Securing Al Models: Strategies to Prevent Stealing Attacks

Al Research (AIR) Lab. School of Cybersecurity Korea University

Prof. Sangkyun Lee (sangkyun@korea.ac.kr)

86th IFIP WG10.4 Meeting July 28, 2024 (Gold Coast, Australia)

Al Model Stealing Attacks

Query-Based Model Stealing Attack

Basic Idea:

- An attacker sends his/her <u>queries</u> (like benign users) and collects the server's <u>responses</u>
- The attacker <u>trains a knockoff</u> model using the collected data

Attack Scenarios

1. Avoiding query charges in future

2. A stepping stone for model inversion attack

- Stolen models could leak information about sensitive training data, violating data privacy
- [Fredrikson+, Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, CCS 2015]
- [Song+, Machine Learning Models that Remember Too Much, CCS 2017]
- [Liu+, Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion Model, CCS 2023]

https://www.researchgate.net/figure/The-Framework-of-Model-Inversion-Attack_fig3_344378202

Model-Stealing Attack Scenarios

- 3. A stepping stone for evasion attack
 - Stolen models can be used to construct gradient-based adversarial examples
 - [Papernot et al., Practical Black-Box Attacks against Machine Learning, ASIA CCS, 2017]

[Goodfellow+, Explaining and harnessing adversarial examples, ICLR 2015]

Attack based on Equation Solver

- [Tramer+, Stealing machine learning models via prediction APIs, USENIX Security 2016]
- Basic idea: equation solving
 - LR's output:

$$f_1(\mathbf{x}) = \boldsymbol{\sigma}(\mathbf{w} \cdot \mathbf{x} + \boldsymbol{\beta})$$
 $\boldsymbol{\sigma}(t) = 1/(1 + e^{-t})$

• A linear equation:

$$\mathbf{w} \cdot \mathbf{x} + \boldsymbol{\beta} = \boldsymbol{\sigma}^{-1}(f_1(\mathbf{x}))$$

 For w ∈ R^d and β ∈ R, d+1 equations are necessary and sufficient to perfectly recover w and β

JBDA (Jacobian-Based Dataset Augmentation) Attack

- [Papernot+, Practical black-box attacks against machine learning. ASIA CCS 2017]
- Goal: creating adversarial examples using a substitute model
- Jacobian-Based Dataset Augmentation

Knockoff Nets

- [Orekondy+, Knockoff nets: Stealing functionality of black-box models, CVPR 2019]
- Idea: use inputs from public datasets (e.g., ImageNet) as queries
 - So far, we've used synthetic inputs for query

Knockoff Nets

Result: we can clone the victim models surprisingly well with OOD queries!

Blackbox (F_V)	$ \mathcal{D}_V^{ ext{train}} + \mathcal{D}_V^{ ext{test}} $	Output classes K
Caltech256 [11]	23.3k + 6.4k	256 general object categories
COBS200 [36] Indoor67 [26]	6k + 5.8k 14.3k + 1.3k	67 indoor scenes
Diabetic5[1]	34.1k + 1k	5 diabetic retinopathy scales

Table 1: Four victim blackboxes F_V . Each blackbox is named in the format: [dataset][# output classes].

Choice of P_A

i. $P_A = P_V$ (KD)

ii. $P_A = ILSVRC$

- iii. P_A = OpenImages (v4: 9.2M images from Flickr. A 550K subset of unique images by sampling 2k from each of 600 categories.
- iv. $P_A = D^2$, The universe (the dataset of datasets) all in table 1 + ILSVRC + OpenImages

Defense Techniques

PP (Prediction Poisoning)

ICrekondy+, Prediction poisoning: Towards defenses against DNN model stealing attacks, ICLR 2020]

- Insight: unlike a benign user, a model stealing <u>attacker additionally uses the</u> predictions to train a replica model
- Idea: introduce controlled perturbations to predictions: we can poison the attacker's training objective, especially the gradient signal

