
Securing AI Models: 
Strategies to Prevent Stealing Attacks

AI Research (AIR) Lab. 

School of Cybersecurity

Korea University

Prof. Sangkyun Lee
(sangkyun@korea.ac.kr)

86th IFIP WG10.4 Meeting

July 28, 2024 (Gold Coast, Australia)



AI Model Stealing Attacks

2



Query-Based Model Stealing Attack

Basic Idea:
• An attacker sends his/her 

queries (like benign users) and  
collects the server’s responses

• The attacker trains a knockoff 
model using the collected data

MLaaS

Query 𝑥! Response 𝑓(𝑥!)

Attacker

Data Collection
{(𝑥!, 𝑓(𝑥!))}

Trains a knockoff model

ML-as-a-Service

3



Attack Scenarios

1. Avoiding query charges in future

2. A stepping stone for model inversion attack
§ Stolen models could leak information 

about sensitive training data, violating 
data privacy

§ [Fredrikson+, Model Inversion Attacks 
that Exploit Confidence Information and 
Basic Countermeasures, CCS 2015]

§ [Song+, Machine Learning Models that 
Remember Too Much, CCS 2017]

§ [Liu+, Unstoppable Attack: Label-Only 
Model Inversion via Conditional Diffusion 
Model, CCS 2023]

https://www.researchgate.net/figure/The-Framework-of-Model-Inversion-Attack_fig3_344378202

4



Model-Stealing Attack Scenarios

3. A stepping stone for evasion attack
§ Stolen models can be used to construct gradient-based adversarial examples

§ [Papernot et al., Practical Black-Box Attacks against Machine Learning, ASIA CCS, 2017]Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

x
<latexit sha1_base64="1XIWmuaZtSNZP5xub+5v9k0qkF0=">AAAmeHicvVpbcyK5GWV3c9mQ22z2MS9d4/LE3tqlAMMAVQ41vs/NY3t8nTGOS90IrHVfiKTGML39C/Ka/Lj8lTxF6gajbvFpmR3XUOVy851zpCPp+4SwbA9cwni5/N8vvvzqV7/+zW+//l3x93/445/+/Oibv5yxIKQOPnUCN6AXNmLYJT4+5YS7+GJAMfJsF5/bt1sSPx9iykjgn/DxAF95qO+THnEQF6Gj0fWjpXKpnLws/aEyeVgqTF6H198so043cEIP+9xxEWOXlfKAX0WIcuK4OC4WOyHDA+Tcoj6OvNDlhAZ3cXFZDWM2xA7Pci9D3mteRcQfhBz7TmwtC6wXuhYPLOnc6hIqRO5YPCCHEtGd5dwgihwuxlfsdHGv00MeccfiCYl+ow7rTR7jFPYQv4EpxWVLPIt5tCTPYsj/gWFKelYv8Lm10qOBZ9liajGVEy6DJcbHq8XONhYTQfGuiBzfoAGODk4qceR4NI68OPLj5aIlX9F6vb3+tL3eaK832+ut9nqlLH6q7T72vxPkCcsS4VKr3haRSnkWq5VqSag6CzVKVdFOtVxq1MSvWqkp37VKTdHFWr3UXGuv16qlluinXinVW4m6EUfxz/llrm7Y8ZjbvO85cZ+6Zq5iu31vnbmq92o79f8LLIuG7ke8gHfC53nnpKF4l+9nY2kl71tzR8HJA41CNPQxo2COOWUSe9JQNj1+gTGHObMhLuAsJHHxM9gKFzdlywL7PJNlf4Sr0dRW3lRaNvZobsLZowdKONHQwgknvYqan7Dzfuf4/ERn6t6wiDdR05/N26zi8852k4+NKHXG2HzjM5TZjsyA6N6iMTUzju8lCzufKrDDWFcU9OSteXalS08pnnlOJSu7VTI2f6tkbF7mJvFP+cQS8sZCuTIZzTSPwdGQ5mQYwJYvAGgg5BNHQj5iKJP0MSzNZBhdZf9+sDrINfuzbme7ndlsdnt7KK9qq4nVY8yPx54duNJsFAwwRTygwqcfUA+5sV4B98NTdH7o2ViqOuIwGnSJ358eFCP9HDkrpTktDUKKXcz5x7WWbnvT5vYFZ8Md3CAb81RBvbmNUQ+0pLdh9xY1dL/EcGNsfmOzA/YChgh/wBni8xvjPGdINiK/HUwz5Zk82qdN9GkQDjps7E2zoZjrMV3mqBwndCT7n2XO47Vy3uGEXwH4FYBfBfhVgL8G8NcAfg3g1wB+HeDXAf5TgP8U4DcAfgPgNwF+E+C3AH4LWuANVZAp6Mc1aNE2DRpo4bYMGmjxtg0aaAF3DBpoEXcNGmgh9wwaaDGfGzTQgr4waFqA5qVBswFoXhk0m4DmtUGzBWj2DZptQPPGoNkBNAcGzS6gOYQ1dWjDOzJooPp5a9BA9XNs0ED1c2LQQPVzatBA9XNm0ED1c27QQPVzYdBA9fPOoIHq571BswFtpAgWPYUSwTZooERwDBooEboGDZQI2KCBEqFn0ECJ0DdooES4MWigRCAGDZQIPxo00EZ6a9BAG6lr0EAbqWfQQBupb9BAG2lg0EAb6QDWNKCN9J8GDVQ/1KCB6ocZNFD9cIMGqp/QoIHqZ2jQQPVzZ9BA9TMyaKD6GRs0UP18MGjkRro8/5W7PWHYRx5mV1FyKZRen3StXkDT+4skmrmbQeIbsDAgmLJ3lsdkcB72qfc0c2+H1CgL7R7pi2nIhm3SZ5yGPBcNgluObJaN0oAjLr71Za+dLhnyxfx0mZwQIfDxnRN4HvK76be9Lpt817Tt3H2V7WXblyQeBC5Lbo0EYB0MsG8di/aTGed4xK0VP+DJVdJqsZjt7G087VAccnJGdmbYjoaNBvFl5UohdFzc45dLlQ4l/Rt+leO/mbX1Jt/WIQ3sGXw4B/5RwIckF3c24ihVOci1NvIyZ1OFNzV4S4W3NHhbhbc1eEeFtdlxdlV4V4P3VHhPg5+r8HMNfqHCLzT4pQq/1OBXKvxKg1+r8GsN3lfhfQ1+o8LaQjsHKnygwYcqrOWB81aFtWx1jlT4SIOPVfhYg09U+ESDT1X4VIPPVPhMg89V+FyDL1T4QoPfqfA7DX6vwu/z8BBNYbtnIQ21FdTWUEdBHQ3tK2hfQ6mCUg1lCso0dKSgIw0dK+hYQ4cKOtTQOwW909APCvpBQzcUVNtuhtsKqu0XwxcKqpXs8JWCaiU53FdQreSGFwqq5c7wUEG1ihoeK6hWEsMzBdVyenikoLLa8mnnSlycKbosOVpYneRQoScgzvNszHXaiORpIpInucjLs0TI7urNcRTmmTKUp/kay9dIe5NeHW0fl8h2mE6Es/cPLSls8eGP5QefHYzkO6uSZ1CSfC7e4oRBPYsSK8/pBvLP7/JjPr1UiGSg832OxcWhB2d5nOo0B9FulpVE8l0Sxu99C1fJe62tvodEHfevp0RxChpLtgznW+x7xJ/LFeE8l/X9rEUZyHNkuqyQ1Xz8jiSnlp/ufrqOVpYqq7Fy4yKPwQeTP7x/F3UQTU2J353v5ZOJKEeaEsVTtssBDUZZv0lEdswwd7Hf5zcpfEe64pwbrZXqsrfssQ+5/UAcYG884sQAkjkXXtLQxd2rGVrNnWGxH3qEY6Fa/jv8Kl4/Wqrk/wVLfzirlirlUuWotvRsc/LvWV8X/lp4XFgpVAqNwrPC88Jh4bTgFHDhX4V/F/6z/L8n1pO/PVlNqV9+MdF8W8i8nlT/D1ByeU8=</latexit><latexit sha1_base64="1XIWmuaZtSNZP5xub+5v9k0qkF0=">AAAmeHicvVpbcyK5GWV3c9mQ22z2MS9d4/LE3tqlAMMAVQ41vs/NY3t8nTGOS90IrHVfiKTGML39C/Ka/Lj8lTxF6gajbvFpmR3XUOVy851zpCPp+4SwbA9cwni5/N8vvvzqV7/+zW+//l3x93/445/+/Oibv5yxIKQOPnUCN6AXNmLYJT4+5YS7+GJAMfJsF5/bt1sSPx9iykjgn/DxAF95qO+THnEQF6Gj0fWjpXKpnLws/aEyeVgqTF6H198so043cEIP+9xxEWOXlfKAX0WIcuK4OC4WOyHDA+Tcoj6OvNDlhAZ3cXFZDWM2xA7Pci9D3mteRcQfhBz7TmwtC6wXuhYPLOnc6hIqRO5YPCCHEtGd5dwgihwuxlfsdHGv00MeccfiCYl+ow7rTR7jFPYQv4EpxWVLPIt5tCTPYsj/gWFKelYv8Lm10qOBZ9liajGVEy6DJcbHq8XONhYTQfGuiBzfoAGODk4qceR4NI68OPLj5aIlX9F6vb3+tL3eaK832+ut9nqlLH6q7T72vxPkCcsS4VKr3haRSnkWq5VqSag6CzVKVdFOtVxq1MSvWqkp37VKTdHFWr3UXGuv16qlluinXinVW4m6EUfxz/llrm7Y8ZjbvO85cZ+6Zq5iu31vnbmq92o79f8LLIuG7ke8gHfC53nnpKF4l+9nY2kl71tzR8HJA41CNPQxo2COOWUSe9JQNj1+gTGHObMhLuAsJHHxM9gKFzdlywL7PJNlf4Sr0dRW3lRaNvZobsLZowdKONHQwgknvYqan7Dzfuf4/ERn6t6wiDdR05/N26zi8852k4+NKHXG2HzjM5TZjsyA6N6iMTUzju8lCzufKrDDWFcU9OSteXalS08pnnlOJSu7VTI2f6tkbF7mJvFP+cQS8sZCuTIZzTSPwdGQ5mQYwJYvAGgg5BNHQj5iKJP0MSzNZBhdZf9+sDrINfuzbme7ndlsdnt7KK9qq4nVY8yPx54duNJsFAwwRTygwqcfUA+5sV4B98NTdH7o2ViqOuIwGnSJ358eFCP9HDkrpTktDUKKXcz5x7WWbnvT5vYFZ8Md3CAb81RBvbmNUQ+0pLdh9xY1dL/EcGNsfmOzA/YChgh/wBni8xvjPGdINiK/HUwz5Zk82qdN9GkQDjps7E2zoZjrMV3mqBwndCT7n2XO47Vy3uGEXwH4FYBfBfhVgL8G8NcAfg3g1wB+HeDXAf5TgP8U4DcAfgPgNwF+E+C3AH4LWuANVZAp6Mc1aNE2DRpo4bYMGmjxtg0aaAF3DBpoEXcNGmgh9wwaaDGfGzTQgr4waFqA5qVBswFoXhk0m4DmtUGzBWj2DZptQPPGoNkBNAcGzS6gOYQ1dWjDOzJooPp5a9BA9XNs0ED1c2LQQPVzatBA9XNm0ED1c27QQPVzYdBA9fPOoIHq571BswFtpAgWPYUSwTZooERwDBooEboGDZQI2KCBEqFn0ECJ0DdooES4MWigRCAGDZQIPxo00EZ6a9BAG6lr0EAbqWfQQBupb9BAG2lg0EAb6QDWNKCN9J8GDVQ/1KCB6ocZNFD9cIMGqp/QoIHqZ2jQQPVzZ9BA9TMyaKD6GRs0UP18MGjkRro8/5W7PWHYRx5mV1FyKZRen3StXkDT+4skmrmbQeIbsDAgmLJ3lsdkcB72qfc0c2+H1CgL7R7pi2nIhm3SZ5yGPBcNgluObJaN0oAjLr71Za+dLhnyxfx0mZwQIfDxnRN4HvK76be9Lpt817Tt3H2V7WXblyQeBC5Lbo0EYB0MsG8di/aTGed4xK0VP+DJVdJqsZjt7G087VAccnJGdmbYjoaNBvFl5UohdFzc45dLlQ4l/Rt+leO/mbX1Jt/WIQ3sGXw4B/5RwIckF3c24ihVOci1NvIyZ1OFNzV4S4W3NHhbhbc1eEeFtdlxdlV4V4P3VHhPg5+r8HMNfqHCLzT4pQq/1OBXKvxKg1+r8GsN3lfhfQ1+o8LaQjsHKnygwYcqrOWB81aFtWx1jlT4SIOPVfhYg09U+ESDT1X4VIPPVPhMg89V+FyDL1T4QoPfqfA7DX6vwu/z8BBNYbtnIQ21FdTWUEdBHQ3tK2hfQ6mCUg1lCso0dKSgIw0dK+hYQ4cKOtTQOwW909APCvpBQzcUVNtuhtsKqu0XwxcKqpXs8JWCaiU53FdQreSGFwqq5c7wUEG1ihoeK6hWEsMzBdVyenikoLLa8mnnSlycKbosOVpYneRQoScgzvNszHXaiORpIpInucjLs0TI7urNcRTmmTKUp/kay9dIe5NeHW0fl8h2mE6Es/cPLSls8eGP5QefHYzkO6uSZ1CSfC7e4oRBPYsSK8/pBvLP7/JjPr1UiGSg832OxcWhB2d5nOo0B9FulpVE8l0Sxu99C1fJe62tvodEHfevp0RxChpLtgznW+x7xJ/LFeE8l/X9rEUZyHNkuqyQ1Xz8jiSnlp/ufrqOVpYqq7Fy4yKPwQeTP7x/F3UQTU2J353v5ZOJKEeaEsVTtssBDUZZv0lEdswwd7Hf5zcpfEe64pwbrZXqsrfssQ+5/UAcYG884sQAkjkXXtLQxd2rGVrNnWGxH3qEY6Fa/jv8Kl4/Wqrk/wVLfzirlirlUuWotvRsc/LvWV8X/lp4XFgpVAqNwrPC88Jh4bTgFHDhX4V/F/6z/L8n1pO/PVlNqV9+MdF8W8i8nlT/D1ByeU8=</latexit><latexit sha1_base64="1XIWmuaZtSNZP5xub+5v9k0qkF0=">AAAmeHicvVpbcyK5GWV3c9mQ22z2MS9d4/LE3tqlAMMAVQ41vs/NY3t8nTGOS90IrHVfiKTGML39C/Ka/Lj8lTxF6gajbvFpmR3XUOVy851zpCPp+4SwbA9cwni5/N8vvvzqV7/+zW+//l3x93/445/+/Oibv5yxIKQOPnUCN6AXNmLYJT4+5YS7+GJAMfJsF5/bt1sSPx9iykjgn/DxAF95qO+THnEQF6Gj0fWjpXKpnLws/aEyeVgqTF6H198so043cEIP+9xxEWOXlfKAX0WIcuK4OC4WOyHDA+Tcoj6OvNDlhAZ3cXFZDWM2xA7Pci9D3mteRcQfhBz7TmwtC6wXuhYPLOnc6hIqRO5YPCCHEtGd5dwgihwuxlfsdHGv00MeccfiCYl+ow7rTR7jFPYQv4EpxWVLPIt5tCTPYsj/gWFKelYv8Lm10qOBZ9liajGVEy6DJcbHq8XONhYTQfGuiBzfoAGODk4qceR4NI68OPLj5aIlX9F6vb3+tL3eaK832+ut9nqlLH6q7T72vxPkCcsS4VKr3haRSnkWq5VqSag6CzVKVdFOtVxq1MSvWqkp37VKTdHFWr3UXGuv16qlluinXinVW4m6EUfxz/llrm7Y8ZjbvO85cZ+6Zq5iu31vnbmq92o79f8LLIuG7ke8gHfC53nnpKF4l+9nY2kl71tzR8HJA41CNPQxo2COOWUSe9JQNj1+gTGHObMhLuAsJHHxM9gKFzdlywL7PJNlf4Sr0dRW3lRaNvZobsLZowdKONHQwgknvYqan7Dzfuf4/ERn6t6wiDdR05/N26zi8852k4+NKHXG2HzjM5TZjsyA6N6iMTUzju8lCzufKrDDWFcU9OSteXalS08pnnlOJSu7VTI2f6tkbF7mJvFP+cQS8sZCuTIZzTSPwdGQ5mQYwJYvAGgg5BNHQj5iKJP0MSzNZBhdZf9+sDrINfuzbme7ndlsdnt7KK9qq4nVY8yPx54duNJsFAwwRTygwqcfUA+5sV4B98NTdH7o2ViqOuIwGnSJ358eFCP9HDkrpTktDUKKXcz5x7WWbnvT5vYFZ8Md3CAb81RBvbmNUQ+0pLdh9xY1dL/EcGNsfmOzA/YChgh/wBni8xvjPGdINiK/HUwz5Zk82qdN9GkQDjps7E2zoZjrMV3mqBwndCT7n2XO47Vy3uGEXwH4FYBfBfhVgL8G8NcAfg3g1wB+HeDXAf5TgP8U4DcAfgPgNwF+E+C3AH4LWuANVZAp6Mc1aNE2DRpo4bYMGmjxtg0aaAF3DBpoEXcNGmgh9wwaaDGfGzTQgr4waFqA5qVBswFoXhk0m4DmtUGzBWj2DZptQPPGoNkBNAcGzS6gOYQ1dWjDOzJooPp5a9BA9XNs0ED1c2LQQPVzatBA9XNm0ED1c27QQPVzYdBA9fPOoIHq571BswFtpAgWPYUSwTZooERwDBooEboGDZQI2KCBEqFn0ECJ0DdooES4MWigRCAGDZQIPxo00EZ6a9BAG6lr0EAbqWfQQBupb9BAG2lg0EAb6QDWNKCN9J8GDVQ/1KCB6ocZNFD9cIMGqp/QoIHqZ2jQQPVzZ9BA9TMyaKD6GRs0UP18MGjkRro8/5W7PWHYRx5mV1FyKZRen3StXkDT+4skmrmbQeIbsDAgmLJ3lsdkcB72qfc0c2+H1CgL7R7pi2nIhm3SZ5yGPBcNgluObJaN0oAjLr71Za+dLhnyxfx0mZwQIfDxnRN4HvK76be9Lpt817Tt3H2V7WXblyQeBC5Lbo0EYB0MsG8di/aTGed4xK0VP+DJVdJqsZjt7G087VAccnJGdmbYjoaNBvFl5UohdFzc45dLlQ4l/Rt+leO/mbX1Jt/WIQ3sGXw4B/5RwIckF3c24ihVOci1NvIyZ1OFNzV4S4W3NHhbhbc1eEeFtdlxdlV4V4P3VHhPg5+r8HMNfqHCLzT4pQq/1OBXKvxKg1+r8GsN3lfhfQ1+o8LaQjsHKnygwYcqrOWB81aFtWx1jlT4SIOPVfhYg09U+ESDT1X4VIPPVPhMg89V+FyDL1T4QoPfqfA7DX6vwu/z8BBNYbtnIQ21FdTWUEdBHQ3tK2hfQ6mCUg1lCso0dKSgIw0dK+hYQ4cKOtTQOwW909APCvpBQzcUVNtuhtsKqu0XwxcKqpXs8JWCaiU53FdQreSGFwqq5c7wUEG1ihoeK6hWEsMzBdVyenikoLLa8mnnSlycKbosOVpYneRQoScgzvNszHXaiORpIpInucjLs0TI7urNcRTmmTKUp/kay9dIe5NeHW0fl8h2mE6Es/cPLSls8eGP5QefHYzkO6uSZ1CSfC7e4oRBPYsSK8/pBvLP7/JjPr1UiGSg832OxcWhB2d5nOo0B9FulpVE8l0Sxu99C1fJe62tvodEHfevp0RxChpLtgznW+x7xJ/LFeE8l/X9rEUZyHNkuqyQ1Xz8jiSnlp/ufrqOVpYqq7Fy4yKPwQeTP7x/F3UQTU2J353v5ZOJKEeaEsVTtssBDUZZv0lEdswwd7Hf5zcpfEe64pwbrZXqsrfssQ+5/UAcYG884sQAkjkXXtLQxd2rGVrNnWGxH3qEY6Fa/jv8Kl4/Wqrk/wVLfzirlirlUuWotvRsc/LvWV8X/lp4XFgpVAqNwrPC88Jh4bTgFHDhX4V/F/6z/L8n1pO/PVlNqV9+MdF8W8i8nlT/D1ByeU8=</latexit><latexit sha1_base64="1XIWmuaZtSNZP5xub+5v9k0qkF0=">AAAmeHicvVpbcyK5GWV3c9mQ22z2MS9d4/LE3tqlAMMAVQ41vs/NY3t8nTGOS90IrHVfiKTGML39C/Ka/Lj8lTxF6gajbvFpmR3XUOVy851zpCPp+4SwbA9cwni5/N8vvvzqV7/+zW+//l3x93/445/+/Oibv5yxIKQOPnUCN6AXNmLYJT4+5YS7+GJAMfJsF5/bt1sSPx9iykjgn/DxAF95qO+THnEQF6Gj0fWjpXKpnLws/aEyeVgqTF6H198so043cEIP+9xxEWOXlfKAX0WIcuK4OC4WOyHDA+Tcoj6OvNDlhAZ3cXFZDWM2xA7Pci9D3mteRcQfhBz7TmwtC6wXuhYPLOnc6hIqRO5YPCCHEtGd5dwgihwuxlfsdHGv00MeccfiCYl+ow7rTR7jFPYQv4EpxWVLPIt5tCTPYsj/gWFKelYv8Lm10qOBZ9liajGVEy6DJcbHq8XONhYTQfGuiBzfoAGODk4qceR4NI68OPLj5aIlX9F6vb3+tL3eaK832+ut9nqlLH6q7T72vxPkCcsS4VKr3haRSnkWq5VqSag6CzVKVdFOtVxq1MSvWqkp37VKTdHFWr3UXGuv16qlluinXinVW4m6EUfxz/llrm7Y8ZjbvO85cZ+6Zq5iu31vnbmq92o79f8LLIuG7ke8gHfC53nnpKF4l+9nY2kl71tzR8HJA41CNPQxo2COOWUSe9JQNj1+gTGHObMhLuAsJHHxM9gKFzdlywL7PJNlf4Sr0dRW3lRaNvZobsLZowdKONHQwgknvYqan7Dzfuf4/ERn6t6wiDdR05/N26zi8852k4+NKHXG2HzjM5TZjsyA6N6iMTUzju8lCzufKrDDWFcU9OSteXalS08pnnlOJSu7VTI2f6tkbF7mJvFP+cQS8sZCuTIZzTSPwdGQ5mQYwJYvAGgg5BNHQj5iKJP0MSzNZBhdZf9+sDrINfuzbme7ndlsdnt7KK9qq4nVY8yPx54duNJsFAwwRTygwqcfUA+5sV4B98NTdH7o2ViqOuIwGnSJ358eFCP9HDkrpTktDUKKXcz5x7WWbnvT5vYFZ8Md3CAb81RBvbmNUQ+0pLdh9xY1dL/EcGNsfmOzA/YChgh/wBni8xvjPGdINiK/HUwz5Zk82qdN9GkQDjps7E2zoZjrMV3mqBwndCT7n2XO47Vy3uGEXwH4FYBfBfhVgL8G8NcAfg3g1wB+HeDXAf5TgP8U4DcAfgPgNwF+E+C3AH4LWuANVZAp6Mc1aNE2DRpo4bYMGmjxtg0aaAF3DBpoEXcNGmgh9wwaaDGfGzTQgr4waFqA5qVBswFoXhk0m4DmtUGzBWj2DZptQPPGoNkBNAcGzS6gOYQ1dWjDOzJooPp5a9BA9XNs0ED1c2LQQPVzatBA9XNm0ED1c27QQPVzYdBA9fPOoIHq571BswFtpAgWPYUSwTZooERwDBooEboGDZQI2KCBEqFn0ECJ0DdooES4MWigRCAGDZQIPxo00EZ6a9BAG6lr0EAbqWfQQBupb9BAG2lg0EAb6QDWNKCN9J8GDVQ/1KCB6ocZNFD9cIMGqp/QoIHqZ2jQQPVzZ9BA9TMyaKD6GRs0UP18MGjkRro8/5W7PWHYRx5mV1FyKZRen3StXkDT+4skmrmbQeIbsDAgmLJ3lsdkcB72qfc0c2+H1CgL7R7pi2nIhm3SZ5yGPBcNgluObJaN0oAjLr71Za+dLhnyxfx0mZwQIfDxnRN4HvK76be9Lpt817Tt3H2V7WXblyQeBC5Lbo0EYB0MsG8di/aTGed4xK0VP+DJVdJqsZjt7G087VAccnJGdmbYjoaNBvFl5UohdFzc45dLlQ4l/Rt+leO/mbX1Jt/WIQ3sGXw4B/5RwIckF3c24ihVOci1NvIyZ1OFNzV4S4W3NHhbhbc1eEeFtdlxdlV4V4P3VHhPg5+r8HMNfqHCLzT4pQq/1OBXKvxKg1+r8GsN3lfhfQ1+o8LaQjsHKnygwYcqrOWB81aFtWx1jlT4SIOPVfhYg09U+ESDT1X4VIPPVPhMg89V+FyDL1T4QoPfqfA7DX6vwu/z8BBNYbtnIQ21FdTWUEdBHQ3tK2hfQ6mCUg1lCso0dKSgIw0dK+hYQ4cKOtTQOwW909APCvpBQzcUVNtuhtsKqu0XwxcKqpXs8JWCaiU53FdQreSGFwqq5c7wUEG1ihoeK6hWEsMzBdVyenikoLLa8mnnSlycKbosOVpYneRQoScgzvNszHXaiORpIpInucjLs0TI7urNcRTmmTKUp/kay9dIe5NeHW0fl8h2mE6Es/cPLSls8eGP5QefHYzkO6uSZ1CSfC7e4oRBPYsSK8/pBvLP7/JjPr1UiGSg832OxcWhB2d5nOo0B9FulpVE8l0Sxu99C1fJe62tvodEHfevp0RxChpLtgznW+x7xJ/LFeE8l/X9rEUZyHNkuqyQ1Xz8jiSnlp/ufrqOVpYqq7Fy4yKPwQeTP7x/F3UQTU2J353v5ZOJKEeaEsVTtssBDUZZv0lEdswwd7Hf5zcpfEe64pwbrZXqsrfssQ+5/UAcYG884sQAkjkXXtLQxd2rGVrNnWGxH3qEY6Fa/jv8Kl4/Wqrk/wVLfzirlirlUuWotvRsc/LvWV8X/lp4XFgpVAqNwrPC88Jh4bTgFHDhX4V/F/6z/L8n1pO/PVlNqV9+MdF8W8i8nlT/D1ByeU8=</latexit>

