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REASONS Lab 
• From Institute for Network Sciences and Cyberspace, Tsinghua University

• Leading the REliability And Security Of Networks and Systems (REASONS) Lab

– Focusing on reliability, security and understanding of systems, services and networks, 

especially when they are complicated, intelligent, autonomous, dynamic and/or 

software-defined

• Prior to joining Tsinghua University 

– 10+ years of research in IBM T. J. Watson Research Center on reliability and security of 

cloud systems

– Department Lead of the security and reliability of IBM Watson Cloud platform

• Research interests

– Dependable and secure systems and networks (clouds, AI systems, etc.)
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Outline

• Fault Tolerance (FT) in Classical Computing

• FT of AI Systems

– FT of AI Applications

– FT of AI-Hosting Systems

• Case Study: FT of AIGC Applications
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Overview of Classical Reliable Computing
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Fault Tolerance in Classical Computing
• Fault Tolerance: The ability of a system to continue to perform its tasks 

after the occurrence of faults
– Fault/Error detection

• The process of recognizing a fault has occurred

– Error recovery
• The process of remaining operational or regaining operational status after the occurrence of a 

fault/error

– Error containment
• The process of isolating an error and preventing its effects from propagating throughout the 

system
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Fault Tolerance in Classical Computing (cont.)
• Error Detection

– Watchdog timers, Heartbeats
– Consistency and capability checking
– Exception handling
– Control-flow checking
– Data audits, data flow checking

• Error recovery
– Restart
– Checkpoint and rollback
– Rollforward
– Replicas/replication with failover 

support

• Fault tolerance
– Hardware Redundancy

• Triple Module Redundancy, m-out-of-n 
structure, active-active, active-passive

• Voting

– Software Fault Tolerance
• Robust data structures
• Recovery blocks
• N-version programming
• Process pair
• Voting or Acceptance Test

– Combining specific error detection and 
error recovery techniques

786th IFIP WG10.4 Long Wang



Outline
• Fault Tolerance (FT) in Classical Computing
• FT of AI Systems

– FT of AI Applications
– FT of AI-Hosting Systems

• Case Study: FT of AIGC Applications
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AI Systems
• AI systems consist of AI applications and the 

system/platform that hosts AI applications

• AI Applications/Services

– Large Language Models 

• Training, content generation, inference, LLM-based 

fine-tuning

– Diffusion Models

• Training, content generation

– Other Neural Network Models and applications

• Classification, regression, clustering, Dimensionality 

Reduction

• AI-Hosting System/Platform

– Cloud, data center, specialized big systems
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Failures of AI Systems
• Failure categories of AI systems are similar to those 

in classical computing
• Failures of AI applications

– Applications do not deliver correct output in presence 
of different types of faults

– For AI applications, correct output means both the 
availability and accuracy of the AI tasks are not 
degraded due to the presence of faults

• Failures of AI-Hosting systems
– The underlying systems are subject to various failures
– These failures incur failures of hosted AI applications

• Incurring degraded availability of hosted AI tasks
• Incurring degraded accuracy of hosted AI tasks, e.g. by 

means of communication noise
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Failure Categories in Classical Computing 
(for reference)
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FT of AI Applications – Failure Characteristics
• Degraded accuracy occurs more frequent than in classical computing
– including fail-silence violation

• Degraded availability occurs less frequent than in classical computing
• Due to the data driven computing pattern
– Data computation incentive
– Has much less complex control/data flow logics

• Like classical Fault Tolerance (FT), FT of AI applications should also 
consider error detection and error recovery (or containment)
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FT of AI Applications – Failure Model
• Degraded accuracy
– Classification error, regression/prediction 

error, clustering (anomaly detection) error, 
generation error

– Semantically incorrect as false positives and 
false negatives

– May lead to high-impact consequences (e.g. in 
Autonomous Vehicles)