PP (Prediction Poisoning)

$$\max_{\boldsymbol{a}} 2(1 - \cos \angle (\boldsymbol{a}, \boldsymbol{u})) = \max_{\hat{\boldsymbol{a}}} ||\hat{\boldsymbol{a}} - \hat{\boldsymbol{u}}||_2^2$$

Maximum angular deviation (MAD)

$$\begin{bmatrix} \boldsymbol{u} = -\nabla_{\boldsymbol{w}} L(F(\boldsymbol{x}; \boldsymbol{w}), \boldsymbol{y}) = \nabla_{\boldsymbol{w}} \sum_{k} y_{k} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \sum_{k} y_{k} \nabla_{\boldsymbol{w}} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \boldsymbol{G}^{T} \boldsymbol{y} \\ \boldsymbol{u} = -\nabla_{\boldsymbol{w}} L(F(\boldsymbol{x}; \boldsymbol{w}), \tilde{\boldsymbol{y}}) = \nabla_{\boldsymbol{w}} \sum_{k} \tilde{y}_{k} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \sum_{k} \tilde{y}_{k} \nabla_{\boldsymbol{w}} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \boldsymbol{G}^{T} \tilde{\boldsymbol{y}} \end{bmatrix}$$

 $\max_{\tilde{\boldsymbol{y}}} \quad \left\| \frac{\boldsymbol{G}^{T} \tilde{\boldsymbol{y}}}{\|\boldsymbol{G}^{T} \tilde{\boldsymbol{y}}\|_{2}} - \frac{\boldsymbol{G}^{T} \boldsymbol{y}}{\|\boldsymbol{G}^{T} \boldsymbol{y}\|_{2}} \right\|_{2}^{2}$ where $\boldsymbol{G} = \nabla_{\boldsymbol{w}} \log F(\boldsymbol{x}; \boldsymbol{w})$ s.t $\tilde{\boldsymbol{y}} \in \Delta^{K}$ $\operatorname{dist}(\boldsymbol{y}, \tilde{\boldsymbol{y}}) \leq \epsilon$ $\operatorname{arg\,max}_{k} \tilde{\boldsymbol{y}}_{k} = \operatorname{arg\,max}_{k} \boldsymbol{y}_{k}$

 $\mathop{\mathrm{argmax}}_{\tilde{\boldsymbol{y}}} \, \boldsymbol{\theta} \quad \mathrm{s.t} \quad \mathrm{dist}(\boldsymbol{y}, \tilde{\boldsymbol{y}}) \leq \epsilon$

Attacks vs. PP

[Juuti+, PRADA: Protecting against DNN Model Stealing Attacks, EuroS&P 2019

- Curves are obtained by varying degree of perturbation ε
- MAD provides reasonable operating points (above the diagonal), where defender achieves significantly higher test accuracies compared to the attacker

AM (Adaptive Misinformation)

[Kariyappa+, Defending against model stealing attacks with adaptive misinformation, CVPR 2020]

- All existing attacks invariably generate Out-Of-Distribution (OOD) queries
- Low MSP values indicate OOD data
 - [Hendrycks & Gimpel. A baseline for detect ing misclassified and out-of-distribution examples in neural networks, ICLR 2017]

AM (Adaptive Misinformation)

- AM selectively sends incorrect predictions for queries that are deemed OOD
- ID queries are serviced with correct predictions

1) OOD detector

 $Det(x) = \begin{cases} ID & \text{if } \max_i(y_i) > \tau \\ OOD & otherwise \end{cases}$

2) Model training with outlier exposure

 $\mathbb{E}_{(x,y)\in\mathcal{D}_{\text{in}}}\left[\mathcal{L}\left(f\left(x\right),y\right)\right]+\lambda\mathbb{E}_{x'\in\mathcal{D}_{\text{out}}}\left[\mathcal{L}\left(f\left(x'\right),\mathcal{U}\right)\right]$