panda

gibbon

x +�x
<latexit sha1_base64="xGnFYQapQoQsrncPh4RRaS6ovCE=">AAAmg3icvVprcyK5FWU32WRDXrPJx3zpGpddnn1QgGGAKi81fs/LY3v8nDGOS90IrHU/iKTGML39N/I1+Vv5N5G6wahbXC2z4xqqXG7uOUc6ku4VwrI9cAnj5fL/vvjyN7/96ne///oPxT/+6c9/+eujb/52xoKQOvjUCdyAXtiIYZf4+JQT7uKLAcXIs118bt9uSfx8iCkjgX/CxwN85aG+T3rEQVyEOiPrO6uzjV2OrNH1o6VyqZy8LP2hMnlYKkxeh9ffLKNON3BCD/vccRFjl5XygF9FiHLiuDguFjshwwPk3KI+jrzQ5YQGd3FxWQ1jNsQOz3IvQ95rXkXEH4Qc+05sLQusF7oWDyw5CKtLqBC5Y/GAHEpEd5ZzgyhyuBhqsdPFvU4PecQdiyck+o06rDd5jFPYQ/wGphSXLfEsptSSPIsh/weGKelZvcDn1mqPBp5li1nGVM69DJYYHz8piqkUE0Hxrogc36ABjg5OKnHkeDSOvDjy4+WiJV/Rer29/rS93mivN9vrrfZ6pSx+qu0+9r8V5AnLEuFSq94WkUp5FquVakmoOgs1SlXRTrVcatTEr1qpKd+1Sk3RxVq91Fxrr9eqpZbop14p1VuJuhFH8S/5Za5u2PGY27zvOXGfumauYrt9b525qvdqO/X/KyyLhu5HvIB3wud556SheJfvZ2NpJe9bc0fByQONQjT0MaNgjjllEnvSUDY9foUxhzmzIS7gLCRx8TPYChc3ZcsC+zyTZX+Eq9HUVt5UWjb2aG7C2aMHSjjR0MIJJ72Kmp+w837n+PxEZ+resIg3UdOfzdus4vPOdpOPjSh1xth84zOU2Y7MgOjeojE1M47vJQs7nyqww1hXFPTkrXl2pUtPKZ55TiUru1UyNn+rZGxe5ibxT/nEEvLGQrkyGc00j8HRkOZkGMCWLwBoIOQTR0I+YiiT9DEszWQYXWX/frA6yDX7i25nu53ZbHZ7eyivaquJ1WPMj8eeHbjSbBQMMEU8oMKnH1APubFeAffDU3R+6NlYqjriMBp0id+fHhQj/Rw5K6U5LQ1Cil3M+ce1lm570+b2BWfDHdwgG/NUQb25jVEPtKS3YfcWNXS/xHBjbH5jswP2AoYIf8AZ4vMb4zxnSDYivx1MM+WZPNqnTfRpEA46bOxNs6GY6zFd5qgcJ3Qk+59lzuO1ct7hhF8B+BWAXwX4VYC/BvDXAH4N4NcAfh3g1wH+U4D/FOA3AH4D4DcBfhPgtwB+C1rgDVWQKejHNWjRNg0aaOG2DBpo8bYNGmgBdwwaaBF3DRpoIfcMGmgxnxs00IK+MGhagOalQbMBaF4ZNJuA5rVBswVo9g2abUDzxqDZATQHBs0uoDmENXVowzsyaKD6eWvQQPVzbNBA9XNi0ED1c2rQQPVzZtBA9XNu0ED1c2HQQPXzzqCB6ue9QbMBbaQIFj2FEsE2aKBEcAwaKBG6Bg2UCNiggRKhZ9BAidA3aKBEuDFooEQgBg2UCD8ZNNBGemvQQBupa9BAG6ln0EAbqW/QQBtpYNBAG+kA1jSgjfRfBg1UP9SggeqHGTRQ/XCDBqqf0KCB6mdo0ED1c2fQQPUzMmig+hkbNFD9fDBo5Ea6PP+Vuz1h2EceZldRcj+UXp90rV5A0/uLJJq5m0HiG7AwIJiyd5bHZHAe9qn3NHNvh9QoC+0e6YtpyIZt0mechjwXDYJbjmyWjdKAIy6+9WWvnS4Z8sX8dJmcECHw8Z0TeB7yu+m3vS6bfNe07dx9le1l25ckHgQuS26NBGAdDLBvHYv2kxnneMStVT/gyVXSk2Ix29nbeNqhOOTkjOzMsB0NGw3iy8qVQui4uMcvlyodSvo3/CrHfzNr602+rUMa2DP4cA78k4APSS7ubMRRqnKQa23kZc6mCm9q8JYKb2nwtgpva/COCmuz4+yq8K4G76nwngY/V+HnGvxChV9o8EsVfqnBr1T4lQa/VuHXGryvwvsa/EaFtYV2DlT4QIMPVVjLA+etCmvZ6hyp8JEGH6vwsQafqPCJBp+q8KkGn6nwmQafq/C5Bl+o8IUGv1Phdxr8XoXf5+EhmsJ2z0IaaiuoraGOgjoa2lfQvoZSBaUayhSUaehIQUcaOlbQsYYOFXSooXcKeqehHxT0g4ZuKKi23Qy3FVTbL4YvFFQr2eErBdVKcrivoFrJDS8UVMud4aGCahU1PFZQrSSGZwqq5fTwSEFlteXTzpW4OFN0WXK0sDrJoUJPQJzn2ZjrtBHJ00QkT3KRl2eJkN3Vm+MozDNlKE/zNZavkfYmvTraPi6R7TCdCGfvn1pS2OLDH8sPPjsYyXdWJc+gJPlcvMUJg3oWJVae0w3kn9/lx3x6qRDJQOf7HIuLQw/O8jjVaQ6i3SwrieS7JIzf+xaukvdaW30PiTruX0+J4hQ0lmwZzrfY94g/lyvCeS7r+1mLMpDnyHRZJU/y8TuSnFp+vvv5OlpdqjyJlRsXeQw+mPzh/duog2hqSvzufC+fTEQ50pQonrJdDmgwyvpNIrJjhrmL/T6/SeE70hXn3GitVJe9ZY99yO0H4gB74xEnBpDMufCShi7uXs3Qau4Mi/3QIxwL1fKP8Kt4/Wipkv8XLP3hrFqqrJWqR7WlZ5uTf8/6uvCPwuPCaqFSaBSeFZ4XDgunBacwKPy78J/Cf1e+WvlupbpSS6lffjHR/L2Qea38+H+FdHwL</latexit>

Adversarial Examples in Modern Machine Learning: A Review

4.1 L-BFGS Attack
The L-BFGS attack [31] is an early method designed to fool models such as deep neural networks for image
recognition tasks. Its end goal is to find a perceptually-minimal input perturbation argminr ||r||2, i.e.,
r = x0 � x, within bounds of the input space, that is adversarial, i.e., ŷ(x0) 6= y. Szegedy et al. [31] used the
Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [100] to transform this difficult
optimization problem into a box-constrained formulation where the goal is to find x0 that minimizes

c||r||2 + L(x0, t) such that x0 2 [0, 1], (2)

where elements of x are normalized to [0, 1], L(x0, t) is the true loss function of the targeted model (e.g.,
categorical cross-entropy), and t is the target misclassification label. Since this objective does not guarantee
that x0 will be adversarial for any specific value of c > 0, the above optimization process is iterated for
increasingly large values of c via line search until an adversary is found. Optionally, the resulting c value
can be further optimized using the bisection method (a.k.a. binary search) between the range of the final
line search segment.

This attack was successfully applied to misclassify many image instances on both AlexNet [3] and Quoc-
Net [101], which were state-of-the-art classification models at the time. Thanks to its L2 Euclidean distance
constraint, L-BFGS produces adversaries that are perceptually similar to the original input x. Moreover,
a key advantage of modeling adversarial examples generation process as a general optimization problem is
that it allows for flexibility in folding additional criteria into the objective function. For instance, one may
choose to use perceptual similarity metrics other than the L2 distance, depending on requirements of a given
application domain. We will see concrete examples of such criteria in subsequent sections.

4.2 Fast Gradient Sign Method
The Fast Gradient Sign Method (FGSM) [32] is designed to quickly find a perturbation direction for a given
input such that the training loss function of the target model will increase, reducing classification confidence
and increasing the likelihood of inter-class confusion. While there is no guarantee that increasing the training
loss by a given amount will result in misclassification, this is nevertheless a sensible direction to take since
the loss value for a misclassified instance is by definition larger than otherwise.

FGSM works by calculating the gradient of the loss function with respect to the input, and creating a
small perturbation by multiplying a small chosen constant ✏ by the sign vector of the gradient:

x0 = x+ ✏ · sign(rxL(x, y)), (3)

where rxL(x, y) is the first derivative of the loss function with respect to the input x. In the case of
deep neural networks, this can be calculated through the backpropagation algorithm [102]. In practice, the
generated adversarial examples must be within the bounds of the input space (e.g., [0, 255] pixel intensities
for an 8-bit image), which is enforced by value-clipping.

The authors proposed to bound the input perturbation r under the L1 supremum metric (i.e., ||r||1  ✏)
to encourage perceptual similarity between x and x0. Under this 1-norm constraint, the sign of the gradient
vector maximizes the magnitude of the input perturbation, which consequently also amplifies the adversarial
change in the model’s output. A variant of FGSM that uses the actual gradient vector rather than its sign
vector was later introduced as the Fast Gradient Value (FGV) method [82].

A sample adversarial example and perturbation generated by FGSM can be seen in Fig. 1. Note that
this attack can be applied to any machine learning model where rxL(x, y) can be calculated. Compared to
the numerically-optimized L-BFGS attack, FGSM computes gradients analytically and thus finds solutions
much faster. On the other hand, FGSM does not explicitly optimize for the adversary x0 to have a minimal
perceptual difference, instead using a small ✏ to weakly bound the perturbation r. Optionally, once an
adversarial example is found at a given ✏ value, one can use an iterative strategy similar to the L-BFGS
attack’s line search of c to further enhance perceptual similarity, although the resulting r may still not have
minimal perceptual difference since perturbations are only searched along the sign vector of the gradient.

12

Original image
Adversarial 
perturbation

Adversarial
 example

[Goodfellow+, Explaining and harnessing adversarial examples, ICLR 2015]
5



Attack based on Equation Solver

§ [Tramer+, Stealing machine learning models via prediction APIs, USENIX Security 2016]

§ Basic idea: equation solving

§ LR’s output:

§ A linear equation:

§ For w ∈ Rd and β ∈ R, d+1 equations are necessary and sufficient 
to perfectly recover w and β

USENIX Association  25th USENIX Security Symposium 605

A low test error implies that f̂ matches f well for in-
puts distributed like the training data samples. 2

• Uniform error Runif: For a set U of vectors uniformly
chosen in X , let Runif( f , f̂ ) =∑x∈U d( f (x), f̂ (x))/|U |.
Thus Runif estimates the fraction of the full feature
space on which f and f̂ disagree. (In our experiments,
we found |U |= 10,000 was sufficiently large to obtain
stable error estimates for the models we analyzed.)
We define the extraction accuracy under test and uni-

form error as 1−Rtest( f , f̂ ) and 1−Runif( f , f̂ ). Here we
implicitly refer to accuracy under 0-1 distance. When as-
sessing how close the class probabilities output by f̂ are
to those of f (with the total-variation distance) we use
the notations RTV

test( f , f̂ ) and RTV
unif( f , f̂ ).

An adversary may know any of a number of pieces
of information about a target f : What training algorithm
T generated f , the hyper-parameters used with T , the
feature extraction function ex, etc. We will investigate a
variety of settings in this work corresponding to different
APIs seen in practice. We assume that A has no more
information about a model’s training data, than what is
provided by an ML API (e.g., summary statistics). For
simplicity, we focus on proper model extraction: If A
believes that f belongs to some model class, then A’s
goal is to extract a model f̂ from the same class. We
discuss some intuition in favor of proper extraction in
Appendix D, and leave a broader treatment of improper
extraction strategies as an interesting open problem.

4 Extraction with Confidence Values

We begin our study of extraction attacks by focusing on
prediction APIs that return confidence values. As per
Section 2, the output of a query to f thus falls in a range
[0,1]c where c is the number of classes. To motivate this,
we recall that most ML APIs reveal confidence values
for models that support them (see Table 2). This includes
logistic regressions (LR), neural networks, and decision
trees, defined formally in Appendix A. We first introduce
a generic equation-solving attack that applies to all logis-
tic models (LR and neural networks). In Section 4.2, we
present two novel path-finding attacks on decision trees.

4.1 Equation-Solving Attacks
Many ML models we consider directly compute class
probabilities as a continuous function of the input x and
real-valued model parameters. In this case, an API that
reveals these class probabilities provides an adversary A
with samples (x, f (x)) that can be viewed as equations
in the unknown model parameters. For a large class of

2Note that for some D, it is possible that f̂ predicts true labels better
than f , yet Rtest( f , f̂ ) is large, because f̂ does not closely match f .

Data set Synthetic # records # classes # features
Circles Yes 5,000 2 2
Moons Yes 5,000 2 2
Blobs Yes 5,000 3 2
5-Class Yes 1,000 5 20
Adult (Income) No 48,842 2 108
Adult (Race) No 48,842 5 105
Iris No 150 3 4
Steak Survey No 331 5 40
GSS Survey No 16,127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 10
Mushrooms No 8,124 2 112
Diabetes No 768 2 8
Table 3: Data sets used for extraction attacks. We train two models on the
Adult data, with targets ‘Income’ and ‘Race’. SVMs and binary logistic regres-
sions are trained on data sets with 2 classes. Multiclass regressions and neural
networks are trained on multiclass data sets. For decision trees, we use a set of
public models shown in Table 5.

models, these equation systems can be efficiently solved,
thus recovering f (or some good approximation of it).

Our approach for evaluating attacks will primarily
be experimental. We use a suite of synthetic or pub-
licly available data sets to serve as stand-ins for propri-
etary data that might be the target of an extraction at-
tack. Table 3 displays the data sets used in this section,
which we obtained from various sources: the synthetic
ones we generated; the others are taken from public
surveys (Steak Survey [26] and GSS Survey [49]), from
scikit [42] (Digits) or from the UCI ML library [35].
More details about these data sets are in Appendix B.

Before training, we remove rows with missing values,
apply one-hot-encoding to categorical features, and scale
all numeric features to the range [−1,1]. We train our
models over a randomly chosen subset of 70% of the
data, and keep the rest for evaluation (i.e., to calculate
Rtest). We discuss the impact of different pre-processing
and feature extraction steps in Section 5, when we evalu-
ate equation-solving attacks on production ML services.

4.1.1 Binary logistic regression

As a simple starting point, we consider the case of logis-
tic regression (LR). A LR model performs binary clas-
sification (c = 2), by estimating the probability of a bi-
nary response, based on a number of independent fea-
tures. LR is one of the most popular binary classifiers,
due to its simplicity and efficiency. It is widely used in
many scientific fields (e.g., medical and social sciences)
and is supported by all the ML services we reviewed.

Formally, a LR model is defined by parameters w ∈
Rd , β ∈ R, and outputs a probability f1(x) = σ(w · x+
β ), where σ(t) = 1/(1+e−t). LR is a linear classifier: it
defines a hyperplane in the feature space X (defined by
w ·x+β = 0), that separates the two classes.

Given an oracle sample (x, f (x)), we get a linear equa-
tion w ·x+β =σ−1( f1(x)). Thus, d+1 samples are both
necessary and sufficient (if the queried x are linearly in-
dependent) to recover w and β . Note that the required

USENIX Association  25th USENIX Security Symposium 605

A low test error implies that f̂ matches f well for in-
puts distributed like the training data samples. 2

• Uniform error Runif: For a set U of vectors uniformly
chosen in X , let Runif( f , f̂ ) =∑x∈U d( f (x), f̂ (x))/|U |.
Thus Runif estimates the fraction of the full feature
space on which f and f̂ disagree. (In our experiments,
we found |U |= 10,000 was sufficiently large to obtain
stable error estimates for the models we analyzed.)
We define the extraction accuracy under test and uni-

form error as 1−Rtest( f , f̂ ) and 1−Runif( f , f̂ ). Here we
implicitly refer to accuracy under 0-1 distance. When as-
sessing how close the class probabilities output by f̂ are
to those of f (with the total-variation distance) we use
the notations RTV

test( f , f̂ ) and RTV
unif( f , f̂ ).

An adversary may know any of a number of pieces
of information about a target f : What training algorithm
T generated f , the hyper-parameters used with T , the
feature extraction function ex, etc. We will investigate a
variety of settings in this work corresponding to different
APIs seen in practice. We assume that A has no more
information about a model’s training data, than what is
provided by an ML API (e.g., summary statistics). For
simplicity, we focus on proper model extraction: If A
believes that f belongs to some model class, then A’s
goal is to extract a model f̂ from the same class. We
discuss some intuition in favor of proper extraction in
Appendix D, and leave a broader treatment of improper
extraction strategies as an interesting open problem.

4 Extraction with Confidence Values

We begin our study of extraction attacks by focusing on
prediction APIs that return confidence values. As per
Section 2, the output of a query to f thus falls in a range
[0,1]c where c is the number of classes. To motivate this,
we recall that most ML APIs reveal confidence values
for models that support them (see Table 2). This includes
logistic regressions (LR), neural networks, and decision
trees, defined formally in Appendix A. We first introduce
a generic equation-solving attack that applies to all logis-
tic models (LR and neural networks). In Section 4.2, we
present two novel path-finding attacks on decision trees.

4.1 Equation-Solving Attacks
Many ML models we consider directly compute class
probabilities as a continuous function of the input x and
real-valued model parameters. In this case, an API that
reveals these class probabilities provides an adversary A
with samples (x, f (x)) that can be viewed as equations
in the unknown model parameters. For a large class of

2Note that for some D, it is possible that f̂ predicts true labels better
than f , yet Rtest( f , f̂ ) is large, because f̂ does not closely match f .

Data set Synthetic # records # classes # features
Circles Yes 5,000 2 2
Moons Yes 5,000 2 2
Blobs Yes 5,000 3 2
5-Class Yes 1,000 5 20
Adult (Income) No 48,842 2 108
Adult (Race) No 48,842 5 105
Iris No 150 3 4
Steak Survey No 331 5 40
GSS Survey No 16,127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 10
Mushrooms No 8,124 2 112
Diabetes No 768 2 8
Table 3: Data sets used for extraction attacks. We train two models on the
Adult data, with targets ‘Income’ and ‘Race’. SVMs and binary logistic regres-
sions are trained on data sets with 2 classes. Multiclass regressions and neural
networks are trained on multiclass data sets. For decision trees, we use a set of
public models shown in Table 5.

models, these equation systems can be efficiently solved,
thus recovering f (or some good approximation of it).

Our approach for evaluating attacks will primarily
be experimental. We use a suite of synthetic or pub-
licly available data sets to serve as stand-ins for propri-
etary data that might be the target of an extraction at-
tack. Table 3 displays the data sets used in this section,
which we obtained from various sources: the synthetic
ones we generated; the others are taken from public
surveys (Steak Survey [26] and GSS Survey [49]), from
scikit [42] (Digits) or from the UCI ML library [35].
More details about these data sets are in Appendix B.

Before training, we remove rows with missing values,
apply one-hot-encoding to categorical features, and scale
all numeric features to the range [−1,1]. We train our
models over a randomly chosen subset of 70% of the
data, and keep the rest for evaluation (i.e., to calculate
Rtest). We discuss the impact of different pre-processing
and feature extraction steps in Section 5, when we evalu-
ate equation-solving attacks on production ML services.

4.1.1 Binary logistic regression

As a simple starting point, we consider the case of logis-
tic regression (LR). A LR model performs binary clas-
sification (c = 2), by estimating the probability of a bi-
nary response, based on a number of independent fea-
tures. LR is one of the most popular binary classifiers,
due to its simplicity and efficiency. It is widely used in
many scientific fields (e.g., medical and social sciences)
and is supported by all the ML services we reviewed.

Formally, a LR model is defined by parameters w ∈
Rd , β ∈ R, and outputs a probability f1(x) = σ(w · x+
β ), where σ(t) = 1/(1+e−t). LR is a linear classifier: it
defines a hyperplane in the feature space X (defined by
w ·x+β = 0), that separates the two classes.

