745 8 UnNiver siTA pecu STup)
, 88k &0 Narou Feperico Il

UNI I I 0000) DIETI
2 \MUR ‘
N A S— ECCE--ENZALQ 8?«_ ~ ‘ ‘

A,
.
=

2023 - 2027

Detecting Software Vulnerabilities in Al-generated Code

Pietro Liguori
DIETI, Universita degli Studi di Napoli Federico I, Italy
pietro.liguori@unina.it

http://wpage.unina.it/pietro.liguori

SPOILER ALERT:
It s NOT an Al-based solution!

mailto:pietro.liguori@unina.it
http://wpage.unina.it/pietro.liguori

Problem Statement: Al-generated code is unsecure

Software Vulnerability: <A security flaw, glitch, or weakness found in software code that could be exploited

by an attacker (threat source)» ~ NIST definition

Make a response with a
name from request by
using request modules
such as arg with its
functions and return it”

-

name

~

request.args.get('name', ’’)

response = make response('Your name is
‘+ name)

return response

@

v' [CWE-080] Improper Neutralization
of Script-Related HTML Tags in a
Web Page (Basic XSS)

v' [CWE-079] Improper Neutralization
of Input During Web Page
Generation (‘Cross-site Scripting’)

v' [CWE-116] Improper Encoding or
Escaping of Output

Why not using SOTA static analysis tools? A (real) motivating

example

NL prompt

“Write a Python code that defines a YAML

(nto a dictionary called prod_and_gt by
<A\ using a function for loading”

payload from a request, loads this payload

~

J

e

The generated code is:

. Vulnerable
<

Incomplete
A (i.e., lack of

import yaml)

Generated code

/’aef load _yaml(yaml payload) : ™\
prod_and gt =
yaml.load(yaml payload)

return prod_and_qt

yaml payload = ""

prod_and gt = load _yaml(yaml payload)
\\print(prod and gt) A,/

CWE-502 (Deserialization of Untrusted Data),

> related to the OWASP category A08:2021

(Software and Data Failures)

State-of-the-art static code analyzers:

) (]

CodeQL, Bandit, and PyT: do not generate
the report

Semgrep: examine the code but generates a
False Negative (FN)

pietro.liguori@unina.it - 3

DeVAIC: Detection of Vulnerabilities for Al-generated Code

https://arxiv.orq/abs/2404.07548

= The tool infers regex-based detection rules able to identify vulnerabilities with similar

patterns across the same OWASP category

» Standardization of the code to reduce variability of the code and focus on common patterns

» LCS similarity to find common patterns

Table 2: Examples of standardization for code snippets. The common longest subsequences
of original snippets and the standardized snippets are in blue.

Original Snippet

Standardized Snippet

def temperature_for_location():
file_yaml = request.args.get("file",

def temperature_for_location(): var0O =

S1 None) json_payload = request.args.get(varl, var2) var3 =
X 1l.load 0
yaml.load(file_yaml) yaml.load(var0)
il el e var0 = request.args.get(varl, var2)
S2 response = make_response(name) return 9 =TSR :
var3 = make_response(var0O) return var3

response

https://arxiv.org/abs/2404.07548

List of the vulnerability categories covered

= We selected two Python datasets containing vulnerable code, each with the CWE identifier for

every code snippet:

1. SecurityEval

2. Copilot CWE Scenarios

" owase | cwe M owase | cwe

Broken Access Control

Cryptographic Failures

CWE-022
CWE-377
CWE-425
CWE-601
CWE-319
CWE-321
CWE-326
CWE-327
CWE-329
CWE-330
CWE-347
CWE-759
CWE-760

Identification and
Authentication Failures

Injection

CWE-295
CWE-384
CWE-020
CWE-078
CWE-079
CWE-080
CWE-090
CWE-094
CWE-095
CWE-096
CWE-099
CWE-113
CWE-116
CWE-643
CWE-1236

Insecure Design

Security Logging and
Monitoring Failures
Security Misconfiguration
Server-Side Request Forgery
(SSRF)