– General metrics
• precision, recall, F1 score, accuracy

– Task-specific metrics
• E.g. Mean Absolute Error (MAE), Mean Squared 

Error (MSE), or Root Mean Squared Error 
(RMSE) in regression tasks

• Degraded availability
– For training

• Long-lived
• Single task/job
• Akin to failures of traditional long-

lived super-computing applications
– For inference/generation

• Short-lived
• Multiple requests/jobs
• Akin to failures of short-lived 

request handlings of cloud services 
that process a large number of 
requests

• Like classical Fault Tolerance (FT), FT of 
AI applications should also consider error 
detection and error recovery (or 
containment) 1386th IFIP WG10.4 Long Wang



Fault Tolerance of AI Applications
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Outline

• Fault Tolerance (FT) in Classical Computing

• FT of AI Systems

– FT of AI Applications

– FT of AI-Hosting Systems

• Case Study: FT of AIGC Applications
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LLM Models Grow to Huge Sizes
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LLM-Hosting Systems Growing into Huge Sizes
• Many major cloud companies and AI companies are building AI systems with 

10k~100k GPU cards
• LLM Training is a huge job using all these GPU cards

– The training has tightly coupled logic
• The next-step computation has dependence on the current-step computation at each GPU card 

• One GPU’s failure causes the entire long-term job to fail
– Similar to traditional HPC jobs
– Either restart the job from the beginning, or
– Recover the job from last valid checkpoint

• High failure rates due to the huge number of GPU cards used in the job
– Similar to the discussion in our DSN05 paper
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FT of AI-Hosting Systems – Failure Model
• Failures are mostly degraded availability
– Similar to traditional systems
– As AI-Hosting systems are also systems, like cloud systems and data centers

• Does semantic incorrectness failure (Fail-Silent Violation) of AI-Hosting 
systems mostly result in degraded accuracy of hosted AI applications?
– If so, the error detection of the degraded accuracy of hosted AI applications can 

be applied 
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Fault Tolerance of AI-Hosting Systems
• Failure Category

– Degraded availability

– Semantic incorrectness

• Error Detection
– For degraded availability

• Classical error detection (process crash, system exception, log information, error-detecting code like CRC checksum)

– For semantic incorrectness that result in degraded accuracy, and for other semantic incorrectness
• Error detection of AI application outputs against degraded accuracy

• May need specific error detections (error-detecting code like CRC checksum, rule check, control/data flow check, 
customized check)

• Error Recovery and Tolerance
– Similar to error recovery and tolerance of cloud systems or data centers

• E.g. fail-forward for inference jobs, checkpoint/rollback for training jobs

– As AI-Hosting systems are just such infrastructure as cloud systems, data centers, or simpler-structure 
computer systems
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Fault Tolerance of AI Systems
• Tolerating failures within each subsystem/component
• Detecting AI application failures and recovering the applications

– Using proper error detection and recovery techniques
– The recovery might be similar to that for 

• failures of traditional long-lived super-computing applications
• failures of short-lived request handlings of cloud services

• Detecting AI-Hosting system failures and 
1. Recovering the infrastructure system first, and
2. Shoulder-tapping the recovery of hosted applications above

• Basically, similar to fault tolerance of cloud platforms or data centers that host 
distributed HPC applications and cloud services
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Outline

• Fault Tolerance (FT) in Classical Computing

• FT of AI Systems

– FT of AI Applications

– FT of AI-Hosting Systems

• Case Study: FT of AIGC Applications
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Case Study: FT of AIGC Application using Acceptance Test
• Combining error detection and error recovery for 

providing FT of AI applications
– AIGC application: AI-generated content
– Error detection: acceptance test
– Error recovery: re-execute

• Acceptance Test
– Rule based

• Depending on scenarios, there may be rules that can be 
implemented to check if the output of is correct

– AI model based
• AI models as discriminators to check if the output is acceptable 

or not

• If the acceptance test fails, re-execute the AIGC 
application with different initial input

