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Clouds Increasingly the Backbone for Energy Hungry
ML-driven Applications
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The Sustainability Challer_}ge'

Cloud datacenters’ carbon emissions: Today:  2-49% (> Aviation industry)
Tomorrow: 8 % (2030) 1] ¢

PR

i

ystematic Survey for Carbon Neutral Data Ce
$ 2 .., -5k Erdlirn



Deep Learnmg/ LLM Model Lifecycle Model Serving
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Chatbots,
Coding assistants,
Recommenders,
Marketing,
Search, ...
Training of GPT-4: YR b oo - /
* 25k Nvidia A100s A
+ 290-100 days Fine-tuning
* $100 million 5\ Domain-specific
* 50-60k MWh Dataset

Inference: 10x more [2]

Google estimate that [1], in 2021, 40% of carbon footprint
goes to model training while 60% goes to model serving.

——————,

[1] Carbon Footprint of Machine Learning Training. Google. https:/blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
[2] Al's Staggering Energy Cost. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/
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ML in Systems and Cloud

ML has been increasingly used in systems for optimizing efficiency / energy while
adapting to dynamic cloud environments... assessment plus action

&Job scheduling

» Capacity scaling

~

amazon
webservices
Google Cloud Platform k
A\ Azure
Datacenter management and cluster orchestration E

z Power x AT; x CarbonIntensity
i

>

+ Power management ¢ Container placement ¢ Resource config

* Autoscaling /
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Less Greener
Energy Energy

Use of green energy?

How to optimize the use of green energy while meeting cloud SLOs |
and ensuring resilience against both classic system failures and !
|

potential new vulnerabilities introduced by ML?



Why Worry about SLOs and System Failures?
(Impact on Carbon Footprint Optimization)

* Carbon footprint optimization can lead to SLA/SLO violations due to:
* Processor throttling, load shaping, power capping, etc.
* SLO violations lead to large financial losses in mission-critical systems

* Continuous fault management is needed to meet SLOs (e.g., in availability and
performance) and deliver quality of service
By data redundancy (e.g., replication), compute redundancy, coding, storage
* ML introduces different redundancy requirements and uncertainties especially in critical
societal applications
* Fault management adds substantially to the energy consumption
* 40-60% of the total performance cost is due to fault management overhead

 Not enough done to manage Out of Distribution (OOD) situations



Can We Rely on Batteries? No Free Lunch for Pure Green Energy

* Today, all green energy (e.g., solar, wind) has fossil fuel component!!

* Cost of resilience; Requires substantial cloud management efforts
* Any instability can affect the resilience lead to high compute costs

 Power storage cost can be very high, estimated to be trillions of dollars
« Storage (batteries, other?), unreliable and polluting
* Currently only used in mission-critical situations

* Requires significant new research including in SysML & resilience
communities

The $2.5 trillionreason we can’trely on
batteries to clean up the grid

Fluctuating solar and wind power require lots of energy storage, and lithium-ion
batteries seem like the obvious choice—but they are far too expensive to play a
major role.

By James Temple July 27,2018

https://www.technologyreview.com/2018/07/27/141282/the-25-trillion-reason-we-cant-rely-on-batteries-to-clean-up-the-grid/
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Transition to Green Computing: A Game-theoretic Perspective

Two-fold meaning of “sustainability”:

=

»| I.Power Supply Management [€

A
Top-down | Intelligent Interface | Bottom-up

Energy Sources %ﬁ

* Sustainable Energy/Carbon Cost: Minimize
carbon footprint

e Sustainable Performance: Multi-tenant clouds
need to deliver consistent SLA/SLOs

II. Cluster Management
(Resource Management and Scheduling)

e1eq
|[0J3U0D diweukqg

Data r
i . .OJ/ ¢ B2%  ML/RL-driven
Managing future large-scale systems: Dg#;m—)[ Reward Models (¢ 159 Management Policies
* How to achieve resilient, SLO-driven dynamic knowledg VAR

ML/RL
Fault Model

Systems
Fault Model

Joint Model Overview: Carbon Footprint-SLO-Resilience
Cross-stack Optimization

1. Resilience Management
(Failure Detection, Diagnosis, and Recovery)

* How to address system + ML resilience
management?

When Green Computing Meets Performance and Resilience SLOs. Haoran Qiu, Weichao Mao, Chen Wang, Saurabh Jha, Hubertus
Franke, Chandra Narayanaswami, Zbigniew T. Kalbarczyk, Tamer Basar, Ravishankar K. lyer. DSN 2024 Distrupt Track.