3) Misinformation function *f* uniform dist
: trained to minimize the probability of the correct class f(x,y)

 $loss = \mathbb{E}_{(x,y)\in\mathcal{D}_{in}}\left[-log(1-\hat{f}(x,y))\right]$

4) Adaptive misinformation injection

 $y' = (1 - \alpha)f(x;\theta) + (\alpha)\hat{f}(x;\hat{\theta}) \qquad \begin{cases} \alpha < 0.5 & \text{if ID: } y_{max} > \tau \\ \alpha > 0.5 & \text{if OOD: } y_{max} < \tau \end{cases}$ $S(z) = \frac{1}{1 + e^{\nu z}}$

Defender vs Clone Accuracy

EDM: Ensemble of Diverse Models

[Kariyappa+, Protecting DNNs from theft using an ensemble of diverse models, ICLR 2021]

• Use an ensemble of N models that have maximum output variety for OOD inputs

EDM: Ensemble of Diverse Models

$$coherence(\{\tilde{\boldsymbol{y}}_i\}_{i=1}^N) = \max_{\substack{a,b \in \{1,..,N\}\\a \neq b}} CS(\tilde{\boldsymbol{y}}_a, \tilde{\boldsymbol{y}}_b).$$

$$DivLoss(\{\tilde{\boldsymbol{y}}_i\}_{i=1}^N) = \log\left(\sum_{1 \le a < b \le N} \exp(CS(\tilde{\boldsymbol{y}}_a, \tilde{\boldsymbol{y}}_b))\right)$$

 $Coherence(\{y_i\}_{i=1}^3) = Cos(\theta_2)$

 $\mathcal{L} = \underset{x,y \sim \mathcal{D}_{in}, \tilde{x} \sim \mathcal{D}_{out}}{\mathbb{E}} \begin{bmatrix} \left(\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{CE}(\hat{y}_i, y)\right) + \lambda_D \cdot DivLoss(\{\tilde{y}_i\}_{i=1}^{N}) \end{bmatrix}$ where $\hat{y}_i = f_i(x), \quad \tilde{y}_i = f_i(\tilde{x}).$

Problems in PP?

$$\begin{cases} \boldsymbol{u} = -\nabla_{\boldsymbol{w}} L(F(\boldsymbol{x}; \boldsymbol{w}), \boldsymbol{y}) = \nabla_{\boldsymbol{w}} \sum_{k} y_{k} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \sum_{k} y_{k} \nabla_{\boldsymbol{w}} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \boldsymbol{G}^{T} \boldsymbol{y} \\ \boldsymbol{u} = -\nabla_{\boldsymbol{w}} L(F(\boldsymbol{x}; \boldsymbol{w}), \tilde{\boldsymbol{y}}) = \nabla_{\boldsymbol{w}} \sum_{k} \tilde{y}_{k} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \sum_{k} \tilde{y}_{k} \nabla_{\boldsymbol{w}} \log F(\boldsymbol{x}; \boldsymbol{w})_{k} = \boldsymbol{G}^{T} \tilde{\boldsymbol{y}} \end{cases}$$

Attacker's Loss Landscape

the victim model's gradient

It should be written as: $a = -\nabla_w L(F_A(x; w_A), \tilde{y}) = G_A^T \tilde{y}$ argmax θ s.t. $\operatorname{dist}(y, \tilde{y}) \leq \epsilon$ But instead, the authors assumed that the defender knows the attacker's AI model

Problems in AM ?