Given an oracle sample (x, f (x)), we get a linear equa-
tion w ·x+β =σ−1( f1(x)). Thus, d+1 samples are both
necessary and sufficient (if the queried x are linearly in-
dependent) to recover w and β . Note that the required

USENIX Association  25th USENIX Security Symposium 605

A low test error implies that f̂ matches f well for in-
puts distributed like the training data samples. 2

• Uniform error Runif: For a set U of vectors uniformly
chosen in X , let Runif( f , f̂ ) =∑x∈U d( f (x), f̂ (x))/|U |.
Thus Runif estimates the fraction of the full feature
space on which f and f̂ disagree. (In our experiments,
we found |U |= 10,000 was sufficiently large to obtain
stable error estimates for the models we analyzed.)
We define the extraction accuracy under test and uni-

form error as 1−Rtest( f , f̂ ) and 1−Runif( f , f̂ ). Here we
implicitly refer to accuracy under 0-1 distance. When as-
sessing how close the class probabilities output by f̂ are
to those of f (with the total-variation distance) we use
the notations RTV

test( f , f̂ ) and RTV
unif( f , f̂ ).

An adversary may know any of a number of pieces
of information about a target f : What training algorithm
T generated f , the hyper-parameters used with T , the
feature extraction function ex, etc. We will investigate a
variety of settings in this work corresponding to different
APIs seen in practice. We assume that A has no more
information about a model’s training data, than what is
provided by an ML API (e.g., summary statistics). For
simplicity, we focus on proper model extraction: If A
believes that f belongs to some model class, then A’s
goal is to extract a model f̂ from the same class. We
discuss some intuition in favor of proper extraction in
Appendix D, and leave a broader treatment of improper
extraction strategies as an interesting open problem.

4 Extraction with Confidence Values

We begin our study of extraction attacks by focusing on
prediction APIs that return confidence values. As per
Section 2, the output of a query to f thus falls in a range
[0,1]c where c is the number of classes. To motivate this,
we recall that most ML APIs reveal confidence values
for models that support them (see Table 2). This includes
logistic regressions (LR), neural networks, and decision
trees, defined formally in Appendix A. We first introduce
a generic equation-solving attack that applies to all logis-
tic models (LR and neural networks). In Section 4.2, we
present two novel path-finding attacks on decision trees.

4.1 Equation-Solving Attacks
Many ML models we consider directly compute class
probabilities as a continuous function of the input x and
real-valued model parameters. In this case, an API that
reveals these class probabilities provides an adversary A
with samples (x, f (x)) that can be viewed as equations
in the unknown model parameters. For a large class of

2Note that for some D, it is possible that f̂ predicts true labels better
than f , yet Rtest( f , f̂ ) is large, because f̂ does not closely match f .

Data set Synthetic # records # classes # features
Circles Yes 5,000 2 2
Moons Yes 5,000 2 2
Blobs Yes 5,000 3 2
5-Class Yes 1,000 5 20
Adult (Income) No 48,842 2 108
Adult (Race) No 48,842 5 105
Iris No 150 3 4
Steak Survey No 331 5 40
GSS Survey No 16,127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 10
Mushrooms No 8,124 2 112
Diabetes No 768 2 8
Table 3: Data sets used for extraction attacks. We train two models on the
Adult data, with targets ‘Income’ and ‘Race’. SVMs and binary logistic regres-
sions are trained on data sets with 2 classes. Multiclass regressions and neural
networks are trained on multiclass data sets. For decision trees, we use a set of
public models shown in Table 5.

models, these equation systems can be efficiently solved,
thus recovering f (or some good approximation of it).

Our approach for evaluating attacks will primarily
be experimental. We use a suite of synthetic or pub-
licly available data sets to serve as stand-ins for propri-
etary data that might be the target of an extraction at-
tack. Table 3 displays the data sets used in this section,
which we obtained from various sources: the synthetic
ones we generated; the others are taken from public
surveys (Steak Survey [26] and GSS Survey [49]), from
scikit [42] (Digits) or from the UCI ML library [35].
More details about these data sets are in Appendix B.

Before training, we remove rows with missing values,
apply one-hot-encoding to categorical features, and scale
all numeric features to the range [−1,1]. We train our
models over a randomly chosen subset of 70% of the
data, and keep the rest for evaluation (i.e., to calculate
Rtest). We discuss the impact of different pre-processing
and feature extraction steps in Section 5, when we evalu-
ate equation-solving attacks on production ML services.

4.1.1 Binary logistic regression

As a simple starting point, we consider the case of logis-
tic regression (LR). A LR model performs binary clas-
sification (c = 2), by estimating the probability of a bi-
nary response, based on a number of independent fea-
tures. LR is one of the most popular binary classifiers,
due to its simplicity and efficiency. It is widely used in
many scientific fields (e.g., medical and social sciences)
and is supported by all the ML services we reviewed.

Formally, a LR model is defined by parameters w ∈
Rd , β ∈ R, and outputs a probability f1(x) = σ(w · x+
β ), where σ(t) = 1/(1+e−t). LR is a linear classifier: it
defines a hyperplane in the feature space X (defined by
w ·x+β = 0), that separates the two classes.

Given an oracle sample (x, f (x)), we get a linear equa-
tion w ·x+β =σ−1( f1(x)). Thus, d+1 samples are both
necessary and sufficient (if the queried x are linearly in-
dependent) to recover w and β . Note that the required

USENIX Association  25th USENIX Security Symposium 605

A low test error implies that f̂ matches f well for in-
puts distributed like the training data samples. 2

• Uniform error Runif: For a set U of vectors uniformly
chosen in X , let Runif( f , f̂ ) =∑x∈U d( f (x), f̂ (x))/|U |.
Thus Runif estimates the fraction of the full feature
space on which f and f̂ disagree. (In our experiments,
we found |U |= 10,000 was sufficiently large to obtain
stable error estimates for the models we analyzed.)
We define the extraction accuracy under test and uni-

form error as 1−Rtest( f , f̂ ) and 1−Runif( f , f̂ ). Here we
implicitly refer to accuracy under 0-1 distance. When as-
sessing how close the class probabilities output by f̂ are
to those of f (with the total-variation distance) we use
the notations RTV

test( f , f̂ ) and RTV
unif( f , f̂ ).

An adversary may know any of a number of pieces
of information about a target f : What training algorithm
T generated f , the hyper-parameters used with T , the
feature extraction function ex, etc. We will investigate a
variety of settings in this work corresponding to different
APIs seen in practice. We assume that A has no more
information about a model’s training data, than what is
provided by an ML API (e.g., summary statistics). For
simplicity, we focus on proper model extraction: If A
believes that f belongs to some model class, then A’s
goal is to extract a model f̂ from the same class. We
discuss some intuition in favor of proper extraction in
Appendix D, and leave a broader treatment of improper
extraction strategies as an interesting open problem.

4 Extraction with Confidence Values

We begin our study of extraction attacks by focusing on
prediction APIs that return confidence values. As per
Section 2, the output of a query to f thus falls in a range
[0,1]c where c is the number of classes. To motivate this,
we recall that most ML APIs reveal confidence values
for models that support them (see Table 2). This includes
logistic regressions (LR), neural networks, and decision
trees, defined formally in Appendix A. We first introduce
a generic equation-solving attack that applies to all logis-
tic models (LR and neural networks). In Section 4.2, we
present two novel path-finding attacks on decision trees.

4.1 Equation-Solving Attacks
Many ML models we consider directly compute class
probabilities as a continuous function of the input x and
real-valued model parameters. In this case, an API that
reveals these class probabilities provides an adversary A
with samples (x, f (x)) that can be viewed as equations
in the unknown model parameters. For a large class of

2Note that for some D, it is possible that f̂ predicts true labels better
than f , yet Rtest( f , f̂ ) is large, because f̂ does not closely match f .

Data set Synthetic # records # classes # features
Circles Yes 5,000 2 2
Moons Yes 5,000 2 2
Blobs Yes 5,000 3 2
5-Class Yes 1,000 5 20
Adult (Income) No 48,842 2 108
Adult (Race) No 48,842 5 105
Iris No 150 3 4
Steak Survey No 331 5 40
GSS Survey No 16,127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 10
Mushrooms No 8,124 2 112
Diabetes No 768 2 8
Table 3: Data sets used for extraction attacks. We train two models on the
Adult data, with targets ‘Income’ and ‘Race’. SVMs and binary logistic regres-
sions are trained on data sets with 2 classes. Multiclass regressions and neural
networks are trained on multiclass data sets. For decision trees, we use a set of
public models shown in Table 5.

models, these equation systems can be efficiently solved,
thus recovering f (or some good approximation of it).

Our approach for evaluating attacks will primarily
be experimental. We use a suite of synthetic or pub-
licly available data sets to serve as stand-ins for propri-
etary data that might be the target of an extraction at-
tack. Table 3 displays the data sets used in this section,
which we obtained from various sources: the synthetic
ones we generated; the others are taken from public
surveys (Steak Survey [26] and GSS Survey [49]), from
scikit [42] (Digits) or from the UCI ML library [35].
More details about these data sets are in Appendix B.

Before training, we remove rows with missing values,
apply one-hot-encoding to categorical features, and scale
all numeric features to the range [−1,1]. We train our
models over a randomly chosen subset of 70% of the
data, and keep the rest for evaluation (i.e., to calculate
Rtest). We discuss the impact of different pre-processing
and feature extraction steps in Section 5, when we evalu-
ate equation-solving attacks on production ML services.

4.1.1 Binary logistic regression

As a simple starting point, we consider the case of logis-
tic regression (LR). A LR model performs binary clas-
sification (c = 2), by estimating the probability of a bi-
nary response, based on a number of independent fea-
tures. LR is one of the most popular binary classifiers,
due to its simplicity and efficiency. It is widely used in
many scientific fields (e.g., medical and social sciences)
and is supported by all the ML services we reviewed.

Formally, a LR model is defined by parameters w ∈
Rd , β ∈ R, and outputs a probability f1(x) = σ(w · x+
β ), where σ(t) = 1/(1+e−t). LR is a linear classifier: it
defines a hyperplane in the feature space X (defined by
w ·x+β = 0), that separates the two classes.

Given an oracle sample (x, f (x)), we get a linear equa-
tion w ·x+β =σ−1( f1(x)). Thus, d+1 samples are both
necessary and sufficient (if the queried x are linearly in-
dependent) to recover w and β . Note that the required

7



JBDA (Jacobian-Based Dataset Augmentation) Attack

§ [Papernot+, Practical black-box attacks against 
machine learning. ASIA CCS 2017]

§ Goal: creating adversarial examples using a 
substitute model

§ Jacobian-Based Dataset Augmentation

approach, illustrated in Figure 3, overcomes these challenges
mainly by introducing a synthetic data generation technique,
the Jacobian-based Dataset Augmentation. We emphasize
that this technique is not designed to maximize the substitute
DNN’s accuracy but rather ensure that it approximates the
oracle’s decision boundaries with few label queries.

Substitute Architecture: This factor is not the most
limiting as the adversary must at least have some partial
knowledge of the oracle input (e.g., images, text) and ex-
pected output (e.g., classification). The adversary can thus
use an architecture adapted to the input-output relation. For
instance, a convolutional neural network is suitable for image
classification. Furthermore, we show in Section 6 that the
type, number, and size of layers used in the substitute DNN
have relatively little impact on the success of the attack.
Adversaries can also consider performing an architecture ex-
ploration and train several substitute models before selecting
the one yielding the highest attack success.

Generating a Synthetic Dataset: To better understand
the need for synthetic data, note that we could potentially
make an infinite number of queries to obtain the oracle’s
output O(~x) for any input ~x belonging to the input domain.
This would provide us with a copy of the oracle. However,
this is simply not tractable: consider a DNN with M input
components, each taking discrete values among a set of K
possible values, the number of possible inputs to be queried
is KM . The intractability is even more apparent for inputs in
the continuous domain. Furthermore, making a large number
of queries renders the adversarial behavior easy to detect.
A natural alternative is to resort to randomly selecting

additional points to be queried. For instance, we tried using
Gaussian noise to select points on which to train substitutes.
However, the resulting models were not able to learn by
querying the oracle. This is likely due to noise not being
representative of the input distribution. To address this issue,
we thus introduce a heuristic e�ciently exploring the input
domain and, as shown in Sections 5 and 6, drastically limits
the number of oracle queries. Furthermore, our technique
also ensures that the substitute DNN is an approximation of
the targeted DNN i.e. it learns similar decision boundaries.

The heuristic used to generate synthetic training inputs is
based on identifying directions in which the model’s output is
varying, around an initial set of training points. Such direc-
tions intuitively require more input-output pairs to capture
the output variations of the target DNN O. Therefore, to
get a substitute DNN accurately approximating the oracle’s
decision boundaries, the heuristic prioritizes these samples
when querying the oracle for labels. These directions are
identified with the substitute DNN’s Jacobian matrix JF ,
which is evaluated at several input points ~x (how these
points are chosen is described below). Precisely, the adver-
sary evaluates the sign of the Jacobian matrix dimension
corresponding to the label assigned to input ~x by the ora-

cle: sgn
⇣
JF (~x)[Õ(~x)]

⌘
. To obtain a new synthetic training

point, a term � · sgn
⇣
JF (~x)[Õ(~x)]

⌘
is added to the original

point ~x. We name this technique Jacobian-based Dataset
Augmentation. We base our substitute training algorithm
on the idea of iteratively refining the model in directions
identified using the Jacobian.

Substitute DNN Training Algorithm: We now describe

Algorithm 1 - Substitute DNN Training: for oracle Õ,
a maximum number max⇢ of substitute training epochs, a
substitute architecture F , and an initial training set S0.

Input: Õ, max⇢, S0, �
1: Define architecture F
2: for ⇢ 2 0 .. max⇢ � 1 do
3: // Label the substitute training set

4: D  
n
(~x, Õ(~x)) : ~x 2 S⇢

o

5: // Train F on D to evaluate parameters ✓F
6: ✓F  train(F,D)
7: // Perform Jacobian-based dataset augmentation
8: S⇢+1  {~x+ � · sgn(JF [Õ(~x)]) : ~x 2 S⇢} [ S⇢

9: end for
10: return ✓F

the five-step training procedure outlined in Algorithm 1:

• Initial Collection (1): The adversary collects a very
small set S0 of inputs representative of the input do-
main. For instance, if the targeted oracle O classifies
handwritten digits, the adversary collects 10 images of
each digit 0 through 9. We show in Section 5 that this
set does not necessarily have to come from the distri-
bution from which the targeted oracle was trained.

• Architecture Selection (2): The adversary selects
an architecture to be trained as the substitute F . Again,
this can be done using high-level knowledge of the clas-
sification task performed by the oracle (e.g., convolu-
tional networks are appropriate for vision)

• Substitute Training: The adversary iteratively trains
more accurate substitute DNNs F⇢ by repeating the
following for ⇢ 2 0..⇢max:

– Labeling (3): By querying for the labels Õ(~x)
output by oracle O, the adversary labels each
sample ~x 2 S⇢ in its initial substitute training set
S⇢.

– Training (4): The adversary trains the architec-
ture chosen at step (2) using substitute training
set S⇢ in conjunction with classical training tech-
niques.

– Augmentation (5): The adversary applies our
augmentation technique on the initial substitute
training set S⇢ to produce a larger substitute train-
ing set S⇢+1 with more synthetic training points.
This new training set better represents the model’s
decision boundaries. The adversary repeats steps
(3) and (4) with the augmented set S⇢+1.

Step (3) is repeated several times to increase the substitute
DNN’s accuracy and the similarity of its decision boundaries
with the oracle. We introduce the term substitute training
epoch, indexed with ⇢, to refer to each iteration performed.
This leads to this formalization of the Jacobian-based Dataset
Augmentation performed at step (5) of our substitute training
algorithm to find more synthetic training points:

S⇢+1 = {~x+ � · sgn(JF [Õ(~x)]) : ~x 2 S⇢} [ S⇢ (4)

where � is a parameter of the augmentation: it defines the
size of the step taken in the sensitive direction identified by
the Jacobian matrix to augment the set S⇢ into S⇢+1.

S0: Seed dataset

Query and record 
victim’s response

Train the 
clone model

Augment the seed set

8



Knockoff Nets

§ [Orekondy+, Knockoff nets: Stealing functionality of black-box models, CVPR 2019]

§ Idea: use inputs from public datasets (e.g., ImageNet) as queries
§ So far, we’ve used synthetic inputs for query

9

Attack 
queries 
(OOD, 
imagenet)

Data from 
victim’s 
training 
distributi
n FV



Knockoff Nets

πt(z) = eHt(z)
∑

z′
eHt(z

′) . Upon reaching a leaf-node, a sample

of images is returned corresponding to label zt.

Learning the Policy. We use the received reward rt for
an action zt to update the policy π using the gradient bandit
algorithm [33]. This update is equivalent to a backward-
pass through the tree (denoted by a green line in Figure 4b),
where the node potentials are updated as:

Ht+1(zt) = Ht(zt) + α(rt − r̄t)(1− πt(zt)) and (2)

Ht+1(z
′) = Ht(z

′) + α(rt − r̄t)πt(z
′) ∀z′ #= zt (3)

where α = 1/N(z) is the learning rate, N(z) is the num-
ber of times action z has been drawn, and r̄t is the mean-
reward over past ∆ time-steps. π0(z) and H0(z) are intial-
ized such that reaching all leaf nodes in the hierarchy are
equally probable.

Rewards. To evaluate the quality of sampled images xt,
we study three rewards. We use a margin-based certainty
measure [18, 30] to encourage images where the victim is
confident (hence indicating the domain FV was trained on):

Rcert(yt) = P (yt,k1 |xt)− P (yt,k2 |xt) (4)

where ki is the ith-most confident class. To prevent the de-
generate case of image exploitation over a single label, we
introduce a diversity reward:

Rdiv(y1:t) =
∑

k

max(0, yt,k − ȳt:t−∆,k) (5)

To encourage images where the knockoff prediction ŷt =
FA(xt) does not imitate FV , we reward high CE loss:

RL(yt, ŷt) = L(yt, ŷt) (6)

We sum up individual rewards when multiple measures are
used. To maintain an equal weighting, each reward is in-
dividually rescaled to [0, 1] and subtracted with a baseline
computed over past ∆ time-steps.

4.2. Training Knockoff FA

As a product of the previous step of interactively
querying the blackbox model, we have a transfer set
{(xt, FV (xt)}Bt=1, xt

π
∼ PA(X). Now we address how

this is used to train a knockoff FA.

Selecting Architecture FA. Few works [24, 37] have re-
cently explored reverse-engineering the blackbox i.e., iden-
tifying the architecture, hyperparameters, etc. We how-
ever argue this is orthogonal to our requirement of sim-
ply stealing the functionality. Instead, we represent FA

with a reasonably complex architecture e.g., VGG [32] or
ResNet [13]. Existing findings in KD [10, 14] and model
compression [4,12,16] indicate robustness to choice of rea-
sonably complex student models. We investigate the choice
under weaker knowledge of the teacher (FV ) e.g., training
data and architecture is unknown.

Blackbox (FV ) |Dtrain
V

|+ |Dtest
V

| Output classes K

Caltech256 [11] 23.3k + 6.4k 256 general object categories
CUBS200 [36] 6k + 5.8k 200 bird species
Indoor67 [26] 14.3k + 1.3k 67 indoor scenes
Diabetic5 [1] 34.1k + 1k 5 diabetic retinopathy scales

Table 1: Four victim blackboxes FV . Each blackbox is named
in the format: [dataset][# output classes].

Training to Imitate. To bootstrap learning, we begin with
a pretrained Imagenet network FA (see § D.1 in supplemen-
tary for discussion on other initializations). We train the
knockoff FA to imitate FV on the transfer set by minimiz-
ing the cross-entropy (CE) loss: LCE(y, ŷ) = −

∑
k p(yk) ·

log p(ŷk). This is a standard CE loss, albeit weighed with
the confidence p(yk) of the victim’s label.

5. Experimental Setup

We now discuss the experimental setup of multiple vic-
tim blackboxes (Section 5.1), followed by details on the ad-
versary’s approach (Section 5.2).

5.1. Black-box Victim Models FV

We choose four diverse image classification CNNs, ad-
dressing multiple challenges in image classification e.g.,
fine-grained recognition. Each CNN performs a task spe-
cific to a dataset. A summary of the blackboxes is presented
in Table 1 (extended descriptions in appendix).

Training the Black-boxes. All models are trained us-
ing a ResNet-34 architecture (with ImageNet [7] pretrained
weights) on the training split of the respective datasets. We
find this architecture choice achieve strong performance on
all datasets at a reasonable computational cost. Models are
trained using SGD with momentum (of 0.5) optimizer for
200 epochs with a base learning rate of 0.1 decayed by a
factor of 0.1 every 60 epochs. We follow the train-test splits
suggested by the respective authors for Caltech-256 [11],
CUBS-200-2011 [36], and Indoor-Scenes [26]. Since GT
annotations for Diabetic-Retinopathy [1] test images are
not provided, we reserve 200 training images for each of
the five classes for testing. The number of test images per
class for all datasets are roughly balanced. The test images
of these datasets Dtest

V are used to evaluate both the victim
and knockoff models.

After these four victim models are trained, we use them
as a blackbox for the remainder of the paper: images in,
posterior probabilities out.

5.2. Representing PA

In this section, we elaborate on the setup of two aspects
relevant to transfer set construction (Section 4.1).

4957

Choice of PA
i. PA = PV  (KD)
ii. PA = ILSVRC
iii. PA = OpenImages (v4: 9.2M images from Flickr. A 550K subset of unique images by 

sampling 2k from each of 600 categories.
iv. PA = D2 , The universe (the dataset of datasets) all in table 1 + ILSVRC + 

OpenImages

Result: we can clone the victim models 
surprisingly well with OOD queries!

10



Defense Techniques

11



PP (Prediction Poisoning)

§ [Orekondy+, Prediction poisoning: Towards defenses against DNN model stealing attacks, ICLR 2020]

§ Insight: unlike a benign user, a model 
stealing attacker additionally uses the 
predictions to train a replica model

§ Idea: introduce controlled perturbations 
to predictions: we can poison the 
attacker’s training objective, especially 
the gradient signal

Published as a conference paper at ICLR 2020

posteriors (blue line in Fig. 1) to train stolen models and the top-1 label (orange line) alone. In this
paper, we work towards effective defenses (red line in Fig. 1) against DNN stealing attacks with
minimal impact to defender’s accuracy.

Figure 1: We find existing de-
fenses (orange line) ineffective
against recent attacks. Our de-
fense (red line) in contrast signif-
icantly mitigates the attacks.

Attacker’s Loss Landscape

Our Perturbation Objective:

Figure 2: We perturb posterior
predictions ỹ = y + �, with an
objective of poisoning the adver-
sary’s gradient signal.

The main insight to our approach is that unlike a benign user, a
model stealing attacker additionally uses the predictions to train a
replica model. By introducing controlled perturbations to predic-
tions, our approach targets poisoning the training objective (see Fig.
2). Our approach allows for a utility-preserving defense, as well as
trading-off a marginal utility cost to significantly degrade attacker’s
performance. As a practical benefit, the defense involves a single
hyperparameter (perturbation utility budget) and can be used with
minimal overhead to any classification model without retraining or
modifications.

