
Blockchain Research
@University of Coimbra

Nuno Laranjeiro
cnl@dei.uc.pt

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia

1



The current blockchain team

• 2 Professors

• 3 PhD students
• 3 MSc students

• Former members
• 2 MSc students

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 2



Main topics

1) Study and systematization of smart contract 
vulnerabilities

2) Assessment of smart contract vulnerability 
detection tools

3) Development of a new highly effective vulnerability 
detection tool

4) Definition of blockchain transaction revocation 
models

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 3



Vulnerability taxonomy - openscv

• Vulnerabilities associated with huge financial costs
• Increasing number of new vulnerabilities being discovered
• Huge number of vulnerability detection tools being developed
• Existing schemes (DASP, SWC) outdated, static, insufficient on 

detail
• OpenSCV: An Open Hierarchical Taxonomy for Smart Contract 

Vulnerabilities – https://openscv.dei.uc.pt

Vidal, F.R., Ivaki, N. & Laranjeiro, N. OpenSCV: an open hierarchical taxonomy for 
smart contract vulnerabilities. Empirical Software Engineering 29, 101 (2024)

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 4



Building OpenSCV

5

Vulnerability
Classification Research

Vulnerability
Detection Research

Vulnerability
Vulnerability

Vulnerability

Vulnerability
Vulnerability

Vulnerability

2. Relationship

1. Collection

SWC

DASP

General Vulnerability 
Classification

Blockchain Vulnerability 
Classification

CWE

ODC

3. Characterization

Defect Characterization
(type, qualifier, code clip)

Vulnerability

Vulnerability

4. Consolidation
Naming Structure

CWE

Ram.
DASP

SWC

Rameder
et al. 2022

5. Validation

VulnerabilitiesCategories

6. Dataset

Experts Experts

Vulnerability
Classification Research

Vulnerability
Detection Research

Vulnerability
Vulnerability

Vulnerability

Vulnerability
Vulnerability

Vulnerability

2. Relationship

1. Collection

SWC

DASP

General Vulnerability 
Classification

Blockchain Vulnerability 
Classification

CWE

ODC

3. Characterization

Defect Characterization
(type, qualifier, code clip)

Vulnerability

Vulnerability

4. Consolidation
Naming Structure

CWE

Ram.
DASP

SWC

Rameder
et al. 2022

5. Validation

VulnerabilitiesCategories

6. Dataset

Experts Experts



Assessing vulnerability detection tools

• Benchmark for assessing and comparing different types of tools
• Static tools
• Dynamic tools

• We are working on a vulnerability injector
• Support for current vulnerabilities
• Easily extensible to new vulnerabilities
• Use of generative AI to generate new forms of vulnerabilities

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 6



New vulnerability detection tool

• Based on an ensemble of state-of-the-art tools. 
• Several criteria involved, possibly conflicting
• Use of machine learning models that work over the data that 

results from the verification tools execution 
• Added value retrieved from their false alarms 
• Analysis of code metrics related with the software bugs
• Runtime metrics (e.g., CPU or memory usage)

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 7



Transaction revocation

• When a vulnerability is found a smart contract cannot be fixed. 
• It must be terminated and a new one is deployed

• Wrong transactions (incorrect transfer of funds)
• Malicious transactions (illegal content stored in the blockchain)
• Mechanisms for transaction revocation exist
• New mechanism

• Preventive (use ML for high risk transactions)
• Reactive (redacting, pruning, erasing)

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 8



Analyzing the Impact of Elusive Faults on
Blockchain Reliability
CS1– General impact of known faults in diferent types of contracts

CS2 – Effectiveness of fault detection tools

CS3 – Impact of faults that escape detection

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 9



Impact of Elusive Faults

Table 1
Smart contract defect classification based on ODC classification [6]

Defect Class Defect Nature Defect Name Defect Identifier

Assignment

Missing

Initialization of Storage Variables/Pointers (Uninitialized Storage Pointer) (MISP) A_MISP
Initialization of Local Variable (MILV) A_MILV
Initialization of State Variables (MISV) A_MISV
Constructor (MC) A_MC
Compiler Version (MCV) A_MCV

Wrong

Arithmetic Expression Used In Assignment (WVAE) A_WVAE
Integer Sign (WIS) A_WIS
Integer Truncation (WIT) A_WIT
Value Assignment With Too Many Digits (WVATMD) A_WVATMD
Value Assigned To Contract Address (WVAA) A_WVAA
Constructor Name (WCN) A_WCN
Variable Type (e.g., byte[]) (WVT) A_WVT
Declaration Of Invariant State Variable (WDISV) A_WDISV
Variable Name (Variable Shadowing) (WVN) A_WVN

Checking Missing

"require" On Transaction Sender (MRTS) CH_MRTS
"require" On Input Variable(s) (MRIV) CH_MRIV
"require" OR Subexpression On Transaction Sender (MROTS) CH_MROTS
"require" OR Subexpression On Input Variable(s) (MROIV) CH_MROIV
"require" AND Subexpression On Transaction Sender (MRATS) CH_MRATS
"require" AND Subexpression On Input Variable(s) (MRAIV) CH_MRAIV
Check On Gas Limit (MCHGL) CH_MCHGL
Check On Arithmetic Operation (MCHAO) CH_MCHAO
Check On Suicide Functionality (MCHSF) CH_MCHSF

Wrong "require" For Authorization (Authorization Through tx.origin) (WRA) CH_WRA

Interface Missing Visibility modifier of state variables (implicit visibility) (MVMSV) I_MVMSV
Function Visibility Modifier (MFVM) I_MFVM

Wrong Visibility (public) for private/internal function (WVPF) I_WVPF

Algorithm

Missing "if" construct on transaction sender plus statements (MITSS) AL_MITSS
"if" construct on input variable(s) plus statements (MIIVS) AL_MIIVS

Wrong Use of require, assert, and revert (WRAR) AL_WRAR
Exception Handling (WEH) AL_WEH

Extraneous Continue-statements in do-while-statements or for (ECSWS) AL_ECSWS

Function
Missing Withdraw function (MWF) F_MWF

Inheritance (MINHERITANCE) F_MINHERITANCE
Wrong Inheritance and inheritance Order (WIO) F_WIO

Extraneous Inheritance (EINHERITANCE) F_EINHERITANCE

3.2. Study 1 - Faults’ Impact

We currently allow for up to 1500 function calls per
function, which we found to be generally su�cient in terms
of transaction diversity while maintaining the total number
of transactions generated at reasonable levels (for data anal-
ysis). This workload generation process only takes place for
the set of original smart contracts, and then each generated
faulty contract is executed against the workload generated
for the original contract. This way, we are able to compare
the runtime behavior during the execution of the faulty con-
tracts in contrast with its corresponding fault-free run (i.e., a
golden run). The metrics considered for the comparison are
discussed later in this subsection.

In Step 2, we execute the smart contracts in a private

network. In terms of environment, we resort to a deploy-
ment of Hyperledger Fabric, with the Ethereum Virtual
Machine (EVM) version of Hyperledger Burrow. We then
use Hyperledger Caliper to perform the test runs, which is a
blockchain benchmarking tool that allows users to measure
the performance of a blockchain implementation against
some predefined use cases [63]. The test runs are carried out
by executing the respective workload in both the fault-free

contracts and the corresponding generated faulty versions.
The execution of a test run follows the next order:

i. Hyperledger is set in a clean initial state, which means
that the respective nodes (orderers and endorsers) are
set (or reset) to an empty blockchain.

ii. The contract under evaluation is deployed onto the
blockchain (in this case, onto the endorsing peers).

iii. The workload generated for the contract is executed,
and metrics about each transaction are collected.

During the test runs, Caliper provides multiple transac-
tion details, such as the timing of each transaction phase,
side e�ects returned by the platform, and other status in-
formation. In the end, the collected data is post-processed
to match and compare the information of each transaction
that occurred in the faulty contracts with the corresponding
transaction in the reference contracts.

The choice of the Hyperledger platform for the experi-
mental setup is mostly related to the fact that it o�ers an easy
means to collect various metrics needed (e.g., transaction
execution time, reverted transactions, CPU/memory usage).