Top-down vs. Bottom-up

» Top-down approach (MLSys Workshop @NeurlPS23)
* Get the power cap based on carbon footprint optimization

or power limits/budget

» Resource manager adjust resource allocation accordingly to compensate reduced core

frequency

* Extra buffer added by bringing green energy; relaxing power cap

* Bottom-up approach
* Get the power demand based on the resource + frequency

required to meet SLOs

* Aggregate to get the power demand distribution across servers/racks

* Minimize carbon footprint while meeting daily BE job throughput

energy supply vs. cloud SLOs

Less Green Energy More Green Energy
Less uncertainty More uncertainty
Meeting SLOs SLO violations
Less resilience issues Resilience issues

[ Game-theoretic formulation of green \

Qigher carbonintensity  Lower carbon intensity




Bottom-up Approach with ML for Carbon Footprint Optimization
A Cyber-Twin for Continuous Green Transition

» Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say
[tx, tx+1), Which could be one hour or a half-hour, i.e., “time interval t”

- —

* Carbon Intensity Forecasting(’Cl(t) 5 ML-driven time series

—

« Applications: Latency-critical (LC) jobs | € LC(t), Best-effort (BE) jobs b € BE(t)

* Servers: s € S(t) ML Schedules
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« Power Consumption: server P (t)(,\LC job P,(t), BE job P, (_t)_ )\
* B(t) = %, Pi(t) - place,s(t) + T, P (8) T51aces, s Mi“Autoscaler, e.g., FIRM (OSDI20)
» Constraints:
« Ysplace, s(t) < 1,Vb,t; Ysplace,s(t) + delay,(t) = 1,Vb,t; Ygplace ;(t) = 1,VI,t
* Xt 2pspblace, ((t) > Daily_Throughput_Threshold
* Penalties: e.g., carbon intensity, SLO violations, resilience breakdowns

* Minimize Total Carbon Footprint: Xs ; P;(t) - CI(t)



Model Serving Systems

Applications & Users
Requestsi ¢ i ¢

-

Model Serving System

~

E\ j Deploy

Model Registry
(ready-to-serve models)

Model Multiplexing

Request Scheduling

GPU Cluster

Worker 1

566

Exec Runtime

Worker 2
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Worker N




p-Serve Model Serving Example: for Power-aware DL/LLM

Profiling

[ Offline Phase ] Primitive

Sensitivity
Score Database Operators [1]
- C) Model
= =t = | Specifications O Rl -

cee e Power-aware Model Partition
____________ Model Partitioning
f%56) cof ool ooy . i Model Placement Placement Plan
povansemtrssesnseseee GPU Cluster with Parallelism i
foctecf oo} oo) e . (Clustering based on
____________ . Specifications Extending AlpaServe R
| 6B KB ) 16, similarity of performance

____________ (OSDI2023) sensitivities)

[ Online Phase ] Dynamic GPU
Frequency Scaler

Monitoring Proxv Model Exec time Runtime Request
Datastore y prediction Scheduler

} Based on BERT trained on

Model Replication
Scaler (Autoscale)

history input-output datasets

[1] XLA's HLO Representation, https:/github.com/openxla/stablehlo/blob/main/docs/spec.md#ops

Power-aware Deep Learning Model Serving with p-Serve. Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang,
Hubertus Franke, Zbigniew T. Kalbarczyk, Tamer Basar, Ravishankar K. lyer. USENIX ATC 2024 15
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System and Models Setup

Platform: AlpaServe and Ray

VM on IBM Cloud: 16 vCPU 128 GiB RAM
with 2x NVIDIA TeslaV100 16 GB

Open-source LLMs and non-autoregressive
models

Model input from LMSYS-Chat-1M (largest
open-source dataset available) and workload
patterns from Azure Function Traces

Model # of Params  Size Latency AR?
ResNet-50 25M 0.2 GB 51 ms No

BERT-base 110M 0.5GB 123 ms No

BERT-large 340 M 1.4GB 365ms No

RoBERTa-base 125M 0.5GB 135ms  No

RoBERTa-large 355 M 14GB  382ms _No_
OPT-1.3b 1.3B 50GB 1243 ms | Yes |
OPT-2.7b 27B 104GB 2351 ms | Yes |
GPT2-large 774 M 33GB 832ms ! Yes |
GPT2-xl 1.5B 64GB  1602ms | Yes |
CodeGen-350m 350 M 1.3GB  357ms | Yes |
CodeGen-2b 20B 8.0GB 2507 ms | Yes :
Bloom-1b1 1.1B 40GB  523ms ! Yes
Bloom-3b 30B 11.0GB 1293 ms | Yes |
Switch-base-16 920 M 24GB  348ms | Yes |
Switch-base-32 1.8 B 48GB  402ms | Yes

\
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Results: Power Saving
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A Disruptive Systems Approach to Sustainable Computing with Efficient and Robust ML

CPU Cloud Efficiency with ML Robust ML for Systems
| Microservices | 1 Serverless Computing - | Cloud Heterogencity
FIRM SIMPPO FLASH
* OSDI 2020 * SoCC 2022, NeurlPS 2022 * MLSys 2024
* MLSys @NeurlPS 2023 = e mm oo |
' Reliable RL Exploration |
- . AWARE
GPU Cloud EfflClency with ML « ATC 2023, NeurlPS 2023

(o= o e o = e e e e o e e e o e e e e e e e e e -

p-Serve pico | B aoitolitTon
* ATC 2024a * ASPLOS*, COMPSYS 2022 MAPPO
« NSDI 2025* ¢ EuroMLSys 2022, WoSC 2021

Holistic (Green) Energy Optimization Jointly with Cloud Systems-ML Resilience
* NSF WSCS 2024, DSN 2024
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Are batteries the future to sustainable computing?
Al/ML Cloud for Power Storage Serving

Robustness? Instability?

