are the predictors lightweight?
Are the predictors useful in scheduling?

34

System and Models Setup

• Platform: AlpaServe and Ray
• VM on IBM Cloud: 16 vCPU 128 GiB RAM

with 2x NVIDIA Tesla V100 16 GB
• Open-source LLMs and non-autoregressive

models

• Model input from LMSYS-Chat-1M and
workload patterns from Azure Function Traces

35

Results (1): Scheduling Performance - JCT

At varying rates

At varying variations

Reduce JCT by 34.5% / 39.6% / 33.2%
 Oracle by 43.7% / 58.2% / 43.0%

Reduce JCT by 30.5% / 39.0% / 35.0%
 Oracle by 37.6% / 52.9% / 41.5%

36

Results (2): Scheduling Performance - Throughput

At varying rates

At varying variations

↑ Throughput by 3.6x / 3.0x / 2.8x
 Oracle by 4.7x / 4.1x / 3.2x

↑ Throughput by 2.6x / 2.6x / 2.2x
 Oracle by 3.4x / 3.8x / 2.7x

37

Results (3): Scheduling Performance – Proxy Model Overhead

BERT-base Prediction Overhead
Avg Inference Latency = 7.6ms
• Median = 7.6ms
• P99 = 8.0ms
• Max = 20.2ms

Model-serving Duration
• P5 = 360ms
• P1 = 140ms
• P0.1 = 140ms
• Min = 120ms

𝝁-Serve improves JCT by 30-40%
and throughput by 2.2-3.6x with

negligible runtime overhead.

38

Results (4): At Varying Batch Sizes

𝝁-Serve continues to provide improvement in JCT and throughput
under various batch sizes with a diminishing return.

Continuous (iterative) batching > dynamic batching
(same observation as in Orca, OSDI 22)

39

Results (5): Integration with vLLM
• Model: facebook/opt-350m, max memory usage: 23.6 GB, 75-85% SM utilization

SJF (oracle) achieves 43% and 6.3x improvement in JCT and throughput than FCFS.

𝝁-Serve (SSJF) achieves 33% and 4.9x improvement in JCT and throughput than FCFS.

40

Results (6): Power Saving

Compared to AlpaServe, 𝝁-Serve achieves 1.2–2.6x higher power saving by
dynamic frequency scaling without SLO attainment violations.

41

Cloud DC #1 Cloud DC #2

CM

Power Grid

Energy Sources

Multi-Cloud
Computer

Cost Model

Cloud DC #3

CM

SCADA

…
DC Power Sys (PS)

PS PS

End Users
SLAs

Jobs

Job Submission:
Best-effort Jobs:

Server #1 Server #2

BE
 V

M
BE

 V
M

LC
 V

M
LC

 V
M

…

High-bandwidth Network Fabric
Rack #1

Resource Scaler Resource Scaler
Power Capper Power Capper

Top-of-Rack Switch

Rack-level Power Management

…

BE
 V

M
BE

 V
M

BE
 V

M
LC

 V
M …

Sys-operator Sys-operator

BE
Power Delivery:
Latency-critical Jobs: LC

ML-based Decision-Making Framework

Power Supply
Forecasting
Workload

Forecasting

Optimizer

Power
Delivery

Job
Delivery

Meta-RL

Cluster Manager
(e.g., BorgMaster,

KubeMaster)

…

Rack #2

Rack #3

Phase I: Intra-Cluster Resource & Job
Management for Local Carbon Optimization

Phase II: Inter-Cluster Power & Job Management

Cluster Manager (CM)

Rack #4

Rack #5

43

Two-fold meaning of sustainability:
• Sustainable Energy/Carbon Cost: Minimize

carbon footprint
• Sustainable Performance: Multi-tenant clouds

need to deliver consistent SLA/SLOs

Key Research Questions:

• How to achieve resilient, SLO-driven
dynamic optimization of green energy usage

• How to address System + ML resilience
management?