We rigorously evaluate our approach by defending six victim mod-
els, against four recent and effective DNN stealing attack strategies
(Papernot et al., 2017b; Juuti et al., 2019; Orekondy et al., 2019).
Our defense consistently mitigates all stealing attacks and further
shows improvements over multiple baselines. In particular, we find
our defenses degrades the attacker’s query sample efficiency by 1-2
orders of magnitude. Our approach significantly reduces the at-
tacker’s performance (e.g., 30-53% reduction on MNIST and 13-
28% on CUB200) at a marginal cost (1-2%) to defender’s test accu-
racy. Furthermore, our approach can achieve the same level of mit-
igation as baseline defenses, but by introducing significantly lesser
perturbation.

Contributions. (i) We propose the first utility-constrained de-
fense against DNN model stealing attacks; (ii) We present the first
active defense which poisons the attacker’s training objective by in-
troducing bounded perturbations; and (iii) Through extensive exper-
iments, we find our approach consistently mitigate various attacks
and additionally outperform baselines.

2 RELATED LITERATURE

Model stealing attacks (also referred to as ‘extraction’ or ‘reverse-engineering’) in literature aim to
infer hyperparameters (Oh et al., 2018; Wang & Gong, 2018), recover exact parameters (Lowd &
Meek, 2005; Tramèr et al., 2016; Milli et al., 2018), or extract the functionality (Correia-Silva et al.,
2018; Orekondy et al., 2019) of a target black-box ML model. In some cases, the extracted model
information is optionally used to perform evasion attacks (Lowd & Meek, 2005; Nelson et al., 2010;
Papernot et al., 2017b). The focus of our work is model functionality stealing, where the attacker’s
yardstick is test-set accuracy of the stolen model. Initial works on stealing simple linear models
(Lowd & Meek, 2005) have been recently succeeded by attacks shown to be effective on complex
CNNs (Papernot et al., 2017b; Correia-Silva et al., 2018; Orekondy et al., 2019) (see Appendix B
for an exhaustive list). In this work, we works towards defenses targeting the latter line of DNN
model stealing attacks.

Since ML models are often deployed in untrusted environments, a long line of work exists on guar-
anteeing certain (often orthogonal) properties to safeguard against malicious users. The properties
include security (e.g., robustness towards adversarial evasion attacks (Biggio et al., 2013; Goodfel-
low et al., 2014; Madry et al., 2018)) and integrity (e.g., running in untrusted environments (Tramer
& Boneh, 2019)). To prevent leakage of private attributes (e.g., identities) specific to training data in
the resulting ML model, differential privacy (DP) methods (Dwork et al., 2014) introduce random-
ization during training (Abadi et al., 2016; Papernot et al., 2017a). In contrast, our defense objective
is to provide confidentiality and protect the functionality (intellectual property) of the ML model
against illicit duplication.

2

12



PP (Prediction Poisoning)

Published as a conference paper at ICLR 2020

w.r.t. the model parameters w 2 RD:
u = �rwL(F (x;w),y) (1)

Maximizing Angular Deviation (MAD). The core idea of our approach is to perturb the posterior
probabilities y which results in an adversarial gradient signal that maximally deviates (see Fig. 2)
from the original gradient (Eq. 1). More formally, we add targeted noise to the posteriors which
results in a gradient direction:

a = �rwL(F (x;w), ỹ) (2)
to maximize the angular deviation between the original and the poisoned gradient signals:

max
a

2(1� cos\(a,u)) = max
â

||â� û||22 (â = a/||a||2, û = u/||u||2) (3)

Given that the attacker model is trained to match the posterior predictions, such as by minimizing
the cross-entropy loss L(y, ỹ) = �

P
k
ỹk log yk we rewrite Equation (2) as:

a = �rwL(F (x;w), ỹ) = rw

X

k

ỹk logF (x;w)k =
X

k

ỹkrw logF (x;w)k = GT ỹ

where G 2 RK⇥D represents the Jacobian over log-likelihood predictions F (x;w) over K classes
w.r.t. parameters w 2 RD. By similarly rewriting Equation (1), substituting them in Equation
(3) and including the constraints, we arrive at our poisoning objective (Eq. 4-7) of our approach
which we refer to as MAD. We can optionally enforce preserving accuracy of poisoned prediction
via constraint (8), which will be discussed shortly.

max
ỹ

����
GT ỹ

||GT ỹ||2
� GTy

||GTy||2

����
2

2

(= H(ỹ)) (4)

where G = rw logF (x;w) (G 2 RK⇥D) (5)

s.t ỹ 2 �K (Simplex constraint) (6)
dist(y, ỹ)  ✏ (Utility constraint) (7)
argmax

k

ỹk = argmax
k

yk (For variant MAD-argmax) (8)

The above presents a challenge of black-box optimization problem for the defense since the defender
justifiably lacks access to the attacker model F (Eq. 5). Apart from addressing this challenge in
the next few paragraphs, we also discuss (a) solving a non-standard and non-convex constrained
maximization objective; and (b) preserving accuracy of predictions via constraint (8).

Estimating G. Since we lack access to adversary’s model F , we estimate the jacobian G =
rw logFsur(x;w) (Eq. 5) per input query x using a surrogate model Fsur. We empirically de-
termined (details in Appendix E.1) choice of architecture of Fsur robust to choices of adversary’s
architecture F . However, the initialization of Fsur plays a crucial role, with best results on a fixed
randomly initialized model. We conjecture this occurs due to surrogate models with a high loss
provide better gradient signals to guide the defender.

Heuristic Solver. Gradient-based strategies to optimize objective (Eq. 4) often leads to poor local
maxima. This is in part due to the objective increasing in all directions around point y (assuming G
is full-rank), making optimization sensitive to initialization. Consequently, we resort to a heuristic
to solve for ỹ. Our approach is motivated by Hoffman (1981), who show that the maximum of
a convex function over a compact convex set occurs at the extreme points of the set. Hence, our
two-step solver: (i) searches for a maximizer y⇤ for (4) by iterating over the K extremes yk (where
yk=1) of the probability simplex �K ; and (ii) then computes a perturbed posterior ỹ as a linear
interpolation of the original posteriors y and the maximizer y⇤: ỹ = (1 � ↵)y + ↵y⇤, where ↵ is
selected such that the utility constraint (Eq. 7) is satisfied. We further elaborate on the solver and
present a pseudocode in Appendix C.

Variant: MAD-argmax. Within our defense formulation, we encode an additional constraint
(Eq. 8) to preserve the accuracy of perturbed predictions. MAD-argmax variant helps us perform
accuracy-preserving perturbations similar to prior work. But in contrast, the perturbations are con-

strained (Eq. 7) and are specifically introduced to maximize the MAD objective. We enforce the
accuracy-preserving constraint in our solver by iterating over extremes of intersection of sets Eq.(6)
and (8): �K

k
= {y ⌫ 0,1Ty = 1, yk � yj , k 6= j} ✓ �K .

4

Maximum angular deviation (MAD)

Published as a conference paper at ICLR 2020

w.r.t. the model parameters w 2 RD:
u = �rwL(F (x;w),y) (1)

Maximizing Angular Deviation (MAD). The core idea of our approach is to perturb the posterior
probabilities y which results in an adversarial gradient signal that maximally deviates (see Fig. 2)
from the original gradient (Eq. 1). More formally, we add targeted noise to the posteriors which
results in a gradient direction:

a = �rwL(F (x;w), ỹ) (2)
to maximize the angular deviation between the original and the poisoned gradient signals:

max
a

2(1� cos\(a,u)) = max
â

||â� û||22 (â = a/||a||2, û = u/||u||2) (3)

Given that the attacker model is trained to match the posterior predictions, such as by minimizing
the cross-entropy loss L(y, ỹ) = �

P
k
ỹk log yk we rewrite Equation (2) as:

a = �rwL(F (x;w), ỹ) = rw

X

k

ỹk logF (x;w)k =
X

k

ỹkrw logF (x;w)k = GT ỹ

where G 2 RK⇥D represents the Jacobian over log-likelihood predictions F (x;w) over K classes
w.r.t. parameters w 2 RD. By similarly rewriting Equation (1), substituting them in Equation
(3) and including the constraints, we arrive at our poisoning objective (Eq. 4-7) of our approach
which we refer to as MAD. We can optionally enforce preserving accuracy of poisoned prediction
via constraint (8), which will be discussed shortly.

max
ỹ

����
GT ỹ

||GT ỹ||2
� GTy

||GTy||2

����
2

2

(= H(ỹ)) (4)

where G = rw logF (x;w) (G 2 RK⇥D) (5)

s.t ỹ 2 �K (Simplex constraint) (6)
dist(y, ỹ)  ✏ (Utility constraint) (7)
argmax

k

ỹk = argmax
k

yk (For variant MAD-argmax) (8)

The above presents a challenge of black-box optimization problem for the defense since the defender
justifiably lacks access to the attacker model F (Eq. 5). Apart from addressing this challenge in
the next few paragraphs, we also discuss (a) solving a non-standard and non-convex constrained
maximization objective; and (b) preserving accuracy of predictions via constraint (8).

Estimating G. Since we lack access to adversary’s model F , we estimate the jacobian G =
rw logFsur(x;w) (Eq. 5) per input query x using a surrogate model Fsur. We empirically de-
termined (details in Appendix E.1) choice of architecture of Fsur robust to choices of adversary’s
architecture F . However, the initialization of Fsur plays a crucial role, with best results on a fixed
randomly initialized model. We conjecture this occurs due to surrogate models with a high loss
provide better gradient signals to guide the defender.

Heuristic Solver. Gradient-based strategies to optimize objective (Eq. 4) often leads to poor local
maxima. This is in part due to the objective increasing in all directions around point y (assuming G
is full-rank), making optimization sensitive to initialization. Consequently, we resort to a heuristic
to solve for ỹ. Our approach is motivated by Hoffman (1981), who show that the maximum of
a convex function over a compact convex set occurs at the extreme points of the set. Hence, our
two-step solver: (i) searches for a maximizer y⇤ for (4) by iterating over the K extremes yk (where
yk=1) of the probability simplex �K ; and (ii) then computes a perturbed posterior ỹ as a linear
interpolation of the original posteriors y and the maximizer y⇤: ỹ = (1 � ↵)y + ↵y⇤, where ↵ is
selected such that the utility constraint (Eq. 7) is satisfied. We further elaborate on the solver and
present a pseudocode in Appendix C.

Variant: MAD-argmax. Within our defense formulation, we encode an additional constraint
(Eq. 8) to preserve the accuracy of perturbed predictions. MAD-argmax variant helps us perform
accuracy-preserving perturbations similar to prior work. But in contrast, the perturbations are con-

strained (Eq. 7) and are specifically introduced to maximize the MAD objective. We enforce the
accuracy-preserving constraint in our solver by iterating over extremes of intersection of sets Eq.(6)
and (8): �K

k
= {y ⌫ 0,1Ty = 1, yk � yj , k 6= j} ✓ �K .

4

Published as a conference paper at ICLR 2020

posteriors (blue line in Fig. 1) to train stolen models and the top-1 label (orange line) alone. In this
paper, we work towards effective defenses (red line in Fig. 1) against DNN stealing attacks with
minimal impact to defender’s accuracy.

Figure 1: We find existing de-
fenses (orange line) ineffective
against recent attacks. Our de-
fense (red line) in contrast signif-
icantly mitigates the attacks.

Attacker’s Loss Landscape

Our Perturbation Objective:

Figure 2: We perturb posterior
predictions ỹ = y + �, with an
objective of poisoning the adver-
sary’s gradient signal.

The main insight to our approach is that unlike a benign user, a
model stealing attacker additionally uses the predictions to train a
replica model. By introducing controlled perturbations to predic-
tions, our approach targets poisoning the training objective (see Fig.
2). Our approach allows for a utility-preserving defense, as well as
trading-off a marginal utility cost to significantly degrade attacker’s
performance. As a practical benefit, the defense involves a single
hyperparameter (perturbation utility budget) and can be used with
minimal overhead to any classification model without retraining or
modifications.

We rigorously evaluate our approach by defending six victim mod-
els, against four recent and effective DNN stealing attack strategies
(Papernot et al., 2017b; Juuti et al., 2019; Orekondy et al., 2019).
Our defense consistently mitigates all stealing attacks and further
shows improvements over multiple baselines. In particular, we find
our defenses degrades the attacker’s query sample efficiency by 1-2
orders of magnitude. Our approach significantly reduces the at-
tacker’s performance (e.g., 30-53% reduction on MNIST and 13-
28% on CUB200) at a marginal cost (1-2%) to defender’s test accu-
racy. Furthermore, our approach can achieve the same level of mit-
igation as baseline defenses, but by introducing significantly lesser
perturbation.

Contributions. (i) We propose the first utility-constrained de-
fense against DNN model stealing attacks; (ii) We present the first
active defense which poisons the attacker’s training objective by in-
troducing bounded perturbations; and (iii) Through extensive exper-
iments, we find our approach consistently mitigate various attacks
and additionally outperform baselines.

2 RELATED LITERATURE

Model stealing attacks (also referred to as ‘extraction’ or ‘reverse-engineering’) in literature aim to
infer hyperparameters (Oh et al., 2018; Wang & Gong, 2018), recover exact parameters (Lowd &
Meek, 2005; Tramèr et al., 2016; Milli et al., 2018), or extract the functionality (Correia-Silva et al.,
2018; Orekondy et al., 2019) of a target black-box ML model. In some cases, the extracted model
information is optionally used to perform evasion attacks (Lowd & Meek, 2005; Nelson et al., 2010;
Papernot et al., 2017b). The focus of our work is model functionality stealing, where the attacker’s
yardstick is test-set accuracy of the stolen model. Initial works on stealing simple linear models
(Lowd & Meek, 2005) have been recently succeeded by attacks shown to be effective on complex
CNNs (Papernot et al., 2017b; Correia-Silva et al., 2018; Orekondy et al., 2019) (see Appendix B
for an exhaustive list). In this work, we works towards defenses targeting the latter line of DNN
model stealing attacks.

Since ML models are often deployed in untrusted environments, a long line of work exists on guar-
anteeing certain (often orthogonal) properties to safeguard against malicious users. The properties
include security (e.g., robustness towards adversarial evasion attacks (Biggio et al., 2013; Goodfel-
low et al., 2014; Madry et al., 2018)) and integrity (e.g., running in untrusted environments (Tramer
& Boneh, 2019)). To prevent leakage of private attributes (e.g., identities) specific to training data in
the resulting ML model, differential privacy (DP) methods (Dwork et al., 2014) introduce random-
ization during training (Abadi et al., 2016; Papernot et al., 2017a). In contrast, our defense objective
is to provide confidentiality and protect the functionality (intellectual property) of the ML model
against illicit duplication.

2

Published as a conference paper at ICLR 2020

w.r.t. the model parameters w 2 RD:
u = �rwL(F (x;w),y) (1)

Maximizing Angular Deviation (MAD). The core idea of our approach is to perturb the posterior
probabilities y which results in an adversarial gradient signal that maximally deviates (see Fig. 2)
from the original gradient (Eq. 1). More formally, we add targeted noise to the posteriors which
results in a gradient direction:

a = �rwL(F (x;w), ỹ) (2)
to maximize the angular deviation between the original and the poisoned gradient signals:

max
a

2(1� cos\(a,u)) = max
â

||â� û||22 (â = a/||a||2, û = u/||u||2) (3)

Given that the attacker model is trained to match the posterior predictions, such as by minimizing
the cross-entropy loss L(y, ỹ) = �

P
k
ỹk log yk we rewrite Equation (2) as:

a = �rwL(F (x;w), ỹ) = rw

X

k

ỹk logF (x;w)k =
X

k

ỹkrw logF (x;w)k = GT ỹ

where G 2 RK⇥D represents the Jacobian over log-likelihood predictions F (x;w) over K classes
w.r.t. parameters w 2 RD. By similarly rewriting Equation (1), substituting them in Equation
(3) and including the constraints, we arrive at our poisoning objective (Eq. 4-7) of our approach
which we refer to as MAD. We can optionally enforce preserving accuracy of poisoned prediction
via constraint (8), which will be discussed shortly.

max
ỹ

����
GT ỹ

||GT ỹ||2
� GTy

||GTy||2

����
2

2

(= H(ỹ)) (4)

where G = rw logF (x;w) (G 2 RK⇥D) (5)

s.t ỹ 2 �K (Simplex constraint) (6)
dist(y, ỹ)  ✏ (Utility constraint) (7)
argmax

k

ỹk = argmax
k

yk (For variant MAD-argmax) (8)

The above presents a challenge of black-box optimization problem for the defense since the defender
justifiably lacks access to the attacker model F (Eq. 5). Apart from addressing this challenge in
the next few paragraphs, we also discuss (a) solving a non-standard and non-convex constrained
maximization objective; and (b) preserving accuracy of predictions via constraint (8).

Estimating G. Since we lack access to adversary’s model F , we estimate the jacobian G =
rw logFsur(x;w) (Eq. 5) per input query x using a surrogate model Fsur. We empirically de-
termined (details in Appendix E.1) choice of architecture of Fsur robust to choices of adversary’s
architecture F . However, the initialization of Fsur plays a crucial role, with best results on a fixed
randomly initialized model. We conjecture this occurs due to surrogate models with a high loss
provide better gradient signals to guide the defender.

Heuristic Solver. Gradient-based strategies to optimize objective (Eq. 4) often leads to poor local
maxima. This is in part due to the objective increasing in all directions around point y (assuming G
is full-rank), making optimization sensitive to initialization. Consequently, we resort to a heuristic
to solve for ỹ. Our approach is motivated by Hoffman (1981), who show that the maximum of
a convex function over a compact convex set occurs at the extreme points of the set. Hence, our
two-step solver: (i) searches for a maximizer y⇤ for (4) by iterating over the K extremes yk (where
yk=1) of the probability simplex �K ; and (ii) then computes a perturbed posterior ỹ as a linear
interpolation of the original posteriors y and the maximizer y⇤: ỹ = (1 � ↵)y + ↵y⇤, where ↵ is
selected such that the utility constraint (Eq. 7) is satisfied. We further elaborate on the solver and
present a pseudocode in Appendix C.

Variant: MAD-argmax. Within our defense formulation, we encode an additional constraint
(Eq. 8) to preserve the accuracy of perturbed predictions. MAD-argmax variant helps us perform
accuracy-preserving perturbations similar to prior work. But in contrast, the perturbations are con-

strained (Eq. 7) and are specifically introduced to maximize the MAD objective. We enforce the
accuracy-preserving constraint in our solver by iterating over extremes of intersection of sets Eq.(6)
and (8): �K

k
= {y ⌫ 0,1Ty = 1, yk � yj , k 6= j} ✓ �K .

4

Published as a conference paper at ICLR 2020

w.r.t. the model parameters w 2 RD:
u = �rwL(F (x;w),y) (1)

Maximizing Angular Deviation (MAD). The core idea of our approach is to perturb the posterior
probabilities y which results in an adversarial gradient signal that maximally deviates (see Fig. 2)
from the original gradient (Eq. 1). More formally, we add targeted noise to the posteriors which
results in a gradient direction:

a = �rwL(F (x;w), ỹ) (2)
to maximize the angular deviation between the original and the poisoned gradient signals:

max
a

2(1� cos\(a,u)) = max
â

||â� û||22 (â = a/||a||2, û = u/||u||2) (3)

Given that the attacker model is trained to match the posterior predictions, such as by minimizing
the cross-entropy loss L(y, ỹ) = �

P
k
ỹk log yk we rewrite Equation (2) as:

a = �rwL(F (x;w), ỹ) = rw

X

k

ỹk logF (x;w)k =
X

k

ỹkrw logF (x;w)k = GT ỹ

where G 2 RK⇥D represents the Jacobian over log-likelihood predictions F (x;w) over K classes
w.r.t. parameters w 2 RD. By similarly rewriting Equation (1), substituting them in Equation
(3) and including the constraints, we arrive at our poisoning objective (Eq. 4-7) of our approach
which we refer to as MAD. We can optionally enforce preserving accuracy of poisoned prediction
via constraint (8), which will be discussed shortly.

max
ỹ

����
GT ỹ

||GT ỹ||2
� GTy

||GTy||2

����
2

2

(= H(ỹ)) (4)

where G = rw logF (x;w) (G 2 RK⇥D) (5)

s.t ỹ 2 �K (Simplex constraint) (6)
dist(y, ỹ)  ✏ (Utility constraint) (7)
argmax

k

ỹk = argmax
k

yk (For variant MAD-argmax) (8)

The above presents a challenge of black-box optimization problem for the defense since the defender
justifiably lacks access to the attacker model F (Eq. 5). Apart from addressing this challenge in
the next few paragraphs, we also discuss (a) solving a non-standard and non-convex constrained
maximization objective; and (b) preserving accuracy of predictions via constraint (8).

Estimating G. Since we lack access to adversary’s model F , we estimate the jacobian G =
rw logFsur(x;w) (Eq. 5) per input query x using a surrogate model Fsur. We empirically de-
termined (details in Appendix E.1) choice of architecture of Fsur robust to choices of adversary’s
architecture F . However, the initialization of Fsur plays a crucial role, with best results on a fixed
randomly initialized model. We conjecture this occurs due to surrogate models with a high loss
provide better gradient signals to guide the defender.

Heuristic Solver. Gradient-based strategies to optimize objective (Eq. 4) often leads to poor local
maxima. This is in part due to the objective increasing in all directions around point y (assuming G
is full-rank), making optimization sensitive to initialization. Consequently, we resort to a heuristic
to solve for ỹ. Our approach is motivated by Hoffman (1981), who show that the maximum of
a convex function over a compact convex set occurs at the extreme points of the set. Hence, our
two-step solver: (i) searches for a maximizer y⇤ for (4) by iterating over the K extremes yk (where
yk=1) of the probability simplex �K ; and (ii) then computes a perturbed posterior ỹ as a linear
interpolation of the original posteriors y and the maximizer y⇤: ỹ = (1 � ↵)y + ↵y⇤, where ↵ is
selected such that the utility constraint (Eq. 7) is satisfied. We further elaborate on the solver and
present a pseudocode in Appendix C.

Variant: MAD-argmax. Within our defense formulation, we encode an additional constraint
(Eq. 8) to preserve the accuracy of perturbed predictions. MAD-argmax variant helps us perform
accuracy-preserving perturbations similar to prior work. But in contrast, the perturbations are con-

strained (Eq. 7) and are specifically introduced to maximize the MAD objective. We enforce the
accuracy-preserving constraint in our solver by iterating over extremes of intersection of sets Eq.(6)
and (8): �K

k
= {y ⌫ 0,1Ty = 1, yk � yj , k 6= j} ✓ �K .