K H . ?
Cost of Resilience? eterogeneity

Good estimate of
the battery storage
costs essential

Power systems
management




Back up slides



Deep Learning and Foundation Model Era

Training compute (FLOPs) of milestone Machine Learning systems over time
n=102

— o e o o o o e o o o e e S M R M M e e e e

(-’) Performance efficiency

e e ..
Tty Utilization efficiency
l o

Training compute (FLOPSs)

¢ Power efficiency? TPU
oL V5 GPU
rv 18 months)
Moore’s Law (2x every CPU
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

[1] Compute Trends across Three Eras of Machine Learning. ). Sevilla, L. Heim, et al. https:/arxiv.org/abs/2202.05924
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Deep Learnmg/ LLM Model Lifecycle Model Serving
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Chatbots,
Coding assistants,
Recommenders,
Marketing,
Search, ...
Training of GPT-4: )
» 25k Nvidia A100s ol Eiutee ity
« ~90-100 days Fine-tuning
* $100 million N : e
* 50-60k MWh Domain-specific
Inference: 10x more [2] Dataset

P R R e e e e e e e e ]

:l Google estimate that, in 2021, 40% of carbon footprint :
| goes to model training while 60% goes to model serving. |

[1] Carbon Footprint of Machine Learning Training. Google. https:/blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
[2] Al's Staggering Energy Cost. https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/

\———————’

24


https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
https://www.numenta.com/blog/2023/08/10/ai-is-harming-our-planet-2023/

POLCA (Microsoft, ASPLOS24)

Power Saving Opportunities

214w -> 120w: 44% reduction

12| —*= RoBERTa —e— GPT-NeoX —e— Flan-T5
5o
w10 3
E | 35
> 7 <
2 | fu
©
25 €
8 (L e —1 | | |
2 9 20 15 10 5 0
d Peak Power Reduction (%)
(a) SM fregs. 250 500 750 1000 1250
Frequency (MHz) Frequency (MHz)
—%— bert-base —¢— bloom-3b —¢— gpt2-x! —¢— opt-1.3b

e S e e
-

—— bloom—lblﬁ?x— gpt2-large switch-base-32 —<— roberta-large

-
N ———
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Challenge #1: Coarse-grained GPU Frequency Tuning

A model or a
GPU Cluster _-¥ model partition

Work ( ‘
= fok GPU1 [ ModelA|[B]| ¢ }

\< "# " Power saving opportunity limited by the ;

Exec Runtime . . . .
most sensitive partition since each device

Worker 2 only supports coarse-grained tuning.

o e e o o o o e e o e e O e e e e e e e o o e

Worker N a What frequency to run?

— o e e e e e e m— w

26



Challenge #2: Non-deterministic LLM Executions

* Autoregressive nature of LLMs Dataset: LMSYS-Chat-1M
e Can lead to head-of-line (Hol) A Large-Scale Real-World LLM Conversation Dataset

blocking in FCFS
g
=

1000 -

* Likely SLO violations on job
completion times (JCT)

800 A

600-]’
Power saving opportunity limited by g i;;‘;‘i
nondeterminism and Hol problems

Token Length

e

=

—— i —

claude-2 - |-|:D—|

llama-2-7b-chat - I—D:|—|

T B8 RRERABABIIRASIRAREYR
""""""""""""""" DO ESHEC S e G AL EET g gy S
Queue Avg JCT: Efg8ga232825%3ss3 285883 a
010 84(842)4(8 2 NS RS8S225E° Z5gifo 2
1T 9 +(8+2)+(8+2+2 =10 N YN a2 Sagf © >34 £ @ -
(8) [ (8+(8+2)+(8+2+2)) /3 1% §TeitETRE 235 &8¢ &

o]
. . o e © <r
- Head-of-line blocking 5 3 g :

— (8) D) @)| (2+(2+2)+(2+2+8)) 3= 6

40% saving in JCT




Observation #1: Model Partitions Have Diverse Sensitivities

£3 crus [a][B] ¢

(o0

.