• The final output has much higher accuracy than the 
original one

• The acceptance test can also help fine-tune the AIGC 
application/model
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Motivation of the Case Study
• AI generated content may have errors
• These errors may violate obvious 

rules, such as “a hand has five fingers”
– A demo of Stable Diffusion 2.1 model 

draws “a human hand” with six fingers

• There is a need to check and regulate 
AI generated contents against obvious 
rules, as acceptance test

24

https://huggingface.co/spaces/stabilityai/stable-diffusion
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Approach
• Failure model

– Degraded accuracy (semantic incorrectness)
• Potential Faults that may incur such failures

– Inherent imperfections of AIGC models
– Implementation mistakes
– Environmental disturbances

• Approach
– We may put the rule-related information directly into the neural network training for 

improving the AI models
• Like putting rule-related information into the loss function of the AI models

– However, this way only deals with imperfections of AIGC models, and does not handle other 
fault types

– A separate module of acceptance test is able to handle other two fault types that result in the 
failures of degraded accuracy
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Acceptance Test Design
1. Semantic analysis of AI-generated 

output
– e.g. analyzing the structure of the output

2. Check of the semantics against rules
– The result of the semantic analysis is 

semantics information
• e.g. the structure of content in a generated 

picture or a document

– Users can specify rules based on the 
semantic information
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An Example Acceptance Test
1. Structure analysis of a picture’s contents

– a hand is made up of 1 palm and 5 fingers
– We repurpose an object-recognition and scenario-

partitioning tool, YOLO (You Only Look Once), for 
structure analysis
• part recognition, part partitioning

2. Check of the structure against rules
– Semantic analysis result: the structure

• Parts in different shapes: different types of 
rectangles, triangles, circles, etc.

– “Shape of parts” rule: a hand is made up of 1 
plump rectangle and 5 slim rectangles

– The rule check: counting rectangles and checking 
if there is 1 plump rectangle and 5 slim ones in a 
hand-like object
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Preliminary Results (1)
• An AIGC model generates hand pictures

– UNet2D Stable Diffusion Model

– The generated original pictures have a 

high percentage of incorrect contents

• 87.5% of generated hand pictures are correct 

– With correct number of fingers
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Preliminary Results (2)
• Structure analysis and rule check

– Structure analysis: identifying object parts 
and their shapes

– Rule check: counting the number of 
different-shape parts (5 fingers)

• The result pictures after the 
acceptance test-reexecution loop have 
98% correctness
– Only the pictures passing the acceptance 

test are delivered 
– The performance depends on the accuracy 

of the acceptance test (rule check)
29
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Fine-Tuning Based on Acceptance Test
• We can fine-tune the LLM-based 

AIGC model
– Leveraging the LoRA architecture
– Using the acceptance test pass/fail 

output

• We can also apply the 
acceptance test-reexecution
loop with the fine tuning 
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Preliminary Results (3)
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Preliminary Results (4)
• The performance of model fine-tuning is much worse than that 

enforced by classical acceptance test
• Moreover, environmental disturbances cannot be dealt with by 

model improvement (fine-tuning)
• Model improvements only deal with the fault types of System Design 

Mistakes and Implementation Mistakes

• AI community always emphasize on the model improvement, but 
that is not sufficient for tolerating errors in AI applications/systems
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Summary
• FT technologies in classical computing mostly still applies to AI applications/ 

systems (with adaptations if needed)
– Error detection, error recovery, and a combination of them
– E.g. acceptance test largely improves the AI application accuracy

• Failure models of AI applications/systems mainly fall into two categories
– Degraded accuracy and degraded availability 

• Semantic analysis based rule checking helps detect degraded accuracy of AI 
applications

• We can learn a lot from experiences of FT in cloud and supercomputer systems for 
FT of AI applications/systems, because
– AI applications share a lot of similarities with supercomputing applications or cloud services
– AI-hosting systems share a lot of similarities with cloud systems and supercomputer systems
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