4

𝒖

13

the victim 
model’s gradient

the gradient 
experienced by 
the attacker



Attacks vs. PP

§ Curves are obtained by varying degree of perturbation ε

§ MAD provides reasonable operating points (above the diagonal), where defender achieves 
significantly higher test accuracies compared to the attacker

[Juuti+, PRADA: Protecting against DNN Model Stealing Attacks, EuroS&P 2019

14



AM (Adaptive Misinformation)

§ [Kariyappa+, Defending against model stealing attacks with adaptive misinformation, CVPR 2020]

§ All existing attacks invariably generate Out-Of-
Distribution (OOD) queries

§ Low MSP values indicate OOD data
§ [Hendrycks & Gimpel. A baseline for detect 

ing misclassified and out-of-distribution 
examples in neural networks, ICLR 2017]

15

(MSP)



AM (Adaptive Misinformation)

§ AM selectively sends incorrect predictions 
for queries that are deemed OOD

§ ID queries are serviced with correct 
predictions

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

1) OOD detector

2) Model training with outlier exposure

3) Misinformation function 
: trained to minimize the probability of the 
correct class f(x,y)

4) Adaptive misinformation injection

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

<latexit sha1_base64="o6eQQLFO9h8/DPMzIeaxCjLhQXE=">AAAmfXicvVprcxo5FmVmX7PsK7P7cb90xUXKmcpSgMFAlZeK33k5tuNnYrwudSNAcT9YSY0hPfyH/br7z/bX7ErdYNQtroZMXKHK5eaec6Qj6V4hLNsDlzBeKv33m29/8ctf/fo33/02/7vf/+GPf3r0/Z/PWRBSB585gRvQSxsx7BIfn3HCXXw5oBh5tosv7NttiV8MMWUk8E/5eICvPdTzSZc4iIvQebuPuNW9ebRSKpbil6U/lKcPK7np6+jm+wJqdwIn9LDPHRcxdlUuDfh1hCgnjosn+Xw7ZHiAnFvUw5EXupzQ4G6SL6hhzIbY4WnuVci7jeuI+IOQY9+ZWAWBdUPX4oEl7VsdQoXIHYsH5FAiurOcPqLI4WKQ+XYHd9td5BF3LJ6Q6Ddqs+70cZLAHuJ9mJIvWOJZTKYleRZD/t8YpqRrdQOfW6tdGniWLeYXUznrMlhkfPw0397BYiIo3hORkz4a4OjwtDyJHI9OIm8S+ZNC3pKvaKPW2lhvbdRbG43WRrO1US6Jn0qrh/0fBHnKskS42Ky1RKRcmseqxWocqsxD9WJFtFMpFetV8atabMh3zWJDdLFWKzbWWhvVSrEp+qmVi7VmrK5PoslP+WWubtjxmNu47zl2n7hmrmK7dW+duar3Sivx/zMsi4buR7yEd8IXeeekrniX7+djacbvmwtHwckDjUI09DmjYI45ZWJ70lA6PX6GMYc58yEu4Swkk/xXsBUub8qWBfZ1Jsv+DFejma2sqaRs7NHChLNHD5RwoqGlE056FTU/ZWf9LvD5hc7UvWEZb6Kmv5q3ecVnne3FHxtR4oyxxcbnKLMdmQHRvUVjaqYc30uWdj5TYIexjijo6Vvz7EqXnlI8i5xKVnqrZGzxVsnYosyN41/yiSXk9aVyZTqaWR6DoyGN6TCALV8A0EDIF46EfMZQpuljWJrpMDrK/v1gdZBp9ifdznc7s9n09vZQXtVWY6snmJ+MPTtwpdkoGGCKeECFTz+gHnInegXcD0/R+aFnY6lqi8No0CF+b3ZQjPRz5LyUFrQ0CCl2Meef11qy7c2aOxCcTXfQRzbmiYJ6CxujHmhJb8PuLmvofonhxtjixuYH7CUMEf6AM8QXN8Z5xpBsRH47mGXKc3m0T5ro0SActNnYm2VDPtNjssxRaRLTkex/njmP10pZh1N+GeCXAX4F4FcA/hrAXwP4VYBfBfg1gF8D+OsAfx3g1wF+HeA3AH4D4DcBfhNa4E1VkCrox1Vo0bYMGmjhtg0aaPF2DBpoAXcNGmgR9wwaaCH3DRpoMV8YNNCCvjRomoDmlUGzCWheGzRbgOaNQbMNaA4Mmh1A89ag2QU0hwbNHqA5gjU1aMM7Nmig+nln0ED1c2LQQPVzatBA9XNm0ED1c27QQPVzYdBA9XNp0ED1896ggerng0GzCW2kCBatQ4lgGzRQIjgGDZQIHYMGSgRs0ECJ0DVooEToGTRQIvQNGigRiEEDJcJHgwbaSG8NGmgjdQ0aaCP1DBpoI/UNGmgjDQwaaCMdwJo6tJH+06CB6ocaNFD9MIMGqh9u0ED1Exo0UP0MDRqofu4MGqh+RgYNVD9jgwaqn08GjdxIC4tfmdsThn3kYXYdxTdDyfVJx+oGNLm/iKOpuxkkvgELA4Ipe2dZTAYXYV96T7PwdkiNstDukp6YhnTYJj3Gacgz0SC45chm6SgNOOLiW1/62umKIV/MT4fJCRECH985gechv5N82+uw6XdN287cV9leun1J4kHgsvjWSADW4QD71oloP55xjkfcWvUDHl8lPc3n0529m8w6FIecjJHdObarYaPB5Kp8rRDaLu7yq5Vym5Jen19n+G/nbb3NtnVEA3sOHy2APwr4iGTizuYkSlQOcq3NrMzZUuEtDd5W4W0N3lHhHQ3eVWFtdpw9Fd7T4H0V3tfgFyr8QoNfqvBLDX6lwq80+LUKv9bgNyr8RoMPVPhAg9+qsLbQzqEKH2rwkQpreeC8U2EtW51jFT7W4BMVPtHgUxU+1eAzFT7T4HMVPtfgCxW+0OBLFb7U4Pcq/F6DP6jwhyw8RDPY7lpIQ20FtTXUUVBHQ3sK2tNQqqBUQ5mCMg0dKehIQ8cKOtbQoYIONfROQe809JOCftLQTQXVtpvhjoJq+8XwpYJqJTt8raBaSQ4PFFQrueGlgmq5MzxSUK2ihicKqpXE8FxBtZweHiuorLZs2rkSF2eKDouPFlY7PlToCYizPBtznTYiWZqIZEku8rIsEbI7enMchVmmDGVpvsbyNdL+tFdH28clshMmE+Hs/0NLClt8+GP5wWcHI/nOKmcZlMSfi7c4ZlDPosTKcjqB/PO7/JhPLhUiGWg/y7C4OPTgNI9TneYg2kmz4ki2S8L4vW/hKn6vtdXzkKjj3s2MKE5BY8mW4WyLPY/4C7kinOWynp+2KANZjkyXVfI0G78j8anlx7sfb6LVlfLTiXLjIo/Bh9M/vP8QtRFNTInf7WfyyUSUI02I4ind5YAGo7TfOCI7Zpi72O/xfgLfkY4450ZrxZrsLX3sQ24vEAfYvkecCYCkzoVXNHRx53qOVjJnWOyHHuFYqAp/h1/5m0cr5ey/YOkP55Vieb1YOa6uPN+a/nvWd7m/5h7nVnPlXD33PPcid5Q7yzm5j7l/5f6d+0/hf08KT549KSbUb7+Zav6SS72e1P8Ptnd7Lw==</latexit>

f̂

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

<latexit sha1_base64="wKLZ0xJsn3IPEY8gntc596UigIo=">AAAm+XicvVpbcxu3GaXSSxI2bZx0mpe87FiRRs6kHJISRTGjcqy7ZVuWZF1tUdVgQZBCtBd2gaVIb3amf6Vvnb721/QP9HcU2CVF7IIfIsdqOOPx8jvnAAfA94GgQLvnUMbL5f/MfPSrX//mtx9/8mnxd5/9/g+fP/riy1PmhwEmJ9h3/ODcRow41CMnnHKHnPcCglzbIWf2zYbEz/okYNT3jvmwRy5d1PVoh2LERejq0d9bNulSL8KiDRYXLctqIad3jaxVq1yqWfNWi5MBj2jH2t383vpmeBW5aBBbTRFH4Tex1WopmmZes7+vilbHomKLeO1Rl1ePZsulcvKy9IfK6GG2MHodXH0xh1ptH4cu8Th2EGMXlXKPX0Yo4BQ7JC4WWyEjPYRvUJdEbuhwGvi3cXFODRPWJ5hnuRch76xcRtTrhZx4OLbmBNYJHYv7lpw6q00DIXKG4gHhgIruLHyNAoS5mOBiq006rQ5yqTMUT0j0G7VYZ/QYp7CL+DVMKc5Z4lkspCV5FkPenxkJxDR2fI9bC53Ady1brC0J5IrLYInx4ZNia5OIiQjItogcXaMeifaPK3GE3SCO3Djy4jm5RpYVrdaaq8vN1XpzdaW52miuVsriX7XZJd63gjxiWSJcatSaIlIpT2JLpaUkVJ2E6qWqaKdaLtWXxH9LpRX5rlFaEV0s1kori83VpWqpIfqpVUq1RqKux1H8U36ZoxvGLnNW7npO3KeumaPYbt5ZZ47qvdpM/f8My6KhuxHfwzvl07xzWle8y/eTsTSS942po+D0gUYhGnqfUTBsTpnEnjSUTY+fYQwzPBniPZyFNNmj/t+2wvubsmWB/TKTZb+Hq8HYVt5UWjb2YGrC2YMHSjjR0L0TTnoVNT9i5/1O8fmBztS94T7eRE3/Yt4mFZ93tp18bESpM8amG5+gzMYyA6I7i8bUzDi+k9zb+VhBMGNtUdCjt+bZlS5dpXimOZWs7FbJ2PStkrFpmZvEP+QTS8jr98qV0WjGeQyOhq6MhgFs+QKABkI/cCT0PYYySh/D0oyG0Vb27werg1yzP+l2stuZzWa3t4fyqraaWD0i/Gjo2r4jzUZ+jwSI+4Hw6fmBi5xYr4C74Sk6L3RtIlXisIz9NvW644NipJ8jJ6U0paVeGBCHcP5+raXb3ri5PcFZk4d8m/BUEbhTGwtc0JLeht25r6G7JYYbY9Mbmxyw72GI8gecIT69Mc5zhmQj8tvBOFOeyqN92kQ38MNeiw3dcTYUcz2myxyV44SefA2bZM7jxXLe4YhfAfgVgF8F+FWAvwjwFwH+EsBfAvg1gF8D+MsAfxng1wF+HeCvAPwVgN8A+A1ogddUQaagHy9Bi7Zu0EALt2HQQIu3adBAC7hl0ECLuG3QQAu5Y9BAi/nMoIEWdNegaQCa5wbNGqB5YdCsA5qXBs0GoNkzaDYBzSuDZgvQ7Bs024DmANbUoA3v0KCB6ue1QQPVz5FBA9XPsUED1c+JQQPVz6lBA9XPmUED1c+5QQPVzxuDBqqftwbNGrSRIli0DCWCbdBAiYANGigR2gYNlAjEoIESoWPQQInQNWigRLg2aKBEoAYNlAg/GDTQRnpj0EAbqWPQQBupa9BAG6ln0EAbqW/QQBtpD9bUoY30bwYNVD+BQQPVDzNooPrhBg1UP6FBA9VP36CB6ufWoIHqZ2DQQPUzNGig+nln0MiNdG76K3d7woiHXMIuo+RWKr0+aVsdP0jvL5Jo5m4GiW/AwoBgyt5ZHpPBadiH3tNMvR1Soyy0O7QrpiEbtmmX8SDkuajv33Bks2w08Dni4ltf9trpgiFPzE+byQkRAo/cYt91kddOv+212ei7pm3n7qtsN9u+JHHfd1hyayQAa79HPOtItJ/MuLyAsxY8nydXSU+KxWxnr+Nxh+KQkzOyNcG2NGzQiy8qlwqh5ZAOv5ittALaveaXOf6rSVuv8m0dBL49gQ+mwD8I+IDm4ngtjlIVRo61lpfhdRVe1+ANFd7Q4E0V3tTgLRXWZgdvq/C2Bu+o8I4GP1PhZxq8q8K7GvxchZ9r8AsVfqHBL1X4pQbvqfCeBr9SYW2h8b4K72vwgQpreYBfq7CWrfhQhQ81+EiFjzT4WIWPNfhEhU80+FSFTzX4TIXPNPhchc81+I0Kv9Hgtyr8Ng/30Ri2OxbSUFtBbQ3FCoo1tKugXQ0NFDTQUKagTEMHCjrQ0KGCDjW0r6B9Db1V0FsNfaeg7zR0TUG17aa/qaDaftHfVVCtZPsvFFQryf6egmol1z9XUC13+gcKqlVU/0hBtZLonyqoltP9QwWV1ZZPO0fi4kzRZsnRYvTLED0BSZ5nE67TBjRPE5E8yUFuniVCdltvjqMwz5ShPM3TWJ5G2hn1irV9XCKbYToReOevWlLY4sOfyA8+2x/Id1Ylzwho8rl4QxJG4FoBtfKcti///C4/5tNLhUgGWt/lWFwcekiWxwOdhlHQzrKSSL5Lyvidb+Eqea+11ZU/9Ym6V2OiOAUNJVuG8y12XepN5Ypwnsu6XtaiDOQ5Ml0W6JN8/JYmp5Yfb3+8ihZmK09i5cZFHoP3R394/zZqoSA1Jf5vfSefTEQ50pQonrJd9gJ/kPWbRGTHjHCHeF1+ncK3tC3OudFiqSZ7yx77kNP1xQH22qU4BpDMufAiCB3Svpyg1dwZlnihSzkRqrm/wK/i1aPZSv4nWPrDabVUWS5VD5dmn66Pfp71SeHrwuPCQqFSqBeeFp4VDgonBVz478xnM3+a+Wo+mv/H/D/n/5VSP5oZaf5YyLzm//0/Cg+ixg==</latexit>(
↵ < 0.5 if ID: ymax > ⌧

↵ > 0.5 if OOD: ymax < ⌧

uniform dist

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

16



Defender vs Clone Accuracy

17



EDM: Ensemble of Diverse Models

§ [Kariyappa+, Protecting DNNs from theft using an ensemble of diverse models, ICLR 2021]

§ Use an ensemble of N models that have maximum output variety for OOD inputs

18

Published as a conference paper at ICLR 2021

!!

!

!"

!

…….. !#

!!, # ∼ %!"

!!

!& 

!"

!& 

…….. !#

!& "# ∼ %#$%	(($))

(a) Accuracy Objective (b) Diversity Objective

Figure 2: Models in EDM are jointly trained on two objectives: (a) Accuracy Objective ensures that
the models make correct preditions for in-distribution data. (b) Diversity Objective encourages the
models to make diverse decisions for auxiliary out-of-distribution data.

model. In addition to existing attacks, the defense also needs to be effective against adaptive attacks
that are tailored for the defense.

4 OUR PROPOSAL: ENSEMBLE OF DIVERSE MODELS

This paper proposes a novel type of model ensemble called Ensemble of Diverse Models (EDM),
which is significantly more robust to MS attacks compared to a single DNN model. EDM consists
of a set of diverse models, which produce dissimilar predictions for OOD data. By using an input-
based hash function, EDM selects a single model from the ensemble to service each query. Since
the models are trained to produce dissimilar predictions, EDM outputs predictions that are highly
discontinuous in the input space for OOD data. The complexity of the discontinuous predictions
cause the clone model trained on these predictions to generalize poorly on in-distribution examples,
making MS attacks less effective. We explain how EDM models can be trained and deployed for
inference in this section.

4.1 TRAINING A DIVERSE ENSEMBLE

Figure 3: Coherence mea-
sures the cosine of the small-
est angle made by any pair of
vectors in a set.

EDM leverages an ensemble of diverse models to produce discon-
tinuous predictions. Let {fi}

i=N

i=1 denote the ensemble of mod-
els used in EDM with model parameters {✓i}

i=N

i=1 . These mod-
els are jointly trained with a two-fold training objective using
an in-distribution dataset of labeled examples Din and an out-of-
distribution dataset of unlabeled examples Dout as explained below:

1. Accuracy objective: Models in the ensemble should be trained
to produce high accuracy for the examples in the training dataset of
in-distribution examples Din as shown in Fig. 2a. For a multi-class
classification problem, let {ŷi = fi(x; ✓i)}Ni=1 be the prediction
probabilities of the models where (x, y) 2 Din is the input, la-
bel pair. We use the cross-entropy loss averaged across all models:
1
N

P
N

i=1 LCE(ŷi,y) to train the models in the ensemble to achieve
high accuracy on the in-distribution training data.

2. Diversity objective: The diversity objective requires the models in the ensemble to produce
dissimilar predictions for examples in the out of distribution dataset Dout as depicted in Fig. 2b. If
{ỹi = fi(x̃; ✓i)}Ni=1 are the output probabilities produced by the ensemble for an OOD input x̃ 2

Dout, then the diversity objective requires the set of output vectors {ỹi}
N

i=1 to be misaligned. We
use the coherence metric (Tropp, 2006) to measure the alignment of the output probability vectors.
Coherence of a set of vectors measures the maximum cosine similarity (CS) i.e. cosine of the
smallest angle, between all pairs of probability vectors in the set as shown in Fig. 3. Coherence can
be computed as follows:

coherence({ỹi}
N

i=1) = max
a,b2{1,..,N}

a 6=b

CS(ỹa, ỹb). (1)

4



EDM: Ensemble of Diverse Models

19

Published as a conference paper at ICLR 2021

Figure 2: Models in EDM are jointly trained on two objectives: (a) Accuracy Objective ensures that
the models make correct preditions for in-distribution data. (b) Diversity Objective encourages the
models to make diverse decisions for auxiliary out-of-distribution data.

model. In addition to existing attacks, the defense also needs to be effective against adaptive attacks
that are tailored for the defense.

4 OUR PROPOSAL: ENSEMBLE OF DIVERSE MODELS

This paper proposes a novel type of model ensemble called Ensemble of Diverse Models (EDM),
which is significantly more robust to MS attacks compared to a single DNN model. EDM consists
of a set of diverse models, which produce dissimilar predictions for OOD data. By using an input-
based hash function, EDM selects a single model from the ensemble to service each query. Since
the models are trained to produce dissimilar predictions, EDM outputs predictions that are highly
discontinuous in the input space for OOD data. The complexity of the discontinuous predictions
cause the clone model trained on these predictions to generalize poorly on in-distribution examples,
making MS attacks less effective. We explain how EDM models can be trained and deployed for
inference in this section.

4.1 TRAINING A DIVERSE ENSEMBLE

Figure 3: Coherence mea-
sures the cosine of the small-
est angle made by any pair of
vectors in a set.

EDM leverages an ensemble of diverse models to produce discon-
tinuous predictions. Let {fi}

i=N

i=1 denote the ensemble of mod-
els used in EDM with model parameters {✓i}

i=N

i=1 . These mod-
els are jointly trained with a two-fold training objective using
an in-distribution dataset of labeled examples Din and an out-of-
distribution dataset of unlabeled examples Dout as explained below:

1. Accuracy objective: Models in the ensemble should be trained
to produce high accuracy for the examples in the training dataset of
in-distribution examples Din as shown in Fig. 2a. For a multi-class
classification problem, let {ŷi = fi(x; ✓i)}Ni=1 be the prediction
probabilities of the models where (x, y) 2 Din is the input, la-
bel pair. We use the cross-entropy loss averaged across all models:
1
N

P
N

i=1 LCE(ŷi,y) to train the models in the ensemble to achieve
high accuracy on the in-distribution training data.

2. Diversity objective: The diversity objective requires the models in the ensemble to produce
dissimilar predictions for examples in the out of distribution dataset Dout as depicted in Fig. 2b. If
{ỹi = fi(x̃; ✓i)}Ni=1 are the output probabilities produced by the ensemble for an OOD input x̃ 2

Dout, then the diversity objective requires the set of output vectors {ỹi}
N

i=1 to be misaligned. We
use the coherence metric (Tropp, 2006) to measure the alignment of the output probability vectors.
Coherence of a set of vectors measures the maximum cosine similarity (CS) i.e. cosine of the
smallest angle, between all pairs of probability vectors in the set as shown in Fig. 3. Coherence can
be computed as follows:

coherence({ỹi}
N

i=1) = max
a,b2{1,..,N}

a 6=b

CS(ỹa, ỹb). (1)

4

Published as a conference paper at ICLR 2021

Figure 4: EDM uses an input-based hash H(x) to select the model that is used to service an input
query x. A perceptual hashing algorithm is used to prevent adaptive attacks.

In order to increase the misalignment of probability vectors, we need to reduce the value of coher-
ence. Unfortunately, the max function in Eqn 1 makes coherence non-smooth, which precludes the
use of first-order methods to optimize the value of coherence. To overcome this limitation, we use
the LogSumExp function to get a smooth approximation of the max function that allows it to be
used in first-order optimization algorithms. We term the resulting loss function as the diversity loss:

DivLoss({ỹi}
N

i=1) = log

 
X

1a<bN

exp(CS(ỹa, ỹb))

!
. (2)

Models in the ensemble are jointly trained on the combination of accuracy and diversity objectives:

L = E
x,y⇠Din,x̃⇠Dout

"⇣ 1

N

NX

i=1

LCE(ŷi,y)
⌘
+ �D ·DivLoss({ỹi}

N

i=1)

#
, (3)

where ŷi = fi(x), ỹi = fi(x̃).

Here �D is a hyperparameter that dictates the ratio of importance between the diversity and accu-
racy objectives. Note that the loss function described above requires access a dataset of labeled
in-distribution examples Din as well as a dataset of out-of-distribution examples Dout. Since we do
not know the OOD samples that is used by the adversary a-priori, we make use of an auxiliary OOD
dataset to train EDM. Similar use of auxiliary OOD datasets have been explored in anomaly detec-
tion literature (Hendrycks et al., 2018) to detect unseen anomalies. Our experiments in Section 5.3
suggest that the diversity objective generalizes to the unseen OOD dataset used by the adversary.

4.2 EDM INFERENCE

The objective of EDM is to produce predictions that are discontinuous in the input space. EDM
produces discontinuous predictions by selecting a model in the ensemble based on the input to
service each request as shown in Fig. 4. Given an input query x, EDM uses a hashing function H to
compute a hash of the input, from which the index of the model that is used to service the query can
be computed: index = 1 + (H(x)%N). The output prediction is given by yout = findex(x).

4.2.1 CHOOSING THE HASH FUNCTION

To ensure that an adversary is unable to launch an adaptive attack to game the hash function, we
select a hash function that satisfies the following properties:

1. Security: The hash function needs to be kept secret from the adversary to avoid the adversary
from computing the hash and figuring out which model was used to service a given input.

2. Transformation invariance: While the hash function should map different inputs to different
hash values, we want the hash value to be invariant to small transformations in the input images
such as scaling, rotation, translation, warping, contrast adjustment, etc. This invariance property
is necessary to prevent an adversary from using slightly modified versions of the original image to
change the hash value and query a different model. Without the invariance property, the adversary
can query all the models in the ensemble and get the average prediction for a given input, which is
continuous in nature and allows for more effective model stealing.

Cryptographic hash function would be unsuitable for our application as they lack transformation
invariance. Perceptual hashing (pHash) (Zauner, 2010) are a class of hash functions that ensure that

5

Published as a conference paper at ICLR 2021

Figure 4: EDM uses an input-based hash H(x) to select the model that is used to service an input
query x. A perceptual hashing algorithm is used to prevent adaptive attacks.

In order to increase the misalignment of probability vectors, we need to reduce the value of coher-
ence. Unfortunately, the max function in Eqn 1 makes coherence non-smooth, which precludes the
use of first-order methods to optimize the value of coherence. To overcome this limitation, we use
the LogSumExp function to get a smooth approximation of the max function that allows it to be
used in first-order optimization algorithms. We term the resulting loss function as the diversity loss:

DivLoss({ỹi}
N

i=1) = log

 
X

1a<bN

exp(CS(ỹa, ỹb))

!
. (2)

Models in the ensemble are jointly trained on the combination of accuracy and diversity objectives:

L = E
x,y⇠Din,x̃⇠Dout

"⇣ 1

N

NX

i=1

LCE(ŷi,y)
⌘
+ �D ·DivLoss({ỹi}

N

i=1)

#
, (3)

where ŷi = fi(x), ỹi = fi(x̃).

Here �D is a hyperparameter that dictates the ratio of importance between the diversity and accu-
racy objectives. Note that the loss function described above requires access a dataset of labeled
in-distribution examples Din as well as a dataset of out-of-distribution examples Dout. Since we do
not know the OOD samples that is used by the adversary a-priori, we make use of an auxiliary OOD
dataset to train EDM. Similar use of auxiliary OOD datasets have been explored in anomaly detec-
tion literature (Hendrycks et al., 2018) to detect unseen anomalies. Our experiments in Section 5.3
suggest that the diversity objective generalizes to the unseen OOD dataset used by the adversary.