F.R Vidal et al.: Preprint submitted to Elsevier Page 7 of 19

Smart contract
faults

• Mapped to 
SWC

• 400 contracts

• 15,949 faulty
contracts



Fault injection approach

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 11

Impact of Elusive Faults

Or
ig

in
al

 C
on

tr
ac

t

1

Abstract Syntax Tree

Fault Model

Solidity Compiler

Faulty Contracts

2

3

OD
C

FAULT INJECTIONCODE TRANSFORMATION

5

DEPLOYMENT

AS
T

Solidity Compiler

By
te

 
Co

de

By
te

 
Co

de

Er
ro

r

Remove Deploy

Hyperledger Fabricsolc-select

Mutation 1 Mutation 2 Mutation n

solc-select

6

7

Original Contract

. . .

4

Figure 1: The code transformation into AST, fault injection, and deployment process.

to detect and use typical metrics, such as false-negative and
false-positive rates, to assess the tools’ performance.

Nine analysis tools for smart contracts are evaluated
in [54]. The authors use 47,587 Ethereum smart contracts,
highlighting clear deficiencies in the tools’ detection capa-
bilities, including the tool marked as the most accurate tool
(Mythril), able to detect only 27% of the vulnerabilities. In
[55], the authors present an empirical evaluation of 9 con-
tract verification against 46,186 smart contracts. The main
findings include the recommendation of a set of diverse test
suites, a unified execution environment with suitable runtime
parameters, and more quantitative and multi-dimensional
performance metrics.

SolidiFI (Solidity Fault Injector) [50] is a bug injection
tool to create vulnerable contracts and assess the static
analysis tools. It can inject seven types of bugs, namely re-
entrancy, timestamp dependency, unchecked send, unhan-
dled exceptions, TOD, integer overflow/underflow, and use
of text. origin. The authors compile the code (i.e., from a
dataset with 50 contracts), inject faults generating buggy
contracts, run the tools using the buggy contracts, and in-
spect the tools reports manually, looking for false negatives,
misidentified cases, and false positives.

In previous work [6], we presented a fault-injection ap-
proach to analyze the e�ectiveness of three static verification
tools: Mythril, Securify, and Slither. The work was a proof of
concept, with the study being limited to a very small number
of contracts and a small number of vulnerabilities. In this
work, we use a larger number of smart contracts and a larger
and more diverse set of vulnerabilities.

It is worthwhile mentioning that the aforementioned
works, which focus on the evaluation of verification tools,
commonly share the view that such tools are immature.
This view is generally reflected in the tools’ real detection
capabilities. However, such a vision is generally not put in
perspective with the runtime e�ect of smart contract-specific
faults. In previous work [14], we tried to analyze the e�ect of
faults on blockchain systems, but at a very small scale (with
only 5 contracts). Other studies tend not to analyze the faults
(and their e�ects) that elude smart contract verification tools
in depth, which is one of the main objectives of this work.

3. Approach

This section presents the approach followed in this work.
The next subsections go through the following main steps:

i. The fault injection approach, which consists of the
injection of faults in a set of smart contracts;

ii. The procedure for analyzing the impact the injected
faults have on each contract;

iii. The procedure to analyze the e�ectiveness of smart
contract fault detection tools;

iv. The analysis of the impact of faults that tend to elude
smart contract verification tools.

3.1. Fault Injection Approach

The starting point for this work is the ability to in-
ject faults in smart contracts. For this purpose, we follow
the long-established tradition of software fault injection in
which, based on a model that represents real faults (i.e., faults
observed in real systems in the field), ’probable’ software
faults are artificially introduced in a certain component of a
larger system [56]. This allows us to understand the e�ect
that a certain type of fault can have on a system once it is
activated (e.g., does the system fail catastrophically, does it
have its performance degraded) [57]. This type of technique
can be towards various goals, namely for evaluating systems
behavior [56], test suite e�ectiveness (i.e., in the case of
mutation testing approaches) [58], tools that act over the
systems, e.g., vulnerability scanners [59] or even for failure
prediction [60]. We apply a software-implemented fault
injection (SWIFI) technique [56], which we have success-
fully used in the past [14], although in a much narrower
scope (a di�erent set of faults was used in 5 contracts). For
completeness, we conceptually overview the technique in the
next paragraphs.

Figure 1 presents our fault injection and deployment pro-
cess. The first phase (on the left side of the image) consists
of transforming the original code (i.e., solidity format) into
AST format. To perform this task, we use native solidity
compiler functions (i.e., solc with –ast-json argument) to

F.R Vidal et al.: Preprint submitted to Elsevier Page 4 of 19

Impact of Elusive Faults

Or
ig

in
al

 C
on

tr
ac

t

1

Abstract Syntax Tree

Fault Model

Solidity Compiler

Faulty Contracts

2

3

OD
C

FAULT INJECTIONCODE TRANSFORMATION

5

DEPLOYMENT

AS
T

Solidity Compiler

By
te

 
Co

de

By
te

 
Co

de

Er
ro

r

Remove Deploy

Hyperledger Fabricsolc-select

Mutation 1 Mutation 2 Mutation n

solc-select

6

7

Original Contract

. . .

4

Figure 1: The code transformation into AST, fault injection, and deployment process.

to detect and use typical metrics, such as false-negative and
false-positive rates, to assess the tools’ performance.

Nine analysis tools for smart contracts are evaluated
in [54]. The authors use 47,587 Ethereum smart contracts,
highlighting clear deficiencies in the tools’ detection capa-
bilities, including the tool marked as the most accurate tool
(Mythril), able to detect only 27% of the vulnerabilities. In
[55], the authors present an empirical evaluation of 9 con-
tract verification against 46,186 smart contracts. The main
findings include the recommendation of a set of diverse test
suites, a unified execution environment with suitable runtime
parameters, and more quantitative and multi-dimensional
performance metrics.

SolidiFI (Solidity Fault Injector) [50] is a bug injection
tool to create vulnerable contracts and assess the static
analysis tools. It can inject seven types of bugs, namely re-
entrancy, timestamp dependency, unchecked send, unhan-
dled exceptions, TOD, integer overflow/underflow, and use
of text. origin. The authors compile the code (i.e., from a
dataset with 50 contracts), inject faults generating buggy
contracts, run the tools using the buggy contracts, and in-
spect the tools reports manually, looking for false negatives,
misidentified cases, and false positives.

In previous work [6], we presented a fault-injection ap-
proach to analyze the e�ectiveness of three static verification
tools: Mythril, Securify, and Slither. The work was a proof of
concept, with the study being limited to a very small number
of contracts and a small number of vulnerabilities. In this
work, we use a larger number of smart contracts and a larger
and more diverse set of vulnerabilities.

It is worthwhile mentioning that the aforementioned
works, which focus on the evaluation of verification tools,
commonly share the view that such tools are immature.
This view is generally reflected in the tools’ real detection
capabilities. However, such a vision is generally not put in
perspective with the runtime e�ect of smart contract-specific
faults. In previous work [14], we tried to analyze the e�ect of
faults on blockchain systems, but at a very small scale (with
only 5 contracts). Other studies tend not to analyze the faults
(and their e�ects) that elude smart contract verification tools
in depth, which is one of the main objectives of this work.

3. Approach

This section presents the approach followed in this work.
The next subsections go through the following main steps:

i. The fault injection approach, which consists of the
injection of faults in a set of smart contracts;

ii. The procedure for analyzing the impact the injected
faults have on each contract;

iii. The procedure to analyze the e�ectiveness of smart
contract fault detection tools;

iv. The analysis of the impact of faults that tend to elude
smart contract verification tools.

3.1. Fault Injection Approach

The starting point for this work is the ability to in-
ject faults in smart contracts. For this purpose, we follow
the long-established tradition of software fault injection in
which, based on a model that represents real faults (i.e., faults
observed in real systems in the field), ’probable’ software
faults are artificially introduced in a certain component of a
larger system [56]. This allows us to understand the e�ect
that a certain type of fault can have on a system once it is
activated (e.g., does the system fail catastrophically, does it
have its performance degraded) [57]. This type of technique
can be towards various goals, namely for evaluating systems
behavior [56], test suite e�ectiveness (i.e., in the case of
mutation testing approaches) [58], tools that act over the
systems, e.g., vulnerability scanners [59] or even for failure
prediction [60]. We apply a software-implemented fault
injection (SWIFI) technique [56], which we have success-
fully used in the past [14], although in a much narrower
scope (a di�erent set of faults was used in 5 contracts). For
completeness, we conceptually overview the technique in the
next paragraphs.

