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NSA SoS: Improving Malware Classifiers 
with Plausible Novel Samples Preston RobinetteKevin Leach

[Robinette et al, “Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets,” Formalise’24]
[Robinette et al, “Benchmark: Neural Network Malware Classification,” AISoLA’23]

https://github.com/pkrobinette/verify_malware 

https://github.com/pkrobinette/verify_malware


Feature Datasets
• Composed of “features” extracted from collected 

samples
• Static and dynamic features

• Static: file properties, binary content, API calls, and 
embedded resources

• Dynamic: runtime behavior (changes made to files, registries, 
and the system memory), system interactions, and state 
changes over time

• Features consist of different data types and ranges 
within each datatype
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BODMAS Dataset



Image Datasets

010001
111011
000110
101011

Malware Binary 8-bit Vector Malware Image
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Malimg Dataset



Image Datasets
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Malimg Dataset

Fakerean

Dontovo.A



Image Datasets

C2LOP.P Adialer.C Fakerean Agent.FYI Lolyda.AA2 Dontovo.A

(a)

(b)

(c)

Family
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Neural Network Verification with Reachability
• Given a NN 𝑀:ℝ! ↦ ℝ" & an input set 𝒳 ⊆ ℝ!, the output 

reachable set of M is Y = 𝑦	 𝑦 = 𝑀 𝑥), ∀𝑥 ∈ 𝒳 ⊆ ℝ"

• Computationally: Given a NN M, a convex initial set of inputs I represented as a 
polytope poly(𝒳), compute the output set 𝑌	 = 	𝑀(𝐼) of the network

Input 
Set	𝒳

Output 
Set 𝒴

Specification 
S

Layer-by-Layer Propagation 
of Polytopes

I=poly(𝒳)

𝐼 = 𝑥 ∈ ℝ! 𝐴𝑥 ≤ 𝐵} Compute: 𝑌 = 𝑀 𝐼
Verify: 𝑀 𝐼 ∩ 𝑆 = ∅ ?

Weiming Xiang

[“Output reachable set estimation and verification for multilayer neural networks”, Xiang, Tran, Johnson, TNNLS'18]



Neural Network Reachability Illustrative Example
Input set: 𝒳 ≜ 𝑥 ∈ ℝ!	 𝑥 " ≤ 1}
Specification: 

𝑆 ≜ 𝑦 ∈ ℝ#	 − 50 ≤ 𝑦$ ≤ −20 ∧ 10 ≤ 𝑦# ≤ 25}
Verify: 𝑀 𝒳 ∩ 𝑆 = ∅ ?

Output reachable set 𝑌 = 𝑀(𝒳): union of 1250 
polytopes, shown in different colors

8000 randomly generated outputs (evaluating 
M on points, e.g., 𝑀(𝑥) for 8000 points 𝑥 ∈ 𝒳)

𝑀: simple feedforward NN with 3 inputs, 
2 outputs, 7 hidden layers of 7 neurons 
each, ReLU activations; 𝑀:ℝ" → ℝ#

𝑆 𝑆

𝑀(𝒳)

Scalability Challenge: for 
ReLU activations, this 
problem is NP-complete

Intuition: number of 
polytopes may grow 
exponentially in number of 
ReLUs due to case 
splitting

This is exact 𝑀(𝒳), often 
overapproximate )𝑀 𝒳 ⊇
𝑀(𝒳) for scalability, but 
then need to worry about 
precision (suppose 
convex hull for this 
example)

Weiming Xiang

Given a NN 𝑀:ℝ! ↦ ℝ$ & an input set 𝒳 ⊆ ℝ!, the output 
reachable set of M is Y = 𝑦	 𝑦 = 𝑀 𝑥), ∀𝑥 ∈ 𝒳 ⊆ ℝ$

𝒳 𝑀(𝒳)



• MNIST classifier is a function from images to 
classes,M:ℝ#%×#% ↦ {0,… , 9}

• Input: ℝ#%×#%; input set: a convex subset 𝒳 ⊆
ℝ#%×#%

• Output prior to softmax/argmax: ℝ'(; output set: 
shape in ℝ'(

• Final output: take argmax over these 10 
dimensions, this is the identified class

• If min of ground truth class in 𝑀(𝒳) (say a 0 for this 
example) > max of all other classes, then locally 
adversarially robust up-to perturbation 𝜖 about data 
sample x (input image); can write this in VNN-LIB and 
compatible with intersection checking approach

• ImageStar: efficient and accurate set 
representation developed for NNV, extension of 
star sets for images