S

S
-
-
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o
4 /

—

=

=
 —

=C

=
 —

=&
—

=X

1.0

0.8 1

w 0.6 1

(@)

© 0.4
0.2
0.0

Less sensitive to

A A model or a
model partition
AllB| I C||ID

frequency reduction

More sensitive to
frequency reduction

softmax (

QK"

/

\/C_l v ® transpose
e softmax
rsqrt

) —

dot
e conv

0

1

2

3 4

Sensitivity to Frequency Reduction
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Observation #2: A Small Proxy Model Knows LLMs’ Verbosity

Many identity protection

LLM services monitor your credit
How can identity (Model to Serve) reports, public records, and
protection services help other sources for...
protect me against
identity theft?
e Outputlength | o 55 tokens
O Predictor

o

* A small proxy model (e.g., BERT-base/tiny) can predict well

* Intuition: Hints on the output length (number of tokens) of LLM responses
* “Translate...” -> Response length approximate_to the promntlength _ _ _ ___ ___ __ _

o / : . ” { . .
Write an article about...” -> Long respo; Proxy models can indicate LLM

* “Summarize...” -> Shorter response than! verbosity to avoid Hol and potentially

. increase power-saving “opportunities”

e o e o o o e e e e e e e e e o e e e e e

- -



How to design and train a lightweight predictor that can
understand the behavior of an LLM and estimate the output token
length before serving the request on the LLM?

30



Workflow

How can identity
protection services
help protect me
against identity theft?
©)

N IAN
O Requests &?}

> Gatewa <— Model Librar -
~ y ' E

End User

%’j

4+ (@) (@) (8)|Request Scheduler
oW

Oracle -

l "I LLM Instancev

Output Token Length --~

Many identity
protection services
monitor your credit
reports...

Virtualization

Model Outputs

GPU Cluster

31



SSJF: Prediction-based Shortest Job First Scheduling

Users ® —>
dh

Applications —>

Requests
(Input Query)

Job
Pool

Speculative

<input, length>

Semantic
Cache

Check if
Prediction

Shortest-Job-First ~.| GPU
(SSJF) Scheduler Cluster Update
Cache

o [ [ [ |

<Model,
808 = Input> Output Token

_ooog| @ Predicted | Length Predictor Cached

: Length

* SSJF: Using output token length prediction as the exec time estimation
* Exec time = Const + K * Output token length

Model query overhead:
» E.g., input token processing ¢ GPT-3.5: 35ms

Prediction overhead:
« Deterministic inference time

\K

e GPT-4: 94ms

e Llama-2-7B: 19ms

e Llama-2-70B: 46ms

: Per-token generation latency (constant for same instance)
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Input
[CLS]

Proxy-model-based Predictor

Output Token

Length Z%ile

o Em o o o Em E— Em Em E = =

Tok 1

Tok 2

Tok N

Multi-class Classifier 1
| [Or PZS)
ol |
<1 1 &, | LIP25 p50)
JEEl
£ 64,9 | [P0, p75)
(@) 40-' |
w = | ~ N
o1 | [[P75P99) |
7\ g1l :
—————————— ==/ L _[P99;+) |

Offline Dataset on
Model History Output

g How to decide X-class classification? Dependent on proxy model and LLM to serve

N
1
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Evaluation:
Are the predictors lightweight?
Are the predictors useful in scheduling?

34



System and Models Setup

Platform: AlpaServe and Ray

VM on IBM Cloud: 16 vCPU 128 GiB RAM
with 2x NVIDIA TeslaV100 16 GB

Open-source LLMs and non-autoregressive
models

Model input from LMSYS-Chat-1M and
workload patterns from Azure Function Traces

Model # of Params  Size Latency AR?
ResNet-50 25M 0.2 GB 51 ms No

BERT-base 110M 0.5GB 123 ms No

BERT-large 340 M 1.4GB 365ms No

RoBERTa-base 125M 0.5GB 135ms  No

RoBERTa-large 355 M 14GB  382ms _No_
OPT-1.3b 1.3B 50GB 1243 ms | Yes |
OPT-2.7b 27B 104GB 2351 ms | Yes |
GPT2-large 774 M 33GB 832ms ! Yes |
GPT2-xl 1.5B 64GB  1602ms | Yes |
CodeGen-350m 350 M 1.3GB  357ms | Yes |
CodeGen-2b 20B 8.0GB 2507 ms | Yes :
Bloom-1b1 1.1B 40GB  523ms ! Yes
Bloom-3b 30B 11.0GB 1293 ms | Yes |
Switch-base-16 920 M 24GB  348ms | Yes |
Switch-base-32 1.8 B 48GB  402ms | Yes

\

35



Results (1): Scheduling Performance - JCT

At varying rates

80 1 A/‘——k’/_.\—‘ 60 1
601
5 e - oo | 5%
=40 o =
20 201 |
-®- SJF (Oracle) —— FCFS SSJF -@®- SJF (Oracle) —A— FCFS SSJF -®- SJF (Oracle) —— FCFS SSJF
° 3 5 7 5 ° 3 3 5 7 5 ° 3 5 7 5
Arrival Rate Arrival Rate Arrival Rate
(a) No batching. (b) Dynamic batching. (c) Continuous batching,.
At varying variations P ——
1 Reduce JCT by 30.5% / 39.0% / 35.0%
-@®- SJF (Oracle) SSJF //A 501 -@- SJF (Oracle) SSJF
601 —— FCFS 20 —A— FCFS /H Oracle by 37.6% / 52.9% / 41 50/0
§40 Q 07 T ° Q 204 T S ©
20 A o .@—m=TTI ®- //,—"
204 e - 10 -
101 e e T
ol= : : : : 0l= ; : : ; ol- . . . .
1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0
Coefficient of Variance Coefficient of Variance Coefficient of Variance
(a) No batching,. (b) Dynamic batching,. (c) Continuous batching,.
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Results (2): Scheduling Performance - Throughput