Figure 1 presents our fault injection and deployment pro-
cess. The first phase (on the left side of the image) consists
of transforming the original code (i.e., solidity format) into
AST format. To perform this task, we use native solidity
compiler functions (i.e., solc with –ast-json argument) to

F.R Vidal et al.: Preprint submitted to Elsevier Page 4 of 19

Impact of Elusive Faults

Or
ig

in
al

 C
on

tr
ac

t

1

Abstract Syntax Tree

Fault Model

Solidity Compiler

Faulty Contracts

2

3

OD
C

FAULT INJECTIONCODE TRANSFORMATION

5

DEPLOYMENT

AS
T

Solidity Compiler

By
te

 
Co

de

By
te

 
Co

de

Er
ro

r

Remove Deploy

Hyperledger Fabricsolc-select

Mutation 1 Mutation 2 Mutation n

solc-select

6

7

Original Contract

. . .

4

Figure 1: The code transformation into AST, fault injection, and deployment process.

to detect and use typical metrics, such as false-negative and
false-positive rates, to assess the tools’ performance.

Nine analysis tools for smart contracts are evaluated
in [54]. The authors use 47,587 Ethereum smart contracts,
highlighting clear deficiencies in the tools’ detection capa-
bilities, including the tool marked as the most accurate tool
(Mythril), able to detect only 27% of the vulnerabilities. In
[55], the authors present an empirical evaluation of 9 con-
tract verification against 46,186 smart contracts. The main
findings include the recommendation of a set of diverse test
suites, a unified execution environment with suitable runtime
parameters, and more quantitative and multi-dimensional
performance metrics.

SolidiFI (Solidity Fault Injector) [50] is a bug injection
tool to create vulnerable contracts and assess the static
analysis tools. It can inject seven types of bugs, namely re-
entrancy, timestamp dependency, unchecked send, unhan-
dled exceptions, TOD, integer overflow/underflow, and use
of text. origin. The authors compile the code (i.e., from a
dataset with 50 contracts), inject faults generating buggy
contracts, run the tools using the buggy contracts, and in-
spect the tools reports manually, looking for false negatives,
misidentified cases, and false positives.

In previous work [6], we presented a fault-injection ap-
proach to analyze the e�ectiveness of three static verification
tools: Mythril, Securify, and Slither. The work was a proof of
concept, with the study being limited to a very small number
of contracts and a small number of vulnerabilities. In this
work, we use a larger number of smart contracts and a larger
and more diverse set of vulnerabilities.

It is worthwhile mentioning that the aforementioned
works, which focus on the evaluation of verification tools,
commonly share the view that such tools are immature.
This view is generally reflected in the tools’ real detection
capabilities. However, such a vision is generally not put in
perspective with the runtime e�ect of smart contract-specific
faults. In previous work [14], we tried to analyze the e�ect of
faults on blockchain systems, but at a very small scale (with
only 5 contracts). Other studies tend not to analyze the faults
(and their e�ects) that elude smart contract verification tools
in depth, which is one of the main objectives of this work.

3. Approach

This section presents the approach followed in this work.
The next subsections go through the following main steps:

i. The fault injection approach, which consists of the
injection of faults in a set of smart contracts;

ii. The procedure for analyzing the impact the injected
faults have on each contract;

iii. The procedure to analyze the e�ectiveness of smart
contract fault detection tools;

iv. The analysis of the impact of faults that tend to elude
smart contract verification tools.

3.1. Fault Injection Approach

The starting point for this work is the ability to in-
ject faults in smart contracts. For this purpose, we follow
the long-established tradition of software fault injection in
which, based on a model that represents real faults (i.e., faults
observed in real systems in the field), ’probable’ software
faults are artificially introduced in a certain component of a
larger system [56]. This allows us to understand the e�ect
that a certain type of fault can have on a system once it is
activated (e.g., does the system fail catastrophically, does it
have its performance degraded) [57]. This type of technique
can be towards various goals, namely for evaluating systems
behavior [56], test suite e�ectiveness (i.e., in the case of
mutation testing approaches) [58], tools that act over the
systems, e.g., vulnerability scanners [59] or even for failure
prediction [60]. We apply a software-implemented fault
injection (SWIFI) technique [56], which we have success-
fully used in the past [14], although in a much narrower
scope (a di�erent set of faults was used in 5 contracts). For
completeness, we conceptually overview the technique in the
next paragraphs.

Figure 1 presents our fault injection and deployment pro-
cess. The first phase (on the left side of the image) consists
of transforming the original code (i.e., solidity format) into
AST format. To perform this task, we use native solidity
compiler functions (i.e., solc with –ast-json argument) to

F.R Vidal et al.: Preprint submitted to Elsevier Page 4 of 19



86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 12

Impact of Elusive Faults

W
OR

KL
OA

D 
GE

NE
RA

TO
R

Data Analysis

Reference data Faulty runs data

Reference 
Contract Data

SUA
Reference Runs Faulty Runs

SUA

Input GeneratorOriginal Contracts

Or
ig

in
al

 C
on

tr
ac

ts

Fa
ul

ty
 C

on
tr

ac
ts

Workload

W
OR

KL
OA

D 
EX

EC
UT

IO
N

Faulty 
Contract Data

Workload

Function 0
arg[0] = 010101
arg[1] = 28493
arg[n] = …

..
Function n

Contract 1

Inputs

Figure 4: Approach for analyzing the faults’ impact on the
blockchain including two principal phases: workload generation
and workload execution

In what concerns performance metrics, notice that the goal is
not to obtain absolute performance values, but to understand
what is the relative impact in realistic conditions. Thus, the
setup is similar to other studies where performance has been
studied [64, 65]. As we had the goal of creating an injector
that is independent of the programming language, and due
to the fact that Hyperledger includes modular blockchain
frameworks, this decision to use Hyperledger is beneficial
for future work, where the infrastructure may easily be
reused to run programs in di�erent blockchains.

After finishing the runs, in Step 3, we analyze the

results. We compare the outcome of both the reference
data (i.e., the outcome of the fault-free runs) and mutation
data (i.e., the outcome of faulty smart contract runs). For
this, we consider the successful commit of the transactions
performed in the test cases, as well as the di�erences and
failures that arise in the transactions. In each execution, a
transaction is only deemed successful if i) all of its endorse-
ments are successful and matching and ii) it is successfully
ordered and reported as committed by all endorsing peers.
In previous work, we identified several di�erent types of
blockchain failures [14], which also fit the types of failures
discussed in related work, e.g., [66][67]. Based on this, and
in our own empirical analysis of the di�erent failures during
the experiments, we match our observations to the following
failure modes:

• Revert failure: When Revert occurs, the execution of
the transaction is stopped, and all state changes are
rolled back. The reverted transaction consumes the gas
used up to the point where the transaction is reverted.
This failure mode, in our context, indicates whether

Table 2
Failure modes and their characteristics.

Failure Modes Transaction
not concluded

Incorrect
return value or
transaction result

Incorrect
ledger state

Abort ○

Revert ○

Out-of-gas ○

Correctness ○

Integrity ○ ○

Latent integrity ○

there was at least one transaction in the faulty contract
that was reverted while its reference instance did not.

• Abort failure: Like Revert Failure, when an abort
occurs, the execution of the transaction is stopped,
and all state changes are rolled back. The di�erence
is that the aborted transaction consumes all gas up
to the maximum allowance of the transaction. This
failure mode indicates whether at least one transaction
in the faulty contract was aborted while its reference
instance did not fail.

• Out-of-Gas failure: Indicates whether there was at
least one transaction in the faulty contract that failed
due to gas depletion, while in its reference case, it did
not happen.