1) OOD detector

$$Det(x) = \begin{cases} ID & \text{if } \max_i(y_i) > \tau \\ OOD & otherwise \end{cases}$$

4) Adaptive misinformation injection

$$y' = (1 - \alpha)f(x;\theta) + (\alpha)\hat{f}(x;\hat{\theta}) \begin{cases} \alpha < 0.5 & \text{if ID: } y_{max} > \tau \\ \alpha > 0.5 & \text{if OOD: } y_{max} < \tau \end{cases}$$

$$S(z) = \frac{1}{1 + e^{\nu z}}$$

Running the authors' github code, the OOD detector is perfect (α is 0 for ID and 1 for OOD inputs)

They used attack queries used in experiments to train the OOD detector!

Problems in EDM

Knowledge of OOD data (= attack queries) is assumed

Otherwise, we found that EDM loses its defense capability

$$\mathcal{L} = \underset{x, y \sim \mathcal{D}_{in}}{\mathbb{E}} \left[\left(\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{CE}(\hat{\boldsymbol{y}}_i, \boldsymbol{y}) \right) + \lambda_D \cdot DivLoss(\{\tilde{\boldsymbol{y}}_i\}_{i=1}^{N}) \right]$$

where $\hat{y}_i = f_i(x), \quad \tilde{y}_i = f_i(\tilde{x}).$

Model Stealing Defense against Exploiting Information Leak through the Interpretation of Deep Neural Nets

Jeonghyun Lee, Sungmin Han, Sangkyun Lee*

School of Cybersecurity Korea University, South Korea

IJCAI-22

Model Stealing Attack

24

Proposed Method: DeepDefense

Idea:

1) Build a <u>misdirection model</u> \tilde{f} of the victim f for each query x_q

- $\tilde{f}(x_q; \tilde{w}) \approx f(x_q; w)$: Keep the order of top-k softmax indices
- $\nabla_w \tilde{f}(x_q; \tilde{w}) \perp \nabla_w f(x_q; w)$

$$\nabla_{\mathbf{w}} f(\mathbf{x}_{\mathbf{q}}; \mathbf{w}) \perp \nabla_{\widetilde{\mathbf{w}}} \tilde{f}(\mathbf{x}_{\mathbf{q}}; \widetilde{\mathbf{w}})$$

top1

 $\tilde{f}(x_q; \tilde{w})$

Preserve: Top-k Softmax Order

Preserve: Attribution Order

2) Reveal only the outputs from the misdirection model, to all users

$$\begin{array}{c} \text{Misdirection} \\ \text{Model } \widetilde{f} \end{array} \qquad \qquad \widetilde{f}(x_q; \widetilde{w}) \\ \\ \widetilde{I}(x_q; \widetilde{w}) \end{array}$$

Gradients in Parts

Observation: parts of gradients have different flexibility to be used for perturbation

Gradient Misdirection

The misdirection model is required to have gradients orthogonal to the gradients of the original model:

$$\begin{array}{ll} \nabla_{\widetilde{w}_B}\widetilde{f}(x_q;\widetilde{w})_y \perp \nabla_{w_B}f(x_q;w)_y & \text{Bottom part} \\ \nabla_{\widetilde{w}_T}\widetilde{f}(x_q;\widetilde{w})_y \perp \nabla_{w_T}f(x_q;w)_y & \text{Top part} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

We reformulate this as follows (with a hyperparameter $0 \le \alpha \le 1$):

$$\mathcal{L}_{\text{orth}}(x_q, \widetilde{w}) := \alpha \left| \cos \angle (\nabla_{w_B} f(x_q; w)_y, \nabla_{\widetilde{w}_B} \widetilde{f}(x_q; \widetilde{w})_y) \right|$$
$$+ (1 - \alpha) \left| \cos \angle (\nabla_{w_T} f(x_q; w)_y, \nabla_{\widetilde{w}_T} \widetilde{f}(x_q; \widetilde{w})_y) \right|$$

