

86th IFIP WG 10.4 Meeting, June 2024

Unmanned Aerial Vehicles (UAVs) and Airspace Safety

Naghmeh Ivaki

 \bigcirc

Autonomous Vehicles

SEVENTY-FOURTH

The motorist's dream: a car that is controlled by a set of push buttons

What is a UAV?

. An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without any human pilot or crew on board

Classification of UAV based on Wings and Rotors

UAVs Characteristics

- · Flexible in movement
- Mechanically Simple
- Cheep

Applications of UAV

Agriculture

Taxi Delivery

security surveillance Photography and Filming

Future of UAVs

According to SESAR (European Union's Digital Sky technology pillar) **400,000 drones** will be flying over **European airspace** by **2035**

Main Challenges

- High Density
	- High probability of collision
- High Target Level of Safety
	- Highly risky environment (urban air space)
- Use of AI in AVs
	- V&V of AI safety
- Low budget

Need for Air traffic control

Other Challenges with UAVs in Urban Air

- Violation of public privacy
- Noises
- · Social Acceptance
- · Mission Priority (e.g., emergency services)

Need for Unmanned Aircraft System (UAS) Traffic Management (UTM)

- A conceptual framework for UTM was first conceived by NASA in 2013
- The Federation Aviation Administration (FAA) and NASA formed a **UTM Research Transition Team** (RTT) in 2016 to jointly undertake the development and eventual implementation of UTM

Operational context of UTM services

11

UTM: is the manner in which the FAA (Federal Aviation Administration) will **support operations for UAS operating in low altitude airspace**

U-space

- What is U-space?
	- U-Space is the UTM system in Europe

"A set of new services and specific procedures designed to support safe, efficient and secure access to airspace for large numbers of drones"

U-Space Blueprint

U-space services

- Strategic Phase
	- · E.g., Pre-flight **Conflict Detection**

BUBBLES Project

BUBBLES is a European project targeting the formulation and validation of a concept of separation management for UAS in the U-

space for avoid conflicts.

BUBBLES

https://bubbles-project.eu/

Our Objective in BUBBLES

Validate U-space separation minima in abnormal and faulty conditions

Security Attacks

Software component/service failures

Artificial Intelligence (AI) failures

Erroneous Decision made by AI used in Autonomous Drones

> **Erroneous Decision** made by AI used in US-Space Services

Evaluation Platform – Logical view

Fault model for GPS

Fault Model for GPS

Fault Model for IMU Sensors

- · Accelerometer
- · Gyrometer

UAV simulation environments

General Assessment Process

Analysis of the Results

• Two sets of analysis:

- **Analysis of the impact of fault on one single mission** by comparing the gold run trajectory of the mission with the faulty trajectory.
- Analysis of the *impact of fault on one scenario* (with several missions) by comparing the **number of conflicts and conflict rate** of the gold run scenario with the faulty scenario.

Analysis of the impact on a single mission

- The faults may affect on the following aspect of a mission:
	- Completion of the mission
	- Duration of the mission
	- Trajectory of the mission (Violation form separation minima)
- · Failure models:
	- **No effect**: the mission is finished, and the injected fault had no effect on the above aspects
	- **Minor effect No safety Violation**: the mission is finished but it took more time than gold run trajectory/deviated from the reference trajectory but **still inside the volume.**
	- **Critical effect – Safety Violation** trajectory and **went outside of the volume**.
	- **Drastical effect - Safety Violation** safety violation), abrupt landing or crash (safety violation), Lost control of UAV (safety **(idubig)** \rightarrow (it would be outside the scope of the TLS defined for mid air collisions)

Analysis of the impact on one Scenario

When comparing the gold run trajectories of a scenario with the faulty trajectories, we can look at:

- Occurrence of collision
- Number of conflicts
- Conflict rate
- . Total duration of conflicts
- Accordingly, the Failure Models can be defined as follows:
	- **No Effect** no changes in the above aspects
	- **Visible Effect Impact on the target level of safety**: the number of conflicts increases/conflict rate increases (the effect on TLS depends on the magnitude of the increase in the conflict rate; need to define boundaries
	- **Critical Effect - Impact on the target level of safety**level of safety)

Example: Scenarios and Missions

 $\qquad \qquad =$

 \circ

 \circ

 \circ

- Valencia, Spain
- High density
	- 28 drones
	- 25 km2 area
- 1 hour scenario
- Gold Runs
	- Faulty runs
		- 4 Durations:
			- 2 seconds
			- 5 seconds
			- 10 seconds
			- 30 seconds

Are UAVs Flight Controller Reliable?

- Findings:
	- For small faults (e.g., Fixed Small Noise or Freeze Values), EKF is efficient and can tolerate/compensate the faults
	- For bigger anomalies (e.g., Invalid Values or Random Values) in the GPS data, EKF is not effective at all
	- For GPS faults lasting 30 seconds or more, we observed a noticeable effect
		- This represents a clear vulnerability since GPS can be subject of cyber attacks such as spoofing.

Results with of IMU Faults

. In general IMU is more critical than GPS

Most missions are failed

Results of IMU Fault Injection

Gyrometer is more critical than Accelerometer-

Results of IMU Faults

• Failsafe Activation

Can AI help to Tolerate Failures?

How Can AI help to Tolerate Failures?

Fig. 6: Trajectory of a UAV in faulty condition, in comparison with the Gold run.

Fig. 7: Trajectory of a UAV with the fault-tolerance mechanism integration in a faulty condition, in comparison with the gold run.

Why AI and not a Physics Model?

 \mathbf{A} and \mathbf{A} and \mathbf{A} and \mathbf{A}

 $\label{eq:position} Position_{current} = Position_{previous} + Speed_{current} * Time$

 $Speed_{current} = Speed_{previous} + Acceleration_{current} * Time$

$$
Lat_{current} = Lat_{previous} + Speed_Y * Time + \frac{Acceleration_Y * Time^2}{2}
$$

$$
Lon_{current} = Lon_{previous} + Speed_X * Time + \frac{Acceleration_X * Time}{2}
$$

$$
Alt_{current} = Alt_{previous} + Speed_Z * Time + \frac{Acceleration_Z * Time^2}{2}
$$

Why AI and not a Physics Model?

AI and Physics Model for IMU

- Al models for both Accelerometer and Gyrometer
	- Recurrent Neural Network (RNN)
	- Convolutional Neural Network (CNN)
	- Generative Adversarial Network (GAN)
	- · Autoencoder
	- Regression
	- Long Short-Term Memory (LSTM) on Regression
	- **LSTM with RNN**

• Physics model

• Well established models in the literature for both Accelerometer and Gyrometer

Interestingly, physics model outperformed the AI model for accelerometer And AI model outperformed the physics model for gyrometer,

Hybrid Model for IMU fault Tolerance

66

Hybrid Model for IMU fault Tolerance

We could complete all the mission successfully

Another Study: Lead Time Analysis

- Failure Prediction
	- · Failure: bubble violation
	- · Lead time

71

Ongoing Study: U-space Safety Assessment

- Definition and validation of Safety Metrics
	- How the metrics should be measures?
		- Measurement interval
	- How sensitive the metrics are to the influencing factors (environmental or technical, failures or attacks)
	- . How effective the metrics are for Target level of safety?
		- The correlation of metrics with **Collision rate**