• Correctness failure: Indicates whether there was at
least one transaction in the faulty contract that out-
putted a di�erent result or return value than its ref-
erence fault-free contract. Correctness allows us to
observe failures that can be seen by the client during
output invariant checks.

• Integrity failure: Indicates whether there was at least
one transaction in the faulty contract that outputted
a di�erent result or return value and also a di�er-
ent read-write set than the reference fault-free con-
tract (i.e., that transaction modified the state of the
blockchain di�erently than the one from the reference
contract). Integrity allows us to observe failures in the
ledger integrity that can be seen by the client.

• Latent integrity failure: Indicates whether there was
at least one transaction in the faulty contract that out-
putted the same result or return value as its reference
fault-free contract but with a di�erent read-write set
than the reference contract. The aim here is to observe
errors that stay hidden and cannot be directly seen by
the client (as the client receives the expected result or
return value).

Table 2 overviews the failure model considered in this
work for analysis of the results.

In order to characterize the failures, we see whether the
transaction is concluded, whether the result of a transaction
(return value) is correct, and finally, whether the ledger state
is correct. As shown in the table, when Abort and Revert
failures occur, neither a value (transaction result) is returned

F.R Vidal et al.: Preprint submitted to Elsevier Page 8 of 19

• Execution:
Up to 1500 calls per 
function

• Metrics:
transaction execution time, 
reverted transactions, 
CPU/memory usage)



Failure modes

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 13

Impact of Elusive Faults

W
OR

KL
OA

D 
GE

NE
RA

TO
R

Data Analysis

Reference data Faulty runs data

Reference 
Contract Data

SUA
Reference Runs Faulty Runs

SUA

Input GeneratorOriginal Contracts

Or
ig

in
al

 C
on

tr
ac

ts

Fa
ul

ty
 C

on
tr

ac
ts

Workload

W
OR

KL
OA

D 
EX

EC
UT

IO
N

Faulty 
Contract Data

Workload

Function 0
arg[0] = 010101
arg[1] = 28493
arg[n] = …

..
Function n

Contract 1

Inputs

Figure 4: Approach for analyzing the faults’ impact on the
blockchain including two principal phases: workload generation
and workload execution

In what concerns performance metrics, notice that the goal is
not to obtain absolute performance values, but to understand
what is the relative impact in realistic conditions. Thus, the
setup is similar to other studies where performance has been
studied [64, 65]. As we had the goal of creating an injector
that is independent of the programming language, and due
to the fact that Hyperledger includes modular blockchain
frameworks, this decision to use Hyperledger is beneficial
for future work, where the infrastructure may easily be
reused to run programs in di�erent blockchains.

After finishing the runs, in Step 3, we analyze the

results. We compare the outcome of both the reference
data (i.e., the outcome of the fault-free runs) and mutation
data (i.e., the outcome of faulty smart contract runs). For
this, we consider the successful commit of the transactions
performed in the test cases, as well as the di�erences and
failures that arise in the transactions. In each execution, a
transaction is only deemed successful if i) all of its endorse-
ments are successful and matching and ii) it is successfully
ordered and reported as committed by all endorsing peers.
In previous work, we identified several di�erent types of
blockchain failures [14], which also fit the types of failures
discussed in related work, e.g., [66][67]. Based on this, and
in our own empirical analysis of the di�erent failures during
the experiments, we match our observations to the following
failure modes:

• Revert failure: When Revert occurs, the execution of
the transaction is stopped, and all state changes are
rolled back. The reverted transaction consumes the gas
used up to the point where the transaction is reverted.
This failure mode, in our context, indicates whether

Table 2
Failure modes and their characteristics.

Failure Modes Transaction
not concluded

Incorrect
return value or
transaction result

Incorrect
ledger state

Abort ○

Revert ○

Out-of-gas ○

Correctness ○

Integrity ○ ○

Latent integrity ○

there was at least one transaction in the faulty contract
that was reverted while its reference instance did not.

• Abort failure: Like Revert Failure, when an abort
occurs, the execution of the transaction is stopped,
and all state changes are rolled back. The di�erence
is that the aborted transaction consumes all gas up
to the maximum allowance of the transaction. This
failure mode indicates whether at least one transaction
in the faulty contract was aborted while its reference
instance did not fail.

• Out-of-Gas failure: Indicates whether there was at
least one transaction in the faulty contract that failed
due to gas depletion, while in its reference case, it did
not happen.

• Correctness failure: Indicates whether there was at
least one transaction in the faulty contract that out-
putted a di�erent result or return value than its ref-
erence fault-free contract. Correctness allows us to
observe failures that can be seen by the client during
output invariant checks.

• Integrity failure: Indicates whether there was at least
one transaction in the faulty contract that outputted
a di�erent result or return value and also a di�er-
ent read-write set than the reference fault-free con-
tract (i.e., that transaction modified the state of the
blockchain di�erently than the one from the reference
contract). Integrity allows us to observe failures in the
ledger integrity that can be seen by the client.

• Latent integrity failure: Indicates whether there was
at least one transaction in the faulty contract that out-
putted the same result or return value as its reference
fault-free contract but with a di�erent read-write set
than the reference contract. The aim here is to observe
errors that stay hidden and cannot be directly seen by
the client (as the client receives the expected result or
return value).

Table 2 overviews the failure model considered in this
work for analysis of the results.

In order to characterize the failures, we see whether the
transaction is concluded, whether the result of a transaction
(return value) is correct, and finally, whether the ledger state
is correct. As shown in the table, when Abort and Revert
failures occur, neither a value (transaction result) is returned

F.R Vidal et al.: Preprint submitted to Elsevier Page 8 of 19



CS1 – Faults’ impact overview

• >10M transactions (25% no effect)
• Revert and out of gas are prevalent
• Most critical ones (integrity, latent, 

correctness) <2.5%

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 14

Impact of Elusive Faults

Figure 6: Distribution of the generated faulty smart contracts per defect type.

0

100000

200000

300000

400000

500000

600000

700000

I_M
VM

SV

CH
_M
RIV

A_
MI
SV

A_
MI
LV

A_
WI
S

CH
_W
RA

CH
_M
RT
S

A_
WV

AE

CH
_M
CH
AO

AL
_M
IIV
S

A_
WD

ISV

I_W
VP
F

A_
WC
N

A_
MC

A_
WV

N
A_
MC
V

F_W
IO

F_E
INH

ER
ITA
NC
E

CH
_M
RA
IV

A_
WV

AA

I_M
FV
M

AL
_EC

SW
S

CH
_M
RO
TS

AL
_M
ITS
S

CH
_M
RO
IV

A_
WV

AT
MD

CH
_M
RA
TS

A_
MI
T

F_M
WF

A_
MI
SP

A_
WV

T

AL
_W
RA
R

F_M
INT
HE
RIT
AN
CE

CH
_M
CH
SF

AL
_W
EH

CH
_M
CH
GL

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

 A
ffe

ct
ed

Defect Type

Not Affected Revert Out-of-Gas Abort Correctness Integrity Latent

Figure 7: Faults’ impact per defect type vs. number of transactions affected

Missing require on input values (CH_MRIV) (1599 times).
These numbers do not directly reflect their frequency in the
real world but are simply related to the number of possible
locations in each of the original contract’s codes that met
the conditions for the injection. On the opposite side, we
find a few faults that rarely appear, such as, Missing Check
on Gas Limit (CH_MCHGL) (2 times), or Missing Check on
Suicide Functionality (CH_MCHSF) (9 times). Notice that,
although a fault may be infrequent (i.e., low probability of
occurrence) the associated risk may be high, which means
that tools should not disregard such cases.

Figure 6 also shows, in the orange bars, the number of
faulty smart contracts that were actually executed for each
defect type. As the workload generation tool (described in
section 3) is currently unable to fully match the types and
number of parameters necessary for invoking all transactions
in all 15,494 contracts, the number of executed contracts is
less than the total number of contracts. Still, we were able
to run 83% (12093 out of 15,494) of all generated faulty
contracts, encompassing all 36 types of faults.

Integrity; 
0,25%

Latent; 0,61% Correctness; 
0,29%

Abort; 1,33%

Revert; 
53,72%

Out-of-Gas; 
18,35%

Not Affected; 
25,46%

Figure 8: Overall view of faults’ impact on detectable defective
contracts.