Learning the Misdirection Model

Constrained Optimization Problem

$$\min_{\tilde{w}} \mathcal{L}_{\text{orth}}(x_q, \tilde{w}) := \alpha \left| \cos \angle (\nabla_{w_B} f(x_q; w)_y, \nabla_{\tilde{w}_B} \tilde{f}(x_q; \tilde{w})_y) \right| + (1 - \alpha) \left| \cos \angle (\nabla_{w_T} f(x_q; w)_y, \nabla_{\tilde{w}_T} \tilde{f}(x_q; \tilde{w})_y) \right|$$

s.t. $\tilde{f}(x_q; \tilde{w})_{s_1} \ge \dots \ge \tilde{f}(x_q; \tilde{w})_{s_k} \ge \max_{j \in S'} \tilde{f}(x_q; \tilde{w})_j$. \longrightarrow Functionality preservation

• s_i : the index of *i*-th largest value in the original softmax vector

•
$$S' \coloneqq \{1, \dots, K\} \setminus \{s_1, \dots, s_k\}$$

 $\tilde{I}(x_q; \tilde{w})_{a_1} \ge \tilde{I}(x_q; \tilde{w})_{a_2} \ge \cdots \ge \tilde{I}(x_q; \tilde{w})_{a_{H \times W}}. \longrightarrow \text{Interpretability preservation}$

- a_i : the index of *i*-th largest value attribution in the original attribution map
- $H \times W$: the size of attribution maps

Reformulation into an Unconstrained Optimization

$$\mathcal{L}_{\rm DD}(x_q, \tilde{w}) := \mathcal{L}_{\rm orth}(x_q, \tilde{w}) + \lambda_1 \mathcal{L}_{\rm pred}(x_q, \tilde{w}) + \lambda_2 \mathcal{L}_{\rm int}(x_q, \tilde{w})$$

$$\mathcal{L}_{\text{pred}}(x_{q}; \tilde{w}) := \sum_{i=1}^{k-1} (\tilde{f}(x_{q}; \tilde{w})_{s_{i+1}} - \tilde{f}(x_{q}; \tilde{w})_{s_{i}})^{+} \qquad (z)^{+} := \max\{z, 0\}$$
$$+ \left(\max_{j \in \{1, \dots, K\} \setminus \{s_{1}, \dots, s_{k}\}} \tilde{f}(x_{q}; \tilde{w})_{j} - \tilde{f}(x_{q}; \tilde{w})_{s_{k}} \right)^{+}$$
$$\mathcal{L}_{\text{int}}(x_{q}, \tilde{w}) := \sum_{i=1}^{H \times W - 1} \mathcal{L}\left((\tilde{I}(x_{q}; \tilde{w})_{a_{i+1}} - \tilde{I}(x_{q}; \tilde{w})_{a_{i}}^{+} \right)$$

• Solver: SGD with momentum

Sparse Layer Selection

For speed-up, we use only the parts of gradients corresponding to the most sensitivity <u>layers</u> to the model's output

Layer sensitivity :
$$S_{\ell} \coloneqq \frac{1}{N} \sum_{i=1}^{N} ||\nabla_{w_{\ell}} f(x_i; w)_{y_i}||_1$$

 $\{(x_i, y_i)\}_{i=1}^N$: a part of training data for sensitivity evaluation

 $S_{(1)} \geq S_{(2)} \geq \cdots \geq S_{(L)}$

Cumulative sensitivity :
$$CS(\ell) \coloneqq \frac{\sum_{i=1}^{\ell} S_{(i)}}{\sum_{i=1}^{L} S_{(i)}} \times 100 \ (\%)$$

sensitive layers

Defense Performance (Attacker's Test Accuracy)

Our method (DD) outperformed SOTA defense methods against model stealing

Computational Cost

Relevance-CAM / Flowers17 dataset / ResNet-18

l	CS (%)	# layers	f_A Test Acc (%) PP DD		Run time (sec) PP DD	
9	90 70 50	8 4 2	60.66	8.82 11.76 10.29	0.23	1.53 1.04 0.65
13	90 70 50	7 4 2	61.76	8.09 8.82 10.29	0.21	1.41 0.97 0.60
17	90 70 50	8 6 3	62.13	9.19 8.98 11.40	0.21	1.47 1.38 0.73