• Do this analysis across data set to get certified 
robust accuracy (CRA), which is <= accuracy

MNIST Robustness Verification: Comparison of Set 
Representations Hoang-Dung Tran

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]

http://yann.lecun.com/exdb/mnist/ 

If 𝑀 𝑥 = 𝑀(𝑥!) for all x! ∈
{𝑥! ∈ ℝ": 𝑥 − 𝑥! # ≤ 𝜖}, then 
M is  locally adversarially
robust up-to 𝝐 about x
Here x is an image 
from MNIST, and this says all 
nearby x’ have same class as x

http://yann.lecun.com/exdb/mnist/


VGG16 Robustness Verification Example

Is VGG16 robust to an FGSM attack for 𝒂 ≤ 𝟐×𝟏𝟎:𝟖?
Disturbed images = Original image + a * Noise; note a is a set. Essentially upper/lower bound of noise

Hoang-Dung Tran

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]



Status of Neural Network Verification
• Significant progress in scalability (~1 order of 

magnitude improvement in size of network [# 
neurons] annually since ~2017): up to 
hundreds of millions of neurons, see VNN-
COMP reports

• Ongoing challenges
• Specifications, Benchmarks, VNN-LIB/ONNX, …
• Scalability: size of network, but also complexity of 

specification (“volume” of input set), …
• Balancing precision and scalability: CEGAR, 

CEGIS, abstraction (INN), …
• Architectural support (layer types, …)
• Learning/Design-for-verification: have seen 

newcomers to area try to apply tools blindly, often 
won’t work, need to collaborate with teams 
developing verification approaches

• Representative design guidance: try to mostly use ReLUs, 
minimize sequence of ReLU layers; many tools can’t work 
with other activations and scalability much worse (for max 
pooling, tanh/sigmoid, etc.)

https://doi.org/10.1007/s10009-023-00703-4 
https://sites.google.com/view/vnn2024    and https://www.vnnlib.org/ 

https://doi.org/10.1007/s10009-023-00703-4
https://sites.google.com/view/vnn2024
https://www.vnnlib.org/


NN and NNCS Verification Related Work
• NN verification

• Approaches
• SMT, MILP, Reachability, Abstract interpretation, ...

• Tools
• α,β-CROWN, MN BaB, Verinet, NNV, nnenum, cdgtest, Peregrinnm 

Marabou, Debona, Fastballnn, Reluplex, DLV, ReluVal, ERAN, Venus, 
OVAL, DNNF, RPM, NV.jl, MIPVerify, Verapak, Averinn, Veritex, …

• Competition
• VNN-COMP (NNV participant 2020, 2021, 2023, 2024)
• https://sites.google.com/view/vnn2024 

• Tech transfer: several startups, Matlab toolbox, …
• https://safeintelligence.ai/, https://latticeflow.ai/, 

https://www.mathworks.com/products/deep-learning-verification-
library.html 

• Neural Network Control System (NNCS) verification
• ARCH-COMP Friendly Competition

• ARCH-COMP AINNCS (NNV participant 2019, 2020, 2021, 2022, 
2023, 2024): https://cps-vo.org/group/ARCH/FriendlyCompetition 

• Tools
• CORA, JuliaReach, Verisig, ReachNN*, NNV, POLAR, OVERT, VenMAS, 

Sherlock, RINO, NFL_veripy, DeepNNC, SMC, AutomatedReach, 
GoTube, immrax, …

[MN Müller et al, VNN-COMP 2022]

(P.S. Apologies if we missed your tool, please come talk to us after the talk and we'll fix it for the next one)

NNCS

https://sites.google.com/view/vnn2024
https://safeintelligence.ai/
https://latticeflow.ai/
https://www.mathworks.com/products/deep-learning-verification-library.html
https://www.mathworks.com/products/deep-learning-verification-library.html
https://cps-vo.org/group/ARCH/FriendlyCompetition


5th International Competition on Verification of Neural Networks (VNN-
COMP’24), co-located with International Conference on Computer-Aided 
Verification (CAV’24) in new Symposium on AI Verification (SAIV’24)

https://sites.google.com/view/vnn2024   

2023 report: https://arxiv.org/abs/2312.16760 
2020-2022 comparative report: https://arxiv.org/abs/2301.05815
2022 report: https://arxiv.org/abs/2212.10376 
2021 report: https://arxiv.org/abs/2109.00498 

https://www.aiverification.org/ 

https://sites.google.com/view/vnn2024
https://arxiv.org/abs/2312.16760
https://arxiv.org/abs/2301.05815
https://arxiv.org/abs/2212.10376
https://arxiv.org/abs/2109.00498
https://www.aiverification.org/


