
Towards Verification of Linux Kernel Code

Julia Lawall, Keisuke Nishimura, Jean-Pierre Lozi
Inria
June 30, 2024

1

The Linux kernel

• Seems reliable...

But is actually full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,
misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe the Linux kernel is a candidate for verification?

2

The Linux kernel

• Seems reliable... But is actually full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,
misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe the Linux kernel is a candidate for verification?

2

The Linux kernel

• Seems reliable... But is actually full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,
misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe the Linux kernel is a candidate for verification?

2

The Linux kernel

• Seems reliable... But is actually full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,
misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:

– Maybe the Linux kernel is a candidate for verification?

2

The Linux kernel

• Seems reliable... But is actually full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,
misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe the Linux kernel is a candidate for verification?

2

A challenge

Verification is really hard...

• Some efforts have succeeded: SeL4, CertiKOS, etc.

• Tools are getting better?

A further wrinkle: The Linux kernel is updated regularly...

• Sometimes with new algorithms.

• Sometimes to optimize existing code.

• Sometimes to fix bugs.

• Sometimes introducing bugs. :(

3

A challenge

Verification is really hard...

• Some efforts have succeeded: SeL4, CertiKOS, etc.

• Tools are getting better?

A further wrinkle: The Linux kernel is updated regularly...

• Sometimes with new algorithms.

• Sometimes to optimize existing code.

• Sometimes to fix bugs.

• Sometimes introducing bugs. :(

3

A challenge

Verification is really hard...

• Some efforts have succeeded: SeL4, CertiKOS, etc.

• Tools are getting better?

A further wrinkle: The Linux kernel is updated regularly...

• Sometimes with new algorithms.

• Sometimes to optimize existing code.

• Sometimes to fix bugs.

• Sometimes introducing bugs. :(

3

An idea

• For optimizations, the overall input-output behavior should not change.

• Maybe we could define pre and post conditions for one version and
reuse them on new versions?

4

An idea

• For optimizations, the overall input-output behavior should not change.

• Maybe we could define pre and post conditions for one version and
reuse them on new versions?

4

Goals

• Prove the correctness of Linux kernel code, focusing on core functionalities.

• Port specifications and proofs from one Linux kernel release to the next.

• Achieve uptake from the Linux kernel community?

5

Goals

• Prove the correctness of Linux kernel code, focusing on core functionalities.

• Port specifications and proofs from one Linux kernel release to the next.

• Achieve uptake from the Linux kernel community?

5

Goals

• Prove the correctness of Linux kernel code, focusing on core functionalities.

• Port specifications and proofs from one Linux kernel release to the next.

• Achieve uptake from the Linux kernel community?

5

Proof setting

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

– Generate the necessary verification conditions (Hoare logic).
– The use of SMT solvers should provide some resistance to code changes.

• Focus on the algorithm.

What we don’t do:

• No consideration of concurrency.
• No consideration of hidden memory issues
(aliasing, null pointers, use after free, etc.).

• These are hard issues, but developers can make mistakes without them.

6

Proof setting

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

– Generate the necessary verification conditions (Hoare logic).
– The use of SMT solvers should provide some resistance to code changes.

• Focus on the algorithm.

What we don’t do:

• No consideration of concurrency.
• No consideration of hidden memory issues
(aliasing, null pointers, use after free, etc.).

• These are hard issues, but developers can make mistakes without them.

6

Proof setting

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

– Generate the necessary verification conditions (Hoare logic).
– The use of SMT solvers should provide some resistance to code changes.

• Focus on the algorithm.

What we don’t do:

• No consideration of concurrency.
• No consideration of hidden memory issues
(aliasing, null pointers, use after free, etc.).

• These are hard issues, but developers can make mistakes without them.

6

Proof setting

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

– Generate the necessary verification conditions (Hoare logic).
– The use of SMT solvers should provide some resistance to code changes.

• Focus on the algorithm.