Dependable Transition to Green Computing

Overview of Proposal

Top-down vs. Bottom-up
• Top-down approach (MLSys Workshop @NeurIPS23)

• Get the power cap based on carbon footprint optimization or power limits/budget
• Resource manager adjust resource allocation accordingly to compensate reduced core

frequency

• Bottom-up approach
• Get the power demand based on the resource + frequency required to meet SLOs
• Aggregate to get the power demand distribution across servers/racks
• Minimize carbon footprint while meeting daily BE job throughput

II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

Intelligent InterfaceTop-down Bottom-up

Datacenter
State

Power
Emergency

Normal
Operation

Top-down
Bottom-up

Beyond Power
Budget

Bottom-up Approach with ML for Carbon Footprint Optimization
• Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say
[𝑡! , 𝑡!"#), which could be one hour or a half-hour, i.e., “time interval t”

• Carbon Intensity Forecasting: 𝐶𝐼(𝑡)
• Applications: LC jobs 𝑙 ∈ 𝐿𝐶(𝑡), BE jobs 𝑏 ∈ 𝐵𝐸(𝑡)
• Servers: 𝑠 ∈ 𝑆(𝑡)
• Binary Decision Variable for Delaying BE job: 𝑑𝑒𝑙𝑎𝑦$(𝑡)
• Binary Decision Variable for Job Placement: 𝑝𝑙𝑎𝑐𝑒$,& 𝑡 , 𝑝𝑙𝑎𝑐𝑒',& 𝑡
• Power Consumption: server 𝑃& 𝑡 , LC job 𝑃' 𝑡 , BE job 𝑃$ 𝑡

• 𝑃& 𝑡 = ∑' 𝑃' 𝑡 9 𝑝𝑙𝑎𝑐𝑒',&(𝑡) + ∑$ 𝑃$(𝑡) 9 𝑝𝑙𝑎𝑐𝑒$,&(𝑡)
• Constraints:

• ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) ≤ 1, ∀𝑏, 𝑡; ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) + 𝑑𝑒𝑙𝑎𝑦$ 𝑡 = 1, ∀𝑏, 𝑡; ∑& 𝑝𝑙𝑎𝑐𝑒',&(𝑡) = 1, ∀𝑙, 𝑡
• ∑(∑$,& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) > 𝐷𝑎𝑖𝑙𝑦_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Minimize Total Carbon Footprint: ∑&,(𝑃&(𝑡) 9 𝐶𝐼(𝑡)

ML Scheduler

RL Autoscaler, e.g., FIRM (OSDI20)

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?

Fast Recovery from Systems-ML Failure Domains

In
pu

t

O
ut

pu
t

Model Training
Model Inference Classic Systems Resilience

Critical
Services

Non-Critical
Services

Split Reward Model

ML Agent Resilience

Model with
attention to

the “tail”

Model
retrained with
redistribution

More
Samples

OOD

Recovery

Fast detection of OOD and differential service recovery are critical

Robust and Reliable ML for Sustainable Computing –
Autoscaling as an Example

Managing autoscaling under
failures

Managing autoscaling
assuming no failures

(e.g., FIRM)

Modify the autoscaler to
support RL-driven recovery

FIRM
(OSDI 2020)

Major Components of the
recovery architecture

Incorporating recovery into
FIRM

Take advantage of FIRM’s key architecture
as well as training/inference process (RL)
to inform the recovery

FIRM: An Intelligent Fine-Grained Resource
Management Framework for SLO-Oriented
Cloud Microservices
OSDI 2020

48

What FIRM Does in SLO Mitigation
A Two-tier ML+RL Framework
• Integrating ML/RL in SLO-oriented resource management

• Reduces SLO violation mitigation time by up to 9×
• Reduces the average tail latencies by up to 11×
• Reduces the overall average requested CPU limit by up to 62%

• Decoupling with SVM-based root cause analysis to reduce RL state-action-space
• Interpretability & Less training

• RL to generate workload-specific SLO violation mitigation policies
• Operationalized on IBM Cloud

SVM
Model

Critical Path
Analysis

RL
Model

CP Root
Cause Mitigation

Reprovision

K8S Cluster
Tracing Data

(App + Systems)
Resource
Reprovisioning
Actions

Data for State Inference

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx
PHP-FPM

Load
Balancer

Tracing Module

Microservice
Instance

Replica Set

Tracing
Coordinator

• Real-time observability on request execution
provided by end-to-end distributed tracing

• Recreate the anomaly and auto-label training
data driven with performance anomaly
injection

• States (assume that such info is available):
• Application-level: latency, request rates, payload
• OS-level: CPU/memory utilization, network

bandwidth, I/O usage, cache hit/misses

Step #1: Identifying Critical Components with SVM-based
Root Cause Analysis

• SVM-based critical component localization
• Given individual latency vector Ti, and

end-to-end latency vector TCP

• Relative importance (RI): Pearson
correlation coefficient between Ti and
TCP -> Variance explained

• Congestion intensity (CI): 99-th
percentile value divided by various
percentiles (e.g., median) of Ti ->
Chance of improvement

• SVM(RI, CI) -> binary output: Y or N
microservice candidate for SLO
violations

Ex
tra

ct
or

Critical Path Extraction

Critical Instance Extraction

Execution
History Graph

Telemetry
Data

Candidates
cr i t i cal Component ()

l ongest Pat h()Critical
Paths

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx
PHP-FPM

Load
Balancer

Tracing Module

Microservice
Instance

Replica Set

Tracing
Coordinator

SVM-based
root cause analysis

Which microservice instance
should we focus on?