4.2 EDM INFERENCE

The objective of EDM is to produce predictions that are discontinuous in the input space. EDM
produces discontinuous predictions by selecting a model in the ensemble based on the input to
service each request as shown in Fig. 4. Given an input query x, EDM uses a hashing function H to
compute a hash of the input, from which the index of the model that is used to service the query can
be computed: index = 1 + (H(x)%N). The output prediction is given by yout = findex(x).

4.2.1 CHOOSING THE HASH FUNCTION

To ensure that an adversary is unable to launch an adaptive attack to game the hash function, we
select a hash function that satisfies the following properties:

1. Security: The hash function needs to be kept secret from the adversary to avoid the adversary
from computing the hash and figuring out which model was used to service a given input.

2. Transformation invariance: While the hash function should map different inputs to different
hash values, we want the hash value to be invariant to small transformations in the input images
such as scaling, rotation, translation, warping, contrast adjustment, etc. This invariance property
is necessary to prevent an adversary from using slightly modified versions of the original image to
change the hash value and query a different model. Without the invariance property, the adversary
can query all the models in the ensemble and get the average prediction for a given input, which is
continuous in nature and allows for more effective model stealing.

Cryptographic hash function would be unsuitable for our application as they lack transformation
invariance. Perceptual hashing (pHash) (Zauner, 2010) are a class of hash functions that ensure that

5

response to an ID input response to an OOD input



Problems in PP ?

Published as a conference paper at ICLR 2020

posteriors (blue line in Fig. 1) to train stolen models and the top-1 label (orange line) alone. In this
paper, we work towards effective defenses (red line in Fig. 1) against DNN stealing attacks with
minimal impact to defender’s accuracy.

Figure 1: We find existing de-
fenses (orange line) ineffective
against recent attacks. Our de-
fense (red line) in contrast signif-
icantly mitigates the attacks.

Attacker’s Loss Landscape

Our Perturbation Objective:

Figure 2: We perturb posterior
predictions ỹ = y + �, with an
objective of poisoning the adver-
sary’s gradient signal.

The main insight to our approach is that unlike a benign user, a
model stealing attacker additionally uses the predictions to train a
replica model. By introducing controlled perturbations to predic-
tions, our approach targets poisoning the training objective (see Fig.
2). Our approach allows for a utility-preserving defense, as well as
trading-off a marginal utility cost to significantly degrade attacker’s
performance. As a practical benefit, the defense involves a single
hyperparameter (perturbation utility budget) and can be used with
minimal overhead to any classification model without retraining or
modifications.

We rigorously evaluate our approach by defending six victim mod-
els, against four recent and effective DNN stealing attack strategies
(Papernot et al., 2017b; Juuti et al., 2019; Orekondy et al., 2019).
Our defense consistently mitigates all stealing attacks and further
shows improvements over multiple baselines. In particular, we find
our defenses degrades the attacker’s query sample efficiency by 1-2
orders of magnitude. Our approach significantly reduces the at-
tacker’s performance (e.g., 30-53% reduction on MNIST and 13-
28% on CUB200) at a marginal cost (1-2%) to defender’s test accu-
racy. Furthermore, our approach can achieve the same level of mit-
igation as baseline defenses, but by introducing significantly lesser
perturbation.

Contributions. (i) We propose the first utility-constrained de-
fense against DNN model stealing attacks; (ii) We present the first
active defense which poisons the attacker’s training objective by in-
troducing bounded perturbations; and (iii) Through extensive exper-
iments, we find our approach consistently mitigate various attacks
and additionally outperform baselines.

2 RELATED LITERATURE

Model stealing attacks (also referred to as ‘extraction’ or ‘reverse-engineering’) in literature aim to
infer hyperparameters (Oh et al., 2018; Wang & Gong, 2018), recover exact parameters (Lowd &
Meek, 2005; Tramèr et al., 2016; Milli et al., 2018), or extract the functionality (Correia-Silva et al.,
2018; Orekondy et al., 2019) of a target black-box ML model. In some cases, the extracted model
information is optionally used to perform evasion attacks (Lowd & Meek, 2005; Nelson et al., 2010;
Papernot et al., 2017b). The focus of our work is model functionality stealing, where the attacker’s
yardstick is test-set accuracy of the stolen model. Initial works on stealing simple linear models
(Lowd & Meek, 2005) have been recently succeeded by attacks shown to be effective on complex
CNNs (Papernot et al., 2017b; Correia-Silva et al., 2018; Orekondy et al., 2019) (see Appendix B
for an exhaustive list). In this work, we works towards defenses targeting the latter line of DNN
model stealing attacks.

Since ML models are often deployed in untrusted environments, a long line of work exists on guar-
anteeing certain (often orthogonal) properties to safeguard against malicious users. The properties
include security (e.g., robustness towards adversarial evasion attacks (Biggio et al., 2013; Goodfel-
low et al., 2014; Madry et al., 2018)) and integrity (e.g., running in untrusted environments (Tramer
& Boneh, 2019)). To prevent leakage of private attributes (e.g., identities) specific to training data in
the resulting ML model, differential privacy (DP) methods (Dwork et al., 2014) introduce random-
ization during training (Abadi et al., 2016; Papernot et al., 2017a). In contrast, our defense objective
is to provide confidentiality and protect the functionality (intellectual property) of the ML model
against illicit duplication.

2

Published as a conference paper at ICLR 2020

w.r.t. the model parameters w 2 RD:
u = �rwL(F (x;w),y) (1)

Maximizing Angular Deviation (MAD). The core idea of our approach is to perturb the posterior
probabilities y which results in an adversarial gradient signal that maximally deviates (see Fig. 2)
from the original gradient (Eq. 1). More formally, we add targeted noise to the posteriors which
results in a gradient direction:

a = �rwL(F (x;w), ỹ) (2)
to maximize the angular deviation between the original and the poisoned gradient signals:

max
a

2(1� cos\(a,u)) = max
â

||â� û||22 (â = a/||a||2, û = u/||u||2) (3)

Given that the attacker model is trained to match the posterior predictions, such as by minimizing
the cross-entropy loss L(y, ỹ) = �

P
k
ỹk log yk we rewrite Equation (2) as:

a = �rwL(F (x;w), ỹ) = rw

X

k

ỹk logF (x;w)k =
X

k

ỹkrw logF (x;w)k = GT ỹ

where G 2 RK⇥D represents the Jacobian over log-likelihood predictions F (x;w) over K classes
w.r.t. parameters w 2 RD. By similarly rewriting Equation (1), substituting them in Equation
(3) and including the constraints, we arrive at our poisoning objective (Eq. 4-7) of our approach
which we refer to as MAD. We can optionally enforce preserving accuracy of poisoned prediction
via constraint (8), which will be discussed shortly.

max
ỹ

����
GT ỹ

||GT ỹ||2
� GTy

||GTy||2

����
2

2

(= H(ỹ)) (4)

where G = rw logF (x;w) (G 2 RK⇥D) (5)

s.t ỹ 2 �K (Simplex constraint) (6)
dist(y, ỹ)  ✏ (Utility constraint) (7)
argmax

k

ỹk = argmax
k

yk (For variant MAD-argmax) (8)

The above presents a challenge of black-box optimization problem for the defense since the defender
justifiably lacks access to the attacker model F (Eq. 5). Apart from addressing this challenge in
the next few paragraphs, we also discuss (a) solving a non-standard and non-convex constrained
maximization objective; and (b) preserving accuracy of predictions via constraint (8).

Estimating G. Since we lack access to adversary’s model F , we estimate the jacobian G =
rw logFsur(x;w) (Eq. 5) per input query x using a surrogate model Fsur. We empirically de-
termined (details in Appendix E.1) choice of architecture of Fsur robust to choices of adversary’s
architecture F . However, the initialization of Fsur plays a crucial role, with best results on a fixed
randomly initialized model. We conjecture this occurs due to surrogate models with a high loss
provide better gradient signals to guide the defender.

Heuristic Solver. Gradient-based strategies to optimize objective (Eq. 4) often leads to poor local
maxima. This is in part due to the objective increasing in all directions around point y (assuming G
is full-rank), making optimization sensitive to initialization. Consequently, we resort to a heuristic
to solve for ỹ. Our approach is motivated by Hoffman (1981), who show that the maximum of
a convex function over a compact convex set occurs at the extreme points of the set. Hence, our
two-step solver: (i) searches for a maximizer y⇤ for (4) by iterating over the K extremes yk (where
yk=1) of the probability simplex �K ; and (ii) then computes a perturbed posterior ỹ as a linear
interpolation of the original posteriors y and the maximizer y⇤: ỹ = (1 � ↵)y + ↵y⇤, where ↵ is
selected such that the utility constraint (Eq. 7) is satisfied. We further elaborate on the solver and
present a pseudocode in Appendix C.

Variant: MAD-argmax. Within our defense formulation, we encode an additional constraint
(Eq. 8) to preserve the accuracy of perturbed predictions. MAD-argmax variant helps us perform
accuracy-preserving perturbations similar to prior work. But in contrast, the perturbations are con-

strained (Eq. 7) and are specifically introduced to maximize the MAD objective. We enforce the
accuracy-preserving constraint in our solver by iterating over extremes of intersection of sets Eq.(6)
and (8): �K

k
= {y ⌫ 0,1Ty = 1, yk � yj , k 6= j} ✓ �K .

4

Published as a conference paper at ICLR 2020

w.r.t. the model parameters w 2 RD:
u = �rwL(F (x;w),y) (1)

Maximizing Angular Deviation (MAD). The core idea of our approach is to perturb the posterior
probabilities y which results in an adversarial gradient signal that maximally deviates (see Fig. 2)
from the original gradient (Eq. 1). More formally, we add targeted noise to the posteriors which
results in a gradient direction:

a = �rwL(F (x;w), ỹ) (2)
to maximize the angular deviation between the original and the poisoned gradient signals:

max
a

2(1� cos\(a,u)) = max
â

||â� û||22 (â = a/||a||2, û = u/||u||2) (3)

Given that the attacker model is trained to match the posterior predictions, such as by minimizing
the cross-entropy loss L(y, ỹ) = �

P
k
ỹk log yk we rewrite Equation (2) as:

a = �rwL(F (x;w), ỹ) = rw

X

k

ỹk logF (x;w)k =
X

k

ỹkrw logF (x;w)k = GT ỹ

where G 2 RK⇥D represents the Jacobian over log-likelihood predictions F (x;w) over K classes
w.r.t. parameters w 2 RD. By similarly rewriting Equation (1), substituting them in Equation
(3) and including the constraints, we arrive at our poisoning objective (Eq. 4-7) of our approach
which we refer to as MAD. We can optionally enforce preserving accuracy of poisoned prediction
via constraint (8), which will be discussed shortly.

max
ỹ

����
GT ỹ

||GT ỹ||2
� GTy

||GTy||2

����
2

2

(= H(ỹ)) (4)

where G = rw logF (x;w) (G 2 RK⇥D) (5)

s.t ỹ 2 �K (Simplex constraint) (6)
dist(y, ỹ)  ✏ (Utility constraint) (7)
argmax

k

ỹk = argmax
k

yk (For variant MAD-argmax) (8)

The above presents a challenge of black-box optimization problem for the defense since the defender
justifiably lacks access to the attacker model F (Eq. 5). Apart from addressing this challenge in
the next few paragraphs, we also discuss (a) solving a non-standard and non-convex constrained
maximization objective; and (b) preserving accuracy of predictions via constraint (8).

Estimating G. Since we lack access to adversary’s model F , we estimate the jacobian G =
rw logFsur(x;w) (Eq. 5) per input query x using a surrogate model Fsur. We empirically de-
termined (details in Appendix E.1) choice of architecture of Fsur robust to choices of adversary’s
architecture F . However, the initialization of Fsur plays a crucial role, with best results on a fixed
randomly initialized model. We conjecture this occurs due to surrogate models with a high loss
provide better gradient signals to guide the defender.

Heuristic Solver. Gradient-based strategies to optimize objective (Eq. 4) often leads to poor local
maxima. This is in part due to the objective increasing in all directions around point y (assuming G
is full-rank), making optimization sensitive to initialization. Consequently, we resort to a heuristic
to solve for ỹ. Our approach is motivated by Hoffman (1981), who show that the maximum of
a convex function over a compact convex set occurs at the extreme points of the set. Hence, our
two-step solver: (i) searches for a maximizer y⇤ for (4) by iterating over the K extremes yk (where
yk=1) of the probability simplex �K ; and (ii) then computes a perturbed posterior ỹ as a linear
interpolation of the original posteriors y and the maximizer y⇤: ỹ = (1 � ↵)y + ↵y⇤, where ↵ is
selected such that the utility constraint (Eq. 7) is satisfied. We further elaborate on the solver and
present a pseudocode in Appendix C.

Variant: MAD-argmax. Within our defense formulation, we encode an additional constraint
(Eq. 8) to preserve the accuracy of perturbed predictions. MAD-argmax variant helps us perform
accuracy-preserving perturbations similar to prior work. But in contrast, the perturbations are con-

strained (Eq. 7) and are specifically introduced to maximize the MAD objective. We enforce the
accuracy-preserving constraint in our solver by iterating over extremes of intersection of sets Eq.(6)
and (8): �K

k
= {y ⌫ 0,1Ty = 1, yk � yj , k 6= j} ✓ �K .

4

𝒖

the victim model’s gradient

the clone model’s gradient

But instead, the authors assumed that the defender knows the attacker’s AI model

It should be written as:
<latexit sha1_base64="meOXU+N66kk16EcRm7ho/EEs91E=">AAANwHicrddbb9s2FAdwtbt1Xr2l2+NeiAUBnCEL4m7rBhQF6tzT3Jx7Wts1KIqWuUiiR1GyHdUfZp9mr9vjvs1IO2mOeNI9zUAQ+fz+Immasih/EIlUr6z88+DhRx9/8ulnjz6vfPG4+uVXc0++Pk9lphg/YzKS6tKnKY9Ews+00BG/HChOYz/iF/7VmvWLnKtUyORUjwe8E9MwET3BqDal7txzSl6QH9oJ9SPaLYYTskdqm91GbfR82G0sLpG2FlHAyXjRxIqtbmPy9vR9rTs3v7K8Mn0RfFC/OZj3bl7N7pPHcTuQLIt5ollE07RVXxnoTkGVFizik0qlnaV8QNkVDXkRZ5EWSg4nlQVY5mnOmS5nW5nu/dopRDLINE/YhCwY62UR0ZLYT00CocxJ0dgcUKaE6Y6wPlWUaTM35ZZSntCYp51iOrmzpgLSk8r8JZpMq6Vx0jhNx7FvkjHV/dQ1W7zP/r8xg5mC1TTzeyLMFC+XfRGmWmXaqUp5pamflqtKarNOkrD8FbRSmpj5CVI7IeaEhA+ZjGOaBEXbfswgncwOfN/57vy43L4NaSkj021lgRgghwOekBPT/nTGNR9pUkukJja5WKmUOzue3HZYHE+cgWzc2Qay0WDSqndAoB3xnm7N19tKhH3dcfIHd20duG01lfTvuHkP/2a4KZw6a0yK2VmMRqThnsZWIa8iXoO8hngd8jriDchodtgm5E3EW5C3EG9D3ka8A3kH8SvIrxDvQt5FvAd5D/E+5H3EB5DRF80OIR8ibkJG64AdQ0arlR1BPkJ8AvkE8SnkU8RnkM8Qn0M+R3wB+QLxJeRLxK8hv0b8BvIbl3N6y36PUKQ+UB8pA8qQhkBDpAqoQpoCTZGOgI6QjoGOkeZAc6RDoEOk10CvkTaAop+bfB0o+r3Id4CiSzbfBYouyXwfKLrk8kugaO3kTaDoispPgKJLIj8HitZ0fgTUXm3usous+zIK7J1dRqRNo0H/ngXI3ZzPNY6NhBszFTcU0dhNmZIf4OY0zdykLbmxBKUSFNq66ZWh33Er69lsItjWW7QofHPz5/bG58uRfUfqbkKJ6X3xik8TKiZKEDcTSNN9297mE6liGhW20F5yUtpseng5pxWOMaqCcmpacbs0m+r34zajmr5HbYUxNddx2L0Nml3Q2KZt2W0xjEVyb9aU3WwaJuUh2oKbsculJhbd+lBMdy3vhu+6RW2+vjhdt+vc7KQV3zdr2eydFNVSfV+0qZoNyvxvL9mj/wraTzoLmqNylwMlR+XxTiu245Sbh40k1P0ZD0Vg9rnFj8s/297K2z4ahdJsYPuxYJMPSGlf2FJZxIPOnT519rA8yWKhuTlr4cWHXxXzgFJ3H0fwwfnT5fqz5WdHP82/XL15VHnkfet959W8uveL99Lb9premce8P7w/vb+8v6ur1X5VVn+fRR8+uDnnG6/0ql7/CwulMnk=</latexit>

a = �rwL(FA(x;wA), ỹ) = GA
T ỹ

20



Problems in AM ?

Running the authors’ github code, the OOD detector is perfect (𝜶 is 0 for ID and 1 for OOD inputs)

They used attack queries used in experiments to train the OOD detector!

1) OOD detector

4)  Adaptive misinformation injection

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

<latexit sha1_base64="wKLZ0xJsn3IPEY8gntc596UigIo=">AAAm+XicvVpbcxu3GaXSSxI2bZx0mpe87FiRRs6kHJISRTGjcqy7ZVuWZF1tUdVgQZBCtBd2gaVIb3amf6Vvnb721/QP9HcU2CVF7IIfIsdqOOPx8jvnAAfA94GgQLvnUMbL5f/MfPSrX//mtx9/8mnxd5/9/g+fP/riy1PmhwEmJ9h3/ODcRow41CMnnHKHnPcCglzbIWf2zYbEz/okYNT3jvmwRy5d1PVoh2LERejq0d9bNulSL8KiDRYXLctqIad3jaxVq1yqWfNWi5MBj2jH2t383vpmeBW5aBBbTRFH4Tex1WopmmZes7+vilbHomKLeO1Rl1ePZsulcvKy9IfK6GG2MHodXH0xh1ptH4cu8Th2EGMXlXKPX0Yo4BQ7JC4WWyEjPYRvUJdEbuhwGvi3cXFODRPWJ5hnuRch76xcRtTrhZx4OLbmBNYJHYv7lpw6q00DIXKG4gHhgIruLHyNAoS5mOBiq006rQ5yqTMUT0j0G7VYZ/QYp7CL+DVMKc5Z4lkspCV5FkPenxkJxDR2fI9bC53Ady1brC0J5IrLYInx4ZNia5OIiQjItogcXaMeifaPK3GE3SCO3Djy4jm5RpYVrdaaq8vN1XpzdaW52miuVsriX7XZJd63gjxiWSJcatSaIlIpT2JLpaUkVJ2E6qWqaKdaLtWXxH9LpRX5rlFaEV0s1kori83VpWqpIfqpVUq1RqKux1H8U36ZoxvGLnNW7npO3KeumaPYbt5ZZ47qvdpM/f8My6KhuxHfwzvl07xzWle8y/eTsTSS942po+D0gUYhGnqfUTBsTpnEnjSUTY+fYQwzPBniPZyFNNmj/t+2wvubsmWB/TKTZb+Hq8HYVt5UWjb2YGrC2YMHSjjR0L0TTnoVNT9i5/1O8fmBztS94T7eRE3/Yt4mFZ93tp18bESpM8amG5+gzMYyA6I7i8bUzDi+k9zb+VhBMGNtUdCjt+bZlS5dpXimOZWs7FbJ2PStkrFpmZvEP+QTS8jr98qV0WjGeQyOhq6MhgFs+QKABkI/cCT0PYYySh/D0oyG0Vb27werg1yzP+l2stuZzWa3t4fyqraaWD0i/Gjo2r4jzUZ+jwSI+4Hw6fmBi5xYr4C74Sk6L3RtIlXisIz9NvW644NipJ8jJ6U0paVeGBCHcP5+raXb3ri5PcFZk4d8m/BUEbhTGwtc0JLeht25r6G7JYYbY9Mbmxyw72GI8gecIT69Mc5zhmQj8tvBOFOeyqN92kQ38MNeiw3dcTYUcz2myxyV44SefA2bZM7jxXLe4YhfAfgVgF8F+FWAvwjwFwH+EsBfAvg1gF8D+MsAfxng1wF+HeCvAPwVgN8A+A1ogddUQaagHy9Bi7Zu0EALt2HQQIu3adBAC7hl0ECLuG3QQAu5Y9BAi/nMoIEWdNegaQCa5wbNGqB5YdCsA5qXBs0GoNkzaDYBzSuDZgvQ7Bs024DmANbUoA3v0KCB6ue1QQPVz5FBA9XPsUED1c+JQQPVz6lBA9XPmUED1c+5QQPVzxuDBqqftwbNGrSRIli0DCWCbdBAiYANGigR2gYNlAjEoIESoWPQQInQNWigRLg2aKBEoAYNlAg/GDTQRnpj0EAbqWPQQBupa9BAG6ln0EAbqW/QQBtpD9bUoY30bwYNVD+BQQPVDzNooPrhBg1UP6FBA9VP36CB6ufWoIHqZ2DQQPUzNGig+nln0MiNdG76K3d7woiHXMIuo+RWKr0+aVsdP0jvL5Jo5m4GiW/AwoBgyt5ZHpPBadiH3tNMvR1Soyy0O7QrpiEbtmmX8SDkuajv33Bks2w08Dni4ltf9trpgiFPzE+byQkRAo/cYt91kddOv+212ei7pm3n7qtsN9u+JHHfd1hyayQAa79HPOtItJ/MuLyAsxY8nydXSU+KxWxnr+Nxh+KQkzOyNcG2NGzQiy8qlwqh5ZAOv5ittALaveaXOf6rSVuv8m0dBL49gQ+mwD8I+IDm4ngtjlIVRo61lpfhdRVe1+ANFd7Q4E0V3tTgLRXWZgdvq/C2Bu+o8I4GP1PhZxq8q8K7GvxchZ9r8AsVfqHBL1X4pQbvqfCeBr9SYW2h8b4K72vwgQpreYBfq7CWrfhQhQ81+EiFjzT4WIWPNfhEhU80+FSFTzX4TIXPNPhchc81+I0Kv9Hgtyr8Ng/30Ri2OxbSUFtBbQ3FCoo1tKugXQ0NFDTQUKagTEMHCjrQ0KGCDjW0r6B9Db1V0FsNfaeg7zR0TUG17aa/qaDaftHfVVCtZPsvFFQryf6egmol1z9XUC13+gcKqlVU/0hBtZLonyqoltP9QwWV1ZZPO0fi4kzRZsnRYvTLED0BSZ5nE67TBjRPE5E8yUFuniVCdltvjqMwz5ShPM3TWJ5G2hn1irV9XCKbYToReOevWlLY4sOfyA8+2x/Id1Ylzwho8rl4QxJG4FoBtfKcti///C4/5tNLhUgGWt/lWFwcekiWxwOdhlHQzrKSSL5Lyvidb+Eqea+11ZU/9Ym6V2OiOAUNJVuG8y12XepN5Ypwnsu6XtaiDOQ5Ml0W6JN8/JYmp5Yfb3+8ihZmK09i5cZFHoP3R394/zZqoSA1Jf5vfSefTEQ50pQonrJd9gJ/kPWbRGTHjHCHeF1+ncK3tC3OudFiqSZ7yx77kNP1xQH22qU4BpDMufAiCB3Svpyg1dwZlnihSzkRqrm/wK/i1aPZSv4nWPrDabVUWS5VD5dmn66Pfp71SeHrwuPCQqFSqBeeFp4VDgonBVz478xnM3+a+Wo+mv/H/D/n/5VSP5oZaf5YyLzm//0/Cg+ixg==</latexit>(
↵ < 0.5 if ID: ymax > ⌧

↵ > 0.5 if OOD: ymax < ⌧

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

These advantages allow our defense to achieve a bet-
ter trade-off between classification accuracy and security
compared to existing defenses, with a low computational
overhead. Fig. 3 shows the block diagram of our proposed
Adaptive Misinformation defense. In addition to the de-
fender’s model f , there are three components that make up
our defense: (1) An OOD detector (2) A misinformation
function (f ′) (3) A mechanism to gradually switch between
the predictions of f and f ′ depending on the input.