4.1. Results of Study 1 - Faults’ Impact

We ran the generated workload over the faulty smart
contracts, which resulted in the execution of a total of

F.R Vidal et al.: Preprint submitted to Elsevier Page 10 of 19



CS1 – Faults associated with more severe failures

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 15

Impact of Elusive Faults

0

1000

2000

3000

4000

5000

6000

7000

8000

CH
_M
RIV

CH
_M
RT
S

A_
MI
SV

CH
_M
CH
AO

A_
WV

N

A_
WD

ISV
A_
MC

A_
MI
LV

AL
_M
IIV
S

A_
WC
N

A_
WV

AE

AL
_M
ITS
S

A_
WV

AA
F_W

IO

CH
_M
RO
IV

CH
_M
RO
TS

I_W
VP
F
A_
WI
S

AL
_EC

SW
S

CH
_M
RA
IV

CH
_M
RA
TS

A_
MI
SP

F_E
INH

ER
ITA
NC
E

I_M
VM

SV

CH
_W
RA

A_
MC
V

A_
WV

AT
MD

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

 A
ffe

ct
ed

Defect Type

Correctness Integrity Latent

Figure 9: Types of faults triggering severe failures and number of transactions affected.

10, 925, 749 transactions, of which 2, 782, 063 (about 25.46%)
were executed successfully, and no e�ect was observed. The
rest of the transactions were a�ected by the injected fault
having resulted in a failure. Figure 8 shows the analysis of
the impact distribution from the collected results of running
defective contracts, which are detectable by the vulnerability
detection tools used in this work.

Most of the failures triggered are of type Revert Failure
(about 53.72% of all transactions) followed by Out-of-Gas
Failure (about 18.35% of all transactions). The rest of the
failures, which are the most critical ones (as they influence
gas consumption and correctness of results and ledger),
compose less than 2.5% of the cases.

Figure 7 shows the detailed impact results per defect type
and the number of transactions a�ected for each one. Notice
that drilling down to the fault type, the relative prevalence
of the di�erent types of failures is generally the same across
all types of faults.

Figure 9 shows the detailed results of the fault types that
caused severe failures, namely Correctness Failure, Integrity
Failure, and Latent Integrity Failure. Of all 36 types of
faults, only 9 of them did not cause any of these failures
(for instance, CH_MCHGL and CH_MCHSF are two of
these 9 cases). Note that all of these 9 fault types, with the
exception of I_MFVM, are the least frequent in our faulty
smart contracts list (refer to Figure 6).

The results depicted in Figure 9 show that there are still
many cases in which most of the defect types injected cause
correctness, integrity, and especially latent integrity failures.
As shown, Missing require on input variables (CH_MRIV)
causes most of Latent failures and Missing visibility modifier
of state variables (I_MVMSV) causes most of Integrity
and Correctness failures. Among all, Missing if construct
on transaction sender plus statements (AL_MITSS) and
Wrong variable name (A_WVN), respectively with 3.12%
and 2.75%, have a higher ratio (total number of failures

divided by the total number of transactions executed per
defect type) of Latent Integrity Failure.

We have also calculated the runtime overhead (per-
formance degradation) caused by injected faults on faulty
contracts compared to fault-free runs in terms of CPU usage,
Memory Usage, and Transaction time. An overview of the
results is presented in Figure 10, in which we can see the
distribution of the three types of overhead values for all
transactions. In general, the injected faults lead to some
overhead on all three metrics. There are some cases where
the overhead is high, namely Wrong arithmetic expression
used in assignment (A_WVAE) on CPU usage, Wrong vari-
able type (A_WVT) on transaction time, and Wrong value
assignment with too many digits (A_WVATMD) on memory
usage. It is also worthwhile mentioning that some faults are
associated with negative overhead values since they lead to
abort or revert of transactions.

Figure 10: Overhead caused by faults on CPU, Memory, and
Execution time.

F.R Vidal et al.: Preprint submitted to Elsevier Page 11 of 19



CS2 – Tools’ effectiveness

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 16

Impact of Elusive Faults

to the client, nor any changes are made to the state of the
ledger. The transaction fails, and some error or exception is
delivered to the client. The only di�erence between the Abort
Failure and Revert Failure is related to the gas consumption.
A reverted transaction consumes the gas used up to the
point where the transaction is reverted, while an aborted
transaction consumes all gas up to the maximum allowance
of the transaction.

In the case of Out-of-Gas failures, similar to the previous
cases, no value is returned, and no changes to the ledger
state are made. However, the transaction is not concluded
due to gas depletion (e.g., a fault may cause spending more
resources). In a Correctness failure, the transaction is suc-
cessfully concluded, but the transaction result is di�erent
from the reference run. In this case, the state of the ledger
remains intact. In contrast, in the case of Integrity failure,
in addition to having incorrect returned values, the integrity
of the ledger’s state is disrupted too. Finally, Latent integrity
failure relates to changes in the integrity of the ledger state,
although the transaction result (values returned to the client)
is correct (which means that a client cannot detect the
problem). Although Correctness and Integrity failures are
both severe, being undetectable makes the Latent Integrity
Failure the most severe failure in our failure model.

3.3. Study 2 - E�ectiveness of Verification Tools

This section presents the study for assessing the de-
tection capabilities of the verification tools (i.e., Mythril,
Securify2, and Slither), which is depicted in Figure 5. In
practice, we go through the following steps:

Data Analysis

Faulty Contracts

FA
UL

T 
DE

TE
CT

IO
N 

TO
OL

S 
EX

EC
UT

IO
N

Tools' reports

Unified Data

Merge Function

Figure 5: Approach for analyzing the effectiveness of verifica-
tion tools.

1. Selection of smart contract verification tools;

2. Execution of the tools against faulty smart contracts
(generated by fault injection);

3. Results analysis, based on a set of metrics of interest.

Step 1) involves the selection of smart contract verifi-

cation tools. We aimed at popular tools [10, 9, 8], actively
maintained and of di�erent operational nature. Namely, we
selected an abstract interpretation tool (Securify2 version

0.0.1), a static analysis tool (Slither version 0.8.0), and a
tool that uses symbolic execution (Mythril version 0.22.19).
In the perspective of our approach, this is a variable set of
tools and, at this point, other tools could be used (e.g., Zeus
[30], Oyente [68], Smartest [69], Smartian [29]).The specific
selection of tools will depend on various factors, such as the
available time to run the tools and to analyze results (e.g.,
some tools require more time to execute, other tools have
high false positive rates), computational resources, and the
overall requirements of the user executing the approach.

In Step 2), we execute the tools against the generated
set of 15,494 faulty smart contracts, collect their output,
and then store and process the results produced by the
tools, mapping the detected vulnerabilities to the analyzed
contracts. The tools are run using their default parameters,
with no particular configuration towards specific types of
faults.

In Step 3), we analyze the results but right before that,
the tools’ output reports are converted into unified data
format through a merge function we implemented. This way,
no changes in the analysis process are required for a new
tool. While analyzing the results, all cases of potential true-
positives (i.e., software faults signaled by the tool that do ex-
ist) are manually verified to check if the signaled defect really
is present in the contract (also as a way of understanding if
the fault injector is correctly injecting the faults). We focus
on evaluating the tools’ overall e�ectiveness in detecting the
injected faults, which should be present in all contracts under
analysis. Other potential faults (i.e., previously unknown
vulnerabilities) are out of the scope of this work.

3.4. Study 3 - Impact of Elusive Faults

This final study focuses on the outcomes of the previous
studies and analyses the consequences of the faults that elude
the verification tools. The analysis is essentially carried
out to understand the distribution of faulty contracts (not
detected by any of the tools) per fault type, the prevalence
of the di�erent types of failures associated with the di�erent
types of faults, and, finally, the study focuses on the faults
that generate the most severe failures.