Neural Network Verification (NNV) Software Tool

[Xiang et al, “Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks”, TNNLS’18]
[Tran et al, “Star-Based Reachability Analysis for Deep Neural Networks”, FM’19]
[Tran et al, “Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control”, EMSOFT’19]
[Tran et al, “NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems”, CAV’20]
[Tran et al, “Verification of Deep Convolutional Neural Network using ImageStars”, CAV’20]
[Bak et al, “Improved Geometric Path Enumeration for Verifying ReLU Neural Networks”, CAV’20]
[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’20]
[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability”, CAV’21]
[Lopez et al, “Evaluation of Neural Network Verification Methods for Air to Air Collision Avoidance”, AIAA JAT’22]
[Lopez et al, “Reachability Analysis of a General Class of Neural Ordinary Differential Equations”, FORMATS’22]
[Lopez et al, “NNV 2.0: The Neural Network Verification Tool”, CAV’23]

Feedforward Neural 
Networks (FFNN)

Neural Network 
Control Systems (NNCS)

Convolutional Neural 
Networks (CNN)

Reachability 
Solvers

Visualizer

Verifier
𝑴 ⊨ 𝑺?

The Neural Network Verification (NNV) Tool

No: bug

Yes: proof

𝑺 ≜ ¬

𝑴 ≜

[Eykholt et al, CVPR 2018]

𝑺 ≜ ¬

https://github.com/verivital/nnv 

Hoang-Dung Tran

https://github.com/verivital/nnv


Neural Network Verification (NNV) 
Software Tool: New Version 2.0
• Significant updates to NNV: version 2.0 presented 

at CAV’23
• Upcoming tutorial at DSN’24, recent tutorials at 

EMSOFT’23 and IAVVC’23
• https://github.com/verivital/nnv/tree/master/code/nnv/e

xamples/Tutorial 
• Participation in VNN-COMP’24 and ARCH-

COMP’24 AINNCS category
• https://sites.google.com/view/vnn2024 
• https://github.com/verivital/ARCH-COMP2024 

• Organization of AISoLA’24 Verification for Neuro-
Symbolic Artificial Intelligence (VNSAI) track
• https://2024-isola.isola-conference.org/aisola-tracks/ 

https://github.com/verivital/nnv 
[Manzanas Lopez et al, "Verification of Neural Network Compression of ACAS Xu Lookup Tables with Star Set Reachability", AIAA'21]
[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’21]
[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability”, CAV’21]
[Tran et al, "Verification of Piecewise Deep Neural Networks: A Star Set Approach with Zonotope Pre-filter", FAOC'21]
[Manzanas Lopez et al, "Reachability Analysis of a General Class of Neural Ordinary Differential Equations", FORMATS'22]
[Manzanas Lopez et al, "Evaluation of Neural Network Verification Methods for Air-to-Air Collision Avoidance", JAT'22]
[Tran et al, "Verification of Recurrent Neural Networks using Star Reachability", HSCC'23]
[Ivashchenko et al, "Verifying Binary Neural Networks on Continuous Input Space using Star Reachability", FormaliSE’23]
[Manzanas Lopez et al, "NNV 2.0: The Neural Network Verification Tool", CAV’23]
[Robinette et al, “Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets”, FormaliSE’24]

Diego Manzanas Lopez

https://github.com/verivital/nnv/tree/master/code/nnv/examples/Tutorial
https://github.com/verivital/nnv/tree/master/code/nnv/examples/Tutorial
https://sites.google.com/view/vnn2024
https://github.com/verivital/ARCH-COMP2024
https://2024-isola.isola-conference.org/aisola-tracks/
https://github.com/verivital/nnv


Malware Robustness Case Study
1. Malware Feature 

Data (BODMAS)

Benign vs. Mal ic ious 
(b inary model)

2. Malware Image 
Data (Malimg)

Family C lass i f icat ion 
Model
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Neural Network 
Verification Tool (NNV)

Neural Network 
Enumeration Tool 

(nnenum)

Phase 1:
Model Train ing

Phase 2:
Ver i f icat ion

Cert i f ied Robustness 
Accuracy (CRA)

Specif icat ions

Trained Model

Avg. T ime to Ver i fy

NNV: https://github.com/verivital/nnv
nnenum: https://github.com/stanleybak/nnenum 

https://github.com/verivital/nnv
https://github.com/stanleybak/nnenum
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Case Study: Metrics

Certif ied Robustness 
Accuracy (CRA)

# of samples certif ied robust
Total # of samples

Avg. Time to Verify
Total	wall	time	to	verify	for	all 	samples	

Total # of samples



Results: Model Performance
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Models achieve high performance for each dataset type.