What we don’t do:

• No consideration of concurrency.
• No consideration of hidden memory issues
(aliasing, null pointers, use after free, etc.).

• These are hard issues, but developers can make mistakes without them.

6

Proof setting

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

– Generate the necessary verification conditions (Hoare logic).
– The use of SMT solvers should provide some resistance to code changes.

• Focus on the algorithm.

What we don’t do:

• No consideration of concurrency.
• No consideration of hidden memory issues
(aliasing, null pointers, use after free, etc.).

• These are hard issues, but developers can make mistakes without them. 6

A case study: should_we_balance

Goal:

• Should a core should try to steal tasks during load balancing?

Starting point:

• Patch first proposed in August 2013.
• Extracted from scattered existing code.
• First patch was buggy.
• First released in Linux v3.12.

Subsequent history:

• 10 variants over time (+1 proposed by Keisuke).
• Several recent optimizations.

7

The original definition

static int should_we_balance(struct lb_env *env) {
struct sched_group *sg = env->sd->groups;
struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;

if (env->idle == CPU_NEWLY_IDLE)
return 1;

sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
if (balance_cpu == -1)

balance_cpu = group_balance_cpu(sg);
return balance_cpu != env->dst_cpu; // != should be ==

}

8

Key properties

For a given environment env,

• Uniqueness If two non-newly idle cores call should_we_balance,
then at most one of them should get a positive result.

• Existence should_we_balance should return true for some core on the
machine.

What to prove?

• Frama-C proves postconditions from preconditions.
- Describes function semantics in terms of the input-output behavior.

• Our key properties are somewhat different, but start with that.

9

Key properties

For a given environment env,

• Uniqueness If two non-newly idle cores call should_we_balance,
then at most one of them should get a positive result.

• Existence should_we_balance should return true for some core on the
machine.

What to prove?

• Frama-C proves postconditions from preconditions.
- Describes function semantics in terms of the input-output behavior.

• Our key properties are somewhat different, but start with that.

9

Initial version (verification expert): pre and post conditions
/*@
... // data validity, no side effects

behavior newly_idle:
assumes env->idle == CPU_NEWLY_IDLE;
ensures \result;

behavior not_newly_idle1:
assumes env->idle != CPU_NEWLY_IDLE;
assumes \exists integer i; relevant(i, env) && idle_cpu(i);
ensures \forall integer i;

relevant(i, env) ==> idle_cpu(i) ==>
(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(\result <==> env->dst_cpu != i);

behavior not_newly_idle2:
assumes env->idle != CPU_NEWLY_IDLE;
assumes \forall integer i; relevant(i, env) ==> !idle_cpu(i);
ensures \result <==> group_balance_cpu(env->sd->groups) != env->dst_cpu;

complete behaviors;
disjoint behaviors;
*/

10

Initial version (verification expert): loop invariants

static int should_we_balance(struct lb_env *env)
{

...
sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
/*@
loop invariant 0 <= cpu <= small_cpumask_bits;
loop invariant \forall integer j; 0 <= j < cpu ==> relevant(j, env) ==> !idle_cpu(j);
loop assigns cpu;
loop variant small_cpumask_bits - cpu;

*/
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
...

}

11

Change types

Commmit id Date Release Impact
0 23f0d2093c78 Aug. 2013 – create the function
1 b0cff9d88ce2 Sep. 2013 v3.12 replace != by ==
2 af218122b103 May 2017 – eliminate a redundant function call
3 e5c14b1fb892 May 2017 v4.13 rename a functiom
4 024c9d2faebd Oct. 2017 v4.14 check validity of the stealing CPU
5 97fb7a0a8944 Mar. 2018 v4.17 improve comments
6 64297f2b03cc Apr. 2020 v5.8 return early on finding an idle core
7 792b9f65a568 Jun. 2022 v6.0 abort if tasks are detected on a newly idle CPU
8 b1bfeab9b002 Jul. 2023 – prefer fully idle cores
9 f8858d96061f Sep. 2023 v6.6 remove non-idle hyperthreads from the CPU mask
10 6d7e4782bcf5 Oct. 2023 v6.8 change a condition of the selection algorithm

Red versions contain bugs.