4. Results and Discussion

This section discusses the results obtained during our
experimental evaluation. All the experiments were executed
on 4 virtual machines with 16 CPU and 16 memory, using
Ubuntu 18.04.5 LTS. After running the fault injection pro-
cess, we were able to generate at least one faulty contract
(out of 400 smart contracts) for each of the 36 di�erent types
of faults, ending up with a total of 15,494 (>= 400 * 36 as it
is possible to inject a single fault in more than one location in
the code of a certain contract) faulty smart contracts. Figure
6 overviews the distribution of the generated faulty contracts
per defect type (blue bars).

As we can see in Figure 6, some faults lead to higher
numbers of faulty contracts, such as Missing visibility mod-
ifier of state variables (I_MVMSV) (1902 times), Missing
initialization of Local Variable (A_MILV) (1736 times), and

F.R Vidal et al.: Preprint submitted to Elsevier Page 9 of 19



CS2 – Tools effectiveness

• There are other properties, e.g., speed: Security -> Slither -> Mythril

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 17

Impact of Elusive Faults

Table 3
Mapping of our fault model to the defects detected by the tools.

Fault Securify Slither Mythril
A_MC CallToDefaultConstructor? void-cst SWC-118
A_MCV - - SWC-102
A_MILV UninitializedLocal uninitialized-local SWC-109
A_MISP UninitializedStorage uninitialized-storage SWC-109
A_MISV UninitializedStateVariable uninitialized-state SWC-109
A_WCN CallToDefaultConstructor? void-cst SWC-118
A_WDISV ConstableStates constable-states -
A_WIS - storage-array SWC-101
A_MIT - divide-before-multiply SWC-101
A_WVAA - missing-zero-check -
A_WVAE - - -
A_WVATMD TooManyDigits too-many-digits SWC-101
A_WVN ShadowedStateVariable shadowing-state SWC-119
A_WVT - controlled-array-length -
AL_ECSWS CallInLoop calls-loop SWC-104
AL_MIIVS - - SWC-123
AL_MITSS UnrestrictedEtherFlow unchecked-send SWC-105
AL_WEH UnhandledException unchecked-lowlevel -
AL_WRAR - assert-state-change SWC-110
CH_MCHAO - - SWC-123
CH_MCHGL - costly-loop SWC-128
CH_MCHSF UnrestrictedSelfdestruct suicidal SWC-106
CH_MRAIV - - SWC-123
CH_MRATS - - SWC-123
CH_MRIV - - SWC-123
CH_MROIV - - SWC-123
CH_MROTS - - SWC-123
CH_MRTS - - SWC-123
CH_WRA TxOrigin tx-origin SWC-115
F_EINHERITANCE - missing-inheritance SWC-125
F_MINHERITANCE - missing-inheritance SWC-125
F_MWF LockedEther locked-ether -
F_WIO - missing-inheritance SWC-125
I_MFVM ExternalFunctions external-function -
I_MVMSV StateVariablesDefaultVisibility - SWC-108
I_WVPF - constant-function-asm -

4.2. Results of Study 2 - E�ectiveness of

Verification Tools

Table 3 shows which faults the three tools (i.e., Securify,
Slither, and Mythril) announce they are able to detect. It
shows the original names used by the tools and maps them
to our fault model.

Figure 11 shows an overview of the detection accuracy of
each of the three tools used. In particular, it shows, per tool,
the total number of faulty contracts generated (considering
only the types of faults each tool was designed to detect) and
the total number of contracts in which the tools signaled the
presence of a problem in the injection location (i.e., the true
positives).

Figure 11: Detection accuracy per tool in terms of true
positives.

As we can see in Figure 11, Slither is more e�ective in
detecting the injected defects (detects defects in about 81%
of the contracts) and is followed by Mythril with about 61%
detection accuracy. Securify shows clearly lower values of
detection accuracy, reaching only about 6%. We emphasize
that these accuracy numbers use the announced capabilities
of each of the tools as a reference.

It is important to mention that although Slither seems to
be a more e�ective verification tool among the three tools
evaluated in this study, the number of alerts generated by
Slither is also much higher than the number of alerts gener-
ated by other tools. During the experiments and considering
just the faulty contracts holding faults that each of the tools
was designed to detect, Securify generated a total of 7382
alerts, of which 516 were indeed correct alerts (i.e., 6.99%
of the alerts represented true positives). Mythril generated
55090 alerts, of which 8100 ended up being correct alerts
(14.70%). Slither generated 397236 alerts, of which only
6902 were correct alerts (1.74%).

Figure 12 shows how di�erently the verification tools
performed in detecting the faulty contracts. Figure 12.a) at
the left-hand side considers all faults that the tools were
designed to detect (including faults that only one or two of
the tools should detect). Figure 12.b) considers only the set
of faults that are common to the three tools, i.e., that all three
tools announce being able to detect.

F.R Vidal et al.: Preprint submitted to Elsevier Page 12 of 19

1.74% of alerts

14.7% of alerts



CS2 – Intersecting detection capabilities

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 18

Impact of Elusive Faults

Figure 12: Venn diagram illustrating the detected defects by
the tools, showing their intersecting detection capabilities.

As we can see in Figure 12.a), only 161 (about 1.4%)
faulty contracts out of 11799 are signaled correctly by all
three tools. We can also see that 3099 faulty contracts (about
26.3%) are detected by both Slither and Mythril. The rest
of the faulty contracts are detected either by Slither or by
Mythril, with the advantage being on the side of Mythril.
Although Securify has low detection e�ectiveness, it can
actually signal faults in 57 contracts that neither of the
remaining tools is able to. This clearly shows the tools’
complementarity in fault detection. In Figure 12. b) we again
observe the complementarity of the tools, although we now
see that Slither actually captures most of the faults that
Mythril detected (in this scenario, we reduced the faults
to the set that is common to the three tools). We also see
that Securify does not bring further detection value in this
scenario.

We now go through a more detailed view of the tools’
capabilities per each of the faults. Figure 13 presents, per
type of fault, the number of faulty contracts generated and
the corresponding number of contracts in which the tools
signaled the presence of a problem in the injection location
(i.e., the tools detection accuracy).

As we can see in Figure 13, the pattern of detection
seems to be similar for all fault types, with the exception of
a few cases, namely A_MCV, CH_MRAIV, and CH_MRATS
in which Mythril was able to detect more faulty contracts.
In the case of Missing Compiler Version (A_MCV), most of
the faulty contracts have remained undetected. In contrast,
defect types of A_WIS, A_WVT, AL_WRAR, CH_MCHGL,
CH_MCHSF, F_MINTHERITANCE are totally detected by
one or more tools.

4.3. Results of Study 3 - Impact of Elusive Faults

This section focuses on the faults that escaped detection
by the verification tools and analyses their impact. Figure 14
presents the number of faulty contracts that are not detected
by any of the verification tools per defect type. The labels on
top of each bar reflect the percentage of undetected faulty
contracts of a certain type of fault, considering the total
number of faulty contracts generated for that particular fault.
In total, about 9% of the contracts (1395 out of 15494)
remained undetected by all tools. The defect type Missing
Compiler Version (A_MCV) should be simple to detect (it
can be done by a simple check at the beginning of the
contract); however, the tools generally fail to detect it in most

cases (91.9%). In the case of the other defect types, tools tend
to perform better, and the injected fault is detected by at least
one of the tools in at least every 9 out of 10 faulty contracts.
Still, the di�erent code locations where the fault was injected
a�ect the detection capabilities of the tool.

To understand the impact of the undetected defects, we
present a summary of the results obtained from executing the
transactions of the undetected faulty contracts in Figure 16.
Again, we observe that most of the failures belong to Revert
Failure and Out-of-gas Failure followed by Abort Failure.
When compared to the distribution of failures in all transac-
tions, presented in Figure 8, the percentage of not a�ected
transactions decreased among the elusive faults, leading to
a higher percentage of Revert and Out-of-gas failures. The
percentage of the other failures slightly decreased as well.

A more detailed view of the results is presented in
Figure 15, which shows the analysis of the execution of
defective contracts that escaped the vulnerability detection
tools used.. Among undetected defects, A_MCV is causing
most of the failures. In contrast, undetected defects types of
I_MFVM, AL_WEH, A_WVATMD_2, A_MIT, AL_ECSWS,
CH_MROIV, F_INHERITANCE are not causing any failure.