At varying rates

(1 Throughput by 3.6x / 3.0x / 2.8x |

Oracle by 4.7x / 4.1x / 3.2x

1
] 2.0 -] 2.5 m—
-@- SJF (Oracle) SSJF -7 ' -@®- SJF (Oracle) SSJF it -@- SJF (Oracle) SSJF PPt
5151 —A— FCFS - 5 | —A— FCFS - £ 201 —A— FCFS
Q o Q- > 4 Q v
= 5 5157
g10 T 5 1.0 Y o = Y o
3 - ° s 2 1.01 s
= - < Pgses = _==
0.5 = 0.5 = 0.5 o= N _ a N .
A A & —A— —A A& & A& & —A e = = = =
0.0 T T T T T 0.0 T T T T 0.0 T
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
Arrival Rate Arrival Rate Arrival Rate
(a) No batching,. (b) Dynamic batching,. { ————— LolLontinnans botehing — — — — — — N
. T Throughput by 2.6x / 2.6x / 2.2x
At varying variations I Oracle by 3.4x / 3.8x / 2.7x
N e e e e e e e e e e e, ——— —
1.25 ) __-® @
-@®- SJF (Oracle) SSIF_@--—~ -@®- SJF (Oracle) SSJF o -@®- SJF (Oracle) SSJF g---77
< 1.001 —A— FCFS 2 157 —a— FCFS - 2 151 —A— FCFS
2 i 2 . 2 =9
50.75 1 //,/ g 1.0 o g 104 ///'
£ 0.504 i = 4 < A
[ == 4 N , | FO05 S F o5 2k A A A
0.25 A ,”’,—-f—if x x A .z A iy /¢ A 2=
/- 22
0.00 +— . . . . 0.0 1 — : . . . 0.01— . - . .
1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0
Coefficient of Variance Coefficient of Variance Coefficient of Variance
(a) No batching. (b) Dynamic batching,.

(c) Continuous batching,.
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Results (3): Scheduling Performance — Proxy Model Overhead

Model-serving Duration
* P5=360ms
Ly * P1 =140ms

— 10% 4

5 / « PO.1 = 140ms

T * Min = 120ms y A

g ] | | p-Serve improves JCT by 30-40% |

4 103 - Exec Time i and throughput by 2.2-3.6x with |

£ [ Overhead 1 . o . !

z negligible runtime overhead. |
\

ﬁé SN e e e e e e e e, e, — = v

3

8 102 BERT-base Prediction Overhead

v Avg Inference Latency = 7.6ms
I% * Median = 7.6ms

1 * P99 = 8.0ms

0 0.0250.050.075 0.1 * Max =20.2ms

Density




Results (4): At Varying Batch Sizes

(4
| p-Serve continues to provide improvement in JCT and throughput |
1 under various batch sizes with a diminishing return. )

A 2.5
601 N
N, 2.0
N -~
\\ =]
\ it g15
40 - >~ £ 1.5
— Ss<
O ~Ae_ g
I O R N [e)
e L | E107
20 - - - = / P .
- el n 054 &7 - =T
U A
0 T T T T T 0.0 T T T T
2 4 6 8 10 2 4 6 8
Batch Size Batch Size
-4-- FCFS (dynamic) —— FCFS (continuous) SSJF (dynamic) SSJF (continuous)
_________________________________ N

(4
: Continuous (iterative) batching > dynamic batching |
i (same observation as in Orca, OSDI 22) |



Results (5): Integration with vLLM
* Model: facebook/opt-350m, max memory usage: 23.6 GB, 75-85% SM utilization

Job completion time (JCT) Throughput
6000.0 B FCFS B SJF SSJF 125.0 ® FCFS ¢ SJF SSJF
0 5285.42 5284.18 0
4715.00 100.0 91.66
4251.85 4220.92 0 82.02 ) §
4000.8 o %
0 N 3400.38 75.00 68i22 .................
333 e $52""
2472.55 0345.85 222741 5’ ................
2000.0 433108 50.00
0 3373.59 3472.70 2569 .
2137.55 20063 2500 &° 10,60 9.46 18:27 9.52
l +
0.00 0.00
5 10 15 20 25 5 10 15 20 25
Rate Rate
S
' SJF (oracle) achieves 43% and 6.3x improvement in JCT and throughput than FCFS.
____________________________________________________________ J
—————— e

' p-Serve (SSJF) achieves 33% and 4.9x improvement in JCT and throughput than FCFS. |