Step #2: SLO Violation Mitigation with RL
• SLO violation mitigation action generation based on RL

• Identifies low-level resource in contention (state approximation)
• Estimates reprovisioning resources to mitigate the SLO violation (action

inference)
• Action model:

• CPU: CPU limits
• Memory: capacity + bandwidth
• LLC: capacity (intel-cat)
• I/O: bandwidth (blkio)
• Network: bandwidth (qdisc)

R
L-based R

esource
Estim

ator R
e-allocation

Actions

Performance
Counters

D
eploym

ent M
odule

CPU LLC Memory

I/O Network Replicas

Controlled Resources

Ex
tra

ct
or

Critical Path Extraction

Critical Instance Extraction

Execution
History Graph

Telemetry
Data

Candidates
cr i t i cal Component ()

l ongest Pat h()Critical
Paths

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx
PHP-FPM

Load
Balancer

Tracing Module

Microservice
Instance

Replica Set

Tracing
Coordinator

RL Agent K8s Environment

SLO

Utilization

States

Actions

Takes as input the
current states

Continuously
tune the policy

RL provides a feedback control-
based dynamic environment

Managing the tradeoff
between meeting the SLOs
and the utils levels

Policy

Decides the scaling
of resources

RL Agent

CPU

Utilization

Memory

Bandwidth

LLC

Bandwidth

LLC

Capacity

Disk I/O

Bandwidth

Network

Bandwidth

Microservices
Managed by FIRM

Actions (at)

Performance & Resource Measurements

States (st)

Rewards (rt)
SLO

Utilization

Actor

Critic
Vt

SLO

Violation

Arrival

Rate

RL Formulation and Reward Function
• Optimizes end-to-end objectives:

• Maximize resource utilization
efficiency

• Minimize SLO violation
• (assuming no failures in the systems)

𝑆𝑀! = min(
𝐿𝑎𝑡𝑒𝑛𝑐𝑦"#$
𝐿𝑎𝑡𝑒𝑛𝑐𝑦!

, 1)

(SLO	maintenance)

Resource	Usage
of	𝑖	at	time	𝑡

Resource	limit
of	𝑖	at	time	𝑡

Mitigate SLO
Violation Fast

Avoid Over-
provisioning

𝑟 𝑡 = 	𝛼 F 𝑆𝑀! F ℛ + (1 − 𝛼) FJ
%

|ℛ|
𝑅𝑈!%/𝑅𝐿!%

Reward Penalty

Yes?
Yes No

FIRM in the Process of Handling Cloud
Failures and Recovery

54

Case Study: Handling Failures in Cloud Systems
• FIRM represents a category of learning-based systems management solutions

• Application-centric for sustainable computing
• Learned model is from the traces/dataset generated from the application running on the

cloud environment

• However, when deploying such ML/RL agents in production cloud systems, it
is critical to ensure the robustness and reliability of the learned models in:
• Handling failures in the systems (maintain some of the critical services as the bottom

line) without violating any SLAs/SLOs, especially for those mission-critical applications.

K8S ClusterTracing Data
(App + Systems)

Resource
Reprovisioning
Actions

Problem Statement
• Take FIRM as the basis, which will function well if there’s NO failure

• Now, your cloud is hit by a series of failures that significantly impact the
normal operations (latency/availability SLOs) of your managed services

• Your goal is to design a mitigation strategy by re-engineering the RL solution to
maintain the SLOs for critical applications (hospitals, financial sectors) while
tolerating a lower SLOs for non-critical applications

• In doing so, you need to re-engineer the RL solution (e.g., the reward function)
to bring back the system to its normal functionality

Failure Example #1

In the early training stages, RL agents tend to generate
poor autoscaling decisions (due to RL exploration)

• Lower than baseline rewards (i.e., worse agent
performance) and more SLO violations

RL Episodes EP #1-100 EP #101-200 EP #201-300 EP #301-400

CPU Util -32.3% ± 14% -42.9% ± 15% -22.1% ± 12% -10.0% ± 6%

Memory Util -28.8% ± 11% -30.5% ± 10% -26.5% ± 8% -7.8 % ± 2%

SLO Violations 56.1 ± 14x 22.2 ± 7x 12.7 ± 5x 10.1 ± 3x

Overprovisioning -> CPU & memory
utils deficit compared w/ baseline

Unable to re-scale properly for
workloads changes -> SLO violations

FIRM (OSDI 2020)