12

Question:
As the code changes,
can developers update the specifications accordingly?

13

Change types and proof impact: No impact

Changes in comments clearly have no impact on the proof.

Code changes may also have no impact on the proof.

14

Change types and proof impact: No impact

Changes in comments clearly have no impact on the proof.

Code changes may also have no impact on the proof.
static int should_we_balance(struct lb_env *env)
{

struct sched_group *sg = env->sd->groups;
- int cpu, balance_cpu = -1;
+ int cpu;

...
for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {

if (!idle_cpu(cpu))
continue;

- balance_cpu = cpu;
- break;
+ return cpu == env->dst_cpu;

}
- if (balance_cpu == -1)
- balance_cpu = group_balance_cpu(sg);
- return balance_cpu == env->dst_cpu;
+ return group_balance_cpu(sg) == env->dst_cpu;
}

14

Change types and proof impact: more invasive changes

for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
if (!idle_cpu(cpu))

continue;
+ if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
+ if (idle_smt == -1)
+ idle_smt = cpu;
+ continue;
+ }

return cpu == env->dst_cpu;
}

• Sensitive to hyperthreads.
• Avoid a core whose hyperthread is occupied, but keep it as a fallback.

15

Change types and proof impact: more invasive changes

for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
if (!idle_cpu(cpu))

continue;
+ if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
+ if (idle_smt == -1)
+ idle_smt = cpu;
+ continue;
+ }

return cpu == env->dst_cpu;
}

Specification change:
/*@
loop invariant 0 <= cpu <= small_cpumask_bits;

- loop invariant \forall integer j; 0 <= j < cpu ==> relevant(j, env) ==> !idle_cpu(j);
- loop assigns cpu;
+ loop invariant env->sd->flags & SD_SHARE_CPUCAPACITY ==> idle_smt == -1;
+ loop invariant idle_smt == -1 ==> \forall integer j; 0 <= j < cpu ==> relevant(j, env) ==> !idle_cpu(j);
+ loop invariant idle_smt != -1 ==> 0 <= idle_smt < cpu && relevant(idle_smt, env) && idle_cpu(idle_smt);
+ loop invariant idle_smt != -1 ==> \forall integer j; 0 <= j < idle_smt ==> relevant(j, env) ==> !idle_cpu(j);
+ loop invariant idle_smt != -1 ==> \forall integer j; idle_smt <= j < cpu ==> relevant(j, env) ==> !idle_core(j);
+ loop assigns cpu, idle_smt;

loop variant small_cpumask_bits - cpu;
*/ 16

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

cpumask_andnot writes into its first argument.
Such side effects impact the loop invariants.

The first two arguments to cpumask_andnot are aliases.

Months of work... Some asserts needed.
17

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

• cpumask_andnot writes into its first argument.
– Such side effects impact the loop invariants.

The first two arguments to cpumask_andnot are aliases.

Months of work... Some asserts needed.
17

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

• cpumask_andnot writes into its first argument.
– Such side effects impact the loop invariants.

• The first two arguments to cpumask_andnot are aliases.

Months of work... Some asserts needed.
17

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

• cpumask_andnot writes into its first argument.
– Such side effects impact the loop invariants.

• The first two arguments to cpumask_andnot are aliases.

Months of work... One assert needed.
17

Bugs found and optimization opportunities

An older behavior:
behavior not_newly_idle1:

assumes env->idle != CPU_NEWLY_IDLE;
assumes env->cpus->bits[env->dst_cpu];
assumes \exists integer i; relevant(i, env) && idle_cpu(i);
ensures \forall integer i; relevant(i, env) ==> idle_cpu(i) ==>

(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(\result <==> env->dst_cpu == i);