____________________________________________________________ /J

40



Results (6): Power Saving
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____________________________________________________ ~
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i Compared to AlpaServe, u-Serve achieves 1.2-2.6x higher power saving by ,
1 o o . o o o 1
| dynamic frequency scaling without SLO attainment violations. ,
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Phase I: Intra-Cluster Resource & Job

Management for Local Carbon Optimization

Rack #4

Rack #3 Cl
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I Phase II: Inter-Cluster Power & Job Management
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Dependable Transition to Green Computing

Two-fold meaning of sustainability:

. .o Energy (g&a - ).[ I Power Supply M t
* Sustainable Energy/Carbon Cost: Minimize  sources |53 LE 2] 2" —PP0Esmer
Carbon footprlnt k) ! E E [Prediction J[ Analysis ][ Analysis J E
A o
* Sustainable Performance: Multi-tenant clouds Top-down | Intelligent Interface | Bottom-up 3
need to deliver consistent SLA/SLOs ; S - N
Spower/SLA Fine-grained ower | [®Load = Resource 3
L Prediction ]? Control ]t@bMode ]TShifting]TTManagement] §
) Il. Cluster Management
Key Research Questions: 7 o e
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. . R ..'—)[ Reward Models ](—) NG o ]
« How to achieve resilient, SLO-driven  Domain e~ (£7cManagement Policies
. . . . nowjle >
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. = . Fault Model
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management? Ill. Resilience Management Fault Model

Overview of Proposal
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* Top-down approach (MLSys Workshop @NeurlPS23)

Top-down vs. Bottom-up

* Get the power cap based on carbon footprint optimization or power limits/budget

» Resource manager adjust resource allocation accordingly to compensate reduced core
frequency

* Bottom-up approach
* Get the power demand based on the resource + frequency required to meet SLOs
* Aggregate to get the power demand distribution across servers/racks

* Minimize carbon footprint while meeting daily BE job throughput

Energy Sources %

1
-1 . Power Supply Management i
T —————————————————————————————— -’

Datacenter
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/\

Power
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Normal
cy Operation

Top-downi Intelligent Interface T Bottom-up
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Il. Cluster Management
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N
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Bottom-up Approach with ML for Carbon Footprint Optimization

» Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say
[tx, tx+1), Which could be one hour or a half-hour, i.e., “time interval t”

 Carbon Intensity Forecasting: CI(t)
 Applications: LC jobs I € LC(t), BE jobs b € BE(t)
* Servers: s € S(t)

‘——_—’

e - o
- -~

* Power Consumption: server P; (t)(,J:C job Pi(t), BE job P, (t) )\

* B(6) = Ny Pi(D) - placeis(t) + X Pp(8) "Place @) R Autoscaler, e.g., FIRM (OSDI20)
» Constraints:

« Ysplace, s(t) < 1,Vb,t; Xsplace, ((t) + delay,(t) = 1,Vb,t; Ygplace ((t) = 1,VI,t

« Xt 2psblacep (t) > Daily_Threshold

* Minimize Total Carbon Footprint: };; ; Ps(t) - CI(t)



Fast Recovery from Systems-ML Failure Domains
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Robust and Reliable ML for Sustainable Computing —
Autoscaling as an Example

Managing autoscaling under
failures

Managing autoscaling

: : Modify the autoscaler to
assuming no failures

support RL-driven recovery

(e.g., FIRM)
FIRM Major Components of the
(OSDI 2020) recovery architecture

Take advantage of FIRM’s key architecture
as well as training/inference process (RL)
to inform the recovery

Incorporating recovery into

FIRM




FIRM: An Intelligent Fine-Grained Resource
Management Framework for SLO-Oriented
Cloud Microservices



What FIRM Does in SLO Mitigation

A Two-tier ML+RL Framework

* Integrating ML/RL in SLO-oriented resource management
* Reduces SLO violation mitigation time by up to 9x
» Reduces the average tail latencies by up to 11x
* Reduces the overall average requested CPU limit by up to 62%
* Decoupling with SVM-based root cause analysis to reduce RL state-action-space
* Interpretability & Less training

» RL to generate workload-specific SLO violation mitigation policies
* Operationalized on IBM Cloud

Critical Path | cp.] SVM | Root RL ReprOV
Analysis Model | Cause’| Model 5

Actions

Tracing Data Resource
(App + Systems) w Reprovisioning




Data for State Inference

* Real-time observability on request execution

provided by end-to-end distributed tracing

* Recreate the anomaly and auto-label training

data driven with performance anomaly
injection

 States (assume that such info is available):

* Application-level: latency, request rates, payload

* OS-level: CPU/memory utilization, network

————————————————————————————————

Tracing Module
C) Microservice
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Replica Set
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Container #1

Container #2 ;

bandwidth, I/O usage, cache hit/misses
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Multicore {J:{&{J
Processor ILEOEE
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[
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System [ Memo

]
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Step #1: Identifying Critical Components with SVM-based
Root Cause Analysis

# Which microservice instance
should we focus on?

Tracing Module
C) Microservice
Instance

Replica Set

(D

N

.