The activation layer used for Relevance-CAM

DD showed consistent defense performance on the change of cumulative sensitivity, with reasonable computation time

Preservation of Interpretation Quality

Quantitative

Avg Drop =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i^c - \tilde{y}_i^c) / y_i^c$$

 y_i^c : score on the original input \tilde{y}_i^c : score on the top p% attribution region

Dataset	Grad-	Grad-CAM		Rel-CAM		Grad ⊙ Input	
	Avg Drop I	Avg Drop \widetilde{I}	Avg Drop I	Avg Drop \widetilde{I}	Avg Drop I	Avg Drop \widetilde{I}	
MNIST	0.7888±0.3691	0.7587±0.4091	0.5621±0.4980	0.5425±0.5019	0.5670 ± 0.4020	0.5613±0.4024	
KMNIS'	Γ 0.7135±0.2834	0.6889 ± 0.3169	0.7516 ± 0.2909	0.7260 ± 0.3962	0.5815 ± 0.3591	0.6067 ± 0.3499	
CIFAR-1	0 0.7622±0.3558	0.7753±0.3779	0.7365 ± 0.3882	0.7042 ± 0.3761	0.8647 ± 0.2859	0.8588 ± 0.2869	
Flowers-	17 0.5130±0.3018	0.5152 ± 0.3078	0.5033 ± 0.3140	0.5046 ± 0.3140	0.8287 ± 0.2249	0.8256 ± 0.2304	
CUBS-20	0.5593 ± 0.4002	0.5747 ± 0.4181	0.5649 ± 0.4027	0.5934 ± 0.4260	0.9581 ± 0.1493	0.9647±0.1307	

No statistically significant difference in interpretation quality between the original and misdirected interpretations

Qualitative (Grad-CAM)

The focused areas are preserved

Performance Measures

How well two AI models (two functions) are matched?

The test is point-wise: if we test only these points, we may conclude that the two models match well

Performance Measures

- Fidelity Measures
 - <u>ID point-wise error</u>: low test error implies that \hat{f} matches f well for inputs distributed like the training samples

$$R_{\text{test}}(f,\hat{f}) = \sum_{(\mathbf{x},y)\in D} d(f(\mathbf{x}),\hat{f}(\mathbf{x}))/|D|$$

• <u>OOD point-wise error</u>: for a set U of random vectors uniformly chosen in the input space,

$$R_{\text{unif}}(f,\hat{f}) = \sum_{\mathbf{x}\in U} d(f(\mathbf{x}),\hat{f}(\mathbf{x})) / |U|$$

- R_{unif} estimates the fraction of the full feature space on which \hat{f} and f disagree
- |U| = 10,000 was sufficiently large to obtain stable error estimates for the models we analyzed
- In the above, distances are measured for the 0-1 decisions
 - Class probability comparisons are denoted by R^{TV}_{test} and R^{TV}_{unif}
- Recent papers tend to compare <u>test accuracy rates</u> between the victim and the clone models

Conclusion

- Model stealing is a critical issue for <u>AI model deployment</u>:
 - Attackers can steal our AI models, with relatively cheap cost
 - Stolen models can be used for secondary attacks, e.g., evasion or model inversion attacks
- Attacks: Tramer, JBDA, KnockoffNet, ActiveThief, ..., SwiftThief (IJCAI 2024)
- Defenses: PP, AM, EDM, ..., DeepDefense (IJCAI, 2022)
- XAI
 - Could be a new attack surface for model stealers
 - May provide valuable information of Al's vulnerabilities.
 - Libra-CAM (IJCAI, 2022): SOTA on CNN
- Other works: LLM-based S/W vulnerability repair & deobfuscation, security for robot AI

Thank You!

Sangkyun Lee (sangkyun@korea.ac.kr)