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Background

High-performing DNNs often demand substantial resources.

⋄ GPT-3 consists of 175 billion parameters and takes 355 GPU-years and $4.6M for a
single training run [1].

These DNNs yield significant profits for Model Owners.

⋄ ChatGPT has attracted 100 million active users two months after its launch, and
earns $80 million per month for OpenAI [2].

Model Owner DNN

1Li Chuan. OpenAI’s GPT-3 Language Model: A Technical Overview. 2023.
2Chloe Taylor. ChatGPT creator OpenAI earnings: $80 million a month, $1 billion annual revenue, $540 million loss: Sam Altman. 2023.
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Background

Transfer of the model to an external party is often required.

⋄ machine learning as a service (MLaaS)

⋄ on-device model deployment

Model Owner External Party
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Background

Unethical entities may exploit the obtained model for unscrupulous competition or
unauthorized subletting, posing financial losses.

⋄ 41% of mobile apps fail to secure their DNN models [3]

Model Owner External Party

3Zhichuang Sun et al. “Mind Your Weight(s): A Large-scale Study on Insufficient Machine Learning Model Protection in Mobile Apps”. In: USENIX Security. 2021.
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Background

Scenario. Model owners offer models with varying capabilities at different price points.

Model Owner
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Existing Methods

Watermarking based
[4,5,6]

. Embed watermarks/signatures in models to verify
ownership.

⋄ often fail to prevent unauthorized usage after the model’s exposure

Parameter encryption/perturbation based
[7,8].

⋄ computationally expensive

⋄ detectable and removable through out-of-distribution value detection

⋄ lack of theoretical guarantee

4Bita Darvish Rouhani et al. “DeepSigns: An End-to-End Watermarking Framework for Ownership Protection of Deep Neural Networks”. In: ASPLOS. 2019.
5Shuo Wang et al. “PublicCheck: Public Watermarking Verification for Deep Neural Networks”. In: IEEE S&P. 2023.
6Huili Chen et al. “Deepattest: an end-to-end attestation framework for deep neural networks”. In: ISCA. 2019.
7Tong Zhou et al. “NNSplitter: An Active Defense Solution for DNN Model via Automated Weight Obfuscation”. In: ICML. 2023.
8Mingfu Xue et al. “AdvParams: An Active DNN Intellectual Property Protection Technique via Adversarial Perturbation Based Parameter Encryption”. In: IEEE

Transactions on Emerging Topics in Computing (2023).
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Our Work

Our method aims for a training data-agnostic and retraining-free process by directly

operating on off-the-shelf pre-trained networks.

Specifically, we aim to answer the research question of how to degrade a model’s
performance to a lower utility level while ensuring that the full utility can be efficiently
restored by authorized controllers?
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CoreLocker: Neuron-level Usage Control

CoreLocker employs the strategic extraction of a small subset of significant

weights from the neural network (as the access key).
⋄ Key Customization. Adjust key volume to customize utility levels.

⋄ Usage Control. Full access for authorized users; limited for unauthorized.

Access Key 
Extraction

𝑓!𝑓∗

Release To 
Public

An illustration of the CoreLocker workflow.
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Key Selection

Our Intuition. The performance of a neural network is largely reliant on a crucial subset of
weights.

Visualization of filters from the first convolutional layer of a
VggNet, sorted by filters’ ℓ1-norm.

⋄ Removing these weights is likely to have the potential to incapacitate the network.
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Key Selection

Our Intuition. The performance of a neural network is largely reliant on a crucial subset of
weights.

Visualization of feature maps (the top and bottom six) from the
first convolutional layer of a VggNet, sorted by filters’ ℓ1-norm.

⋄ Removing these weights is likely to have the potential to incapacitate the network.
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Theoretical Analysis

Bounded output disparity between pre- and post-extraction networks (f ∗ and f α).

𝑓𝛼𝑓∗

⋄ Bounded network output by bounding difference of weight matrices layer by layer.

⋄ Quantified how weight extraction alterations in each layer propagate through the
network and manifest in the output layer.
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Theoretical Implication

CoreLocker ’s strategy offers strong guarantees.

⋄ We establish a direct relationship between weight matrices and neural network
output disparity.
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Figure: The bounded output variance and disparity post-extraction.

⋄ The disparity among f ∗ and f α increases rapidly as the extraction ratio increases.
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Emprical Results
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Figure: CoreLocker (left) versus random extraction
(right) on CIFAR-10 (top) and CIFAR-100 (bottom).

CoreLocker effectively provides model
usage control via neuron-level access
key extraction and offers fine-grained
utility protection through customized
keys.

⋄ The model accuracy decrease
consistently and rapidly as weight
extraction ratios increase.
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Emprical Results

CoreLocker can offer fine-grained utility protec-
tion through customized key volumes.

Model Owner

Extraction
Ratio

ResNet-164 DenseNet-40

Utility Range (%) Utility Range (%)

0.0005 73.3% 70 – 75 70.2% 70 – 75
0.0010 71.6% 70 – 75 66.3% 65 – 70
0.0015 69.3% 65 – 70 63.5% 60 – 65
0.0020 66.6% 65 – 70 60.0% 60 – 65
0.0025 63.1% 60 – 65 55.9% 55 – 60
0.0030 61.3% 60 – 65 53.7% 50 – 55
0.0035 59.7% 55 – 60 51.5% 50 – 55
0.0040 56.3% 55 – 60 47.4% 45 – 50
0.0045 53.2% 50 – 55 43.6% 40 – 45
0.0050 51.9% 50 – 55 43.1% 40 – 45
0.0055 45.9% 45 – 50 39.3% 35 – 40
0.0060 43.9% 40 – 45 36.7% 35 – 40
0.0065 41.0% 40 – 45 34.1% 30 – 35
0.0070 35.7% 35 – 40 29.3% 25 – 30
0.0075 32.0% 30 – 35 27.2% 25 – 30
0.0080 32.2% 30 – 35 25.2% 25 – 30
0.0085 28.7% 25 – 30 25.0% 20 – 25
0.0090 27.9% 25 – 30 20.8% 20 – 25
0.0095 26.7% 25 – 30 19.5% 15 – 20
0.0100 24.4% 20 – 25 19.5% 15 – 20
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Summary

⋄ We establish a crucial research problem of AI model usage control, which requires a
neuron-level lock of the model’s utility while ensuring that its full utility can be
efficiently restored for authorized use with an access key.

⋄ Our work endows the model owner with the capability to tailor the model into a
low-utility version, which can be fully restored after authorization.

⋄ Our approach is lightweight, data-agnostic, retraining-free, universally applicable,
and grounded with a strong formal foundation.
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Thank you

Our Paper
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