A newer behavior: (bug introduced)
behavior not_newly_idle1b:

assumes env->idle != CPU_NEWLY_IDLE;
assumes env->cpus->bits[env->dst_cpu];
assumes !(env->sd->flags & SD_SHARE_CPUCAPACITY);
assumes \forall integer i; relevant(i, env) ==> !idle_core(i);
assumes \exists integer i; relevant(i, env) && idle_cpu(i);
ensures \forall integer i; relevant(i, env) ==> idle_cpu(i) ==>

(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(\result ==> (env->dst_cpu == i || env->dst_cpu == group_balance_cpu(env->sd->groups)));

ensures \forall integer i; relevant(i, env) ==> idle_cpu(i) ==>
(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(env->dst_cpu == i ==> \result);

18

Bugs found and optimization opportunities

Optimization opportunity: (ifdefs elided)
cpumask_copy(swb_cpus, group_balance_mask(sg));
for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu)) {
+ if (idle_smt != -1)
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));

continue;
}
if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {

if (idle_smt == -1)
idle_smt = cpu;

cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
continue;

}
return cpu == env->dst_cpu;

}

No changes needed to the specifications!

19

Assessment

Work estimate:

• Maybe 1.5 months for versions 0 - 8. ✓
• 3.5 months for version 9 (cpumask_andnot) 7

– Resolved some misunderstandings about Frama-C. ✓

• No work for proving correct the fix of the bug in v8 and v9. ✓

20

Future work

• Prove the Uniqueness and Existence properties.

• Prove the correctness of more code in the Linux kernel.
– How to recognize bugs in the code based on these proofs?
– How to recognize optimization opportunities based on these proofs?

• Port specifications and proofs from one Linux kernel release to the next.
– What changes are needed in the specifications?
– How to automate them?
– How to recognize cases that can’t be automated (i.e., new algorithms)?

• Uptake from the Linux kernel community?

21

Future work

• Prove the Uniqueness and Existence properties.

• Prove the correctness of more code in the Linux kernel.

– How to recognize bugs in the code based on these proofs?
– How to recognize optimization opportunities based on these proofs?

• Port specifications and proofs from one Linux kernel release to the next.
– What changes are needed in the specifications?
– How to automate them?
– How to recognize cases that can’t be automated (i.e., new algorithms)?

• Uptake from the Linux kernel community?

21

Future work

• Prove the Uniqueness and Existence properties.

• Prove the correctness of more code in the Linux kernel.
– How to recognize bugs in the code based on these proofs?
– How to recognize optimization opportunities based on these proofs?

• Port specifications and proofs from one Linux kernel release to the next.
– What changes are needed in the specifications?
– How to automate them?
– How to recognize cases that can’t be automated (i.e., new algorithms)?

• Uptake from the Linux kernel community?

21

Future work

• Prove the Uniqueness and Existence properties.

• Prove the correctness of more code in the Linux kernel.
– How to recognize bugs in the code based on these proofs?
– How to recognize optimization opportunities based on these proofs?

• Port specifications and proofs from one Linux kernel release to the next.

– What changes are needed in the specifications?
– How to automate them?
– How to recognize cases that can’t be automated (i.e., new algorithms)?

• Uptake from the Linux kernel community?

21

Future work

• Prove the Uniqueness and Existence properties.

• Prove the correctness of more code in the Linux kernel.
– How to recognize bugs in the code based on these proofs?
– How to recognize optimization opportunities based on these proofs?

• Port specifications and proofs from one Linux kernel release to the next.
– What changes are needed in the specifications?
– How to automate them?
– How to recognize cases that can’t be automated (i.e., new algorithms)?

• Uptake from the Linux kernel community?

21

Future work

• Prove the Uniqueness and Existence properties.

• Prove the correctness of more code in the Linux kernel.
– How to recognize bugs in the code based on these proofs?
– How to recognize optimization opportunities based on these proofs?

• Port specifications and proofs from one Linux kernel release to the next.
– What changes are needed in the specifications?
– How to automate them?
– How to recognize cases that can’t be automated (i.e., new algorithms)?

• Uptake from the Linux kernel community?

21