For an input query x, AM first determines if the input
is ID or OOD. If the input is ID, the user is assumed to
be benign and AM uses the predictions of f to service the
request. On the other hand, if x an OOD input, the user is
considered to be malicious and the query is serviced using
the incorrect predictions generated from f̂ . In the remainder
of this section, we explain the different components of our
defense in more detail.

x

f

y
′

f̂

+

OOD 
Detector

α

Figure 3. Adaptive Misinformation: We use an OOD detection

mechanism to selectively service OOD inputs with the predictions

of the misinformation function f ′, while the ID inputs are serviced

with the original predictions of the model f .

4.1. Out of Distribution Detector

Out of Distribution detection is a well-studied problem
in deep learning [6, 10, 13, 11, 23, 3], where the objective is
to determine if an input received by the model during test-
ing is dissimilar to the inputs seen during training. This can
be used to detect and flag anomalous or hard to classify in-
puts which might require further examination or human in-
tervention. A simple proposal to detect OOD examples [6]
involves using the Maximum Softmax Probability (MSP) of
the model. For a model that outputs a set of K output prob-
abilities {yi}Ki=1 for an input x, OOD detection can be done
by thresholding the MSP as shown in Eqn. 5.

Det(x) =

{

ID if maxi(yi) > τ

OOD otherwise
(5)

The idea here is that the model produces confident predic-
tions on ID inputs, similar to the ones seen during training
and less confident predictions on OOD examples that are
dissimilar to the training dataset. Outlier Exposure [7] is a
recent work that improves the performance of the threshold-
based detector by exposing the classifier to an auxilary

dataset of outliers Dout. The model is trained to produce
uniform probability distribution (U ) on inputs from Dout

by adding an extra term to the loss function during training
as shown in Eqn. 6.

E(x,y)∈Din
[L (f (x) , y)] + λEx′∈Dout

[L (f (x′) ,U)] (6)

This ensures that the model produces accurate and confi-
dent predictions for inputs sampled from Din, while OOD
examples produce less confident predictions, improving the
ability of the detector to distinguish them. We train the de-
fender’s model with outlier exposure and use a threshold-
based detector in our defense to perform OOD detection.

4.2. Misinformation Function

For queries which are deemed OOD by the detector, we
want to provide incorrect predictions that are dissimilar to
the predictions of the true model in order to deceive the ad-
versary. We obtain the incorrect predictions by using a mis-

information function f̂ , which is trained to minimize the
probability of the correct class f̂(x, y). We can use cate-

gorical cross entropy to define a loss function to train f̂ as
described by Eqn. 7 to achieve this objective.

loss = E(x,y)∈Din

[

−log(1− f̂(x, y))
]

(7)

This loss term is minimized when the misinformation model
produces low probability for the correct class y. We use this
model to provide misleading information to OOD queries,
making it harder for an adversary to train a clone model that
obtains high accuracy on the classification task.

4.3. Adaptively Injecting Misinformation

Finally, we need a mechanism to gradually switch be-
tween the outputs of the defender’s model (f ) and the mis-
information model (f̂ ), depending on whether the input x
is ID or OOD. In order to achieve this, we first pass x
through an OOD detector, which simply requires comput-
ing the maximum softmax probability ymax of all the output
classes produced by f .

ymax = max
i

(yi) (8)

A larger value of ymax indicates that the input is ID, while
a smaller value indicates an OOD input. We use a thresh-
old τ to classify between ID and OOD inputs as shown in
Eqn. 5. The predictions of f and f̂ are combined by using
a reverse sigmoid function S(x) to produce the final output
probabilities y′ as shown in Eqn. 9, 10.

y′ = (1− α)f(x; θ) + (α) f̂(x; θ̂) (9)

where α = S(ymax − τ) (10)

S(z) =
1

1 + eνz
(11)

774

21



Problems in EDM

22

Published as a conference paper at ICLR 2021

Figure 4: EDM uses an input-based hash H(x) to select the model that is used to service an input
query x. A perceptual hashing algorithm is used to prevent adaptive attacks.

In order to increase the misalignment of probability vectors, we need to reduce the value of coher-
ence. Unfortunately, the max function in Eqn 1 makes coherence non-smooth, which precludes the
use of first-order methods to optimize the value of coherence. To overcome this limitation, we use
the LogSumExp function to get a smooth approximation of the max function that allows it to be
used in first-order optimization algorithms. We term the resulting loss function as the diversity loss:

DivLoss({ỹi}
N

i=1) = log

 
X

1a<bN

exp(CS(ỹa, ỹb))

!
. (2)

Models in the ensemble are jointly trained on the combination of accuracy and diversity objectives:

L = E
x,y⇠Din,x̃⇠Dout

"⇣ 1

N

NX

i=1

LCE(ŷi,y)
⌘
+ �D ·DivLoss({ỹi}

N

i=1)

#
, (3)

where ŷi = fi(x), ỹi = fi(x̃).

Here �D is a hyperparameter that dictates the ratio of importance between the diversity and accu-
racy objectives. Note that the loss function described above requires access a dataset of labeled
in-distribution examples Din as well as a dataset of out-of-distribution examples Dout. Since we do
not know the OOD samples that is used by the adversary a-priori, we make use of an auxiliary OOD
dataset to train EDM. Similar use of auxiliary OOD datasets have been explored in anomaly detec-
tion literature (Hendrycks et al., 2018) to detect unseen anomalies. Our experiments in Section 5.3
suggest that the diversity objective generalizes to the unseen OOD dataset used by the adversary.

4.2 EDM INFERENCE

The objective of EDM is to produce predictions that are discontinuous in the input space. EDM
produces discontinuous predictions by selecting a model in the ensemble based on the input to
service each request as shown in Fig. 4. Given an input query x, EDM uses a hashing function H to
compute a hash of the input, from which the index of the model that is used to service the query can
be computed: index = 1 + (H(x)%N). The output prediction is given by yout = findex(x).

4.2.1 CHOOSING THE HASH FUNCTION

To ensure that an adversary is unable to launch an adaptive attack to game the hash function, we
select a hash function that satisfies the following properties:

1. Security: The hash function needs to be kept secret from the adversary to avoid the adversary
from computing the hash and figuring out which model was used to service a given input.

2. Transformation invariance: While the hash function should map different inputs to different
hash values, we want the hash value to be invariant to small transformations in the input images
such as scaling, rotation, translation, warping, contrast adjustment, etc. This invariance property
is necessary to prevent an adversary from using slightly modified versions of the original image to
change the hash value and query a different model. Without the invariance property, the adversary
can query all the models in the ensemble and get the average prediction for a given input, which is
continuous in nature and allows for more effective model stealing.

Cryptographic hash function would be unsuitable for our application as they lack transformation
invariance. Perceptual hashing (pHash) (Zauner, 2010) are a class of hash functions that ensure that

5

Knowledge of OOD data (= attack queries) is assumed

Otherwise, we found that EDM loses its defense capability



Model Stealing Defense against Exploiting Information Leak 
through the Interpretation of Deep Neural Nets

Jeonghyun Lee, Sungmin Han, Sangkyun Lee*

School of Cybersecurity
Korea University, South Korea

IJCAI-22

23



Model Stealing Attack

MLaaS

query 𝑥!

query 𝑥! response 𝑓(𝑥!)

transfer set {(𝑥! , 𝑓(𝑥!))}

Train a clone model

𝑓(𝑥!) Softmax output

Attribution map

𝐼(𝑥!)

ML-as-a-Service

Milli et al., Model Reconstruction from Model 
Explanations, In Proceedings of the Conference on 
Fairness, Accountability, and Transparency, 2019

XAI provides 
a new attack 
surface

𝑰(𝒙𝒒)

transfer set {(𝑥! , 𝑓(𝑥!),𝑰(𝒙𝒒))}

To avoid query charges

Preparation for main attack
- Model inversion (data privacy)
- Adversarial attack

We also wanted to solve the issues in PP, AM & EDM!
24



Proposed Method: DeepDefense

Original 
Model 𝑓

𝑥! Misdirection 
Model  (𝑓

Gradient Misdirection

Preserve: Attribution Order

%𝒇 𝒙𝒒; )𝒘

%𝑰(𝒙𝒒; )𝒘)

𝛁𝐰𝒇 𝐱𝐪;𝒘 ⊥ 𝛁%𝒘	%𝒇 𝒙𝒒; )𝒘	

Preserve: Top-𝒌 Softmax Order
top1

top2

top3

top1
top2

top3

𝒇 𝒙𝒒;𝒘

0.7 0.9

0.4 0.2

0.73 0.85

0.5 0.1

𝑰(𝒙𝒒;𝒘)

%𝒇 𝒙𝒒; )𝒘

%𝑰(𝒙𝒒; )𝒘)

Idea: 
1) Build a misdirection model 

%𝒇 of the victim 𝒇	for each 
query 𝒙𝒒

• %𝒇 𝒙𝒒; )𝒘 ≈ 𝒇(𝒙𝒒; 𝒘)
: Keep the order of top-k 
softmax indices

• 𝛁𝒘	%𝒇 𝒙𝒒; )𝒘 ⊥ 𝛁𝒘𝒇 𝒙𝒒; 𝒘

2) Reveal only the outputs 
from the misdirection 
model, to all users

25



Observation: parts of gradients have different flexibility to be used for perturbation

Gradients in Parts

Top part: backward path that 
providing the gradient '( );+ "

',#$
% ())

• Flexible

Bottom part	: forward path that 
providing the activation maps 𝐴 𝑥

• Not so much flexible

26



The misdirection model is required to have gradients orthogonal to the gradients 
of the original model:

We reformulate this as follows (with a hyperparameter 𝟎 ≤ 𝜶 ≤ 𝟏):

Gradient Misdirection

Original modelMisdirection model

Top part

Bottom part

27



Constrained Optimization Problem

Learning the Misdirection Model

<latexit sha1_base64="uvlFKDPXun8fz/isIelh45rPiAM=">AAADE3ichVJNb9QwEHXCVwlfWzhysVit1EooSqoKEFwquHAsgm0rrZfIcSapu7aTtR3oKsp/4MJf4cIBhLhy4ca/wZuNUNmiMpKl5zfvzdhjp5XgxkbRL8+/dPnK1Wsb14MbN2/dvjPYvHtgylozGLNSlPoopQYEVzC23Ao4qjRQmQo4TGcvlvnDd6ANL9Ubu6hgKmmheM4ZtY5KNr1tE9qQzGuaYUxSKLhqqOCFgqwlgqYgGpg/zWvFlnqXsYs2wC6I5SIDnG+dJvNnq03zvt1OGpPELSYFzHGnG10g3DkrJCwrrVkRF3hm7eghIUSVqpYp6P/2mLV9+a6upKdJc0K4wq/fkkpzCW0vz9t180kYEFDZn3Ekg2EURl3g8yDuwRD1sZ8MfpKsZLUEZZmgxkziqLLThmrLmYA2ILWBirIZLWDioKISzLTp3rTFI8dkOC+1W8rijj3raKg0ZiFTp5TUHpv13JL8V25S2/zJtOGqqi0otmqU1wLbEi8/CM64BmbFwgHKNHdnxeyYasqs+0aBG0K8fuXz4GAnjB+Fu692h3vP+3FsoPvoAdpCMXqM9tBLtI/GiHkfvE/eF++r/9H/7H/zv6+kvtd77qG/wv/xG4IM99g=</latexit>

s.t. f̃(xq; w̃)s1 � · · · � f̃(xq; w̃)sk � max
j2S0

f̃(xq; w̃)j .

<latexit sha1_base64="iaF+XVYFBPMgNdjRgOrou15Ug28=">AAACaXichVHLSgMxFM2Mr1pfVVFEN8Ei6KbMiKjgpuhGdwrWCm0ZMpnbGsw8TO6oZRjwG935A278CdOHoK3ogcC5557LTU78RAqNjvNm2ROTU9Mzhdni3PzC4lJpeeVGx6niUOOxjNWtzzRIEUENBUq4TRSw0JdQ9+/Pev36Iygt4ugauwm0QtaJRFtwhkbySi9FatBEIQOgF7vP3sPJoMie8j0vY56b02YHHv6y7H9ZeBCj/teenZs6BE3reV4peqWyU3H6oOPEHZIyGeLSK702g5inIUTIJdO64ToJtjKmUHAJebGZakgYv2cdaBgaMbOqlfWTyumOUQLajpU5EdK++n0iY6HW3dA3zpDhnR7t9cTfeo0U28etTERJihDxwaJ2KinGtBc7DYQCjrJrCONKmLtSfscU42g+pxeCO/rkcXKzX3EPKwdXB+Xq6TCOAtki22SXuOSIVMk5uSQ1wsm7NW+tWevWh71sb9ibA6ttDWdWyQ/Y5U/bTbf2</latexit>

Ĩ(xq; w̃)a1 � Ĩ(xq; w̃)a2 � · · · � Ĩ(xq; w̃)aH⇥W
.

<latexit sha1_base64="/nVbOoTEIhVSe9C4OsFU/otzU3I=">AAADEnichVJNb9QwEHXCV1k+uoUjF4sV0q6AaoMqQCCkqlw4cCjSbltpvYomziRr1XGC7bBdpfkNXPgrXDiAEFdO3Pg3OLuhghaVkSw9vTczz55xVEhh7HD40/MvXLx0+cra1c616zdurnc3bu2ZvNQcxzyXuT6IwKAUCsdWWIkHhUbIIon70eHLRt9/h9qIXI3sosBpBqkSieBgHRVueH0WYSpUBVKkCuOaZUKFFbNCxljN67pDXbAM7IyDrF7XjYZHtsq1ndV1/yh8+4Cusul8QJ+9oAxkMQMmMbHHjOeGgUol9pmCSEJYzcOdOmnKns8H4cLVtvzvHk5u4SrrpHe4GDAt0pk9pvf7wcOVzeAcn9H5PqP/+nQYqvhkMGG3N9wcLoOeBUELeqSN3bD7g8U5LzNUlkswZhIMCzutQFvBJdYdVhosgB9CihMHFWRoptVypTW955iYJrl2R1m6ZP+sqCAzZpFFLrPZjTmtNeS/tElpk6fTSqiitKj4yigpJbU5bf4HjYVGbuXCAeBauLtSPgMN3Lpf1HFDCE4/+SzYe7QZPN7cerPV295px7FG7pC7pE8C8oRsk1dkl4wJ9957H73P3hf/g//J/+p/W6X6Xltzm/wV/vdfPJf8Rg==</latexit>

min
w̃

Lorth(xq, w̃) := ↵
���cos\(rwBf(xq;w)y,rw̃B f̃(xq; w̃)y)

���+ (1� ↵)
���cos\(rwT f(xq;w)y,rw̃T f̃(xq; w̃)y)

���

Functionality preservation

Interpretability preservation

• 𝑠": the index of 𝑖-th largest value in the original softmax vector
• 𝑆# ≔	{1,… , 𝐾}	 \ 𝑠$, … , 𝑠%

• 𝑎": the index of 𝑖-th largest value attribution in the original attribution map
• 𝐻×𝑊: the size of attribution maps

28



Reformulation into an Unconstrained Optimization

<latexit sha1_base64="aOoAoRMpD+/AX4rD3kS4KI/DRa8=">AAANmXicrddbb9s2FAdwtbt1Xr2l2976IiwIkGxBYHdbNwwo0NyaW5M4FydpLTegKFrmIokGScl2VH+XvW7faN9mpJ0sRzzpniYgiHx+f5GUTFlUOEi40o3G3w8efvTxJ59+9ujz2heP619+Nffk6zMlcklZm4pEyIuQKJbwjLU11wm7GEhG0jBh5+HVuvXzgknFRXaqxwPWTUmc8R6nRJvS5dy3i9dL737wf3vhBykZBeX1ciOYXM7NN1Ya083HO82bnXnvZmtdPnmcBpGgecoyTROiVKfZGOhuSaTmNGGTWi3IFRsQekViVqZ5orkUw0ltAZaZKhjV1Wwn171fuyXPBrlmGZ34C8Z6eeJr4dvT8SMuzUHJ2OwQKrnpzqd9IgnV5qSrLSmWkZSpbjm9arOmIr8npPnLtD+tVsZJUqXGaWiSKdF95Zot3mf/35jBlYJVlYc9HueSVcshj5WWuXaqQlxpEqpqVQptJkAWV7+CjiKZuT6RshfEHJCxIRVpSrKoDOxpRmoy2wlD57sL02r7NqSFSEy3tQXfgH84YJl/YtqfXnHNRtpfzIT2bXKpVqt2djy57bA8njgD2byzTWSjwaTT7IJAkLCe7sw3A8njvu46+YO7tg7ctlpShHfcuod/N9ziTp2uTsrZUZQk/qp7GF2DvIZ4HfI64g3IG4g3IaOrQ19BfoV4C/IW4m3I24h3IO8g3oW8i3gP8h7i15BfI96HvI/4ADL6oukh5EPELchoHtBjyGi20iPIR4hPIJ8gPoV8irgNuY34DPIZ4nPI54gvIF8gfgP5DeK3kN+6XJBbDns+QRoCDZFSoBRpDDRGKoFKpAqoQjoCOkI6BjpGWgAtkA6BDpFeA71GugoU/dwUG0DR70WxAxTdssUeUHRLFvtA0S1XXABFc6doAUV3VHECFN0SxRlQNKeLI6D2bnOnXWI9FElkn+wi8QOSDPr3TEDm5kKmcWzE3ZipuKGEpG7KlMIIN6dJ7iZtyY1lKJWh0NZNrxT9jlvZyGcXgm69Q5MiNA9/Zh98oRjZT37TTUg+fS5esWlCpr7kvpuJhOk+sI/5TMiUJKUtBMtOSptFD6vmtMQxSmRUTU0rbpdmtfzvuM2opp9RW7FZ5k7K+PI2aFZBY5u2ZbfFOOXZvVlTdrMqzqpDtAU3Y6fLIl9y60M+XbW8H76/LBfnm0vTebvBzEpasn0zl83aSRIt5PdlQORsUOZ/sGz3/itoz3QWNHvVLgdSjKrjnVZsx4qZt4gs1v0ZD3lk1rnljys/296qyz6SxMIsYPspp5MPSGVd2JF5wqLunT5z1rAsy1OumTlq4cWHt5p5QWm6ryN45+zZSvP5yvOjn+Zfrt28qjzynnrfeYte0/vFe+ltey2v7VHv2vvD+9P7q/60vlrfru/Oog8f3BzzjVfZ6if/APjyJI0=</latexit>

(z)+ := max{z, 0}

<latexit sha1_base64="BPo+c/XOye1KuB0hGxe1kB7TzNg=">AAACg3icbVFdSxtBFJ3d1mqj1lgf+zI0VCKpcVeClkpA6IuFPig0RsjGZXZyNxmc/XDmbmtY5o/0Z/XNf+Nsui1qemHgcO45d+aeiXIpNHreveO+eLnyanXtdWN9Y/PNVnP77aXOCsVhwDOZqauIaZAihQEKlHCVK2BJJGEY3Xyp+sMfoLTI0u84z2GcsGkqYsEZWips/goShjPOZPnNhGWAcIelSNGY9l14+zFAISdAf+597ge6SK7LM8skoOmQ7vtWL/q+eTQgkBBju127vtJqxsm/GWHJrKPjG7P/V7EsEOa6EygxneFe2Gx5XW9RdBn4NWiRus7D5u9gkvEigRS5ZFqPfC/HcckUCi7BNIJCQ874DZvCyMKU2U3G5SJDQz9YZkLjTNmTIl2wjx0lS7SeJ5FVVgvr572K/F9vVGD8aWwzzQuElP+5KC4kxYxWH0InQgFHObeAcSXsWymfMcU42m9r2BD85ysvg8vDrn/U7V30Wqe9Oo418o68J23ik2NySs7IORkQ7hBn1zlwPHfF7biHbq11ndqzQ56U238AlC/CFw==</latexit>

Lint(xq, w̃) :=
H⇥W�1X

i=1

L
⇣
(Ĩ(xq; w̃)ai+1 � Ĩ(xq; w̃)

+
ai

⌘

<latexit sha1_base64="GR3vkOi2feNaudjNaoDdSplDFEU=">AAAC43icbVJNbxMxEPUuX234CnDsxSICFRVFu1UEqAipUnvgwKFIpK2UjRavPUmseu2tPQuNVnvlwoEKceVPceOvcMKbRhV0M5Klp5l5fn4zzgolHUbR7yC8dv3GzVtr653bd+7eu9998PDQmdJyGHKjjD3OmAMlNQxRooLjwgLLMwVH2cleUz/6BNZJoz/gvIBxzqZaTiRn6FNp90+SwVTqiik51SDqRLEMVAWnO8o41xei7lAfSc5wxpmq3tVplSCcYbW/X9ebZ+np8wSlElB9rp/RnTc0eU2frug2Fmet/sXVWw3Fy+aZYGm8SskbEm2trUvS9iqS1NjWS0CLS6tptxf1o0XQNoiXoEeWcZB2fyXC8DIHjVwx50ZxVOC4YhYlV1B3ktJBwfgJm8LIQ81ycONqsaOaPvEZQSfG+qORLrL/MiqWOzfPM9/ZmHFXa01yVW1U4uTV2NstSgTNL4QmpaJoaLNwKqQFjmruAeNW+rdSPmOWcfTfouOHEF+13AaH2/34RX/wftDbHSzHsUY2yGOySWLykuySt+SADAkPPgZfgm/BeQjh1/B7+OOiNQyWnEfkvwh//gVUbup/</latexit>

LDD(xq, w̃) := Lorth(xq, w̃) + �1Lpred(xq, w̃) + �2Lint(xq, w̃)

<latexit sha1_base64="ElUV72S8h7etpETH0Wq8G37qZts=">AAADBHicfVJNb9NAEF2brxI+msINLhYRVaI0kY0iQKBKlbggwaFIpK2UTa31epxss14b75omWu2BC3+FCwcQ4sqP4Ma/YZ0YVNKKkVZ6mvdm5u3sRjlnUvn+L8e9dPnK1Wsb1xs3bt66vdncunMgs7KgMKQZz4qjiEjgTMBQMcXhKC+ApBGHw2j2ouIP30MhWSbeqkUO45RMBEsYJcqmwi3nHo5gwoQmnE0ExAanRE0p4fq1CTVWMFfaNoyNac/Dd8+xYjwG77TzbHcbyzI91rNeYIVsNzDtFamTs1J9ajqhllbRDYzp/V9iTOe4i/F2F3NIVNtamYf6BDPhYR3s4DhTcucVNjgidCY5kVNsy/4QMpxhY2qDyXr/k94FjL1HNXhmcMEmU1UNBxH/XUXYbPl9fxneeRDUoIXq2A+bP60VWqYgFLX25CjwczXWpFCMcjANXErIrXcygZGFgqQgx3r5iMZ7aDOxl2SFPUJ5y+zZCk1SKRdpZJXVE8l1rkpexI1KlTwdaybyUoGgq0FJyT2VedWP8GJWAFV8YQGhBbNePTolBaHK/puGXUKwfuXz4OBRP3jcH7wZtPYG9To20H30ALVRgJ6gPfQS7aMhos4H55PzxfnqfnQ/u9/c7yup69Q1d9E/4f74DW8O+No=</latexit>

Lpred(xq; w̃) :=
k�1X

i=1

(f̃(xq; w̃)si+1 � f̃(xq; w̃)si)
+

+

✓
max

j2{1,...,K}\{s1,...,sk}
f̃(xq; w̃)j � f̃(xq; w̃)sk

◆+

• Solver: SGD with momentum

29



Sparse Layer Selection

For speed-up, we use only the parts of gradients corresponding to the most sensitivity 
layers to the model’s output

Layer sensitivity : 𝑆ℓ ≔
+
,
∑-.+, ||∇/ℓf x0; w 1'||+

Cumulative sensitivity : 𝐶𝑆 ℓ ≔
∑()*
ℓ 3(()

∑()*
- 3(()

×100	(%) 
sensitive 

layers

Here, cos\(a, b) is the cosine angle of two vectors a and b,
and ↵ 2 [0, 1] is a hyperparameter to balance the degree of
orthogonalization of gradients in the top and the bottom parts.
However, optimizing Lorth subject to the constraints in (3) and
(4) can be difficult due the non-linearity in the constraints.
Reformulation to an unconstrained optimization problem
We reformulate the optimization into an unconstrained opti-
mization using penalty functions to facilitate optimization.