)

 Given individual latency vector T;, and
end-to-end latency vector T¢p

Load Nginx’’

* Relative importance (RI): Pearson I
correlation coefficient between T; and cwrdinator
Tcp -> Variance explained ——

- Congestion intensity (CI): 99-th ==
percentile value divided by various
percentiles (e.g., median) of T; ->
Chance of improvement

* SVMRI, CI) -> binary output: Y or N
microservice candidate for SLO
violations

« SVM-based critical component localization

| S

Telemetry Performance Anomaly Injector

‘ Critical Path Extraction

Critical longestPath()
Paths 2\

Critical Instance Extraction

@ Extractor

I Candidates

criticalComponent()

SVM-based
root cause analysis



Step #2: SLO Violation Mitigation with RL

* SLO violation mitigation action generation based on RL
« Identifies low-level resource in contention (state approximation)

« Estimates reprovisioning resources to mitigate the SLO violation (action
inference)

* Action model: o |
* CPU: CPU limits
* Memory: capacity + bandwidth

* LLC: capacity (intel-cat) RL provides a feedback control- R
« 1/O: bandwidth (blkio) based dynamic environment @

Network: bandwidth (gdisc) e
Takes as input the

current states

Managing the tradeoff

between meeting the SLOs RL Agent K8s Environment
and the utils levels

Continuously
tune the policy

Utilization Decides the scaling

of resources Actions



RL Formulation and Reward Function

* Optimizes end-to-end objectives:

 Maximize resource utilization
efficiency

e Minimize SLO violation
* (assuming no failures in the systems)

a

Penalty

Yes E o
/ \

Mitigate SLO Avoid Over-

Reward

T érformance & Resource wieasuremanis Violation Fast provisioning
CPU Memory LLC SLO
Utilization [ Bandwidth ] [ Bandwidth ] Violation S P T T TP T EE LT LY
L[ Lc Disk 1/0 Network Arrival | IR ; :
 capacity | ~ [Bandwidin] [ Bandwidin [ Rate ] ': rt)=a- SMt IR+ (A ~a) ; RUt/ RL t
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
States (s) Actions (a) 77777777777777777777777777777 f

Microservices

___ l_________, Resource Usage

; Managed by FIRM Tt T~

_ N | UM, = minEEDYst0 4y of iattimet -
Ay, ‘I‘—RewmS o | | Latency, ' Resource limit
| RLAgent @‘ ‘ Vilzaton ] . (SLO maintenance) ! of i at time t




FIRM in the Process of Handling Cloud
Failures and Recovery



Case Study: Handling Failures in Cloud Systems

* FIRM represents a category of learning-based systems management solutions
« Application-centric for sustainable computing

* Learned model is from the traces/dataset generated from the application running on the
cloud environment

« However, when deploying such ML/RL agents in production cloud systems, it
is critical to ensure the robustness and reliability of the learned models in:

(maintain some of the critical services as the bottom
line) without violating any SLAs/SLOs, especially for those

* Handling

Critical Path
Analysis

CpP

SVI‘; Root

RI1

Model | Cause

Model

=1 ..
Reprovision
Mitigation

Tracinggta

(App + Systems)

§=

74

Resource
Reprggisioning
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Problem Statement

* Take FIRM as the basis, which will function well if there’s NO failure

* Now, your cloud is hit by a series of failures that significantly impact the
normal operations (latency/availability SLOs) of your managed services

* Your goal is to design a mitigation strategy by re-engineering the RL solution to
maintain the SLOs for critical applications (hospitals, financial sectors) while

tolerating a lower SLOs for non-critical applications

* In doing so, you need to re-engineer the RL solution (e.g., the reward function)
to bring back the system to its normal functionality



In the early training stages, RL agents tend to generate
poor autoscaling decisions (due to RL exploration)

* Lower than baseline rewards (i.e., worse agent

Failure Example #1

performance) and more SLO violations

Reward per Episode

200

150 -

100

ot
o
1

o
1

200 400 600 800 1000 1200

FIRM (OSDI 2020)

RL Training Episodes

CPU Util -32.3% +14% -42.9%+15% -224% +12%  -10.0% + 6%
Memory Util  -28.8% £ 11% -30.5%+10% -26.5%+8% -7.8 %+ 2%
SLO Violations 56.1 + 14x 22.2 + 7X 12.7 £ 5X 10.1 £ 3X

=

Overprovisioning -> CPU & memory
utils deficit compared w/ baseline

Unable to re-scale properly for
workloads changes -> SLO violations



Failure Example #2

200 A

During policy-serving stage, RL agent performance
degrades when workloads are updated

A
®
v

ot
o
1

Reward per Episode
S
o

[en)
1

8 1.00 "
:1&; ##% Reward Drop § 0 2(I)0 4(I)0 6(30 800 1000 1200
;L-“: 0.75 1 —} Retraining Cost [ 200 é RL Training Episodes
g 0.50 1 ﬁ 5 Trained policies are application-specific, costly to
a - 100 © . .
s 025 £ adapt to new applications
3 0.004 Ly = * 45.6% reward degradation (~230 eps retraining)
e
o <<§\ ‘&QJ N Q Q,égl &6" _-
N W - => Workload changes leads to 21.8% reward drops

