

Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers

Júlio Mendonça, Azin Bayrami Asl, Federico Lucchetti, Marcus Völp julio.mendonca@uni.lu, azin.bayramiasl@uni.lu, federico.lucchetti@unil.ch, marcus.voelp@uni.lu

12 September 2024

Motivation

Júlio Mendonça, Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers

SIIT

uni.lu

Challenges

Current consensus algorithms (e.g., Damysus [9]) assume a fixed number of nodes N

Pre-defining how many faulty nodes *f* the system can tolerate, we can derive *N* (or vice-versa)

Júlio Mendonça, Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers

[9] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, "DAMYSUS: streamlined BFT consensus leveraging trusted components," in Proceedings of the 17th European Conference on Computer Systems, 2022, pp. 1–16.

Challenges

Current consensus algorithms (e.g., Damysus [9]) assume a fixed number of nodes N

Pre-defining how many faulty nodes *f* the system can tolerate, we can derive *N* (or vice-versa)

Driving scenarios are dynamic

How to define N and f, in these cases?

Júlio Mendonça, Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers

[9] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, "DAMYSUS: streamlined BFT consensus leveraging trusted components," in Proceedings of the 17th European Conference on Computer Systems, 2022, pp. 1–16.

Challenges

Current consensus algorithms (e.g., Damysus [9]) assume a fixed number of nodes N

How can we guarantee that a group of vehicles participating in a maneuver can safely decide and compute a correct maneuver?

brrect maneuver? Ity nodes *f* the system can tolerate, we can derive **N** (or vice-versa)

Driving scenarios are dynamic

How to define *N* and *f*, in these cases?

A protocol for resilient collaborative driving that **leverages reliable location** information of vehicles **to define members of a group** capable of safely reaching an agreement on maneuvers using **consensus algorithms**.

various vehicles (Sybil attacks)

Júlio Mendonça, Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers

[9] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, "DAMYSUS: streamlined BFT consensus leveraging trusted components," in Proceedings of the 17th European Conference on Computer Systems, 2022, pp. 1–16.

Results – Time to cross

Total time that a group of vehicles spends in each phase of the protocol

Time to cross (broken down by phase)

Júlio Mendonça, Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers

 $\bullet \bullet \bullet$

Results – Data transfer rate(1)

Data transfer rate that **an entire group of vehicles** consumes during phases of the protocol

Data transfer rate

Results – Data transfer rate(2)

Impact of the constant *c* (security level adaptation) on the data transfer rate of **an entire group of vehicles** during the agreement phase of the protocol

Overall data transfer rate (Mbits/s)			
Configuration	Average	Min	Max
$N_{obs} = 16, c=3 (F=7)$	77.3644	75.32063	78.73396
$N_{obs} = 16, c=4 (F=5)$	29.51153	28.47576	30.20559
$N_{obs} = 16, c=6 (F=3)$	8.161355	7.587071	8.461247
$N_{obs} = 16, c=9 (F=1)$	0.569509	0.389318	0.676919

Conclusions

We introduced a novel approach that relies on trust anchors to reliably report a vehicle's location;

We proposed a protocol for constrained-location-based group membership;

We defined our protocol to work with a dynamic number of vehicles;

We used state-of-the-art simulators to evaluate our protocol regarding the time to execute a complex cooperative maneuver and the data transfer rate used.

IIII SIT

Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers

Paper link

Júlio Mendonça julio.mendonca@uni.lu

System model

We assume trust anchors [2] can reliably report a vehicle's location, verify received information, and sign messages

We parametrize our solution by a constant $c \ge 4$ (hybrid, $c \ge 3$) and F < N/c, which also means N > cF

We assume that faulty vehicles may not engage in the protocol: The number of vehicles engaging N_{obs} should be in [N - F, N] N = N_{obs} + F Consequently, F < $\frac{N_{obs}}{c}$ + $\frac{F}{c}$ and F < $\frac{N_{obs}}{c-1}$

[2] A. Shoker, V. Rahli, J. Decouchant, and P. Esteves-Verissimo, "Intrusion resilience systems for modern vehicles," in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–7.

uni.In

16 The protocol foundations

Trust Anchors

A security-dedicated independent controller in the vehicle [1, 2];

We focus on defining functionalities, not a new design;

We define functions to enforce drive, certify location, localize, and sign messages.

Júlio Mendonca, Confirmed-Location Group Membership for Intrusion-Resilient Cooperative Maneuvers [1] J. Han and A. Cho, "Practical in-vehicle security architecture based on trust anchors," in 2023 IEE 97th Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–3 [2] A. Shoker, V. Rahli, J. Decouchant, and P. Esteves-Verissimo, "Intrusion resilience systems for modern vehicles," in 2023 IEE 97th Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–3