Failure Example #2

During policy-serving stage, RL agent performance
degrades when workloads are updated

Trained policies are application-specific, costly to
adapt to new applications

• 45.6% reward degradation (~230 eps retraining)

Workload changes leads to 21.8% reward drops

Enabling built-in intelligence in cloud systems with less manual intervention
while achieving high robustness and self-adaptation (in both training/inference)

Failure Example #3
• Challenges due to Scalability and Multi-tenancy

• RL-based solutions for resource management / autoscaling: e.g., FIRM
• A single RL agent in an isolated environment – which we call “single-agent RL”

• RL assumes that the underlying environment is stationary (state transitions)

• Not true anymore! from each agent’s perspective when multiple self-interested RL agents
are added to manage diverse function workloads (single-agent RL not aware of the others)

RL Environment
(FaaS Platform)

Policy 𝜋! Action 𝐴"
Function

ManagesVertical Scaling

Horizontal Scaling

State 𝑆" , Rewards 𝑅"

On receiving 𝑆!(), was it
caused by my action 𝐴!?

Policy 𝜋!!

Policy 𝜋!"

Policy 𝜋!#

…

Shared RL
Environment

An Example Solution

60

Managing a system
management task

Systems Failure Diagnosis
& Mitigation / Recovery

Cloud Systems
Management

Resource
Allocation

Autoscalin
g

Load
Balancing

Power
Capping

Congestio
n Control

Job
Scheduling

…
ML/RL
AgentsDifferential control to

various service tiers

No failure in the

cloud systems

Under failures

Normal Mode
Reward Function

Recovery Mode
Reward Function

Detection Diagnosis

Prediction Optimization

Gap to full
recovery

RL
Agent

APIs

Code

Config

Actions

FMs

Knowledge
Base

LearnRetrieve
Describe

Instructions

Results

Human Expert
Fast Recovery

Reward Function
…

States

Perception

Discussion
• Systems + ML Resilience

• New fault model that combines the intricate relation between system and ML
failures is needed

• Fast recovery under the new fault model
• Scalability: How to make the optimization framework scalable to the large number of

applications and servers in a datacenter cluster
• Introducing hierarchy -> How to deal with out of capacity and job migration

• Feasibility of optimization solution: How to assess the feasibility?
• E.g., cluster capacity is enough for all LC job to meet SLOs
• Especially when there are failures or capacity loss in the cluster, feasibility is

affected

• Time granularity
• Energy optimization and power management in the level of minutes or hours
• Resource management and ML/RL agents are in the level of seconds
• When to trigger the optimizer to run (i.e., frequency)

CPU Cloud Efficiency with ML

GPU Cloud Efficiency with ML

SIMPPO
• SoCC 2022, NeurIPS 2022
• MLSys @NeurIPS 2023

Serverless Computing

𝝁-Serve
• ATC 2024a
• AIOps 2024

DL Model Serving

INDIGO
• ASPLOS*, COMPSYS 2022
• NSDI 2025*

Disaggregated Memory

Robust ML for Systems

FLASH
• MLSys 2024

Cloud Heterogeneity

AWARE
• ATC 2023, NeurIPS 2023

Reliable RL Exploration

MAPPO
• EuroMLSys 2022
• WoSC 2021

Cloud Multi-tenancy

FIRM
• OSDI 2020

Microservices

Holistic Optimization with Renewable Energy & Embodied Carbon Emission

• NSF WSCS 2024, DSN 2024
63

Back up slides

64

65

Two-fold meaning of sustainability:
• Sustainable Energy/Carbon Cost: Minimize

carbon footprint
• Sustainable Performance: Multi-tenant clouds

need to deliver consistent SLA/SLOs

Key Research Questions:

• How to achieve resilient, SLO-driven
dynamic optimization of green energy usage

• How to address System + ML resilience
management?

