
Detecting Software Vulnerabilities in AI-generated Code
Pietro Liguori
DIETI, Università degli Studi di Napoli Federico II, Italy
pietro.liguori@unina.it
http://wpage.unina.it/pietro.liguori

SPOILER ALERT:
It is NOT an AI-based solution!

mailto:pietro.liguori@unina.it
http://wpage.unina.it/pietro.liguori

pietro.liguori@unina.it - 2

Make a response with a
name from request by
using request modules
such as arg with its
functions and return it”

Problem Statement: AI-generated code is unsecure

ü [CWE-080] Improper Neutralization
of Script-Related HTML Tags in a
Web Page (Basic XSS)

ü [CWE-079] Improper Neutralization
of Input During Web Page
Generation ('Cross-site Scripting’)

ü [CWE-116] Improper Encoding or
Escaping of Output

name = request.args.get('name', ’’)
response = make_response('Your name is
‘+ name)
return response

Software Vulnerability: «A security flaw, glitch, or weakness found in software code that could be exploited
by an attacker (threat source)» ~ NIST definition

pietro.liguori@unina.it - 3

Why not using SOTA static analysis tools? A (real) motivating
example

“Write a Python code that defines a YAML
payload from a request, loads this payload

into a dictionary called prod_and_qt by
using a function for loading”

def load_yaml(yaml payload) :
prod_and_qt =

yaml.load(yaml_payload)
return prod_and_qt

yaml_payload = ""
prod_and_qt = load_yaml(yaml_payload)
print(prod_and_qt)

The generated code is:

Vulnerable

Incomplete
(i.e., lack of
import yaml)

CWE-502 (Deserialization of Untrusted Data),
related to the OWASP category A08:2021
(Software and Data Failures)

State-of-the-art static code analyzers:
• CodeQL, Bandit, and PyT: do not generate

the report
• Semgrep: examine the code but generates a

False Negative (FN)

NL prompt Generated code

pietro.liguori@unina.it - 4

DeVAIC: Detection of Vulnerabilities for AI-generated Code

§ The tool infers regex-based detection rules able to identify vulnerabilities with similar
patterns across the same OWASP category

Ø Standardization of the code to reduce variability of the code and focus on common patterns

Ø LCS similarity to find common patterns

https://arxiv.org/abs/2404.07548

https://arxiv.org/abs/2404.07548

pietro.liguori@unina.it - 5

List of the vulnerability categories covered

OWASP CWE

Broken Access Control

CWE-022

CWE-377
CWE-425
CWE-601

Cryptographic Failures

CWE-319

CWE-321
CWE-326
CWE-327
CWE-329
CWE-330

CWE-347
CWE-759
CWE-760

OWASP CWE
Identification and

Authentication Failures
CWE-295
CWE-384

Injection

CWE-020
CWE-078
CWE-079
CWE-080
CWE-090
CWE-094
CWE-095
CWE-096
CWE-099
CWE-113
CWE-116
CWE-643
CWE-1236

OWASP CWE

Insecure Design
CWE-209
CWE-269
CWE-434

Security Logging and
Monitoring Failures

CWE-117

Security Misconfiguration CWE-611
Server-Side Request Forgery

(SSRF)
CWE-918

Software and Data Integrity
Failures

CWE-502

• 9 out of 10 OWASP categories
covered

• 35 CWEs in total

§ We selected two Python datasets containing vulnerable code, each with the CWE identifier for
every code snippet:
1. SecurityEval
2. Copilot CWE Scenarios

pietro.liguori@unina.it - 6

Overview of DeVAIC’s usage

TXT file with
code snippets

written line by line

DeVAIC scanning Final reports with
detection results

pietro.liguori@unina.it - 7

Experimental setup: NL prompts

§ We assess DeVAIC's by experimenting its rules on code generated
from 4 publicly available AI models:
Ø Google Gemini (LaMDA’s successor);

Ø Microsoft Copilot (GPT-4);

Ø OpenAI ChatGPT (GPT-3.5);

Ø GitHub Copilot (GPT-4).

§ We employed 125 (undetailed) NL prompts [1,2,3] to generate 500
code snippets in total

[1] SecurityEval: https://github.com/s2e-lab/SecurityEval
[2] LLMSecEval: https://github.com/tuhh-softsec/LLMSecEval/blob/main/Dataset/LLMSecEval-prompts.json
[3] CodeXGLUE: https://github.com/microsoft/CodeXGLUE/blob/main/Text-Code/text-to-code/dataset/concode/test.json

NL prompt example

“Create a SSL ctx, specify some context's options such
as mode verify and return it”

pietro.liguori@unina.it - 8

Experimental setup: AI-generated code

§ Over 500 predictions, the four models produced:

Ø13% of incomplete code;

Ø54% of vulnerable code;

pietro.liguori@unina.it - 9

Experimental evaluation: Detection results

§ We had to transform the snippets in complete code (e.g., by adding the
import statement at the begging of the code) to assess baseline performance

§ TP, FP, TN and FN manually analyzed (ground-truth)

Evaluated across all 500 examined snippets, DeVAIC shows metric values all above 92%.

Precision Recall F1 Score Accuracy

Tools

D
eV

A
IC

Ba
nd

it

Co
de

Q
L

Se
m

gr
ep

Py
T

D
eV

A
IC

Ba
nd

it

Co
de

Q
L

Se
m

gr
ep

Py
T

D
eV

A
IC

Ba
nd

it

Co
de

Q
L

Se
m

gr
ep

Py
T

D
eV

A
IC

Ba
nd

it

Co
de

Q
L

Se
m

gr
ep

Py
T

All
Models

97
%

84% 85% 91% 96% 92% 62% 39% 58% 9% 94% 72% 54% 71% 16% 94% 73% 63% 74% 50%

pietro.liguori@unina.it - 10

Experimental Evaluation: Computational Cost

§ Mean time: 0.16 s

§ Median time: 0.14 s

§ Max time value: 0.59 s

§ Min time value: 0.10 s

pietro.liguori@unina.it - 11

ReSAISE 2024 workshop

https://resaise.github.io/2024/

Important Dates (AoE)

Paper submission deadline: July 28th, 2024

Paper notification: August 18th, 2024

Camera ready papers: August 25th, 2024

GSSI, L’Aquila, Italy, November 21, 2023

https://resaise.github.io/2024/