Figure 17 drills down to the undetected faults that caused
severe failures, namely Correctness Failure, Integrity Fail-
ure, and Latent Integrity Failure. The results show that
residual faults are left behind even after using the whole
set of verification tools, leading to severe issues from the
blockchain point of view. The results also show that most
of these severe defects are either of type Assignment or
Checking.

Among all types of faults presented in Figure 17, A_MCV,
CH_MROTS, CH_WRA are less severe as they are not caus-
ing any or a just a few latent failures. In contracts A_WVN
and A_WVAE can be assumed as the most severe issues
we may find in smart contracts, as both are causing latent
failures in most cases. The former remained undetected for
about 9.5% of the time, and the latter remained undetected
for about 6.0% of the time (refer to Figure 14).

4.4. Main Findings

This section highlights the main findings of our experi-
mental evaluation as follows:

• As a general observation related to the fault in-
jection process, we found out that a few types of
faults are connected to higher likelihood of injection,
namely Missing visibility modifier of state variables
(I_MVMSV) (1902 times), Missing initialization of
Local Variable (A_MILV) (1736 times), and Missing
require on input values (CH_MRIV) (1599 times) lead
to higher numbers of faulty contracts. This means
that the conditions required to inject these faults are
realized more frequently.

• No failures were observed in one fourth of the faulty
contracts, while in about half of the faulty contracts
Revert failures were detected, with Out-of-gas fail-
ures being observed in nearly one fifth of the faulty

F.R Vidal et al.: Preprint submitted to Elsevier Page 13 of 19

Union of all faults the
tools should detect

Faults common to the
3 tools



CS3 – Undetected faulty contracts

• 9% of the faulty contracts escape detection by any of the tools

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 19

Impact of Elusive Faults

Figure 13: Number of contracts with injected defects (blue bar) and the number of faulty contracts detected by each tool.
91

,9
%

7,
0%

8,
4%

5,
7%

5,
1%

5,
1%

6,
0%

7,
1%

3,
9%

9,
5%

7,
5%

3,
7%

8,
7%

4,
4%

4,
9%

7,
5%

3,
0%

3,
5%

4,
8%

3,
2%

3,
6%

3,
6%

2,
0%

4,
3%

2,
8%

2,
6%

1,
6%

7,
7%

0

50

100

150

200

250

300

A_
MC
V

I_M
VM

SV

A_
MI
SV

CH
_M
RIV

A_
MI
LV

A_
WI
S_
2

A_
WV

AE

CH
_M
CH
AO

CH
_W
RA

A_
WV

N

A_
WD

ISV

CH
_M
RT
S

F_
EIN
HE
RIT
AN
CE

I_W
VP
F
A_
MC

A_
WV

AA

AL
_M
IIV
S

A_
WC

N
F_
WI
O

AL
_E
CS
WS

A_
WV

AT
MD

AL
_M
ITS
S

CH
_M
RA
IV

CH
_M
RO
IV

CH
_M
RO
TS

A_
MI
SP
A_
MI
T

AL
_W
EH

Nu
m

be
r o

f U
nd

et
ec

te
d 

Fa
ul

ty
 C

on
tra

ct
s

Defect Type

Figure 14: Number of faulty contracts not detected by any of the tools.

contracts. These two types of failures are the most
frequent ones observed in these experiments.

• The faults associated with higher chances of injection
(i.e., I_MVMSV, A_MILV, and CH_MRIV) are also the
ones that lead to most of the Revert failures and Out-
of-gas failures observed during the experiments.

• Fault CH_MRIV, one of the most frequent, is respon-
sible for most Latent failures, which is the most severe
failure mode. CH_MRTS and A_MISV_2 are not as
frequent as CH_MRIV, but they are also the cause of
a visible number of cases of Latent failures.

• The e�ectiveness of smart contract verification tools
is rather low, with results showing low numbers of
true positives when compared to a large number of
generated alerts. This confirms similar observations in

related work. Slither seems to be more e�ective in de-
tecting the injected faults (it is able to detect defects in
about 81% of the faulty contracts), but it also generates
a huge number of alerts (the detected defects compose
only 1.74% of all alerts generated). Mythril, which
detects defects in about 61% of faulty contracts, is an
interesting option if we consider the number of alerts
generated (the detected defects compose only 14.70%
of all alerts generated). Securify has been shown to be
able to detect about 6.4% of faulty contracts.

• Mythril and Slither have clearly shown complemen-
tary capabilities, although they also jointly detected
many of the faulty contracts. Securify was able to
detect faults that the remaining tools could not capture
but at a very small scale. Thus, developing a tool that

F.R Vidal et al.: Preprint submitted to Elsevier Page 14 of 19



CS3 – Impact of the most severe faults

• Faults generating the most severe failures are either of type
assignment or checking

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 20

Impact of Elusive Faults

0

50

100

150

200

250

300

350

400

450

A_
WV

N

A_
WV

AE

CH
_M
CH
AO

CH
_M
RIV

A_
MI
SV

A_
MI
LV

A_
WD

ISV
A_
MC

A_
WV

AA

CH
_M
RT
S

I_W
VP
F

CH
_W
RA

CH
_M
RO
TS

A_
MC
VNu

m
be

r o
f T

ra
ns

ac
tio

ns
 A

ffe
ct

ed

Defect Type

Correctness Integrity Latent

Figure 17: Faults’ critical impact for undetected defects.

fault model could not violate the security properties
defined)

• It is worthwhile mentioning that, besides showing
distinct detection capabilities, the tools perform di�er-
ently (in terms of time taken to execute and resource
consumption). In our experimental scenario, Securify
was the fastest tool, followed by Slither and Mythril,
with Mythril taking much longer to complete the
analysis. In terms of resource consumption, Securify
and Slither required less resources (i.e., in terms of
CPU and memory) with Mythril taking the bottom
position in this criteria, for the set of contracts used.

• Overall, focusing on the defect types identified as
elusive during this work may allow for improving the
detection capabilities of future verification tools. Also,
a finer analysis per fault of the reasons why a tool
cannot detect the same fault in di�erent code locations
is crucial for detection improvement.

4.5. Threats to Validity

This section presents the threats to the validity of this
work and discusses mitigation strategies. We start by men-
tioning that the fault model used does not include all possible
faults. For instance, we do not use reentrancy faults in this
work, as well as other faults that are known to a�ect smart
contracts. This may limit the evaluation of both impact and
tools’ e�ectiveness and give a biased perception of the real-
ity concerning impact and detection e�ectiveness. Anyway,
the selected faults cannot be disregarded by detection tools or
their impact. Within this limitation, we did try to end up with
at least one representative example of each di�erent type of
fault. Using a more complete fault model and implementing
a larger number of di�erent faults will be pursued in future
work.

The process for generating the workload may not be
the best option, considering that certain faults may only
be triggered by very specific input sequences, which might

shadow some interesting failures that could have occurred.
Also, the characteristics of Solidity smart contracts may lead
to calls that fail by specification (e.g., only some addresses
have authorization and capabilities to perform transactions
in the smart contracts). Nevertheless, we only analyze and
compare transactions that are deemed successful in the base
reference runs to make sure that the faulty reference runs
indeed caused an impact.

The set of selected tools is rather small and may not
provide a proper view of smart contract verification tools.
Also, depending on specific goals or constraints (e.g., avail-
able time and resources for executing the approach), other
tools could be used; still, we selected tools that frequently
appear in the literature. The analysis is also mostly limited to
measuring the true positive rate of the tools in detecting the
presented vulnerabilities, which may not provide an accurate
view of the tools’ capabilities. Nevertheless, our goal is
that our results allow for improving verification tools, and
the focus is on the injection of smart contract faults and
generated faulty contracts, regardless of the tools that are
then used for fault detection.

Finally, the whole combination of selected contracts with
the implemented faults and selected tools may lead to a
biased view of the faults that are indeed elusive. Still, we
believe that our options were reasonable given the extension
of the experiments and we highlight the presence of all three
components in related work, supporting their representative-
ness.