Dependable Transition to Green Computing

Overview of Proposal

Top-down vs. Bottom-up

66

• Top-down approach (MLSys Workshop @NeurIPS23)
• Get the power cap based on carbon footprint optimization or power limits/budget
• Resource manager adjust resource allocation accordingly to compensate reduced core

frequency

• Bottom-up approach
• Get the power demand based on the resource + frequency required to meet SLOs
• Aggregate to get the power demand distribution across servers/racks
• Minimize carbon footprint while meeting daily BE job throughput

II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

Intelligent InterfaceTop-down Bottom-up

Datacenter
State

Power
Emergency

Normal
Operation

Top-down
Bottom-up

Beyond Power
Budget

Bottom-up Approach with ML for Carbon Footprint Optimization

67

• Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say
[𝑡! , 𝑡!"#), which could be one hour or a half-hour, i.e., “time interval t”

• Carbon Intensity Forecasting: 𝐶𝐼(𝑡)
• Applications: LC jobs 𝑙 ∈ 𝐿𝐶(𝑡), BE jobs 𝑏 ∈ 𝐵𝐸(𝑡)
• Servers: 𝑠 ∈ 𝑆(𝑡)
• Binary Decision Variable for Delaying BE job: 𝑑𝑒𝑙𝑎𝑦$(𝑡)
• Binary Decision Variable for Job Placement: 𝑝𝑙𝑎𝑐𝑒$,& 𝑡 , 𝑝𝑙𝑎𝑐𝑒',& 𝑡
• Power Consumption: server 𝑃& 𝑡 , LC job 𝑃' 𝑡 , BE job 𝑃$ 𝑡

• 𝑃& 𝑡 = ∑' 𝑃' 𝑡 9 𝑝𝑙𝑎𝑐𝑒',&(𝑡) + ∑$ 𝑃$(𝑡) 9 𝑝𝑙𝑎𝑐𝑒$,&(𝑡)
• Constraints:

• ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) ≤ 1, ∀𝑏, 𝑡; ∑& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) + 𝑑𝑒𝑙𝑎𝑦$ 𝑡 = 1, ∀𝑏, 𝑡; ∑& 𝑝𝑙𝑎𝑐𝑒',&(𝑡) = 1, ∀𝑙, 𝑡
• ∑(∑$,& 𝑝𝑙𝑎𝑐𝑒$,&(𝑡) > 𝐷𝑎𝑖𝑙𝑦_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Minimize Total Carbon Footprint: ∑&,(𝑃&(𝑡) 9 𝐶𝐼(𝑡)

ML Scheduler

RL Autoscaler, e.g., FIRM (OSDI20)

How to achieve continuous, fast re-optimization (recovery) under system + ML failures?

Fast Recovery from Systems-ML Failure Domains

In
pu

t

O
ut

pu
t

Model Training
Model Inference Classic Systems Resilience

Critical
Services

Non-Critical
Services

Split Reward Model

ML Agent Resilience

Model with
attention to

the “tail”

Model
retrained with
redistribution

More
Samples

OOD

Recovery

Fast detection of OOD and differential service recovery are critical

68

Multi-tier ML-driven Framework
Cloud DC 1

Cluster Manager (CM)

Cloud DC 2

CM

Power Grid

Energy Sources

Multi-Cloud
Computer

Cost Model

Cloud DC 3

CM

SCADA

…

DC Power Sys (PS)

PS PS

End Users
SLAs

Jobs

Job Submission: Power Delivery:

ML-based Decision-Making Framework

Power Supply
Forecasting
Workload

Forecasting

Optimizer

Power
Delivery

Job
Delivery

Meta-RLW
or

kl
oa

d
Po

w
er

Time

• Power distribution
• Workload & power supply

forecasting
• Job characteristics
• Load prediction
• Power generation condition

(e.g., weather) prediction

Power/SLA
Prediction

On-node Power
Mode Control

Fine-grained
Control

Load
Shifting

II. Cluster Management

Resource
Management

Energy
Prediction

Carbon
Analysis

Power Budget
Analysis

I. Power Management

III. Resilience Management

Split Differential RewardRecovery Acceleration

Monitoring
& Detection

Failure
Diagnosis

Root Cause
Analysis

Domain
Knowledge

ML/RL Fault ModelCloud Systems Fault Model

Recovery &
Mitigation

Dynamic Control

Intelligent InterfaceTop-down Bottom-up

Reward Models

ML/RL-driven
Management Policies

II. Cluster Management
(Resource Management and Scheduling)

I. Power Supply Management
Energy Sources

III. Resilience Management
(Failure Detection, Diagnosis, and Recovery)

ML/RL-driven
Management PoliciesReward Models

Split Reward Recovery Acceleration

Domain
Knowledge

ML/RL
Fault Model

Systems
Fault Model

D
ynam

ic Control

Intelligent InterfaceTop-down Bottom-up

On-node Power Control

Resource Config & Scaling

Job Scheduling & Placement

Actuation

Actuation
Management

Agent

Decisions

Training

Management
Agent

Decisions

Training

Actuation
Management

Agent

Decisions

Training

M
L-Driven Policies

Intelligent Interface

Data/State

Data/State

Data/State