For the functionality preservation constraints (3), we define
a penalty function Lpred such that Lpred(xq; ew) = 0 if the
top k order of ef(xq; ew) is preserved and Lpred(xq; ew) > 0
otherwise:

Lpred(xq, ew) :=
k�1X

i=1

( ef(xq; ew)si+1 � ef(xq; ew)si
)+

+ (max
j2S0

ef(xq; ew)j � ef(xq; ew)sk
)+.

(6)

Here, (x)+ := max(0, x). For the interpretation preservation
constraints (4), we define Lint as follows:

Lint(xq, ew) :=
H⇥W�1X

i=1

L�

⇣
(eI(xq; ew)ai+1 � eI(xq; ew)ai

)+
⌘
.

(7)
Here, L� is the Huber loss [Huber, 1964] defined as follows:

L�(a) :=

⇢ 1
2a2 if |a|  �
�(|a|� 1

2�) otherwise.

The Huber loss here is to prevent relatively large attribution
values from being excessively dominant (we use � = 0.3 in
our experiments).

Using the reformations (6) and (7) of the constraints, we
define the loss function of DeepDefense as follows:

LDD(xq, ew) := Lorth(xq, ew)

+ �1Lpred(xq, ew) + �2Lint(xq, ew).
(8)

Here �1 > 0 and �2 > 0 are hyperparameters. For each query
input xq , we initialize ef(·; ew) with the original victim model
f(·; w) then minimize LDD(xq; ew) by iteratively updating ew
with a gradient-descent algorithm.
Selection of sensitive layers Involving entire layers of vic-
tim model in (5) can be costly since the optimization of (8)
will include a large number of variables for deep neural nets.
In the spirit that each layer may have different sensitivity to
the prediction outcome, we define the sensitivity score S` of
the layer `:

S` :=
1

N

NX

i=1

krw`
f(xi; w)yi

k1.

Here, w` is a sub-vector of weight parameters corresponding
to the `-th layer and yi is the predicted class of the input xi.
N is the total number of data points involved in measuring
S`. To choose a reasonable number of layers ` to include in
optimization, we use the cumulative sensitivity ratio which is
defined as

CS(`) :=

P
`

i=1 S(i)
P

L

i=1 S(i)

⇥ 100 (%), (9)

Dataset Model f Test Acc (%)
MNIST LeNet 99.49

KMNIST LeNet 99.49
CIFAR-10 WRN16-4 95.21
Flowers-17 ResNet-18 95.96
CUBS-200 ResNet-34 73.94

Table 1: Datasets, model architecture and the baseline test accuracy
of the victim models.

where S(1) � S(2) � · · · � S(L) are the layer sensitivity
scores ranked in decreasing order and L is the number of the
candidate layers. In our experiments, we use the smallest `
for which the CS(`) is at least 90%.

5 Experiments
Datasets, models and interpreters To train the victim
models, we used five image classification datasets: MNIST ,
KMNIST , CIFAR-10 , Flowers-17 , and CUBS-200 . The
victim model’s architecture and the test accuracy for each
dataset are described in Table 1. We used three popular in-
terpreters: Grad-CAM [Selvaraju et al., 2017], Relevance-
CAM (denoted by Rel-CAM) [Lee et al., 2021] and Gradient
� Input. For Grad-CAM and Rel-CAM , we obtained the ac-
tivation maps from the penultimate layer of each model.

Attack strategy As mentioned in Section 3, we assume
a model stealing adversary who can use both the softmax
outputs and the attribution maps, training an attack model
minimizing the loss in (1). Since we assume that the adver-
sary cannot access to the victim’s data distribution P , the
adversary chooses the transfer-set from PA which is likely
to be different from P in the real-world. This is a similar
setup to [Orekondy et al., 2019]. We used Fashion-MNIST,
MNIST, CIFAR100 as the transfer-sets for MNIST, KMNIST,
and CIFAR10, and ImageNet as the transfer-set for Flowers-
17 and CUBS-200. We set the adversary’s query budget to
B = 10000 unless stated otherwise. For each attack scenario,
we set the adversary to have the same neural net architecture
and the interpreter to those of the victim which is one of the
worst-case setups for the defender.

Defense performance To demonstrate the effectiveness of
DeepDefense (DD), we evaluate the defense performance on
four values of query budget B, 2500, 5000, 7500, and 10000.
There is no other model stealing defense method considering
the adversary that exploits both the victim’s softmax proba-
bilities and attribution maps to our best knowledge. There-
fore, we compare the defense performance of DD with state-
of-the-art defense methods which consider the adversary that
exploits the softmax output only, Prediction Poisoning (PP),
Adaptive Misinformation (AM), and Ensemble of Diverse
Models (EDM). For a fair comparison, we carefully adjusted
the hyperparameters of the methods so that the defense will
be done without losing the test accuracy of the victim mod-
els. For DD, we set k = 1 to preserve the index of maximum
softmax probability.

As shown in Figure 2, DD outperformed the other defense
methods on the entire datasets and interpreters. Noticeably,

<latexit sha1_base64="rMBBRWarFpkUDgdJ09SnwBjNl+Y=">AAANmnicrddbb9s2FAdwtbt1Xr2mG/a0PQgLAiRDEMRdd3so0NyapGkS557Wcg2KomUukmiQlGxX9YfZ6/aJ9m1GyslyxJPuaQKCyOf3F0nJlEWFw4Qrvbr69737H338yaefPfi88cXD5peP5h5/da5ELik7oyIR8jIkiiU8Y2ea64RdDiUjaZiwi/Bqw/pFwaTiIjvVkyHrpiTOeJ9Tok2pN/dNUC6Oe3x50uNLwbRX8met6duD3tz86spqtfl4p3W9M+9db+3e44dpEAmapyzTNCFKdVqrQ90tidScJmzaaAS5YkNCr0jMyjRPNJdiNG0swDJTBaO6nu3kuv9rt+TZMNcso1N/wVg/T3wtfHs+fsSlOSiZmB1CJTfd+XRAJKHanHW9JcUykjLVLavLNmsq8vtCmr9M+1W1Nk6SKjVJQ5NMiR4o12zxLvv/xgyuFKyqPOzzOJesXg55rLTMtVMV4kqTUNWrUmgzA7K4/hV0FMnM9YmUvSDmgIyNqEhTkkVlYE8zUtPZThg6312Y1tu3IS1EYrptLPgG/MMhy/wT0351xTUba38xE9q3yaVGo97Z8fSmw/J46gxk69a2kI2H006rCwJBwvq6M98KJI8HuuvkD27bOnDbaksR3nL7Dv7dcJs7dbo2LWdHUZL4a+5hdB3yOuINyBuINyFvIt6CjK4OfQH5BeJtyNuIdyDvIN6FvIv4JeSXiPcg7yF+BfkV4n3I+4gPIKMvmh5CPkTchozmAT2GjGYrPYJ8hPgE8gniU8iniM8gnyE+h3yO+ALyBeJLyJeIX0N+jfgN5DcuF+SGw75PkIZAQ6QUKEUaA42RSqASqQKqkI6BjpFOgE6QFkALpCOgI6TvgL5DugYU/dwUm0DR70WxCxTdssUeUHRLFvtA0S1XXAJFc6doA0V3VHECFN0SxTlQNKeLI6D2bnOnXWI9FElkn+wi8QOSDAd3TEDm5kKmcWzM3ZipuKGEpG7KlMIIN6dJ7iZtyY1lKJWh0PZ1rxT9jlvZzGcXgm6/RZMiNA9/Zh98oRjbT37LTUhePRevWJWQqS+572YiYboP7GM+EzIlSWkLwbKT0mbRw+o5LXGMEhnVU1XF7dIsl/8dtxlV9Rm1FafE3Mdx7yZoVkETm7Zlt8U45dmdWVN2syrO6kO0BTdjp8siX3LrI16tWt6P3vfKxfnWUjVvN5lZSUu2b+ayWTtJooX8oQyInA3K/A+W7d5/Be2ZzoJmr97lUIpxfbxVxXasmHmNyGI9mPGIR2adW/648pPtrb7sI0kszAJ2kHI6/YDU1oUdmScs6t7qE2cNy7I85ZqZoxaefXhrmBeUlvs6gnfOn6y0fl55evR0/vlv168qD7xvve+9Ra/l/eI993a8tnfmUa/0/vD+9P5qftdcb+4292bR+/euj/naq23N038Audkl4Q==</latexit>

{(xi, yi)}Ni=1: a part of training data for sensitivity evaluation

30



v Our method (DD) outperformed SOTA defense methods against model stealing

Defense Performance (Attacker’s Test Accuracy)

ICLR`20
CVPR`20

ICLR`21

IC
C

V`
17

C
VP

R
`2

1
IC

M
L`

17

Top-1 softmax is 
preserved:
Misdirection 
model has the 
same test 
accuracy as the 
original model

At CS (90%)

Ours

31



Relevance-CAM / Flowers17 dataset / ResNet-18

DD showed consistent defense performance on the change of cumulative 
sensitivity, with reasonable computation time

Computational Cost

The activation layer used 
for Relevance-CAM

32



Quantitative

No statistically significant difference in 
interpretation quality between the original 
and misdirected interpretations

Qualitative (Grad-CAM)

The focused areas are preserved

Preservation of Interpretation Quality

<latexit sha1_base64="vDtDamazddd1Pp9PuI1QG9xTnQg=">AAACLXicbVBNa9tAEF05aZu4X056zGWJKbiHulIxTS6BpM0hp5BA7RgsWazWI2fx6oPdUYhY9Idy6V8phRwSQq/9G1nbOrRxHww83pthZl6US6HRde+cxtr6s+cvNjabL1+9fvO2tbU90FmhOPR5JjM1jJgGKVLoo0AJw1wBSyIJF9Hs29y/uAKlRZZ+xzKHIGHTVMSCM7RS2Dr2Ea7RHF1N6bHK8ooeUD9WjBuvMqeVr4tkfBoaceBVnXLMQ/HRRyEnYMoqFGP+4dNCDFttt+suQFeJV5M2qXEWtn75k4wXCaTIJdN65Lk5BoYpFFxC1fQLDTnjMzaFkaUpS0AHZvFtRd9bZULjTNlKkS7UvycMS7Quk8h2Jgwv9VNvLv7PGxUY7wdGpHmBkPLloriQFDM6j45OhAKOsrSEcSXsrZRfMhsW2oCbNgTv6curZPC5633p9s577cOvdRwbZIfskg7xyB45JCfkjPQJJzfkJ7kj984P59Z5cH4vWxtOPfOO/APnzyNV9qjQ</latexit>

Avg Drop =
1

N

NX

i=1

(yci � ỹci )/y
c
i

𝑦/0: score on the original input
4𝑦/0: score on the top p% attribution region

33



Performance Measures

§ How well two AI models (two functions) are matched?

in-distribution
inputs

OODOOD

The test is point-wise:
if we test only these points, we 
may conclude that the two 
models match well

34



Performance Measures

§ Fidelity Measures
§ ID point-wise error: low test error implies that 5𝑓 matches 𝑓 well for inputs distributed like the 

training samples

§ OOD point-wise error:  for a set U of random vectors uniformly chosen in the input space, 

§ Runif estimates the fraction of the full feature space on which !𝑓 and 𝑓 disagree
§ |U| = 10,000 was sufficiently large to obtain stable error estimates for the models we analyzed

§ In the above, distances are measured for the 0-1 decisons
§ Class probability comparisons are denoted by RTV

test and RTV
unif 

§ Recent papers tend to compare test accuracy rates between the victim and the clone models

USENIX Association  25th USENIX Security Symposium 605

A low test error implies that f̂ matches f well for in-
puts distributed like the training data samples. 2

• Uniform error Runif: For a set U of vectors uniformly
chosen in X , let Runif( f , f̂ ) =∑x∈U d( f (x), f̂ (x))/|U |.
Thus Runif estimates the fraction of the full feature
space on which f and f̂ disagree. (In our experiments,
we found |U |= 10,000 was sufficiently large to obtain
stable error estimates for the models we analyzed.)
We define the extraction accuracy under test and uni-

form error as 1−Rtest( f , f̂ ) and 1−Runif( f , f̂ ). Here we
implicitly refer to accuracy under 0-1 distance. When as-
sessing how close the class probabilities output by f̂ are
to those of f (with the total-variation distance) we use
the notations RTV

test( f , f̂ ) and RTV
unif( f , f̂ ).

An adversary may know any of a number of pieces
of information about a target f : What training algorithm
T generated f , the hyper-parameters used with T , the
feature extraction function ex, etc. We will investigate a
variety of settings in this work corresponding to different
APIs seen in practice. We assume that A has no more
information about a model’s training data, than what is
provided by an ML API (e.g., summary statistics). For
simplicity, we focus on proper model extraction: If A
believes that f belongs to some model class, then A’s
goal is to extract a model f̂ from the same class. We
discuss some intuition in favor of proper extraction in
Appendix D, and leave a broader treatment of improper
extraction strategies as an interesting open problem.

4 Extraction with Confidence Values

We begin our study of extraction attacks by focusing on
prediction APIs that return confidence values. As per
Section 2, the output of a query to f thus falls in a range
[0,1]c where c is the number of classes. To motivate this,
we recall that most ML APIs reveal confidence values
for models that support them (see Table 2). This includes
logistic regressions (LR), neural networks, and decision
trees, defined formally in Appendix A. We first introduce
a generic equation-solving attack that applies to all logis-
tic models (LR and neural networks). In Section 4.2, we
present two novel path-finding attacks on decision trees.

4.1 Equation-Solving Attacks
Many ML models we consider directly compute class
probabilities as a continuous function of the input x and
real-valued model parameters. In this case, an API that
reveals these class probabilities provides an adversary A
with samples (x, f (x)) that can be viewed as equations
in the unknown model parameters. For a large class of

2Note that for some D, it is possible that f̂ predicts true labels better
than f , yet Rtest( f , f̂ ) is large, because f̂ does not closely match f .

Data set Synthetic # records # classes # features
Circles Yes 5,000 2 2
Moons Yes 5,000 2 2
Blobs Yes 5,000 3 2
5-Class Yes 1,000 5 20
Adult (Income) No 48,842 2 108
Adult (Race) No 48,842 5 105
Iris No 150 3 4
Steak Survey No 331 5 40
GSS Survey No 16,127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 10
Mushrooms No 8,124 2 112
Diabetes No 768 2 8
Table 3: Data sets used for extraction attacks. We train two models on the
Adult data, with targets ‘Income’ and ‘Race’. SVMs and binary logistic regres-
sions are trained on data sets with 2 classes. Multiclass regressions and neural
networks are trained on multiclass data sets. For decision trees, we use a set of
public models shown in Table 5.

models, these equation systems can be efficiently solved,
thus recovering f (or some good approximation of it).

Our approach for evaluating attacks will primarily
be experimental. We use a suite of synthetic or pub-
licly available data sets to serve as stand-ins for propri-
etary data that might be the target of an extraction at-
tack. Table 3 displays the data sets used in this section,
which we obtained from various sources: the synthetic
ones we generated; the others are taken from public
surveys (Steak Survey [26] and GSS Survey [49]), from
scikit [42] (Digits) or from the UCI ML library [35].
More details about these data sets are in Appendix B.

Before training, we remove rows with missing values,
apply one-hot-encoding to categorical features, and scale
all numeric features to the range [−1,1]. We train our
models over a randomly chosen subset of 70% of the
data, and keep the rest for evaluation (i.e., to calculate
Rtest). We discuss the impact of different pre-processing
and feature extraction steps in Section 5, when we evalu-
ate equation-solving attacks on production ML services.

4.1.1 Binary logistic regression

As a simple starting point, we consider the case of logis-
tic regression (LR). A LR model performs binary clas-
sification (c = 2), by estimating the probability of a bi-
nary response, based on a number of independent fea-
tures. LR is one of the most popular binary classifiers,
due to its simplicity and efficiency. It is widely used in
many scientific fields (e.g., medical and social sciences)
and is supported by all the ML services we reviewed.

Formally, a LR model is defined by parameters w ∈
Rd , β ∈ R, and outputs a probability f1(x) = σ(w · x+
β ), where σ(t) = 1/(1+e−t). LR is a linear classifier: it
defines a hyperplane in the feature space X (defined by
w ·x+β = 0), that separates the two classes.

Given an oracle sample (x, f (x)), we get a linear equa-
tion w ·x+β =σ−1( f1(x)). Thus, d+1 samples are both
necessary and sufficient (if the queried x are linearly in-
dependent) to recover w and β . Note that the required

604 25th USENIX Security Symposium USENIX Association

Service W
hi

te
-b

ox

M
on

et
iz

e

C
on

fid
en

ce
Sc

or
es

Lo
gi

st
ic

R
eg

re
ss

io
n

SV
M

N
eu

ra
l

N
et

w
or

k

D
ec

isi
on

Tr
ee

Amazon [1] ! ! " " ! ! !
Microsoft [38] ! ! " " " " "
BigML [11] " " " " ! ! "
PredictionIO [43] " ! ! " " ! "
Google [25] ! " " " " " "

Table 2: Particularities of major MLaaS providers. ‘White-box’
refers to the ability to download and use a trained model locally, and
‘Monetize’ means that a user may charge other users for black-box
access to her models. Model support for each service is obtained from
available documentation. The models listed for Google’s API are a pro-
jection based on the announced support of models in standard PMML
format [25]. Details on ML models are given in Appendix A.

model by either choosing one of many supported model
classes (as in BigML, Microsoft, and PredictionIO) or
having the service choose an appropriate model class (as
in Amazon and Google). Two services have also an-
nounced upcoming support for users to upload their own
trained models (Google) and their own custom learning
algorithms (PredictionIO). When training a model, users
may tune various parameters of the model or training-
algorithm (e.g., regularizers, tree size, learning rates) and
control feature-extraction and transformation methods.

For black-box models, the service provides users with
information needed to create and interpret predictions,
such as the list of input features and their types. Some
services also supply the model class, chosen training pa-
rameters, and training data statistics (e.g., BigML gives
the range, mean, and standard deviation of each feature).

To get a prediction from a model, a user sends one
or more input queries. The services we reviewed accept
both synchronous requests and asynchronous ‘batch’ re-
quests for multiple predictions. We further found vary-
ing degrees of support for ‘incomplete’ queries, in which
some input features are left unspecified [46]. We will
show that exploiting incomplete queries can drastically
improve the success of some of our attacks. Apart from
PredictionIO, all of the services we examined respond to
prediction queries with not only class labels, but a variety
of additional information, including confidence scores
(typically class probabilities) for the predicted outputs.

Google and BigML allow model owners to mone-
tize their models by charging other users for predictions.
Google sets a minimum price of $0.50 per 1,000 queries.
On BigML, 1,000 queries consume at least 100 credits,
costing $0.10–$5, depending on the user’s subscription.

Attack scenarios. We now describe possible motiva-
tions for adversaries to perform model extraction attacks.
We then present a more detailed threat model informed
by characteristics of the aforementioned ML services.

Avoiding query charges. Successful monetization of

prediction queries by the owner of an ML model f re-
quires confidentiality of f . A malicious user may seek to
launch what we call a cross-user model extraction attack,
stealing f for subsequent free use. More subtly, in black-
box-only settings (e.g., Google and Amazon), a service’s
business model may involve amortizing up-front training
costs by charging users for future predictions. A model
extraction attack will undermine the provider’s business
model if a malicious user pays less for training and ex-
tracting than for paying per-query charges.

Violating training-data privacy. Model extraction
could, in turn, leak information about sensitive training
data. Prior attacks such as model inversion [4, 23, 24]
have shown that access to a model can be abused to infer
information about training set points. Many of these at-
tacks work better in white-box settings; model extraction
may thus be a stepping stone to such privacy-abusing at-
tacks. Looking ahead, we will see that in some cases,
significant information about training data is leaked triv-
ially by successful model extraction, because the model
itself directly incorporates training set points.

Stepping stone to evasion. In settings where an ML
model serves to detect adversarial behavior, such as iden-
tification of spam, malware classification, and network
anomaly detection, model extraction can facilitate eva-
sion attacks. An adversary may use knowledge of the
ML model to avoid detection by it [4, 9, 29, 36, 55].

In all of these settings, there is an inherent assumption
of secrecy of the ML model in use. We show that this
assumption is broken for all ML APIs that we investigate.

Threat model in detail. Two distinct adversarial mod-
els arise in practice. An adversary may be able to make
direct queries, providing an arbitrary input x to a model f
and obtaining the output f (x). Or the adversary may be
able to make only indirect queries, i.e., queries on points
in input space M yielding outputs f (ex(M)). The feature
extraction mechanism ex may be unknown to the adver-
sary. In Section 5, we show how ML APIs can further
be exploited to “learn” feature extraction mechanisms.
Both direct and indirect access to f arise in ML services.
(Direct query interfaces arise when clients are expected
to perform feature extraction locally.) In either case, the
output value can be a class label, a confidence value vec-
tor, or some data structure revealing various levels of in-
formation, depending on the exposed API.

We model the adversary, denoted by A, as a random-
ized algorithm. The adversary’s goal is to use as few
queries as possible to f in order to efficiently compute
an approximation f̂ that closely matches f . We formalize
“closely matching” using two different error measures:

• Test error Rtest: This is the average error over a test set
D, given by Rtest( f , f̂ ) = ∑(x,y)∈D d( f (x), f̂ (x))/|D|.

35



Conclusion

§ Model stealing is a critical issue for AI model deployment:
§ Attackers can steal our AI models, with relatively cheap cost
§ Stolen models can be used for secondary attacks, e.g., evasion or model inversion attacks

§ Attacks: Tramer, JBDA, KnockoffNet, ActiveThief, …, SwiftThief (IJCAI 2024)
§ Defenses: PP, AM, EDM, …, DeepDefense (IJCAI, 2022)

§ XAI
§ Could be a new attack surface for model stealers
§ May provide valuable information of AI’s vulnerabilities.
§ Libra-CAM (IJCAI, 2022): SOTA on CNN

§ Other works: LLM-based S/W vulnerability repair & deobfuscation, security for robot AI

Thank You!
Sangkyun Lee (sangkyun@korea.ac.kr)

36