5. Conclusion

In this work, we carried out an experimental campaign
to show the impact realistic faults may have on the reliability
of blockchain systems. We use fault detection tools to under-
stand which faults may escape detection and whether/how
they lead the blockchain system to fail at runtime. Hence, we
contributed to a realistic scenario in which faulty contracts
(i.e., similar to those presented in this experiment) are being

F.R Vidal et al.: Preprint submitted to Elsevier Page 16 of 19



A few highlights

• No failures in about ¼ of the faulty contracts
• Revert failures in about ½ of the faulty contracts
• Out-of-gas in about 1/5 of the faulty contracts
• missing require on input variable, the third fault most frequently 

injected, is responsible for most Latent failures, which is the most 
severe failure mode 
• Faults generating the most severe failures are either of type

assignment or checking
• ¾ of the fault types escaped detection (elusive) and are 

associated with severe failures

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 21



Questions?

Nuno Laranjeiro
cnl@dei.uc.pt



CS3 – Affected transactions

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 24

Impact of Elusive Faults

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

A_
MC
V

I_M
VM

SV

CH
_M
RIV

A_
MI
SV

A_
WV

AE

CH
_W
RA

A_
WI
S

CH
_M
CH
AO

CH
_M
RT
S

A_
WV

N

A_
MI
LV

AL
_M
IIV
S

A_
WC
N

CH
_M
RO
TS

A_
MC

A_
WV

AA
F_
WI
O

I_W
VP
F

A_
WD

ISV

CH
_M
RA
IV

F_
MW

F

CH
_M
RA
TS

A_
WV

AT
MD

A_
MI
SP

F_
EIN
HE
RIT
AN
CE

AL
_M
ITS
S

CH
_M
RO
IV

AL
_E
CS
WS

A_
MI
T

AL
_W
EH

I_M
FV
M

Nu
m

be
r o

f T
ra

ns
ac

tio
n 

Af
fe

ct
ed

Defect Type

Revert Out-of-Gas Abort Correctness Integrity Latent

Figure 15: Faults’ impact for undetected defects by any of the tools.

Integrity; 
0,05%

Latent; 0,48% Correctness; 
0,06% Abort; 0,79%

Revert; 63,99%

Out-of-Gas; 
23,31%

Not Affected; 
11,32%

Figure 16: Overall view of faults’ impact on undetectable
defective contracts by any of the tools.

makes use of the di�erent techniques involved is a
possible path towards better detection capabilities.

• Faulty contracts generated with A_WIS, A_WVT, AL_WRAR,
CH_MCHGL, CH_MCHSF and
F_MINTHERITANCE are totally detected by at least
one of the tools. On the opposite side, the tools mostly
fail to detect Missing Compiler Version (A_MCV).

• The faults generating the most severe failures either
belong to Assignment or Checking defect types.

• The overall impact on CPU, memory, and transaction
time of the faults is relatively small (i.e., from 2 to 6%),
although there are concerning cases with some faults
significantly exceeding the normal profile, in some
cases duplicating the reference values (e.g., memory
overhead).

• In what concerns the elusive faults (see Section 4.3),
nearly three-quarters of the types of faults (28 out of
36) have escaped detection and are associated with
severe failures (i.e., correctness, integrity, latent).

• A_WVN, A_WVAE, and CH_MCHAO are among the
most severe issues, as they jointly cause about 50%
of all latent failures in the transactions of undetected
faulty contracts.

• The impact on CPU, memory usage, and transaction
time is globally not significant, although the presence
of A_MC and A_WCN in faulty contracts respectively
leads to about 3 times more and 30 times more mem-
ory usage.

• The Taint Analysis technique achieves good detec-
tion results (80% accuracy), but, as a side e�ect, it
produces many false positives (i.e., Slither generated
397236 alerts, of which only 6902 were correct alerts
(1.74%)).

• The Symbolic Execution technique has a known prob-
lem of consuming a large amount of computer re-
sources; Thus, Mythril was executed using a limited
timeout configuration (i.e., 2 minutes). Increasing ex-
ecution time can make Mythril closer to Slither (i.e.,
with reduced false positives).

• The Abstract Interpretation technique also generates
numerous false positives. To mitigate these false
alarms, Securify implemented a filter that examines
whether the alert violated seven security violations
(i.e., Ether Liquidity, No Writes After Calls, Re-
stricted Writes, Restricted Transfer, Handled Excep-
tion, Transaction Ordering Dependency, and Vali-
dated Arguments). However, this filter resulted in
poor detection (i.e., some defects contained in our

F.R Vidal et al.: Preprint submitted to Elsevier Page 15 of 19



CS3 – Undetectable faulty contracts impact

• Lower number of
transactions with no Effect 
(11% vs 25%)

86th IFIP WG 10.4 Meeting
27th - 30th June 2024, Gold Coast, Australia 25

Impact of Elusive Faults

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

A_
MC
V

I_M
VM

SV

CH
_M
RIV

A_
MI
SV

A_
WV

AE

CH
_W
RA

A_
WI
S

CH
_M
CH
AO

CH
_M
RT
S

A_
WV

N

A_
MI
LV

AL
_M
IIV
S

A_
WC
N

CH
_M
RO
TS

A_
MC

A_
WV

AA
F_
WI
O

I_W
VP
F

A_
WD

ISV

CH
_M
RA
IV

F_
MW

F

CH
_M
RA
TS

A_
WV

AT
MD

A_
MI
SP

F_
EIN
HE
RIT
AN
CE

AL
_M
ITS
S

CH
_M
RO
IV

AL
_E
CS
WS

A_
MI
T

AL
_W
EH

I_M
FV
M

Nu
m

be
r o

f T
ra

ns
ac

tio
n 

Af
fe

ct
ed

Defect Type

Revert Out-of-Gas Abort Correctness Integrity Latent

Figure 15: Faults’ impact for undetected defects by any of the tools.

Integrity; 
0,05%

Latent; 0,48% Correctness; 
0,06% Abort; 0,79%

Revert; 63,99%

Out-of-Gas; 
23,31%

Not Affected; 
11,32%

Figure 16: Overall view of faults’ impact on undetectable
defective contracts by any of the tools.

makes use of the di�erent techniques involved is a
possible path towards better detection capabilities.

• Faulty contracts generated with A_WIS, A_WVT, AL_WRAR,
CH_MCHGL, CH_MCHSF and
F_MINTHERITANCE are totally detected by at least
one of the tools. On the opposite side, the tools mostly
fail to detect Missing Compiler Version (A_MCV).

• The faults generating the most severe failures either
belong to Assignment or Checking defect types.

• The overall impact on CPU, memory, and transaction
time of the faults is relatively small (i.e., from 2 to 6%),
although there are concerning cases with some faults
significantly exceeding the normal profile, in some
cases duplicating the reference values (e.g., memory
overhead).

• In what concerns the elusive faults (see Section 4.3),
nearly three-quarters of the types of faults (28 out of
36) have escaped detection and are associated with
severe failures (i.e., correctness, integrity, latent).

• A_WVN, A_WVAE, and CH_MCHAO are among the
most severe issues, as they jointly cause about 50%
of all latent failures in the transactions of undetected
faulty contracts.

• The impact on CPU, memory usage, and transaction
time is globally not significant, although the presence
of A_MC and A_WCN in faulty contracts respectively
leads to about 3 times more and 30 times more mem-
ory usage.

• The Taint Analysis technique achieves good detec-
tion results (80% accuracy), but, as a side e�ect, it
produces many false positives (i.e., Slither generated
397236 alerts, of which only 6902 were correct alerts
(1.74%)).

• The Symbolic Execution technique has a known prob-
lem of consuming a large amount of computer re-
sources; Thus, Mythril was executed using a limited
timeout configuration (i.e., 2 minutes). Increasing ex-
ecution time can make Mythril closer to Slither (i.e.,
with reduced false positives).

• The Abstract Interpretation technique also generates
numerous false positives. To mitigate these false
alarms, Securify implemented a filter that examines
whether the alert violated seven security violations
(i.e., Ether Liquidity, No Writes After Calls, Re-
stricted Writes, Restricted Transfer, Handled Excep-
tion, Transaction Ordering Dependency, and Vali-
dated Arguments). However, this filter resulted in
poor detection (i.e., some defects contained in our

F.R Vidal et al.: Preprint submitted to Elsevier Page 15 of 19