Dataset Model Accuracy Precision Recall F1

BODMAS

none-2 0.99 0.98 0.99 0.99

4-2 0.99 0.99 0.99 0.99

16-2 0.99 0.99 0.99 0.99

Malimg

linear-25 0.99 0.98 0.97 0.97

4-25 0.98 0.97 0.96 0.97

16-25 0.99 0.97 0.96 0.97

(26,887)

(935)



Results: Image Dataset, CRA
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• As the perturbation size 
increases, the models decrease in 
CRA

• Small models outperform larger 
models with high epsilon values

• NNV and nnenum have similar 
CRA evaluation performance for 
each epsilon value

NNV (*),  nnenum (^)

(125 Samples)



Results: Image Dataset, Time to Verify
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• The larger the model, the more 
time typically required for each of 
the verification steps following 
falsification
• Calculation of reachable set

• nnenum takes less time to verify 
than NNV for larger models

NNV (*),  nnenum (^)

(125 Samples)



Results: Image Dataset
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Metric Model Tool
Epsilon (✏)

1/255 2/255 3/255

CRA (%)

linear-25
NNV 85 83 79
nnenum 90 86 82

4-25
NNV 89 76 62
nnenum 94 80 66

16-25
NNV 88 82 67
nnenum 90 86 64

Avg.
Time (s)

linear-25
NNV 0.84 0.85 0.85
nnenum 3.60 3.63 3.69

4-25
NNV 17.75 41.66 82.18
nnenum 11.59 10.80 11.13

16-25
NNV 85.00 210.00 710.25
nnenum 38.66 44.16 43.43



Summary

• Neural network verification is emerging approach for establishing 
properties of trained models, with significant scalability progress

• Shown snippets, particularly for evaluation of robustness through 
certified robust accuracy (CRA) for some malware classifiers
• Challenges: samples in perturbed set under L-infinity norm may not correspond to valid 

binaries (but some may, and still an attack vector if adversary knows these types of 
classifier used), working toward other types of perturbations that preserve executability, 
semantics, etc.

• Working toward coverage evaluation of input space

• Overall status, related work, etc.: look at VNN-COMP reports
• Major open challenge in field: specification

• Domain specific approaches necessary



NSF FMitF: Track I: Generative Neural Network 
Verification in Medical Imaging Analysis
• DNNs, GANs, ... increasingly used to process medical data, including images 

(segmentation, denoising, synthesis, image reconstruction, …)
• Major concerns about introduction of artifacts, etc. with generative models; less concerns 

about adversaries, but also to a degree
• Project goals: develop ways to write specifications for generative models, define/scale 

verification for segmentation and image synthesis
• Collaboration between ISIS, VISE, and VUMC 

Ipek Oguz Meiyi Ma

Vanderbilt Institute for Surgery & Engineering (VISE): https://www.vanderbilt.edu/vise/ 

Kenny TaoFrancesca
Bagnato

https://www.vanderbilt.edu/vise/


Verification for Neuro-Symbolic Artificial Intelligence 
(VNSAI) Track at ISoLA/AISoLA’24 in Crete, Greece

https://aisola.org/
https://2024-isola.isola-conference.org/aisola-tracks/ 
https://equinocs.springernature.com/service/vnsai 

• Co-organize VNSAI track with 
Daniel Neider

• Please talk with me or email if 
interested to visit Crete ~Oct. 30-
Nov. 3, 2024! 
taylor.johnson@vanderbilt.edu 

• On-site LNCS proceedings 
deadline: June 28, 2024

• Invited talks: can publish in post-
proceedings (LNCS / STTT), 
deadline for abstracts is July 29, 
post-proceedings paper deadline 
~Jan. 2025

https://2024-isola.isola-conference.org/aisola-tracks/
https://2024-isola.isola-conference.org/aisola-tracks/
https://equinocs.springernature.com/service/vnsai
mailto:taylor.johnson@vanderbilt.edu


Thank You: Questions? 
taylor.johnson@vanderbilt.edu 
http://www.verivital.com/ 
Twitter: @taylorjohnson @verivital

mailto:taylor.johnson@vanderbilt.edu
http://www.verivital.com/