Enabling built-in intelligence in cloud systems with less manual intervention
while achieving high robustness and self-adaptation (in both training/inference)




Failure Example #3

* Challenges due to Scalability and Multi-tenancy
* RL-based solutions for resource management / autoscaling: e.g., FIRM
» Assingle RL agent in an isolated environment — which we call “single-agent RL”

» RL assumes that the underlying environment is stationary (state transitions)

* Not true anymore! from each agent’s perspective when multiple self-interested RL agents
are added to manage diverse function workloads (single-agent RL not aware of the others)

« - (i 0 n G

Vertical Scaling Shared RL &~ o é
Policy mg tm
-- L Function & Environment R | é 2
{m — PO' Cy g ACtl Hﬂ] a»
I Y policy
ao»

On receiving St+1, was it
caused by my action 4;?

3_1

Policy mg

Horizontal Scaling [




An Example Solution
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Discussion

Systems + ML Resilience

» New fault model that combines the intricate relation between system and ML
failures is needed

* Fast recovery under the new fault model
Scalability: How to make the optimization framework scalable to the large number of
applications and servers in a datacenter cluster

* Introducing hierarchy -> How to deal with out of capacity and job migration

Feasibility of optimization solution: How to assess the feasibility?
* E.g., cluster capacity is enough for all LC job to meet SLOs
* Especially when there are failures or capacity loss in the cluster, feasibility is
affected
Time granularity
* Energy optimization and power management in the level of minutes or hours
* Resource management and ML/RL agents are in the level of seconds
* When to trigger the optimizer to run (i.e., frequency)



CPU Cloud Efficiency with ML Robust ML for Systems

| Microservices 1 ! Serverless Computing | | ! Cloud Heterogeneity |
FIRM SIMPPO : FLASH
« OSDI 2020 * SoCC 2022, NeurlPS 2022 * MLSys 2024
* MLSys @NeurlIPS 2023 - - |
| Reliable RL Exploration |
AWARE
GPU Cloud Efficiency with ML v A 203, Nauiles 2023
i DL Model Serving ! I Disaggregated Memory i ' Cloud Multi-tenancy _ 1
u-Serve INDIGO E,l: MAPPO
« ATC 2024a * ASPLOS*, COMPSYS 2022 * EuroMLSys 2022
* AlOps 2024 * NSDI 2025* * WoSC 2021
— _/

~"
Holistic Optimization with Renewable Energy & Embodied Carbon Emission
* NSF WSCS 2024, DSN 2024
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Dependable Transition to Green Computing

Two-fold meaning of sustainability:

. .o Energy (g&a - ).[ I Power Supply M t
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* Top-down approach (MLSys Workshop @NeurlPS23)

Top-down vs. Bottom-up

* Get the power cap based on carbon footprint optimization or power limits/budget

» Resource manager adjust resource allocation accordingly to compensate reduced core
frequency

* Bottom-up approach
* Get the power demand based on the resource + frequency required to meet SLOs
* Aggregate to get the power demand distribution across servers/racks

* Minimize carbon footprint while meeting daily BE job throughput

Energy Sources %
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Bottom-up Approach with ML for Carbon Footprint Optimization

» Time Window: We assume that the total period [0, T] is partitioned into sub-periods, say
[tx, tx+1), Which could be one hour or a half-hour, i.e., “time interval t”

 Carbon Intensity Forecasting: CI(t)
 Applications: LC jobs I € LC(t), BE jobs b € BE(t)
* Servers: s € S(t)

‘——_—’

e - o
- -~

* Power Consumption: server P; (t)(,J:C job Pi(t), BE job P, (t) )\

* B(6) = Ny Pi(D) - placeis(t) + X Pp(8) "Place @) R Autoscaler, e.g., FIRM (OSDI20)
» Constraints:

« Ysplace, s(t) < 1,Vb,t; Xsplace, ((t) + delay,(t) = 1,Vb,t; Ygplace ((t) = 1,VI,t

« Xt 2psblacep (t) > Daily_Threshold

* Minimize Total Carbon Footprint: };; ; Ps(t) - CI(t)



Fast Recovery from Systems-ML Failure Domains
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Multi-tier ML-driven Framework

Cloud DC 1 Cloud DC2

e Power distribution

* Workload & power supply
forecasting
* Job characteristics
* Load prediction
» Power generation condition

(e.g., weather) prediction
8 P CTTTTT | S i t End Users
1 <10 1
! P = o P = ! *
® < g i ML-based Decision-Making Framework
—_ |
g ' Power Grid |
|
. N -
| £0 % !
| ' N —
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2 ' Energy Sources :
o 5 M et A

Time 1 Job Submission: = Power Delivery: —— |



I. Power Management
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