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Why focus on security of ML-enabled medical devices? @
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Growth in number of FDA-approved Al-powered medical devices
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No mention of security risk assessment

Year . . .
. In-silo risk assessment (inadequate)

AAMI TIRS57, IEC 81001-5-1, Current

Recent FDA guidelines FDA Premarket Guidelines

e Pre-market security assessment: Mandatory
e Design for Security with no implicit trust . Proprietary mechanisms

Source: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices, 2
Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions by FDA



https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/media/119933/download

Why is securing ML-enabled medical devices challenging?@
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ML-enabled
medical devices

Highly interconnected multi-vendor setup



Why 1s securing ML-enabled medical devices challenging?@

Peripheral devices and communication channels
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ML-enabled
medical devices

Large number of attack points (attack surface) - Hard to foresee during design



What can go wrong ?

A short story inspired by experiments
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ML-enabled
Blood Glucose

Management
System (BGMS)

Here's the
latest AI-
powered insulin

pump!

Blood glucose
reading
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ML-based Diabetes
management app @

Compatible with
many models of
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I want the new AI-
powered insulin

pump!

T'll get
Glucose
meter A

T'll buy
Glucose
meter B

Blood glucose Meal timing, Blood g.lucose Meal timing,
reading Carbs taken,
Age, Gender

ea reading Carbs taken,
il 5 E Age, Gender

ML-based Diabetes ML-based Diabetes j ‘

Patient management app Patient management app
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Let’s try evasion
attack!
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Let's make the app
suggest a HIGH insulin
dose when he
DOESN'T need it

But how do T inject
fake readings into
the system?

Blood g}ucose Meal timing, Blood g,l ucose Meal timing,
reading Carbs taken, Edinie Carbs taken,
Age, Gender Age, Gender

Tt
ML-based Diabetes 4

Patient management app

Patient #1

Tt
ML-based Diabetes 4
Patient management app
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Let’s try evasion
attack!

if

How do I inject
fake readings into
the system?

Looks like A has a

vulnerable Bluetooth
connection! I can also
see the smartphone
data

Blood glucose

Blood glucose
reading

Meal timing,
Carbs taken,
Age, Gender

Meal timing,

ea g Carbs taken,
Age, Gender

ML-based Diabetes ML-based Diabetes
Patient management app . Patient management app
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Let’s try
evasion attack!

i

Let's make the app
suggest a HIGH insulin
dose when he
DOESN'T need it

Malicious
blood glucose
reading

Q Diabetes

Patient #1 management app

Insulin Overdose
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Our Case Study

Let’s try
evasion attack!

Let's make the app
suggest a HIGH insulin
dose when he
DOESN'T need it

BLURtooth attack URET Toolkit
(CVE-2020-15802)4 Malicious

blood glucose
reading

2020 Ohio
T1DM
Dataset: 6 real
diabetic
patients’ data?

' S [Blood glucose
Q readings, insulin

taken, meal timings,
carbs intake, ...]

(customized)?
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Open-source
BGMS model! Insulin Overdose
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https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15802

How can manufacturers foresee post-deployment
security risks?

A systematic assessment of 20 FDA-approved devices
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Security Assessment Process

1. ML technique used by the Vulnerabil 3. Peripheral 4. Peripheral

device ity to inference-time device compatibility device vulnerability
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Security Assessment Process

1. ML technique used by the

device

Technique
mentioned by

Device functionality manufacturer?

ML engine
mispredicts: Impact

on patient? . :
Check existing peer-reviewed

ML literature

Input data types (Best-guess approach)

ML technique  ©
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Security Assessment Process

1. ML technique used by 2. Vulnerability

device to inference-time attacks ML technique in (1)

l

Check existing peer-
reviewed ML security N
literature

- Known attacks
on ML technique

- Checks
performed to

detect malicious
inputs? No,
unless mentioned

by manufacturer
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Security Assessment Process

2. Vulnerability to
inference-time
attacks

1. ML technique used by the

device

3. Peripheral
device compatibility

Compatible
peripheral
devices and
communication
protocols

Device description in (1)

l

Check manufacturer
recommendations / web
search
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1.

Security Assessment Process

ML technique used by the
device

Vulnerabil 3. Peripheral
ity to inference-time device compatibility

Attack identified in (2),
Peripheral devices identified in (3)

Does any device / combination of
devices have vulnerability that allows
an attacker to execute the attack?

4.
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Peripheral
device vulnerability

- Vulnerable

devices and
vulnerability
descriptions

- Attacker position

and capabilities
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Devices Assessed

FDA-approved
devices
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Self-monitoring
patients
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Used in
hospitals
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Interesting insights from the assessment

1. Post-deployment attacks : 16/20 devices vulnerable
2. Attack Surface: SaMD > SiMD
3. Widespread Vulnerabilities : Attack point - Core technology (e.g., IR cameras)

4. Hard-to-detect attack paths: e.g., IDx-DR software.

5. Persistent Vulnerabilities: Some won't be fixed by OEMs.
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Summary

i

e ML-enabled medical applications: Large, complex attack surface — Health risk

e Our contribution:
- Systematic end-to-end security assessment process
- Case study demonstration

e Next steps:
- Automate assessment technique
- Profile patients by security risk
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