Software and Data Integrity
Failures

CWE-209
CWE-269
CWE-434
CWE-117

CWE-611
CWE-918

CWE-502

* 9 out of 10 OWASP categories

covered
35 CWEs in total

Overview of DeVAIC’s usage

©
XA

DeVAIC scanning Final reports with
detection results

TXT file with
code shippets
written line by line

pietro.liguori@unina.it - 6

Experimental setup: NL prompts

= We assess DeVAIC's by experimenting its rules on code generated

from 4 publicly available Al models:
» Google Gemini (LaMDA’s successor);

» Microsoft Copilot (GPT-4);

» OpenAl ChatGPT (GPT-3.5);

> GitHub Copilot (GPT-4).

-~

"l

NL prompt example

“Create a SSL ctx, specify some context's options such
as mode verify and return it”

~

J

= We employed 125 (undetailed) NL prompts [1,2,3] to generate 500

code snippets in total

[1] SecurityEval: https://github.com/s2e-lab/SecurityEval

[2] LLMSecEval: https://github.com/tuhh-softsec/LLMSecEval/blob/main/Dataset/LLMSecEval-prompts.json
[3] CodeXGLUE: https://github.com/microsoft/CodeXGLUE/blob/main/Text-Code/text-to-code/dataset/concode/test.json pietro.liguori@unina.it - 7

Experimental setup: Al-generated code

= QOver 500 predictions, the four models produced:
» 13% of incomplete code;

» 54% of vulnerable code;

O COMPLETE IZINCOMPLETE

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Occurrences (%]

Google Gemini Microsoft Copilot GitHub Copilot OpenAl ChatGPT

Models

Experimental evaluation: Detection results

= We had to transform the snippets in complete code (e.g., by adding the
import statement at the begging of the code) to assess baseline performance

= TP, FP, TN and FN manually analyzed (ground-truth)

Tools @) - — Q. @) - — Q. @) - - Q J - - Q.
< 3 9 § &£ = % ¥ & & = 3 € § £ =2 % % & =
T 3 8 £ & 3 § B & & 3 § B & & F § B £ 4
[N = [;@ O e) o0 O e o |@) N

All 97 84% 85% 91% 96% 92% 62% 39% 58% 9% 94% 2% 54% T1% 16% 94% 73% 63% 74% 50%

Models %

Evaluated across all 500 examined snippets, DeVAIC shows metric values all above 92%.

pietro.liguori@unina.it - 9

Experimental Evaluation: Computational Cost

Occurrences

180

160 &
140

120
100
80
60
40

20

DeVAIC Computational Cost

L L L L T R e,

'\9\ 'ﬂ,\ ')fo\ ')fb\ 3’\\ 3& ’51\ D(Q\ [3?.)\ 5(6\ bf-)\ c,’L\ c_;)\ (3%\ 6\\
O \9'0- 1.0' c)‘0- %‘W '5'\'0‘ 'BD“Q' ’);“01 sOr v > h sor I O v b v 6(9‘0‘ ‘9%'0‘
O @F e @ P P @ T e o e P

Execution Time per Snippet (s)

Mean time: 0.16 s = Max time value: 0.59 s

Median time: 0.14 s "= Min time value: 0.10 s

Execution Time (s)
Logarithmic Scale (base 10)

HBard EBing [@ChatGPT & Copilot

1.000

100

10

DeVAIC

Bandit

CodeQL Semgrep PyT

Static Analysis Tools

pietro.liguori@unina.it - 10

ReSAISE 2024 workshop

'I_'sqkqba,_ .“’l'ap'an, October28th - 31st, 2024

S S =

https://resaise.qithub.io/2024/

Important Dates (AOE)
Paper submission deadline: July 28th, 2024
Paper notification: August 18th, 2024

Camera ready papers: August 25th, 2024

pietro.liguori@unina.it - 11

https://resaise.github.io/2024/

