IEEE/ACM CHASE 2024

Systematically Assessing the Security Risks of AI/ML-enabled Connected Healthcare Systems

Mohammed Elnawawy^{*}

Mohammadreza Hallajiyan^{*}

Gargi Mitra^{*} Shahrear Iqbal^{\$} Karthik Pattabiraman*

*University of British Columbia (UBC), \$National Research Council, Canada

Why focus on security of ML-enabled medical devices?

Source: <u>https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices</u>, <u>Cybersecurity in Medical Devices</u>: <u>Quality System Considerations and Content of Premarket Submissions</u> by FDA

Why is securing **ML-enabled** medical devices challenging?

Highly interconnected multi-vendor setup

Why is securing **ML-enabled** medical devices challenging?

Large number of attack points (attack surface) - Hard to foresee during design

What can go wrong?

A short story inspired by experiments

ML-enabled Blood Glucose Management System (BGMS)

Patient #1

Insulin Overdose

Our Case Study

¹ Harry Rubin-Falcone, Ian Fox, and Jenna Wiens. **Deep Residual Time-Series Forecasting: Application to Blood Glucose Prediction**. In KDH@ECAI, 2020.

² Cindy Marling and Razvan Bunescu. The OhioT1DM dataset for blood glucose level prediction. In CEUR workshop proceedings, NIH Public Access, 2020.

³ Kevin Eykholt, Taesung Lee, Douglas Schales, Jiyong Jang, and Ian Molloy. **URET: Universal Robustness Evaluation Toolkit (for Evasion)**. In USENIX Security 2023 12 ⁴ Kasper Rasmussen. **BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low Energy**. In AsiaCCS, 2022.

How can manufacturers foresee post-deployment security risks?

A systematic assessment of 20 FDA-approved devices

	2.		
1. ML technique used by the	Vulnerabil	3. Peripheral	4. Peripheral
device	ity to inference-time	device compatibility	device vulnerability
	ottocks		

16

Devices Assessed

Interesting insights from the assessment

- 1. Post-deployment attacks : 16/20 devices vulnerable
- 2. Attack Surface: SaMD > SiMD
- 3. Widespread Vulnerabilities : Attack point Core technology (e.g., IR cameras)
- 4. Hard-to-detect attack paths: e.g., IDx-DR software.
- 5. Persistent Vulnerabilities: Some won't be fixed by OEMs.

Summary

- **ML-enabled medical applications:** Large, complex attack surface \rightarrow Health risk
- Our contribution:
 - Systematic end-to-end security assessment process
 - Case study demonstration
- Next steps:
 - Automate assessment technique
 - Profile patients by security risk

Systematically Assessing the Security Risks of Al/ML-enabled Connected Healthcare Systems, Mohammad ElNawawy, Mohammadreza Hallajiyan, Gargi Mitra, Shahrear Iqbal, and Karthik Pattabiraman, IEEE/ACM international conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2024

